1 /* time.c: UltraSparc timer and TOD clock support.
3 * Copyright (C) 1997, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Based largely on code which is:
8 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/kernel.h>
16 #include <linux/param.h>
17 #include <linux/string.h>
19 #include <linux/interrupt.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/init.h>
23 #include <linux/ioport.h>
24 #include <linux/mc146818rtc.h>
25 #include <linux/delay.h>
26 #include <linux/profile.h>
27 #include <linux/bcd.h>
28 #include <linux/jiffies.h>
29 #include <linux/cpufreq.h>
30 #include <linux/percpu.h>
31 #include <linux/miscdevice.h>
32 #include <linux/rtc.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/clockchips.h>
35 #include <linux/clocksource.h>
36 #include <linux/of_device.h>
38 #include <asm/oplib.h>
39 #include <asm/mostek.h>
40 #include <asm/timer.h>
44 #include <asm/starfire.h>
46 #include <asm/sections.h>
47 #include <asm/cpudata.h>
48 #include <asm/uaccess.h>
49 #include <asm/irq_regs.h>
53 DEFINE_SPINLOCK(mostek_lock
);
54 DEFINE_SPINLOCK(rtc_lock
);
55 void __iomem
*mstk48t02_regs
= NULL
;
57 unsigned long ds1287_regs
= 0UL;
58 static void __iomem
*bq4802_regs
;
61 static void __iomem
*mstk48t08_regs
;
62 static void __iomem
*mstk48t59_regs
;
64 static int set_rtc_mmss(unsigned long);
66 #define TICK_PRIV_BIT (1UL << 63)
67 #define TICKCMP_IRQ_BIT (1UL << 63)
70 unsigned long profile_pc(struct pt_regs
*regs
)
72 unsigned long pc
= instruction_pointer(regs
);
74 if (in_lock_functions(pc
))
75 return regs
->u_regs
[UREG_RETPC
];
78 EXPORT_SYMBOL(profile_pc
);
81 static void tick_disable_protection(void)
83 /* Set things up so user can access tick register for profiling
84 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
85 * read back of %tick after writing it.
91 "1: rd %%tick, %%g2\n"
92 " add %%g2, 6, %%g2\n"
93 " andn %%g2, %0, %%g2\n"
94 " wrpr %%g2, 0, %%tick\n"
101 static void tick_disable_irq(void)
103 __asm__
__volatile__(
107 "1: wr %0, 0x0, %%tick_cmpr\n"
108 " rd %%tick_cmpr, %%g0"
110 : "r" (TICKCMP_IRQ_BIT
));
113 static void tick_init_tick(void)
115 tick_disable_protection();
119 static unsigned long tick_get_tick(void)
123 __asm__
__volatile__("rd %%tick, %0\n\t"
127 return ret
& ~TICK_PRIV_BIT
;
130 static int tick_add_compare(unsigned long adj
)
132 unsigned long orig_tick
, new_tick
, new_compare
;
134 __asm__
__volatile__("rd %%tick, %0"
137 orig_tick
&= ~TICKCMP_IRQ_BIT
;
139 /* Workaround for Spitfire Errata (#54 I think??), I discovered
140 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
143 * On Blackbird writes to %tick_cmpr can fail, the
144 * workaround seems to be to execute the wr instruction
145 * at the start of an I-cache line, and perform a dummy
146 * read back from %tick_cmpr right after writing to it. -DaveM
148 __asm__
__volatile__("ba,pt %%xcc, 1f\n\t"
149 " add %1, %2, %0\n\t"
152 "wr %0, 0, %%tick_cmpr\n\t"
153 "rd %%tick_cmpr, %%g0\n\t"
155 : "r" (orig_tick
), "r" (adj
));
157 __asm__
__volatile__("rd %%tick, %0"
159 new_tick
&= ~TICKCMP_IRQ_BIT
;
161 return ((long)(new_tick
- (orig_tick
+adj
))) > 0L;
164 static unsigned long tick_add_tick(unsigned long adj
)
166 unsigned long new_tick
;
168 /* Also need to handle Blackbird bug here too. */
169 __asm__
__volatile__("rd %%tick, %0\n\t"
171 "wrpr %0, 0, %%tick\n\t"
178 static struct sparc64_tick_ops tick_operations __read_mostly
= {
180 .init_tick
= tick_init_tick
,
181 .disable_irq
= tick_disable_irq
,
182 .get_tick
= tick_get_tick
,
183 .add_tick
= tick_add_tick
,
184 .add_compare
= tick_add_compare
,
185 .softint_mask
= 1UL << 0,
188 struct sparc64_tick_ops
*tick_ops __read_mostly
= &tick_operations
;
190 static void stick_disable_irq(void)
192 __asm__
__volatile__(
193 "wr %0, 0x0, %%asr25"
195 : "r" (TICKCMP_IRQ_BIT
));
198 static void stick_init_tick(void)
200 /* Writes to the %tick and %stick register are not
201 * allowed on sun4v. The Hypervisor controls that
204 if (tlb_type
!= hypervisor
) {
205 tick_disable_protection();
208 /* Let the user get at STICK too. */
209 __asm__
__volatile__(
210 " rd %%asr24, %%g2\n"
211 " andn %%g2, %0, %%g2\n"
212 " wr %%g2, 0, %%asr24"
214 : "r" (TICK_PRIV_BIT
)
221 static unsigned long stick_get_tick(void)
225 __asm__
__volatile__("rd %%asr24, %0"
228 return ret
& ~TICK_PRIV_BIT
;
231 static unsigned long stick_add_tick(unsigned long adj
)
233 unsigned long new_tick
;
235 __asm__
__volatile__("rd %%asr24, %0\n\t"
237 "wr %0, 0, %%asr24\n\t"
244 static int stick_add_compare(unsigned long adj
)
246 unsigned long orig_tick
, new_tick
;
248 __asm__
__volatile__("rd %%asr24, %0"
250 orig_tick
&= ~TICKCMP_IRQ_BIT
;
252 __asm__
__volatile__("wr %0, 0, %%asr25"
254 : "r" (orig_tick
+ adj
));
256 __asm__
__volatile__("rd %%asr24, %0"
258 new_tick
&= ~TICKCMP_IRQ_BIT
;
260 return ((long)(new_tick
- (orig_tick
+adj
))) > 0L;
263 static struct sparc64_tick_ops stick_operations __read_mostly
= {
265 .init_tick
= stick_init_tick
,
266 .disable_irq
= stick_disable_irq
,
267 .get_tick
= stick_get_tick
,
268 .add_tick
= stick_add_tick
,
269 .add_compare
= stick_add_compare
,
270 .softint_mask
= 1UL << 16,
273 /* On Hummingbird the STICK/STICK_CMPR register is implemented
274 * in I/O space. There are two 64-bit registers each, the
275 * first holds the low 32-bits of the value and the second holds
278 * Since STICK is constantly updating, we have to access it carefully.
280 * The sequence we use to read is:
283 * 3) read high again, if it rolled re-read both low and high again.
285 * Writing STICK safely is also tricky:
286 * 1) write low to zero
290 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
291 #define HBIRD_STICK_ADDR 0x1fe0000f070UL
293 static unsigned long __hbird_read_stick(void)
295 unsigned long ret
, tmp1
, tmp2
, tmp3
;
296 unsigned long addr
= HBIRD_STICK_ADDR
+8;
298 __asm__
__volatile__("ldxa [%1] %5, %2\n"
300 "sub %1, 0x8, %1\n\t"
301 "ldxa [%1] %5, %3\n\t"
302 "add %1, 0x8, %1\n\t"
303 "ldxa [%1] %5, %4\n\t"
305 "bne,a,pn %%xcc, 1b\n\t"
307 "sllx %4, 32, %4\n\t"
309 : "=&r" (ret
), "=&r" (addr
),
310 "=&r" (tmp1
), "=&r" (tmp2
), "=&r" (tmp3
)
311 : "i" (ASI_PHYS_BYPASS_EC_E
), "1" (addr
));
316 static void __hbird_write_stick(unsigned long val
)
318 unsigned long low
= (val
& 0xffffffffUL
);
319 unsigned long high
= (val
>> 32UL);
320 unsigned long addr
= HBIRD_STICK_ADDR
;
322 __asm__
__volatile__("stxa %%g0, [%0] %4\n\t"
323 "add %0, 0x8, %0\n\t"
324 "stxa %3, [%0] %4\n\t"
325 "sub %0, 0x8, %0\n\t"
328 : "0" (addr
), "r" (low
), "r" (high
),
329 "i" (ASI_PHYS_BYPASS_EC_E
));
332 static void __hbird_write_compare(unsigned long val
)
334 unsigned long low
= (val
& 0xffffffffUL
);
335 unsigned long high
= (val
>> 32UL);
336 unsigned long addr
= HBIRD_STICKCMP_ADDR
+ 0x8UL
;
338 __asm__
__volatile__("stxa %3, [%0] %4\n\t"
339 "sub %0, 0x8, %0\n\t"
342 : "0" (addr
), "r" (low
), "r" (high
),
343 "i" (ASI_PHYS_BYPASS_EC_E
));
346 static void hbtick_disable_irq(void)
348 __hbird_write_compare(TICKCMP_IRQ_BIT
);
351 static void hbtick_init_tick(void)
353 tick_disable_protection();
355 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
356 * XXX into actually sending STICK interrupts. I think because
357 * XXX of how we store %tick_cmpr in head.S this somehow resets the
358 * XXX {TICK + STICK} interrupt mux. -DaveM
360 __hbird_write_stick(__hbird_read_stick());
362 hbtick_disable_irq();
365 static unsigned long hbtick_get_tick(void)
367 return __hbird_read_stick() & ~TICK_PRIV_BIT
;
370 static unsigned long hbtick_add_tick(unsigned long adj
)
374 val
= __hbird_read_stick() + adj
;
375 __hbird_write_stick(val
);
380 static int hbtick_add_compare(unsigned long adj
)
382 unsigned long val
= __hbird_read_stick();
385 val
&= ~TICKCMP_IRQ_BIT
;
387 __hbird_write_compare(val
);
389 val2
= __hbird_read_stick() & ~TICKCMP_IRQ_BIT
;
391 return ((long)(val2
- val
)) > 0L;
394 static struct sparc64_tick_ops hbtick_operations __read_mostly
= {
396 .init_tick
= hbtick_init_tick
,
397 .disable_irq
= hbtick_disable_irq
,
398 .get_tick
= hbtick_get_tick
,
399 .add_tick
= hbtick_add_tick
,
400 .add_compare
= hbtick_add_compare
,
401 .softint_mask
= 1UL << 0,
404 static unsigned long timer_ticks_per_nsec_quotient __read_mostly
;
406 int update_persistent_clock(struct timespec now
)
408 return set_rtc_mmss(now
.tv_sec
);
411 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
412 static void __init
kick_start_clock(void)
414 void __iomem
*regs
= mstk48t02_regs
;
418 prom_printf("CLOCK: Clock was stopped. Kick start ");
420 spin_lock_irq(&mostek_lock
);
422 /* Turn on the kick start bit to start the oscillator. */
423 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
424 tmp
|= MSTK_CREG_WRITE
;
425 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
426 tmp
= mostek_read(regs
+ MOSTEK_SEC
);
428 mostek_write(regs
+ MOSTEK_SEC
, tmp
);
429 tmp
= mostek_read(regs
+ MOSTEK_HOUR
);
430 tmp
|= MSTK_KICK_START
;
431 mostek_write(regs
+ MOSTEK_HOUR
, tmp
);
432 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
433 tmp
&= ~MSTK_CREG_WRITE
;
434 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
436 spin_unlock_irq(&mostek_lock
);
438 /* Delay to allow the clock oscillator to start. */
439 sec
= MSTK_REG_SEC(regs
);
440 for (i
= 0; i
< 3; i
++) {
441 while (sec
== MSTK_REG_SEC(regs
))
442 for (count
= 0; count
< 100000; count
++)
445 sec
= MSTK_REG_SEC(regs
);
449 spin_lock_irq(&mostek_lock
);
451 /* Turn off kick start and set a "valid" time and date. */
452 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
453 tmp
|= MSTK_CREG_WRITE
;
454 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
455 tmp
= mostek_read(regs
+ MOSTEK_HOUR
);
456 tmp
&= ~MSTK_KICK_START
;
457 mostek_write(regs
+ MOSTEK_HOUR
, tmp
);
458 MSTK_SET_REG_SEC(regs
,0);
459 MSTK_SET_REG_MIN(regs
,0);
460 MSTK_SET_REG_HOUR(regs
,0);
461 MSTK_SET_REG_DOW(regs
,5);
462 MSTK_SET_REG_DOM(regs
,1);
463 MSTK_SET_REG_MONTH(regs
,8);
464 MSTK_SET_REG_YEAR(regs
,1996 - MSTK_YEAR_ZERO
);
465 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
466 tmp
&= ~MSTK_CREG_WRITE
;
467 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
469 spin_unlock_irq(&mostek_lock
);
471 /* Ensure the kick start bit is off. If it isn't, turn it off. */
472 while (mostek_read(regs
+ MOSTEK_HOUR
) & MSTK_KICK_START
) {
473 prom_printf("CLOCK: Kick start still on!\n");
475 spin_lock_irq(&mostek_lock
);
477 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
478 tmp
|= MSTK_CREG_WRITE
;
479 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
481 tmp
= mostek_read(regs
+ MOSTEK_HOUR
);
482 tmp
&= ~MSTK_KICK_START
;
483 mostek_write(regs
+ MOSTEK_HOUR
, tmp
);
485 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
486 tmp
&= ~MSTK_CREG_WRITE
;
487 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
489 spin_unlock_irq(&mostek_lock
);
492 prom_printf("CLOCK: Kick start procedure successful.\n");
495 /* Return nonzero if the clock chip battery is low. */
496 static int __init
has_low_battery(void)
498 void __iomem
*regs
= mstk48t02_regs
;
501 spin_lock_irq(&mostek_lock
);
503 data1
= mostek_read(regs
+ MOSTEK_EEPROM
); /* Read some data. */
504 mostek_write(regs
+ MOSTEK_EEPROM
, ~data1
); /* Write back the complement. */
505 data2
= mostek_read(regs
+ MOSTEK_EEPROM
); /* Read back the complement. */
506 mostek_write(regs
+ MOSTEK_EEPROM
, data1
); /* Restore original value. */
508 spin_unlock_irq(&mostek_lock
);
510 return (data1
== data2
); /* Was the write blocked? */
513 static void __init
mostek_set_system_time(void __iomem
*mregs
)
515 unsigned int year
, mon
, day
, hour
, min
, sec
;
518 spin_lock_irq(&mostek_lock
);
520 /* Traditional Mostek chip. */
521 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
522 tmp
|= MSTK_CREG_READ
;
523 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
525 sec
= MSTK_REG_SEC(mregs
);
526 min
= MSTK_REG_MIN(mregs
);
527 hour
= MSTK_REG_HOUR(mregs
);
528 day
= MSTK_REG_DOM(mregs
);
529 mon
= MSTK_REG_MONTH(mregs
);
530 year
= MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs
) );
532 xtime
.tv_sec
= mktime(year
, mon
, day
, hour
, min
, sec
);
533 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
534 set_normalized_timespec(&wall_to_monotonic
,
535 -xtime
.tv_sec
, -xtime
.tv_nsec
);
537 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
538 tmp
&= ~MSTK_CREG_READ
;
539 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
541 spin_unlock_irq(&mostek_lock
);
544 /* Probe for the real time clock chip. */
545 static void __init
set_system_time(void)
547 unsigned int year
, mon
, day
, hour
, min
, sec
;
548 void __iomem
*mregs
= mstk48t02_regs
;
550 unsigned long dregs
= ds1287_regs
;
551 void __iomem
*bregs
= bq4802_regs
;
553 unsigned long dregs
= 0UL;
554 void __iomem
*bregs
= 0UL;
557 if (!mregs
&& !dregs
&& !bregs
) {
558 prom_printf("Something wrong, clock regs not mapped yet.\n");
563 mostek_set_system_time(mregs
);
568 unsigned char val
= readb(bregs
+ 0x0e);
569 unsigned int century
;
571 /* BQ4802 RTC chip. */
573 writeb(val
| 0x08, bregs
+ 0x0e);
575 sec
= readb(bregs
+ 0x00);
576 min
= readb(bregs
+ 0x02);
577 hour
= readb(bregs
+ 0x04);
578 day
= readb(bregs
+ 0x06);
579 mon
= readb(bregs
+ 0x09);
580 year
= readb(bregs
+ 0x0a);
581 century
= readb(bregs
+ 0x0f);
583 writeb(val
, bregs
+ 0x0e);
593 year
+= (century
* 100);
595 /* Dallas 12887 RTC chip. */
598 sec
= CMOS_READ(RTC_SECONDS
);
599 min
= CMOS_READ(RTC_MINUTES
);
600 hour
= CMOS_READ(RTC_HOURS
);
601 day
= CMOS_READ(RTC_DAY_OF_MONTH
);
602 mon
= CMOS_READ(RTC_MONTH
);
603 year
= CMOS_READ(RTC_YEAR
);
604 } while (sec
!= CMOS_READ(RTC_SECONDS
));
606 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
614 if ((year
+= 1900) < 1970)
618 xtime
.tv_sec
= mktime(year
, mon
, day
, hour
, min
, sec
);
619 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
620 set_normalized_timespec(&wall_to_monotonic
,
621 -xtime
.tv_sec
, -xtime
.tv_nsec
);
624 /* davem suggests we keep this within the 4M locked kernel image */
625 static u32
starfire_get_time(void)
627 static char obp_gettod
[32];
630 sprintf(obp_gettod
, "h# %08x unix-gettod",
631 (unsigned int) (long) &unix_tod
);
632 prom_feval(obp_gettod
);
637 static int starfire_set_time(u32 val
)
639 /* Do nothing, time is set using the service processor
640 * console on this platform.
645 static u32
hypervisor_get_time(void)
647 unsigned long ret
, time
;
651 ret
= sun4v_tod_get(&time
);
654 if (ret
== HV_EWOULDBLOCK
) {
659 printk(KERN_WARNING
"SUN4V: tod_get() timed out.\n");
662 printk(KERN_WARNING
"SUN4V: tod_get() not supported.\n");
666 static int hypervisor_set_time(u32 secs
)
672 ret
= sun4v_tod_set(secs
);
675 if (ret
== HV_EWOULDBLOCK
) {
680 printk(KERN_WARNING
"SUN4V: tod_set() timed out.\n");
683 printk(KERN_WARNING
"SUN4V: tod_set() not supported.\n");
687 static int __init
clock_model_matches(const char *model
)
689 if (strcmp(model
, "mk48t02") &&
690 strcmp(model
, "mk48t08") &&
691 strcmp(model
, "mk48t59") &&
692 strcmp(model
, "m5819") &&
693 strcmp(model
, "m5819p") &&
694 strcmp(model
, "m5823") &&
695 strcmp(model
, "ds1287") &&
696 strcmp(model
, "bq4802"))
702 static int __devinit
clock_probe(struct of_device
*op
, const struct of_device_id
*match
)
704 struct device_node
*dp
= op
->node
;
705 const char *model
= of_get_property(dp
, "model", NULL
);
706 const char *compat
= of_get_property(dp
, "compatible", NULL
);
707 unsigned long size
, flags
;
713 if (!model
|| !clock_model_matches(model
))
716 /* On an Enterprise system there can be multiple mostek clocks.
717 * We should only match the one that is on the central FHC bus.
719 if (!strcmp(dp
->parent
->name
, "fhc") &&
720 strcmp(dp
->parent
->parent
->name
, "central") != 0)
723 size
= (op
->resource
[0].end
- op
->resource
[0].start
) + 1;
724 regs
= of_ioremap(&op
->resource
[0], 0, size
, "clock");
729 if (!strcmp(model
, "ds1287") ||
730 !strcmp(model
, "m5819") ||
731 !strcmp(model
, "m5819p") ||
732 !strcmp(model
, "m5823")) {
733 ds1287_regs
= (unsigned long) regs
;
734 } else if (!strcmp(model
, "bq4802")) {
738 if (model
[5] == '0' && model
[6] == '2') {
739 mstk48t02_regs
= regs
;
740 } else if(model
[5] == '0' && model
[6] == '8') {
741 mstk48t08_regs
= regs
;
742 mstk48t02_regs
= mstk48t08_regs
+ MOSTEK_48T08_48T02
;
744 mstk48t59_regs
= regs
;
745 mstk48t02_regs
= mstk48t59_regs
+ MOSTEK_48T59_48T02
;
748 printk(KERN_INFO
"%s: Clock regs at %p\n", dp
->full_name
, regs
);
750 local_irq_save(flags
);
752 if (mstk48t02_regs
!= NULL
) {
753 /* Report a low battery voltage condition. */
754 if (has_low_battery())
755 prom_printf("NVRAM: Low battery voltage!\n");
757 /* Kick start the clock if it is completely stopped. */
758 if (mostek_read(mstk48t02_regs
+ MOSTEK_SEC
) & MSTK_STOP
)
764 local_irq_restore(flags
);
769 static struct of_device_id clock_match
[] = {
779 static struct of_platform_driver clock_driver
= {
780 .match_table
= clock_match
,
781 .probe
= clock_probe
,
787 static int __init
clock_init(void)
789 if (this_is_starfire
) {
790 xtime
.tv_sec
= starfire_get_time();
791 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
792 set_normalized_timespec(&wall_to_monotonic
,
793 -xtime
.tv_sec
, -xtime
.tv_nsec
);
796 if (tlb_type
== hypervisor
) {
797 xtime
.tv_sec
= hypervisor_get_time();
798 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
799 set_normalized_timespec(&wall_to_monotonic
,
800 -xtime
.tv_sec
, -xtime
.tv_nsec
);
804 return of_register_driver(&clock_driver
, &of_platform_bus_type
);
807 /* Must be after subsys_initcall() so that busses are probed. Must
808 * be before device_initcall() because things like the RTC driver
809 * need to see the clock registers.
811 fs_initcall(clock_init
);
813 /* This is gets the master TICK_INT timer going. */
814 static unsigned long sparc64_init_timers(void)
816 struct device_node
*dp
;
819 dp
= of_find_node_by_path("/");
820 if (tlb_type
== spitfire
) {
821 unsigned long ver
, manuf
, impl
;
823 __asm__
__volatile__ ("rdpr %%ver, %0"
825 manuf
= ((ver
>> 48) & 0xffff);
826 impl
= ((ver
>> 32) & 0xffff);
827 if (manuf
== 0x17 && impl
== 0x13) {
828 /* Hummingbird, aka Ultra-IIe */
829 tick_ops
= &hbtick_operations
;
830 clock
= of_getintprop_default(dp
, "stick-frequency", 0);
832 tick_ops
= &tick_operations
;
833 clock
= local_cpu_data().clock_tick
;
836 tick_ops
= &stick_operations
;
837 clock
= of_getintprop_default(dp
, "stick-frequency", 0);
844 unsigned long clock_tick_ref
;
845 unsigned int ref_freq
;
847 static DEFINE_PER_CPU(struct freq_table
, sparc64_freq_table
) = { 0, 0 };
849 unsigned long sparc64_get_clock_tick(unsigned int cpu
)
851 struct freq_table
*ft
= &per_cpu(sparc64_freq_table
, cpu
);
853 if (ft
->clock_tick_ref
)
854 return ft
->clock_tick_ref
;
855 return cpu_data(cpu
).clock_tick
;
858 #ifdef CONFIG_CPU_FREQ
860 static int sparc64_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
863 struct cpufreq_freqs
*freq
= data
;
864 unsigned int cpu
= freq
->cpu
;
865 struct freq_table
*ft
= &per_cpu(sparc64_freq_table
, cpu
);
868 ft
->ref_freq
= freq
->old
;
869 ft
->clock_tick_ref
= cpu_data(cpu
).clock_tick
;
871 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
872 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new) ||
873 (val
== CPUFREQ_RESUMECHANGE
)) {
874 cpu_data(cpu
).clock_tick
=
875 cpufreq_scale(ft
->clock_tick_ref
,
883 static struct notifier_block sparc64_cpufreq_notifier_block
= {
884 .notifier_call
= sparc64_cpufreq_notifier
887 static int __init
register_sparc64_cpufreq_notifier(void)
890 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block
,
891 CPUFREQ_TRANSITION_NOTIFIER
);
895 core_initcall(register_sparc64_cpufreq_notifier
);
897 #endif /* CONFIG_CPU_FREQ */
899 static int sparc64_next_event(unsigned long delta
,
900 struct clock_event_device
*evt
)
902 return tick_ops
->add_compare(delta
) ? -ETIME
: 0;
905 static void sparc64_timer_setup(enum clock_event_mode mode
,
906 struct clock_event_device
*evt
)
909 case CLOCK_EVT_MODE_ONESHOT
:
910 case CLOCK_EVT_MODE_RESUME
:
913 case CLOCK_EVT_MODE_SHUTDOWN
:
914 tick_ops
->disable_irq();
917 case CLOCK_EVT_MODE_PERIODIC
:
918 case CLOCK_EVT_MODE_UNUSED
:
924 static struct clock_event_device sparc64_clockevent
= {
925 .features
= CLOCK_EVT_FEAT_ONESHOT
,
926 .set_mode
= sparc64_timer_setup
,
927 .set_next_event
= sparc64_next_event
,
932 static DEFINE_PER_CPU(struct clock_event_device
, sparc64_events
);
934 void timer_interrupt(int irq
, struct pt_regs
*regs
)
936 struct pt_regs
*old_regs
= set_irq_regs(regs
);
937 unsigned long tick_mask
= tick_ops
->softint_mask
;
938 int cpu
= smp_processor_id();
939 struct clock_event_device
*evt
= &per_cpu(sparc64_events
, cpu
);
941 clear_softint(tick_mask
);
945 kstat_this_cpu
.irqs
[0]++;
947 if (unlikely(!evt
->event_handler
)) {
949 "Spurious SPARC64 timer interrupt on cpu %d\n", cpu
);
951 evt
->event_handler(evt
);
955 set_irq_regs(old_regs
);
958 void __devinit
setup_sparc64_timer(void)
960 struct clock_event_device
*sevt
;
961 unsigned long pstate
;
963 /* Guarantee that the following sequences execute
966 __asm__
__volatile__("rdpr %%pstate, %0\n\t"
967 "wrpr %0, %1, %%pstate"
971 tick_ops
->init_tick();
973 /* Restore PSTATE_IE. */
974 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
978 sevt
= &__get_cpu_var(sparc64_events
);
980 memcpy(sevt
, &sparc64_clockevent
, sizeof(*sevt
));
981 sevt
->cpumask
= cpumask_of_cpu(smp_processor_id());
983 clockevents_register_device(sevt
);
986 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL
988 static struct clocksource clocksource_tick
= {
990 .mask
= CLOCKSOURCE_MASK(64),
992 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
995 static void __init
setup_clockevent_multiplier(unsigned long hz
)
997 unsigned long mult
, shift
= 32;
1000 mult
= div_sc(hz
, NSEC_PER_SEC
, shift
);
1001 if (mult
&& (mult
>> 32UL) == 0UL)
1007 sparc64_clockevent
.shift
= shift
;
1008 sparc64_clockevent
.mult
= mult
;
1011 static unsigned long tb_ticks_per_usec __read_mostly
;
1013 void __delay(unsigned long loops
)
1015 unsigned long bclock
, now
;
1017 bclock
= tick_ops
->get_tick();
1019 now
= tick_ops
->get_tick();
1020 } while ((now
-bclock
) < loops
);
1022 EXPORT_SYMBOL(__delay
);
1024 void udelay(unsigned long usecs
)
1026 __delay(tb_ticks_per_usec
* usecs
);
1028 EXPORT_SYMBOL(udelay
);
1030 void __init
time_init(void)
1032 unsigned long clock
= sparc64_init_timers();
1034 tb_ticks_per_usec
= clock
/ USEC_PER_SEC
;
1036 timer_ticks_per_nsec_quotient
=
1037 clocksource_hz2mult(clock
, SPARC64_NSEC_PER_CYC_SHIFT
);
1039 clocksource_tick
.name
= tick_ops
->name
;
1040 clocksource_tick
.mult
=
1041 clocksource_hz2mult(clock
,
1042 clocksource_tick
.shift
);
1043 clocksource_tick
.read
= tick_ops
->get_tick
;
1045 printk("clocksource: mult[%x] shift[%d]\n",
1046 clocksource_tick
.mult
, clocksource_tick
.shift
);
1048 clocksource_register(&clocksource_tick
);
1050 sparc64_clockevent
.name
= tick_ops
->name
;
1052 setup_clockevent_multiplier(clock
);
1054 sparc64_clockevent
.max_delta_ns
=
1055 clockevent_delta2ns(0x7fffffffffffffffUL
, &sparc64_clockevent
);
1056 sparc64_clockevent
.min_delta_ns
=
1057 clockevent_delta2ns(0xF, &sparc64_clockevent
);
1059 printk("clockevent: mult[%lx] shift[%d]\n",
1060 sparc64_clockevent
.mult
, sparc64_clockevent
.shift
);
1062 setup_sparc64_timer();
1065 unsigned long long sched_clock(void)
1067 unsigned long ticks
= tick_ops
->get_tick();
1069 return (ticks
* timer_ticks_per_nsec_quotient
)
1070 >> SPARC64_NSEC_PER_CYC_SHIFT
;
1073 static int set_rtc_mmss(unsigned long nowtime
)
1075 int real_seconds
, real_minutes
, chip_minutes
;
1076 void __iomem
*mregs
= mstk48t02_regs
;
1078 unsigned long dregs
= ds1287_regs
;
1079 void __iomem
*bregs
= bq4802_regs
;
1081 unsigned long dregs
= 0UL;
1082 void __iomem
*bregs
= 0UL;
1084 unsigned long flags
;
1088 * Not having a register set can lead to trouble.
1089 * Also starfire doesn't have a tod clock.
1091 if (!mregs
&& !dregs
&& !bregs
)
1095 spin_lock_irqsave(&mostek_lock
, flags
);
1097 /* Read the current RTC minutes. */
1098 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1099 tmp
|= MSTK_CREG_READ
;
1100 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1102 chip_minutes
= MSTK_REG_MIN(mregs
);
1104 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1105 tmp
&= ~MSTK_CREG_READ
;
1106 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1109 * since we're only adjusting minutes and seconds,
1110 * don't interfere with hour overflow. This avoids
1111 * messing with unknown time zones but requires your
1112 * RTC not to be off by more than 15 minutes
1114 real_seconds
= nowtime
% 60;
1115 real_minutes
= nowtime
/ 60;
1116 if (((abs(real_minutes
- chip_minutes
) + 15)/30) & 1)
1117 real_minutes
+= 30; /* correct for half hour time zone */
1120 if (abs(real_minutes
- chip_minutes
) < 30) {
1121 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1122 tmp
|= MSTK_CREG_WRITE
;
1123 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1125 MSTK_SET_REG_SEC(mregs
,real_seconds
);
1126 MSTK_SET_REG_MIN(mregs
,real_minutes
);
1128 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1129 tmp
&= ~MSTK_CREG_WRITE
;
1130 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1132 spin_unlock_irqrestore(&mostek_lock
, flags
);
1136 spin_unlock_irqrestore(&mostek_lock
, flags
);
1142 unsigned char val
= readb(bregs
+ 0x0e);
1144 /* BQ4802 RTC chip. */
1146 writeb(val
| 0x08, bregs
+ 0x0e);
1148 chip_minutes
= readb(bregs
+ 0x02);
1149 BCD_TO_BIN(chip_minutes
);
1150 real_seconds
= nowtime
% 60;
1151 real_minutes
= nowtime
/ 60;
1152 if (((abs(real_minutes
- chip_minutes
) + 15)/30) & 1)
1156 if (abs(real_minutes
- chip_minutes
) < 30) {
1157 BIN_TO_BCD(real_seconds
);
1158 BIN_TO_BCD(real_minutes
);
1159 writeb(real_seconds
, bregs
+ 0x00);
1160 writeb(real_minutes
, bregs
+ 0x02);
1163 "set_rtc_mmss: can't update from %d to %d\n",
1164 chip_minutes
, real_minutes
);
1168 writeb(val
, bregs
+ 0x0e);
1173 unsigned char save_control
, save_freq_select
;
1175 /* Stolen from arch/i386/kernel/time.c, see there for
1176 * credits and descriptive comments.
1178 spin_lock_irqsave(&rtc_lock
, flags
);
1179 save_control
= CMOS_READ(RTC_CONTROL
); /* tell the clock it's being set */
1180 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
1182 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
); /* stop and reset prescaler */
1183 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
1185 chip_minutes
= CMOS_READ(RTC_MINUTES
);
1186 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1187 BCD_TO_BIN(chip_minutes
);
1188 real_seconds
= nowtime
% 60;
1189 real_minutes
= nowtime
/ 60;
1190 if (((abs(real_minutes
- chip_minutes
) + 15)/30) & 1)
1194 if (abs(real_minutes
- chip_minutes
) < 30) {
1195 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1196 BIN_TO_BCD(real_seconds
);
1197 BIN_TO_BCD(real_minutes
);
1199 CMOS_WRITE(real_seconds
,RTC_SECONDS
);
1200 CMOS_WRITE(real_minutes
,RTC_MINUTES
);
1203 "set_rtc_mmss: can't update from %d to %d\n",
1204 chip_minutes
, real_minutes
);
1208 CMOS_WRITE(save_control
, RTC_CONTROL
);
1209 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
1210 spin_unlock_irqrestore(&rtc_lock
, flags
);
1216 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
1217 static unsigned char mini_rtc_status
; /* bitmapped status byte. */
1220 #define STARTOFTIME 1970
1221 #define SECDAY 86400L
1222 #define SECYR (SECDAY * 365)
1223 #define leapyear(year) ((year) % 4 == 0 && \
1224 ((year) % 100 != 0 || (year) % 400 == 0))
1225 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1226 #define days_in_month(a) (month_days[(a) - 1])
1228 static int month_days
[12] = {
1229 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1233 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1235 static void GregorianDay(struct rtc_time
* tm
)
1240 int MonthOffset
[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1242 lastYear
= tm
->tm_year
- 1;
1245 * Number of leap corrections to apply up to end of last year
1247 leapsToDate
= lastYear
/ 4 - lastYear
/ 100 + lastYear
/ 400;
1250 * This year is a leap year if it is divisible by 4 except when it is
1251 * divisible by 100 unless it is divisible by 400
1253 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1255 day
= tm
->tm_mon
> 2 && leapyear(tm
->tm_year
);
1257 day
+= lastYear
*365 + leapsToDate
+ MonthOffset
[tm
->tm_mon
-1] +
1260 tm
->tm_wday
= day
% 7;
1263 static void to_tm(int tim
, struct rtc_time
*tm
)
1266 register long hms
, day
;
1271 /* Hours, minutes, seconds are easy */
1272 tm
->tm_hour
= hms
/ 3600;
1273 tm
->tm_min
= (hms
% 3600) / 60;
1274 tm
->tm_sec
= (hms
% 3600) % 60;
1276 /* Number of years in days */
1277 for (i
= STARTOFTIME
; day
>= days_in_year(i
); i
++)
1278 day
-= days_in_year(i
);
1281 /* Number of months in days left */
1282 if (leapyear(tm
->tm_year
))
1283 days_in_month(FEBRUARY
) = 29;
1284 for (i
= 1; day
>= days_in_month(i
); i
++)
1285 day
-= days_in_month(i
);
1286 days_in_month(FEBRUARY
) = 28;
1289 /* Days are what is left over (+1) from all that. */
1290 tm
->tm_mday
= day
+ 1;
1293 * Determine the day of week
1298 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1299 * aka Unix time. So we have to convert to/from rtc_time.
1301 static void starfire_get_rtc_time(struct rtc_time
*time
)
1303 u32 seconds
= starfire_get_time();
1305 to_tm(seconds
, time
);
1306 time
->tm_year
-= 1900;
1310 static int starfire_set_rtc_time(struct rtc_time
*time
)
1312 u32 seconds
= mktime(time
->tm_year
+ 1900, time
->tm_mon
+ 1,
1313 time
->tm_mday
, time
->tm_hour
,
1314 time
->tm_min
, time
->tm_sec
);
1316 return starfire_set_time(seconds
);
1319 static void hypervisor_get_rtc_time(struct rtc_time
*time
)
1321 u32 seconds
= hypervisor_get_time();
1323 to_tm(seconds
, time
);
1324 time
->tm_year
-= 1900;
1328 static int hypervisor_set_rtc_time(struct rtc_time
*time
)
1330 u32 seconds
= mktime(time
->tm_year
+ 1900, time
->tm_mon
+ 1,
1331 time
->tm_mday
, time
->tm_hour
,
1332 time
->tm_min
, time
->tm_sec
);
1334 return hypervisor_set_time(seconds
);
1338 static void bq4802_get_rtc_time(struct rtc_time
*time
)
1340 unsigned char val
= readb(bq4802_regs
+ 0x0e);
1341 unsigned int century
;
1343 writeb(val
| 0x08, bq4802_regs
+ 0x0e);
1345 time
->tm_sec
= readb(bq4802_regs
+ 0x00);
1346 time
->tm_min
= readb(bq4802_regs
+ 0x02);
1347 time
->tm_hour
= readb(bq4802_regs
+ 0x04);
1348 time
->tm_mday
= readb(bq4802_regs
+ 0x06);
1349 time
->tm_mon
= readb(bq4802_regs
+ 0x09);
1350 time
->tm_year
= readb(bq4802_regs
+ 0x0a);
1351 time
->tm_wday
= readb(bq4802_regs
+ 0x08);
1352 century
= readb(bq4802_regs
+ 0x0f);
1354 writeb(val
, bq4802_regs
+ 0x0e);
1356 BCD_TO_BIN(time
->tm_sec
);
1357 BCD_TO_BIN(time
->tm_min
);
1358 BCD_TO_BIN(time
->tm_hour
);
1359 BCD_TO_BIN(time
->tm_mday
);
1360 BCD_TO_BIN(time
->tm_mon
);
1361 BCD_TO_BIN(time
->tm_year
);
1362 BCD_TO_BIN(time
->tm_wday
);
1363 BCD_TO_BIN(century
);
1365 time
->tm_year
+= (century
* 100);
1366 time
->tm_year
-= 1900;
1371 static int bq4802_set_rtc_time(struct rtc_time
*time
)
1373 unsigned char val
= readb(bq4802_regs
+ 0x0e);
1374 unsigned char sec
, min
, hrs
, day
, mon
, yrs
, century
;
1377 year
= time
->tm_year
+ 1900;
1378 century
= year
/ 100;
1381 mon
= time
->tm_mon
+ 1; /* tm_mon starts at zero */
1382 day
= time
->tm_mday
;
1383 hrs
= time
->tm_hour
;
1393 BIN_TO_BCD(century
);
1395 writeb(val
| 0x08, bq4802_regs
+ 0x0e);
1397 writeb(sec
, bq4802_regs
+ 0x00);
1398 writeb(min
, bq4802_regs
+ 0x02);
1399 writeb(hrs
, bq4802_regs
+ 0x04);
1400 writeb(day
, bq4802_regs
+ 0x06);
1401 writeb(mon
, bq4802_regs
+ 0x09);
1402 writeb(yrs
, bq4802_regs
+ 0x0a);
1403 writeb(century
, bq4802_regs
+ 0x0f);
1405 writeb(val
, bq4802_regs
+ 0x0e);
1410 static void cmos_get_rtc_time(struct rtc_time
*rtc_tm
)
1414 rtc_tm
->tm_sec
= CMOS_READ(RTC_SECONDS
);
1415 rtc_tm
->tm_min
= CMOS_READ(RTC_MINUTES
);
1416 rtc_tm
->tm_hour
= CMOS_READ(RTC_HOURS
);
1417 rtc_tm
->tm_mday
= CMOS_READ(RTC_DAY_OF_MONTH
);
1418 rtc_tm
->tm_mon
= CMOS_READ(RTC_MONTH
);
1419 rtc_tm
->tm_year
= CMOS_READ(RTC_YEAR
);
1420 rtc_tm
->tm_wday
= CMOS_READ(RTC_DAY_OF_WEEK
);
1422 ctrl
= CMOS_READ(RTC_CONTROL
);
1423 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1424 BCD_TO_BIN(rtc_tm
->tm_sec
);
1425 BCD_TO_BIN(rtc_tm
->tm_min
);
1426 BCD_TO_BIN(rtc_tm
->tm_hour
);
1427 BCD_TO_BIN(rtc_tm
->tm_mday
);
1428 BCD_TO_BIN(rtc_tm
->tm_mon
);
1429 BCD_TO_BIN(rtc_tm
->tm_year
);
1430 BCD_TO_BIN(rtc_tm
->tm_wday
);
1433 if (rtc_tm
->tm_year
<= 69)
1434 rtc_tm
->tm_year
+= 100;
1439 static int cmos_set_rtc_time(struct rtc_time
*rtc_tm
)
1441 unsigned char mon
, day
, hrs
, min
, sec
;
1442 unsigned char save_control
, save_freq_select
;
1445 yrs
= rtc_tm
->tm_year
;
1446 mon
= rtc_tm
->tm_mon
+ 1;
1447 day
= rtc_tm
->tm_mday
;
1448 hrs
= rtc_tm
->tm_hour
;
1449 min
= rtc_tm
->tm_min
;
1450 sec
= rtc_tm
->tm_sec
;
1455 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1464 save_control
= CMOS_READ(RTC_CONTROL
);
1465 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
1466 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
);
1467 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
1469 CMOS_WRITE(yrs
, RTC_YEAR
);
1470 CMOS_WRITE(mon
, RTC_MONTH
);
1471 CMOS_WRITE(day
, RTC_DAY_OF_MONTH
);
1472 CMOS_WRITE(hrs
, RTC_HOURS
);
1473 CMOS_WRITE(min
, RTC_MINUTES
);
1474 CMOS_WRITE(sec
, RTC_SECONDS
);
1476 CMOS_WRITE(save_control
, RTC_CONTROL
);
1477 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
1481 #endif /* CONFIG_PCI */
1483 static void mostek_get_rtc_time(struct rtc_time
*rtc_tm
)
1485 void __iomem
*regs
= mstk48t02_regs
;
1488 spin_lock_irq(&mostek_lock
);
1490 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
1491 tmp
|= MSTK_CREG_READ
;
1492 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
1494 rtc_tm
->tm_sec
= MSTK_REG_SEC(regs
);
1495 rtc_tm
->tm_min
= MSTK_REG_MIN(regs
);
1496 rtc_tm
->tm_hour
= MSTK_REG_HOUR(regs
);
1497 rtc_tm
->tm_mday
= MSTK_REG_DOM(regs
);
1498 rtc_tm
->tm_mon
= MSTK_REG_MONTH(regs
);
1499 rtc_tm
->tm_year
= MSTK_CVT_YEAR( MSTK_REG_YEAR(regs
) );
1500 rtc_tm
->tm_wday
= MSTK_REG_DOW(regs
);
1502 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
1503 tmp
&= ~MSTK_CREG_READ
;
1504 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
1506 spin_unlock_irq(&mostek_lock
);
1510 rtc_tm
->tm_year
-= 1900;
1513 static int mostek_set_rtc_time(struct rtc_time
*rtc_tm
)
1515 unsigned char mon
, day
, hrs
, min
, sec
, wday
;
1516 void __iomem
*regs
= mstk48t02_regs
;
1520 yrs
= rtc_tm
->tm_year
+ 1900;
1521 mon
= rtc_tm
->tm_mon
+ 1;
1522 day
= rtc_tm
->tm_mday
;
1523 wday
= rtc_tm
->tm_wday
+ 1;
1524 hrs
= rtc_tm
->tm_hour
;
1525 min
= rtc_tm
->tm_min
;
1526 sec
= rtc_tm
->tm_sec
;
1528 spin_lock_irq(&mostek_lock
);
1530 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
1531 tmp
|= MSTK_CREG_WRITE
;
1532 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
1534 MSTK_SET_REG_SEC(regs
, sec
);
1535 MSTK_SET_REG_MIN(regs
, min
);
1536 MSTK_SET_REG_HOUR(regs
, hrs
);
1537 MSTK_SET_REG_DOW(regs
, wday
);
1538 MSTK_SET_REG_DOM(regs
, day
);
1539 MSTK_SET_REG_MONTH(regs
, mon
);
1540 MSTK_SET_REG_YEAR(regs
, yrs
- MSTK_YEAR_ZERO
);
1542 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
1543 tmp
&= ~MSTK_CREG_WRITE
;
1544 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
1546 spin_unlock_irq(&mostek_lock
);
1551 struct mini_rtc_ops
{
1552 void (*get_rtc_time
)(struct rtc_time
*);
1553 int (*set_rtc_time
)(struct rtc_time
*);
1556 static struct mini_rtc_ops starfire_rtc_ops
= {
1557 .get_rtc_time
= starfire_get_rtc_time
,
1558 .set_rtc_time
= starfire_set_rtc_time
,
1561 static struct mini_rtc_ops hypervisor_rtc_ops
= {
1562 .get_rtc_time
= hypervisor_get_rtc_time
,
1563 .set_rtc_time
= hypervisor_set_rtc_time
,
1567 static struct mini_rtc_ops bq4802_rtc_ops
= {
1568 .get_rtc_time
= bq4802_get_rtc_time
,
1569 .set_rtc_time
= bq4802_set_rtc_time
,
1572 static struct mini_rtc_ops cmos_rtc_ops
= {
1573 .get_rtc_time
= cmos_get_rtc_time
,
1574 .set_rtc_time
= cmos_set_rtc_time
,
1576 #endif /* CONFIG_PCI */
1578 static struct mini_rtc_ops mostek_rtc_ops
= {
1579 .get_rtc_time
= mostek_get_rtc_time
,
1580 .set_rtc_time
= mostek_set_rtc_time
,
1583 static struct mini_rtc_ops
*mini_rtc_ops
;
1585 static inline void mini_get_rtc_time(struct rtc_time
*time
)
1587 unsigned long flags
;
1589 spin_lock_irqsave(&rtc_lock
, flags
);
1590 mini_rtc_ops
->get_rtc_time(time
);
1591 spin_unlock_irqrestore(&rtc_lock
, flags
);
1594 static inline int mini_set_rtc_time(struct rtc_time
*time
)
1596 unsigned long flags
;
1599 spin_lock_irqsave(&rtc_lock
, flags
);
1600 err
= mini_rtc_ops
->set_rtc_time(time
);
1601 spin_unlock_irqrestore(&rtc_lock
, flags
);
1606 static int mini_rtc_ioctl(struct inode
*inode
, struct file
*file
,
1607 unsigned int cmd
, unsigned long arg
)
1609 struct rtc_time wtime
;
1610 void __user
*argp
= (void __user
*)arg
;
1620 case RTC_UIE_OFF
: /* disable ints from RTC updates. */
1623 case RTC_UIE_ON
: /* enable ints for RTC updates. */
1626 case RTC_RD_TIME
: /* Read the time/date from RTC */
1627 /* this doesn't get week-day, who cares */
1628 memset(&wtime
, 0, sizeof(wtime
));
1629 mini_get_rtc_time(&wtime
);
1631 return copy_to_user(argp
, &wtime
, sizeof(wtime
)) ? -EFAULT
: 0;
1633 case RTC_SET_TIME
: /* Set the RTC */
1637 if (!capable(CAP_SYS_TIME
))
1640 if (copy_from_user(&wtime
, argp
, sizeof(wtime
)))
1643 year
= wtime
.tm_year
+ 1900;
1644 days
= month_days
[wtime
.tm_mon
] +
1645 ((wtime
.tm_mon
== 1) && leapyear(year
));
1647 if ((wtime
.tm_mon
< 0 || wtime
.tm_mon
> 11) ||
1648 (wtime
.tm_mday
< 1))
1651 if (wtime
.tm_mday
< 0 || wtime
.tm_mday
> days
)
1654 if (wtime
.tm_hour
< 0 || wtime
.tm_hour
>= 24 ||
1655 wtime
.tm_min
< 0 || wtime
.tm_min
>= 60 ||
1656 wtime
.tm_sec
< 0 || wtime
.tm_sec
>= 60)
1659 return mini_set_rtc_time(&wtime
);
1666 static int mini_rtc_open(struct inode
*inode
, struct file
*file
)
1669 if (mini_rtc_status
& RTC_IS_OPEN
) {
1674 mini_rtc_status
|= RTC_IS_OPEN
;
1680 static int mini_rtc_release(struct inode
*inode
, struct file
*file
)
1682 mini_rtc_status
&= ~RTC_IS_OPEN
;
1687 static const struct file_operations mini_rtc_fops
= {
1688 .owner
= THIS_MODULE
,
1689 .ioctl
= mini_rtc_ioctl
,
1690 .open
= mini_rtc_open
,
1691 .release
= mini_rtc_release
,
1694 static struct miscdevice rtc_mini_dev
=
1698 .fops
= &mini_rtc_fops
,
1701 static int __init
rtc_mini_init(void)
1705 if (tlb_type
== hypervisor
)
1706 mini_rtc_ops
= &hypervisor_rtc_ops
;
1707 else if (this_is_starfire
)
1708 mini_rtc_ops
= &starfire_rtc_ops
;
1710 else if (bq4802_regs
)
1711 mini_rtc_ops
= &bq4802_rtc_ops
;
1712 else if (ds1287_regs
)
1713 mini_rtc_ops
= &cmos_rtc_ops
;
1714 #endif /* CONFIG_PCI */
1715 else if (mstk48t02_regs
)
1716 mini_rtc_ops
= &mostek_rtc_ops
;
1720 printk(KERN_INFO
"Mini RTC Driver\n");
1722 retval
= misc_register(&rtc_mini_dev
);
1729 static void __exit
rtc_mini_exit(void)
1731 misc_deregister(&rtc_mini_dev
);
1734 int __devinit
read_current_timer(unsigned long *timer_val
)
1736 *timer_val
= tick_ops
->get_tick();
1740 module_init(rtc_mini_init
);
1741 module_exit(rtc_mini_exit
);