Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/dvrabel...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / mm / pageattr.c
blob43e2f8483e4f59c33559263c0011e1e5bf041f9d
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
15 #include <asm/e820.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/uaccess.h>
20 #include <asm/pgalloc.h>
21 #include <asm/proto.h>
22 #include <asm/pat.h>
25 * The current flushing context - we pass it instead of 5 arguments:
27 struct cpa_data {
28 unsigned long vaddr;
29 pgprot_t mask_set;
30 pgprot_t mask_clr;
31 int numpages;
32 int flushtlb;
33 unsigned long pfn;
34 unsigned force_split : 1;
37 #ifdef CONFIG_PROC_FS
38 static unsigned long direct_pages_count[PG_LEVEL_NUM];
40 void update_page_count(int level, unsigned long pages)
42 unsigned long flags;
44 /* Protect against CPA */
45 spin_lock_irqsave(&pgd_lock, flags);
46 direct_pages_count[level] += pages;
47 spin_unlock_irqrestore(&pgd_lock, flags);
50 static void split_page_count(int level)
52 direct_pages_count[level]--;
53 direct_pages_count[level - 1] += PTRS_PER_PTE;
56 int arch_report_meminfo(char *page)
58 int n = sprintf(page, "DirectMap4k: %8lu kB\n",
59 direct_pages_count[PG_LEVEL_4K] << 2);
60 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
61 n += sprintf(page + n, "DirectMap2M: %8lu kB\n",
62 direct_pages_count[PG_LEVEL_2M] << 11);
63 #else
64 n += sprintf(page + n, "DirectMap4M: %8lu kB\n",
65 direct_pages_count[PG_LEVEL_2M] << 12);
66 #endif
67 #ifdef CONFIG_X86_64
68 if (direct_gbpages)
69 n += sprintf(page + n, "DirectMap1G: %8lu kB\n",
70 direct_pages_count[PG_LEVEL_1G] << 20);
71 #endif
72 return n;
74 #else
75 static inline void split_page_count(int level) { }
76 #endif
78 #ifdef CONFIG_X86_64
80 static inline unsigned long highmap_start_pfn(void)
82 return __pa(_text) >> PAGE_SHIFT;
85 static inline unsigned long highmap_end_pfn(void)
87 return __pa(round_up((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
90 #endif
92 #ifdef CONFIG_DEBUG_PAGEALLOC
93 # define debug_pagealloc 1
94 #else
95 # define debug_pagealloc 0
96 #endif
98 static inline int
99 within(unsigned long addr, unsigned long start, unsigned long end)
101 return addr >= start && addr < end;
105 * Flushing functions
109 * clflush_cache_range - flush a cache range with clflush
110 * @addr: virtual start address
111 * @size: number of bytes to flush
113 * clflush is an unordered instruction which needs fencing with mfence
114 * to avoid ordering issues.
116 void clflush_cache_range(void *vaddr, unsigned int size)
118 void *vend = vaddr + size - 1;
120 mb();
122 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
123 clflush(vaddr);
125 * Flush any possible final partial cacheline:
127 clflush(vend);
129 mb();
132 static void __cpa_flush_all(void *arg)
134 unsigned long cache = (unsigned long)arg;
137 * Flush all to work around Errata in early athlons regarding
138 * large page flushing.
140 __flush_tlb_all();
142 if (cache && boot_cpu_data.x86_model >= 4)
143 wbinvd();
146 static void cpa_flush_all(unsigned long cache)
148 BUG_ON(irqs_disabled());
150 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
153 static void __cpa_flush_range(void *arg)
156 * We could optimize that further and do individual per page
157 * tlb invalidates for a low number of pages. Caveat: we must
158 * flush the high aliases on 64bit as well.
160 __flush_tlb_all();
163 static void cpa_flush_range(unsigned long start, int numpages, int cache)
165 unsigned int i, level;
166 unsigned long addr;
168 BUG_ON(irqs_disabled());
169 WARN_ON(PAGE_ALIGN(start) != start);
171 on_each_cpu(__cpa_flush_range, NULL, 1);
173 if (!cache)
174 return;
177 * We only need to flush on one CPU,
178 * clflush is a MESI-coherent instruction that
179 * will cause all other CPUs to flush the same
180 * cachelines:
182 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
183 pte_t *pte = lookup_address(addr, &level);
186 * Only flush present addresses:
188 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
189 clflush_cache_range((void *) addr, PAGE_SIZE);
194 * Certain areas of memory on x86 require very specific protection flags,
195 * for example the BIOS area or kernel text. Callers don't always get this
196 * right (again, ioremap() on BIOS memory is not uncommon) so this function
197 * checks and fixes these known static required protection bits.
199 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
200 unsigned long pfn)
202 pgprot_t forbidden = __pgprot(0);
205 * The BIOS area between 640k and 1Mb needs to be executable for
206 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
208 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
209 pgprot_val(forbidden) |= _PAGE_NX;
212 * The kernel text needs to be executable for obvious reasons
213 * Does not cover __inittext since that is gone later on. On
214 * 64bit we do not enforce !NX on the low mapping
216 if (within(address, (unsigned long)_text, (unsigned long)_etext))
217 pgprot_val(forbidden) |= _PAGE_NX;
220 * The .rodata section needs to be read-only. Using the pfn
221 * catches all aliases.
223 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
224 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
225 pgprot_val(forbidden) |= _PAGE_RW;
227 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
229 return prot;
233 * Lookup the page table entry for a virtual address. Return a pointer
234 * to the entry and the level of the mapping.
236 * Note: We return pud and pmd either when the entry is marked large
237 * or when the present bit is not set. Otherwise we would return a
238 * pointer to a nonexisting mapping.
240 pte_t *lookup_address(unsigned long address, unsigned int *level)
242 pgd_t *pgd = pgd_offset_k(address);
243 pud_t *pud;
244 pmd_t *pmd;
246 *level = PG_LEVEL_NONE;
248 if (pgd_none(*pgd))
249 return NULL;
251 pud = pud_offset(pgd, address);
252 if (pud_none(*pud))
253 return NULL;
255 *level = PG_LEVEL_1G;
256 if (pud_large(*pud) || !pud_present(*pud))
257 return (pte_t *)pud;
259 pmd = pmd_offset(pud, address);
260 if (pmd_none(*pmd))
261 return NULL;
263 *level = PG_LEVEL_2M;
264 if (pmd_large(*pmd) || !pmd_present(*pmd))
265 return (pte_t *)pmd;
267 *level = PG_LEVEL_4K;
269 return pte_offset_kernel(pmd, address);
271 EXPORT_SYMBOL_GPL(lookup_address);
274 * Set the new pmd in all the pgds we know about:
276 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
278 /* change init_mm */
279 set_pte_atomic(kpte, pte);
280 #ifdef CONFIG_X86_32
281 if (!SHARED_KERNEL_PMD) {
282 struct page *page;
284 list_for_each_entry(page, &pgd_list, lru) {
285 pgd_t *pgd;
286 pud_t *pud;
287 pmd_t *pmd;
289 pgd = (pgd_t *)page_address(page) + pgd_index(address);
290 pud = pud_offset(pgd, address);
291 pmd = pmd_offset(pud, address);
292 set_pte_atomic((pte_t *)pmd, pte);
295 #endif
298 static int
299 try_preserve_large_page(pte_t *kpte, unsigned long address,
300 struct cpa_data *cpa)
302 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
303 pte_t new_pte, old_pte, *tmp;
304 pgprot_t old_prot, new_prot;
305 int i, do_split = 1;
306 unsigned int level;
308 if (cpa->force_split)
309 return 1;
311 spin_lock_irqsave(&pgd_lock, flags);
313 * Check for races, another CPU might have split this page
314 * up already:
316 tmp = lookup_address(address, &level);
317 if (tmp != kpte)
318 goto out_unlock;
320 switch (level) {
321 case PG_LEVEL_2M:
322 psize = PMD_PAGE_SIZE;
323 pmask = PMD_PAGE_MASK;
324 break;
325 #ifdef CONFIG_X86_64
326 case PG_LEVEL_1G:
327 psize = PUD_PAGE_SIZE;
328 pmask = PUD_PAGE_MASK;
329 break;
330 #endif
331 default:
332 do_split = -EINVAL;
333 goto out_unlock;
337 * Calculate the number of pages, which fit into this large
338 * page starting at address:
340 nextpage_addr = (address + psize) & pmask;
341 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
342 if (numpages < cpa->numpages)
343 cpa->numpages = numpages;
346 * We are safe now. Check whether the new pgprot is the same:
348 old_pte = *kpte;
349 old_prot = new_prot = pte_pgprot(old_pte);
351 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
352 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
355 * old_pte points to the large page base address. So we need
356 * to add the offset of the virtual address:
358 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
359 cpa->pfn = pfn;
361 new_prot = static_protections(new_prot, address, pfn);
364 * We need to check the full range, whether
365 * static_protection() requires a different pgprot for one of
366 * the pages in the range we try to preserve:
368 addr = address + PAGE_SIZE;
369 pfn++;
370 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
371 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
373 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
374 goto out_unlock;
378 * If there are no changes, return. maxpages has been updated
379 * above:
381 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
382 do_split = 0;
383 goto out_unlock;
387 * We need to change the attributes. Check, whether we can
388 * change the large page in one go. We request a split, when
389 * the address is not aligned and the number of pages is
390 * smaller than the number of pages in the large page. Note
391 * that we limited the number of possible pages already to
392 * the number of pages in the large page.
394 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
396 * The address is aligned and the number of pages
397 * covers the full page.
399 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
400 __set_pmd_pte(kpte, address, new_pte);
401 cpa->flushtlb = 1;
402 do_split = 0;
405 out_unlock:
406 spin_unlock_irqrestore(&pgd_lock, flags);
408 return do_split;
411 static LIST_HEAD(page_pool);
412 static unsigned long pool_size, pool_pages, pool_low;
413 static unsigned long pool_used, pool_failed;
415 static void cpa_fill_pool(struct page **ret)
417 gfp_t gfp = GFP_KERNEL;
418 unsigned long flags;
419 struct page *p;
422 * Avoid recursion (on debug-pagealloc) and also signal
423 * our priority to get to these pagetables:
425 if (current->flags & PF_MEMALLOC)
426 return;
427 current->flags |= PF_MEMALLOC;
430 * Allocate atomically from atomic contexts:
432 if (in_atomic() || irqs_disabled() || debug_pagealloc)
433 gfp = GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN;
435 while (pool_pages < pool_size || (ret && !*ret)) {
436 p = alloc_pages(gfp, 0);
437 if (!p) {
438 pool_failed++;
439 break;
442 * If the call site needs a page right now, provide it:
444 if (ret && !*ret) {
445 *ret = p;
446 continue;
448 spin_lock_irqsave(&pgd_lock, flags);
449 list_add(&p->lru, &page_pool);
450 pool_pages++;
451 spin_unlock_irqrestore(&pgd_lock, flags);
454 current->flags &= ~PF_MEMALLOC;
457 #define SHIFT_MB (20 - PAGE_SHIFT)
458 #define ROUND_MB_GB ((1 << 10) - 1)
459 #define SHIFT_MB_GB 10
460 #define POOL_PAGES_PER_GB 16
462 void __init cpa_init(void)
464 struct sysinfo si;
465 unsigned long gb;
467 si_meminfo(&si);
469 * Calculate the number of pool pages:
471 * Convert totalram (nr of pages) to MiB and round to the next
472 * GiB. Shift MiB to Gib and multiply the result by
473 * POOL_PAGES_PER_GB:
475 if (debug_pagealloc) {
476 gb = ((si.totalram >> SHIFT_MB) + ROUND_MB_GB) >> SHIFT_MB_GB;
477 pool_size = POOL_PAGES_PER_GB * gb;
478 } else {
479 pool_size = 1;
481 pool_low = pool_size;
483 cpa_fill_pool(NULL);
484 printk(KERN_DEBUG
485 "CPA: page pool initialized %lu of %lu pages preallocated\n",
486 pool_pages, pool_size);
489 static int split_large_page(pte_t *kpte, unsigned long address)
491 unsigned long flags, pfn, pfninc = 1;
492 unsigned int i, level;
493 pte_t *pbase, *tmp;
494 pgprot_t ref_prot;
495 struct page *base;
498 * Get a page from the pool. The pool list is protected by the
499 * pgd_lock, which we have to take anyway for the split
500 * operation:
502 spin_lock_irqsave(&pgd_lock, flags);
503 if (list_empty(&page_pool)) {
504 spin_unlock_irqrestore(&pgd_lock, flags);
505 base = NULL;
506 cpa_fill_pool(&base);
507 if (!base)
508 return -ENOMEM;
509 spin_lock_irqsave(&pgd_lock, flags);
510 } else {
511 base = list_first_entry(&page_pool, struct page, lru);
512 list_del(&base->lru);
513 pool_pages--;
515 if (pool_pages < pool_low)
516 pool_low = pool_pages;
520 * Check for races, another CPU might have split this page
521 * up for us already:
523 tmp = lookup_address(address, &level);
524 if (tmp != kpte)
525 goto out_unlock;
527 pbase = (pte_t *)page_address(base);
528 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
529 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
531 #ifdef CONFIG_X86_64
532 if (level == PG_LEVEL_1G) {
533 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
534 pgprot_val(ref_prot) |= _PAGE_PSE;
536 #endif
539 * Get the target pfn from the original entry:
541 pfn = pte_pfn(*kpte);
542 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
543 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
545 if (address >= (unsigned long)__va(0) &&
546 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
547 split_page_count(level);
549 #ifdef CONFIG_X86_64
550 if (address >= (unsigned long)__va(1UL<<32) &&
551 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
552 split_page_count(level);
553 #endif
556 * Install the new, split up pagetable. Important details here:
558 * On Intel the NX bit of all levels must be cleared to make a
559 * page executable. See section 4.13.2 of Intel 64 and IA-32
560 * Architectures Software Developer's Manual).
562 * Mark the entry present. The current mapping might be
563 * set to not present, which we preserved above.
565 ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
566 pgprot_val(ref_prot) |= _PAGE_PRESENT;
567 __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
568 base = NULL;
570 out_unlock:
572 * If we dropped out via the lookup_address check under
573 * pgd_lock then stick the page back into the pool:
575 if (base) {
576 list_add(&base->lru, &page_pool);
577 pool_pages++;
578 } else
579 pool_used++;
580 spin_unlock_irqrestore(&pgd_lock, flags);
582 return 0;
585 static int __change_page_attr(struct cpa_data *cpa, int primary)
587 unsigned long address = cpa->vaddr;
588 int do_split, err;
589 unsigned int level;
590 pte_t *kpte, old_pte;
592 repeat:
593 kpte = lookup_address(address, &level);
594 if (!kpte)
595 return 0;
597 old_pte = *kpte;
598 if (!pte_val(old_pte)) {
599 if (!primary)
600 return 0;
601 WARN(1, KERN_WARNING "CPA: called for zero pte. "
602 "vaddr = %lx cpa->vaddr = %lx\n", address,
603 cpa->vaddr);
604 return -EINVAL;
607 if (level == PG_LEVEL_4K) {
608 pte_t new_pte;
609 pgprot_t new_prot = pte_pgprot(old_pte);
610 unsigned long pfn = pte_pfn(old_pte);
612 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
613 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
615 new_prot = static_protections(new_prot, address, pfn);
618 * We need to keep the pfn from the existing PTE,
619 * after all we're only going to change it's attributes
620 * not the memory it points to
622 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
623 cpa->pfn = pfn;
625 * Do we really change anything ?
627 if (pte_val(old_pte) != pte_val(new_pte)) {
628 set_pte_atomic(kpte, new_pte);
629 cpa->flushtlb = 1;
631 cpa->numpages = 1;
632 return 0;
636 * Check, whether we can keep the large page intact
637 * and just change the pte:
639 do_split = try_preserve_large_page(kpte, address, cpa);
641 * When the range fits into the existing large page,
642 * return. cp->numpages and cpa->tlbflush have been updated in
643 * try_large_page:
645 if (do_split <= 0)
646 return do_split;
649 * We have to split the large page:
651 err = split_large_page(kpte, address);
652 if (!err) {
653 cpa->flushtlb = 1;
654 goto repeat;
657 return err;
660 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
662 static int cpa_process_alias(struct cpa_data *cpa)
664 struct cpa_data alias_cpa;
665 int ret = 0;
667 if (cpa->pfn >= max_pfn_mapped)
668 return 0;
670 #ifdef CONFIG_X86_64
671 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
672 return 0;
673 #endif
675 * No need to redo, when the primary call touched the direct
676 * mapping already:
678 if (!(within(cpa->vaddr, PAGE_OFFSET,
679 PAGE_OFFSET + (max_low_pfn_mapped << PAGE_SHIFT))
680 #ifdef CONFIG_X86_64
681 || within(cpa->vaddr, PAGE_OFFSET + (1UL<<32),
682 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))
683 #endif
684 )) {
686 alias_cpa = *cpa;
687 alias_cpa.vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
689 ret = __change_page_attr_set_clr(&alias_cpa, 0);
692 #ifdef CONFIG_X86_64
693 if (ret)
694 return ret;
696 * No need to redo, when the primary call touched the high
697 * mapping already:
699 if (within(cpa->vaddr, (unsigned long) _text, (unsigned long) _end))
700 return 0;
703 * If the physical address is inside the kernel map, we need
704 * to touch the high mapped kernel as well:
706 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
707 return 0;
709 alias_cpa = *cpa;
710 alias_cpa.vaddr =
711 (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
714 * The high mapping range is imprecise, so ignore the return value.
716 __change_page_attr_set_clr(&alias_cpa, 0);
717 #endif
718 return ret;
721 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
723 int ret, numpages = cpa->numpages;
725 while (numpages) {
727 * Store the remaining nr of pages for the large page
728 * preservation check.
730 cpa->numpages = numpages;
732 ret = __change_page_attr(cpa, checkalias);
733 if (ret)
734 return ret;
736 if (checkalias) {
737 ret = cpa_process_alias(cpa);
738 if (ret)
739 return ret;
743 * Adjust the number of pages with the result of the
744 * CPA operation. Either a large page has been
745 * preserved or a single page update happened.
747 BUG_ON(cpa->numpages > numpages);
748 numpages -= cpa->numpages;
749 cpa->vaddr += cpa->numpages * PAGE_SIZE;
751 return 0;
754 static inline int cache_attr(pgprot_t attr)
756 return pgprot_val(attr) &
757 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
760 static int change_page_attr_set_clr(unsigned long addr, int numpages,
761 pgprot_t mask_set, pgprot_t mask_clr,
762 int force_split)
764 struct cpa_data cpa;
765 int ret, cache, checkalias;
768 * Check, if we are requested to change a not supported
769 * feature:
771 mask_set = canon_pgprot(mask_set);
772 mask_clr = canon_pgprot(mask_clr);
773 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
774 return 0;
776 /* Ensure we are PAGE_SIZE aligned */
777 if (addr & ~PAGE_MASK) {
778 addr &= PAGE_MASK;
780 * People should not be passing in unaligned addresses:
782 WARN_ON_ONCE(1);
785 cpa.vaddr = addr;
786 cpa.numpages = numpages;
787 cpa.mask_set = mask_set;
788 cpa.mask_clr = mask_clr;
789 cpa.flushtlb = 0;
790 cpa.force_split = force_split;
792 /* No alias checking for _NX bit modifications */
793 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
795 ret = __change_page_attr_set_clr(&cpa, checkalias);
798 * Check whether we really changed something:
800 if (!cpa.flushtlb)
801 goto out;
804 * No need to flush, when we did not set any of the caching
805 * attributes:
807 cache = cache_attr(mask_set);
810 * On success we use clflush, when the CPU supports it to
811 * avoid the wbindv. If the CPU does not support it and in the
812 * error case we fall back to cpa_flush_all (which uses
813 * wbindv):
815 if (!ret && cpu_has_clflush)
816 cpa_flush_range(addr, numpages, cache);
817 else
818 cpa_flush_all(cache);
820 out:
821 cpa_fill_pool(NULL);
823 return ret;
826 static inline int change_page_attr_set(unsigned long addr, int numpages,
827 pgprot_t mask)
829 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0);
832 static inline int change_page_attr_clear(unsigned long addr, int numpages,
833 pgprot_t mask)
835 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0);
838 int _set_memory_uc(unsigned long addr, int numpages)
841 * for now UC MINUS. see comments in ioremap_nocache()
843 return change_page_attr_set(addr, numpages,
844 __pgprot(_PAGE_CACHE_UC_MINUS));
847 int set_memory_uc(unsigned long addr, int numpages)
850 * for now UC MINUS. see comments in ioremap_nocache()
852 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
853 _PAGE_CACHE_UC_MINUS, NULL))
854 return -EINVAL;
856 return _set_memory_uc(addr, numpages);
858 EXPORT_SYMBOL(set_memory_uc);
860 int _set_memory_wc(unsigned long addr, int numpages)
862 return change_page_attr_set(addr, numpages,
863 __pgprot(_PAGE_CACHE_WC));
866 int set_memory_wc(unsigned long addr, int numpages)
868 if (!pat_enabled)
869 return set_memory_uc(addr, numpages);
871 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
872 _PAGE_CACHE_WC, NULL))
873 return -EINVAL;
875 return _set_memory_wc(addr, numpages);
877 EXPORT_SYMBOL(set_memory_wc);
879 int _set_memory_wb(unsigned long addr, int numpages)
881 return change_page_attr_clear(addr, numpages,
882 __pgprot(_PAGE_CACHE_MASK));
885 int set_memory_wb(unsigned long addr, int numpages)
887 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
889 return _set_memory_wb(addr, numpages);
891 EXPORT_SYMBOL(set_memory_wb);
893 int set_memory_x(unsigned long addr, int numpages)
895 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
897 EXPORT_SYMBOL(set_memory_x);
899 int set_memory_nx(unsigned long addr, int numpages)
901 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
903 EXPORT_SYMBOL(set_memory_nx);
905 int set_memory_ro(unsigned long addr, int numpages)
907 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
910 int set_memory_rw(unsigned long addr, int numpages)
912 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
915 int set_memory_np(unsigned long addr, int numpages)
917 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
920 int set_memory_4k(unsigned long addr, int numpages)
922 return change_page_attr_set_clr(addr, numpages, __pgprot(0),
923 __pgprot(0), 1);
926 int set_pages_uc(struct page *page, int numpages)
928 unsigned long addr = (unsigned long)page_address(page);
930 return set_memory_uc(addr, numpages);
932 EXPORT_SYMBOL(set_pages_uc);
934 int set_pages_wb(struct page *page, int numpages)
936 unsigned long addr = (unsigned long)page_address(page);
938 return set_memory_wb(addr, numpages);
940 EXPORT_SYMBOL(set_pages_wb);
942 int set_pages_x(struct page *page, int numpages)
944 unsigned long addr = (unsigned long)page_address(page);
946 return set_memory_x(addr, numpages);
948 EXPORT_SYMBOL(set_pages_x);
950 int set_pages_nx(struct page *page, int numpages)
952 unsigned long addr = (unsigned long)page_address(page);
954 return set_memory_nx(addr, numpages);
956 EXPORT_SYMBOL(set_pages_nx);
958 int set_pages_ro(struct page *page, int numpages)
960 unsigned long addr = (unsigned long)page_address(page);
962 return set_memory_ro(addr, numpages);
965 int set_pages_rw(struct page *page, int numpages)
967 unsigned long addr = (unsigned long)page_address(page);
969 return set_memory_rw(addr, numpages);
972 #ifdef CONFIG_DEBUG_PAGEALLOC
974 static int __set_pages_p(struct page *page, int numpages)
976 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
977 .numpages = numpages,
978 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
979 .mask_clr = __pgprot(0)};
981 return __change_page_attr_set_clr(&cpa, 1);
984 static int __set_pages_np(struct page *page, int numpages)
986 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
987 .numpages = numpages,
988 .mask_set = __pgprot(0),
989 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
991 return __change_page_attr_set_clr(&cpa, 1);
994 void kernel_map_pages(struct page *page, int numpages, int enable)
996 if (PageHighMem(page))
997 return;
998 if (!enable) {
999 debug_check_no_locks_freed(page_address(page),
1000 numpages * PAGE_SIZE);
1004 * If page allocator is not up yet then do not call c_p_a():
1006 if (!debug_pagealloc_enabled)
1007 return;
1010 * The return value is ignored as the calls cannot fail.
1011 * Large pages are kept enabled at boot time, and are
1012 * split up quickly with DEBUG_PAGEALLOC. If a splitup
1013 * fails here (due to temporary memory shortage) no damage
1014 * is done because we just keep the largepage intact up
1015 * to the next attempt when it will likely be split up:
1017 if (enable)
1018 __set_pages_p(page, numpages);
1019 else
1020 __set_pages_np(page, numpages);
1023 * We should perform an IPI and flush all tlbs,
1024 * but that can deadlock->flush only current cpu:
1026 __flush_tlb_all();
1029 * Try to refill the page pool here. We can do this only after
1030 * the tlb flush.
1032 cpa_fill_pool(NULL);
1035 #ifdef CONFIG_DEBUG_FS
1036 static int dpa_show(struct seq_file *m, void *v)
1038 seq_puts(m, "DEBUG_PAGEALLOC\n");
1039 seq_printf(m, "pool_size : %lu\n", pool_size);
1040 seq_printf(m, "pool_pages : %lu\n", pool_pages);
1041 seq_printf(m, "pool_low : %lu\n", pool_low);
1042 seq_printf(m, "pool_used : %lu\n", pool_used);
1043 seq_printf(m, "pool_failed : %lu\n", pool_failed);
1045 return 0;
1048 static int dpa_open(struct inode *inode, struct file *filp)
1050 return single_open(filp, dpa_show, NULL);
1053 static const struct file_operations dpa_fops = {
1054 .open = dpa_open,
1055 .read = seq_read,
1056 .llseek = seq_lseek,
1057 .release = single_release,
1060 static int __init debug_pagealloc_proc_init(void)
1062 struct dentry *de;
1064 de = debugfs_create_file("debug_pagealloc", 0600, NULL, NULL,
1065 &dpa_fops);
1066 if (!de)
1067 return -ENOMEM;
1069 return 0;
1071 __initcall(debug_pagealloc_proc_init);
1072 #endif
1074 #ifdef CONFIG_HIBERNATION
1076 bool kernel_page_present(struct page *page)
1078 unsigned int level;
1079 pte_t *pte;
1081 if (PageHighMem(page))
1082 return false;
1084 pte = lookup_address((unsigned long)page_address(page), &level);
1085 return (pte_val(*pte) & _PAGE_PRESENT);
1088 #endif /* CONFIG_HIBERNATION */
1090 #endif /* CONFIG_DEBUG_PAGEALLOC */
1093 * The testcases use internal knowledge of the implementation that shouldn't
1094 * be exposed to the rest of the kernel. Include these directly here.
1096 #ifdef CONFIG_CPA_DEBUG
1097 #include "pageattr-test.c"
1098 #endif