libata: clear dev->ering in smarter way
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-core.c
blob564c03c4ebb3b593c5314f8376b38bd1d96d6dcf
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_host.h>
63 #include <linux/libata.h>
64 #include <asm/byteorder.h>
65 #include <linux/cdrom.h>
67 #include "libata.h"
70 /* debounce timing parameters in msecs { interval, duration, timeout } */
71 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
72 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
73 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
75 const struct ata_port_operations ata_base_port_ops = {
76 .prereset = ata_std_prereset,
77 .postreset = ata_std_postreset,
78 .error_handler = ata_std_error_handler,
81 const struct ata_port_operations sata_port_ops = {
82 .inherits = &ata_base_port_ops,
84 .qc_defer = ata_std_qc_defer,
85 .hardreset = sata_std_hardreset,
88 static unsigned int ata_dev_init_params(struct ata_device *dev,
89 u16 heads, u16 sectors);
90 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
91 static unsigned int ata_dev_set_feature(struct ata_device *dev,
92 u8 enable, u8 feature);
93 static void ata_dev_xfermask(struct ata_device *dev);
94 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96 unsigned int ata_print_id = 1;
97 static struct workqueue_struct *ata_wq;
99 struct workqueue_struct *ata_aux_wq;
101 struct ata_force_param {
102 const char *name;
103 unsigned int cbl;
104 int spd_limit;
105 unsigned long xfer_mask;
106 unsigned int horkage_on;
107 unsigned int horkage_off;
108 unsigned int lflags;
111 struct ata_force_ent {
112 int port;
113 int device;
114 struct ata_force_param param;
117 static struct ata_force_ent *ata_force_tbl;
118 static int ata_force_tbl_size;
120 static char ata_force_param_buf[PAGE_SIZE] __initdata;
121 /* param_buf is thrown away after initialization, disallow read */
122 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
123 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125 static int atapi_enabled = 1;
126 module_param(atapi_enabled, int, 0444);
127 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
129 static int atapi_dmadir = 0;
130 module_param(atapi_dmadir, int, 0444);
131 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
133 int atapi_passthru16 = 1;
134 module_param(atapi_passthru16, int, 0444);
135 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
137 int libata_fua = 0;
138 module_param_named(fua, libata_fua, int, 0444);
139 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
141 static int ata_ignore_hpa;
142 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
143 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
146 module_param_named(dma, libata_dma_mask, int, 0444);
147 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149 static int ata_probe_timeout;
150 module_param(ata_probe_timeout, int, 0444);
151 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153 int libata_noacpi = 0;
154 module_param_named(noacpi, libata_noacpi, int, 0444);
155 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
157 int libata_allow_tpm = 0;
158 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
159 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
161 MODULE_AUTHOR("Jeff Garzik");
162 MODULE_DESCRIPTION("Library module for ATA devices");
163 MODULE_LICENSE("GPL");
164 MODULE_VERSION(DRV_VERSION);
167 static bool ata_sstatus_online(u32 sstatus)
169 return (sstatus & 0xf) == 0x3;
173 * ata_link_next - link iteration helper
174 * @link: the previous link, NULL to start
175 * @ap: ATA port containing links to iterate
176 * @mode: iteration mode, one of ATA_LITER_*
178 * LOCKING:
179 * Host lock or EH context.
181 * RETURNS:
182 * Pointer to the next link.
184 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
185 enum ata_link_iter_mode mode)
187 BUG_ON(mode != ATA_LITER_EDGE &&
188 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
190 /* NULL link indicates start of iteration */
191 if (!link)
192 switch (mode) {
193 case ATA_LITER_EDGE:
194 case ATA_LITER_PMP_FIRST:
195 if (sata_pmp_attached(ap))
196 return ap->pmp_link;
197 /* fall through */
198 case ATA_LITER_HOST_FIRST:
199 return &ap->link;
202 /* we just iterated over the host link, what's next? */
203 if (link == &ap->link)
204 switch (mode) {
205 case ATA_LITER_HOST_FIRST:
206 if (sata_pmp_attached(ap))
207 return ap->pmp_link;
208 /* fall through */
209 case ATA_LITER_PMP_FIRST:
210 if (unlikely(ap->slave_link))
211 return ap->slave_link;
212 /* fall through */
213 case ATA_LITER_EDGE:
214 return NULL;
217 /* slave_link excludes PMP */
218 if (unlikely(link == ap->slave_link))
219 return NULL;
221 /* we were over a PMP link */
222 if (++link < ap->pmp_link + ap->nr_pmp_links)
223 return link;
225 if (mode == ATA_LITER_PMP_FIRST)
226 return &ap->link;
228 return NULL;
232 * ata_dev_next - device iteration helper
233 * @dev: the previous device, NULL to start
234 * @link: ATA link containing devices to iterate
235 * @mode: iteration mode, one of ATA_DITER_*
237 * LOCKING:
238 * Host lock or EH context.
240 * RETURNS:
241 * Pointer to the next device.
243 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
244 enum ata_dev_iter_mode mode)
246 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
247 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
249 /* NULL dev indicates start of iteration */
250 if (!dev)
251 switch (mode) {
252 case ATA_DITER_ENABLED:
253 case ATA_DITER_ALL:
254 dev = link->device;
255 goto check;
256 case ATA_DITER_ENABLED_REVERSE:
257 case ATA_DITER_ALL_REVERSE:
258 dev = link->device + ata_link_max_devices(link) - 1;
259 goto check;
262 next:
263 /* move to the next one */
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 if (++dev < link->device + ata_link_max_devices(link))
268 goto check;
269 return NULL;
270 case ATA_DITER_ENABLED_REVERSE:
271 case ATA_DITER_ALL_REVERSE:
272 if (--dev >= link->device)
273 goto check;
274 return NULL;
277 check:
278 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
279 !ata_dev_enabled(dev))
280 goto next;
281 return dev;
285 * ata_dev_phys_link - find physical link for a device
286 * @dev: ATA device to look up physical link for
288 * Look up physical link which @dev is attached to. Note that
289 * this is different from @dev->link only when @dev is on slave
290 * link. For all other cases, it's the same as @dev->link.
292 * LOCKING:
293 * Don't care.
295 * RETURNS:
296 * Pointer to the found physical link.
298 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
300 struct ata_port *ap = dev->link->ap;
302 if (!ap->slave_link)
303 return dev->link;
304 if (!dev->devno)
305 return &ap->link;
306 return ap->slave_link;
310 * ata_force_cbl - force cable type according to libata.force
311 * @ap: ATA port of interest
313 * Force cable type according to libata.force and whine about it.
314 * The last entry which has matching port number is used, so it
315 * can be specified as part of device force parameters. For
316 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
317 * same effect.
319 * LOCKING:
320 * EH context.
322 void ata_force_cbl(struct ata_port *ap)
324 int i;
326 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
327 const struct ata_force_ent *fe = &ata_force_tbl[i];
329 if (fe->port != -1 && fe->port != ap->print_id)
330 continue;
332 if (fe->param.cbl == ATA_CBL_NONE)
333 continue;
335 ap->cbl = fe->param.cbl;
336 ata_port_printk(ap, KERN_NOTICE,
337 "FORCE: cable set to %s\n", fe->param.name);
338 return;
343 * ata_force_link_limits - force link limits according to libata.force
344 * @link: ATA link of interest
346 * Force link flags and SATA spd limit according to libata.force
347 * and whine about it. When only the port part is specified
348 * (e.g. 1:), the limit applies to all links connected to both
349 * the host link and all fan-out ports connected via PMP. If the
350 * device part is specified as 0 (e.g. 1.00:), it specifies the
351 * first fan-out link not the host link. Device number 15 always
352 * points to the host link whether PMP is attached or not. If the
353 * controller has slave link, device number 16 points to it.
355 * LOCKING:
356 * EH context.
358 static void ata_force_link_limits(struct ata_link *link)
360 bool did_spd = false;
361 int linkno = link->pmp;
362 int i;
364 if (ata_is_host_link(link))
365 linkno += 15;
367 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
368 const struct ata_force_ent *fe = &ata_force_tbl[i];
370 if (fe->port != -1 && fe->port != link->ap->print_id)
371 continue;
373 if (fe->device != -1 && fe->device != linkno)
374 continue;
376 /* only honor the first spd limit */
377 if (!did_spd && fe->param.spd_limit) {
378 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
379 ata_link_printk(link, KERN_NOTICE,
380 "FORCE: PHY spd limit set to %s\n",
381 fe->param.name);
382 did_spd = true;
385 /* let lflags stack */
386 if (fe->param.lflags) {
387 link->flags |= fe->param.lflags;
388 ata_link_printk(link, KERN_NOTICE,
389 "FORCE: link flag 0x%x forced -> 0x%x\n",
390 fe->param.lflags, link->flags);
396 * ata_force_xfermask - force xfermask according to libata.force
397 * @dev: ATA device of interest
399 * Force xfer_mask according to libata.force and whine about it.
400 * For consistency with link selection, device number 15 selects
401 * the first device connected to the host link.
403 * LOCKING:
404 * EH context.
406 static void ata_force_xfermask(struct ata_device *dev)
408 int devno = dev->link->pmp + dev->devno;
409 int alt_devno = devno;
410 int i;
412 /* allow n.15/16 for devices attached to host port */
413 if (ata_is_host_link(dev->link))
414 alt_devno += 15;
416 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
417 const struct ata_force_ent *fe = &ata_force_tbl[i];
418 unsigned long pio_mask, mwdma_mask, udma_mask;
420 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
421 continue;
423 if (fe->device != -1 && fe->device != devno &&
424 fe->device != alt_devno)
425 continue;
427 if (!fe->param.xfer_mask)
428 continue;
430 ata_unpack_xfermask(fe->param.xfer_mask,
431 &pio_mask, &mwdma_mask, &udma_mask);
432 if (udma_mask)
433 dev->udma_mask = udma_mask;
434 else if (mwdma_mask) {
435 dev->udma_mask = 0;
436 dev->mwdma_mask = mwdma_mask;
437 } else {
438 dev->udma_mask = 0;
439 dev->mwdma_mask = 0;
440 dev->pio_mask = pio_mask;
443 ata_dev_printk(dev, KERN_NOTICE,
444 "FORCE: xfer_mask set to %s\n", fe->param.name);
445 return;
450 * ata_force_horkage - force horkage according to libata.force
451 * @dev: ATA device of interest
453 * Force horkage according to libata.force and whine about it.
454 * For consistency with link selection, device number 15 selects
455 * the first device connected to the host link.
457 * LOCKING:
458 * EH context.
460 static void ata_force_horkage(struct ata_device *dev)
462 int devno = dev->link->pmp + dev->devno;
463 int alt_devno = devno;
464 int i;
466 /* allow n.15/16 for devices attached to host port */
467 if (ata_is_host_link(dev->link))
468 alt_devno += 15;
470 for (i = 0; i < ata_force_tbl_size; i++) {
471 const struct ata_force_ent *fe = &ata_force_tbl[i];
473 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
474 continue;
476 if (fe->device != -1 && fe->device != devno &&
477 fe->device != alt_devno)
478 continue;
480 if (!(~dev->horkage & fe->param.horkage_on) &&
481 !(dev->horkage & fe->param.horkage_off))
482 continue;
484 dev->horkage |= fe->param.horkage_on;
485 dev->horkage &= ~fe->param.horkage_off;
487 ata_dev_printk(dev, KERN_NOTICE,
488 "FORCE: horkage modified (%s)\n", fe->param.name);
493 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
494 * @opcode: SCSI opcode
496 * Determine ATAPI command type from @opcode.
498 * LOCKING:
499 * None.
501 * RETURNS:
502 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504 int atapi_cmd_type(u8 opcode)
506 switch (opcode) {
507 case GPCMD_READ_10:
508 case GPCMD_READ_12:
509 return ATAPI_READ;
511 case GPCMD_WRITE_10:
512 case GPCMD_WRITE_12:
513 case GPCMD_WRITE_AND_VERIFY_10:
514 return ATAPI_WRITE;
516 case GPCMD_READ_CD:
517 case GPCMD_READ_CD_MSF:
518 return ATAPI_READ_CD;
520 case ATA_16:
521 case ATA_12:
522 if (atapi_passthru16)
523 return ATAPI_PASS_THRU;
524 /* fall thru */
525 default:
526 return ATAPI_MISC;
531 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
532 * @tf: Taskfile to convert
533 * @pmp: Port multiplier port
534 * @is_cmd: This FIS is for command
535 * @fis: Buffer into which data will output
537 * Converts a standard ATA taskfile to a Serial ATA
538 * FIS structure (Register - Host to Device).
540 * LOCKING:
541 * Inherited from caller.
543 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545 fis[0] = 0x27; /* Register - Host to Device FIS */
546 fis[1] = pmp & 0xf; /* Port multiplier number*/
547 if (is_cmd)
548 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
550 fis[2] = tf->command;
551 fis[3] = tf->feature;
553 fis[4] = tf->lbal;
554 fis[5] = tf->lbam;
555 fis[6] = tf->lbah;
556 fis[7] = tf->device;
558 fis[8] = tf->hob_lbal;
559 fis[9] = tf->hob_lbam;
560 fis[10] = tf->hob_lbah;
561 fis[11] = tf->hob_feature;
563 fis[12] = tf->nsect;
564 fis[13] = tf->hob_nsect;
565 fis[14] = 0;
566 fis[15] = tf->ctl;
568 fis[16] = 0;
569 fis[17] = 0;
570 fis[18] = 0;
571 fis[19] = 0;
575 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
576 * @fis: Buffer from which data will be input
577 * @tf: Taskfile to output
579 * Converts a serial ATA FIS structure to a standard ATA taskfile.
581 * LOCKING:
582 * Inherited from caller.
585 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587 tf->command = fis[2]; /* status */
588 tf->feature = fis[3]; /* error */
590 tf->lbal = fis[4];
591 tf->lbam = fis[5];
592 tf->lbah = fis[6];
593 tf->device = fis[7];
595 tf->hob_lbal = fis[8];
596 tf->hob_lbam = fis[9];
597 tf->hob_lbah = fis[10];
599 tf->nsect = fis[12];
600 tf->hob_nsect = fis[13];
603 static const u8 ata_rw_cmds[] = {
604 /* pio multi */
605 ATA_CMD_READ_MULTI,
606 ATA_CMD_WRITE_MULTI,
607 ATA_CMD_READ_MULTI_EXT,
608 ATA_CMD_WRITE_MULTI_EXT,
612 ATA_CMD_WRITE_MULTI_FUA_EXT,
613 /* pio */
614 ATA_CMD_PIO_READ,
615 ATA_CMD_PIO_WRITE,
616 ATA_CMD_PIO_READ_EXT,
617 ATA_CMD_PIO_WRITE_EXT,
622 /* dma */
623 ATA_CMD_READ,
624 ATA_CMD_WRITE,
625 ATA_CMD_READ_EXT,
626 ATA_CMD_WRITE_EXT,
630 ATA_CMD_WRITE_FUA_EXT
634 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
635 * @tf: command to examine and configure
636 * @dev: device tf belongs to
638 * Examine the device configuration and tf->flags to calculate
639 * the proper read/write commands and protocol to use.
641 * LOCKING:
642 * caller.
644 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
646 u8 cmd;
648 int index, fua, lba48, write;
650 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
651 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
652 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654 if (dev->flags & ATA_DFLAG_PIO) {
655 tf->protocol = ATA_PROT_PIO;
656 index = dev->multi_count ? 0 : 8;
657 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
658 /* Unable to use DMA due to host limitation */
659 tf->protocol = ATA_PROT_PIO;
660 index = dev->multi_count ? 0 : 8;
661 } else {
662 tf->protocol = ATA_PROT_DMA;
663 index = 16;
666 cmd = ata_rw_cmds[index + fua + lba48 + write];
667 if (cmd) {
668 tf->command = cmd;
669 return 0;
671 return -1;
675 * ata_tf_read_block - Read block address from ATA taskfile
676 * @tf: ATA taskfile of interest
677 * @dev: ATA device @tf belongs to
679 * LOCKING:
680 * None.
682 * Read block address from @tf. This function can handle all
683 * three address formats - LBA, LBA48 and CHS. tf->protocol and
684 * flags select the address format to use.
686 * RETURNS:
687 * Block address read from @tf.
689 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691 u64 block = 0;
693 if (tf->flags & ATA_TFLAG_LBA) {
694 if (tf->flags & ATA_TFLAG_LBA48) {
695 block |= (u64)tf->hob_lbah << 40;
696 block |= (u64)tf->hob_lbam << 32;
697 block |= (u64)tf->hob_lbal << 24;
698 } else
699 block |= (tf->device & 0xf) << 24;
701 block |= tf->lbah << 16;
702 block |= tf->lbam << 8;
703 block |= tf->lbal;
704 } else {
705 u32 cyl, head, sect;
707 cyl = tf->lbam | (tf->lbah << 8);
708 head = tf->device & 0xf;
709 sect = tf->lbal;
711 block = (cyl * dev->heads + head) * dev->sectors + sect;
714 return block;
718 * ata_build_rw_tf - Build ATA taskfile for given read/write request
719 * @tf: Target ATA taskfile
720 * @dev: ATA device @tf belongs to
721 * @block: Block address
722 * @n_block: Number of blocks
723 * @tf_flags: RW/FUA etc...
724 * @tag: tag
726 * LOCKING:
727 * None.
729 * Build ATA taskfile @tf for read/write request described by
730 * @block, @n_block, @tf_flags and @tag on @dev.
732 * RETURNS:
734 * 0 on success, -ERANGE if the request is too large for @dev,
735 * -EINVAL if the request is invalid.
737 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
738 u64 block, u32 n_block, unsigned int tf_flags,
739 unsigned int tag)
741 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
742 tf->flags |= tf_flags;
744 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
745 /* yay, NCQ */
746 if (!lba_48_ok(block, n_block))
747 return -ERANGE;
749 tf->protocol = ATA_PROT_NCQ;
750 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
752 if (tf->flags & ATA_TFLAG_WRITE)
753 tf->command = ATA_CMD_FPDMA_WRITE;
754 else
755 tf->command = ATA_CMD_FPDMA_READ;
757 tf->nsect = tag << 3;
758 tf->hob_feature = (n_block >> 8) & 0xff;
759 tf->feature = n_block & 0xff;
761 tf->hob_lbah = (block >> 40) & 0xff;
762 tf->hob_lbam = (block >> 32) & 0xff;
763 tf->hob_lbal = (block >> 24) & 0xff;
764 tf->lbah = (block >> 16) & 0xff;
765 tf->lbam = (block >> 8) & 0xff;
766 tf->lbal = block & 0xff;
768 tf->device = 1 << 6;
769 if (tf->flags & ATA_TFLAG_FUA)
770 tf->device |= 1 << 7;
771 } else if (dev->flags & ATA_DFLAG_LBA) {
772 tf->flags |= ATA_TFLAG_LBA;
774 if (lba_28_ok(block, n_block)) {
775 /* use LBA28 */
776 tf->device |= (block >> 24) & 0xf;
777 } else if (lba_48_ok(block, n_block)) {
778 if (!(dev->flags & ATA_DFLAG_LBA48))
779 return -ERANGE;
781 /* use LBA48 */
782 tf->flags |= ATA_TFLAG_LBA48;
784 tf->hob_nsect = (n_block >> 8) & 0xff;
786 tf->hob_lbah = (block >> 40) & 0xff;
787 tf->hob_lbam = (block >> 32) & 0xff;
788 tf->hob_lbal = (block >> 24) & 0xff;
789 } else
790 /* request too large even for LBA48 */
791 return -ERANGE;
793 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
794 return -EINVAL;
796 tf->nsect = n_block & 0xff;
798 tf->lbah = (block >> 16) & 0xff;
799 tf->lbam = (block >> 8) & 0xff;
800 tf->lbal = block & 0xff;
802 tf->device |= ATA_LBA;
803 } else {
804 /* CHS */
805 u32 sect, head, cyl, track;
807 /* The request -may- be too large for CHS addressing. */
808 if (!lba_28_ok(block, n_block))
809 return -ERANGE;
811 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
812 return -EINVAL;
814 /* Convert LBA to CHS */
815 track = (u32)block / dev->sectors;
816 cyl = track / dev->heads;
817 head = track % dev->heads;
818 sect = (u32)block % dev->sectors + 1;
820 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
821 (u32)block, track, cyl, head, sect);
823 /* Check whether the converted CHS can fit.
824 Cylinder: 0-65535
825 Head: 0-15
826 Sector: 1-255*/
827 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
828 return -ERANGE;
830 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
831 tf->lbal = sect;
832 tf->lbam = cyl;
833 tf->lbah = cyl >> 8;
834 tf->device |= head;
837 return 0;
841 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
842 * @pio_mask: pio_mask
843 * @mwdma_mask: mwdma_mask
844 * @udma_mask: udma_mask
846 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
847 * unsigned int xfer_mask.
849 * LOCKING:
850 * None.
852 * RETURNS:
853 * Packed xfer_mask.
855 unsigned long ata_pack_xfermask(unsigned long pio_mask,
856 unsigned long mwdma_mask,
857 unsigned long udma_mask)
859 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
860 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
861 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
865 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
866 * @xfer_mask: xfer_mask to unpack
867 * @pio_mask: resulting pio_mask
868 * @mwdma_mask: resulting mwdma_mask
869 * @udma_mask: resulting udma_mask
871 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
872 * Any NULL distination masks will be ignored.
874 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
875 unsigned long *mwdma_mask, unsigned long *udma_mask)
877 if (pio_mask)
878 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
879 if (mwdma_mask)
880 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
881 if (udma_mask)
882 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
885 static const struct ata_xfer_ent {
886 int shift, bits;
887 u8 base;
888 } ata_xfer_tbl[] = {
889 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
890 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
891 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
892 { -1, },
896 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
897 * @xfer_mask: xfer_mask of interest
899 * Return matching XFER_* value for @xfer_mask. Only the highest
900 * bit of @xfer_mask is considered.
902 * LOCKING:
903 * None.
905 * RETURNS:
906 * Matching XFER_* value, 0xff if no match found.
908 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
910 int highbit = fls(xfer_mask) - 1;
911 const struct ata_xfer_ent *ent;
913 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
914 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
915 return ent->base + highbit - ent->shift;
916 return 0xff;
920 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
921 * @xfer_mode: XFER_* of interest
923 * Return matching xfer_mask for @xfer_mode.
925 * LOCKING:
926 * None.
928 * RETURNS:
929 * Matching xfer_mask, 0 if no match found.
931 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
933 const struct ata_xfer_ent *ent;
935 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
936 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
937 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
938 & ~((1 << ent->shift) - 1);
939 return 0;
943 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
944 * @xfer_mode: XFER_* of interest
946 * Return matching xfer_shift for @xfer_mode.
948 * LOCKING:
949 * None.
951 * RETURNS:
952 * Matching xfer_shift, -1 if no match found.
954 int ata_xfer_mode2shift(unsigned long xfer_mode)
956 const struct ata_xfer_ent *ent;
958 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
959 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
960 return ent->shift;
961 return -1;
965 * ata_mode_string - convert xfer_mask to string
966 * @xfer_mask: mask of bits supported; only highest bit counts.
968 * Determine string which represents the highest speed
969 * (highest bit in @modemask).
971 * LOCKING:
972 * None.
974 * RETURNS:
975 * Constant C string representing highest speed listed in
976 * @mode_mask, or the constant C string "<n/a>".
978 const char *ata_mode_string(unsigned long xfer_mask)
980 static const char * const xfer_mode_str[] = {
981 "PIO0",
982 "PIO1",
983 "PIO2",
984 "PIO3",
985 "PIO4",
986 "PIO5",
987 "PIO6",
988 "MWDMA0",
989 "MWDMA1",
990 "MWDMA2",
991 "MWDMA3",
992 "MWDMA4",
993 "UDMA/16",
994 "UDMA/25",
995 "UDMA/33",
996 "UDMA/44",
997 "UDMA/66",
998 "UDMA/100",
999 "UDMA/133",
1000 "UDMA7",
1002 int highbit;
1004 highbit = fls(xfer_mask) - 1;
1005 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1006 return xfer_mode_str[highbit];
1007 return "<n/a>";
1010 static const char *sata_spd_string(unsigned int spd)
1012 static const char * const spd_str[] = {
1013 "1.5 Gbps",
1014 "3.0 Gbps",
1015 "6.0 Gbps",
1018 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1019 return "<unknown>";
1020 return spd_str[spd - 1];
1023 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1025 struct ata_link *link = dev->link;
1026 struct ata_port *ap = link->ap;
1027 u32 scontrol;
1028 unsigned int err_mask;
1029 int rc;
1032 * disallow DIPM for drivers which haven't set
1033 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1034 * phy ready will be set in the interrupt status on
1035 * state changes, which will cause some drivers to
1036 * think there are errors - additionally drivers will
1037 * need to disable hot plug.
1039 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1040 ap->pm_policy = NOT_AVAILABLE;
1041 return -EINVAL;
1045 * For DIPM, we will only enable it for the
1046 * min_power setting.
1048 * Why? Because Disks are too stupid to know that
1049 * If the host rejects a request to go to SLUMBER
1050 * they should retry at PARTIAL, and instead it
1051 * just would give up. So, for medium_power to
1052 * work at all, we need to only allow HIPM.
1054 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1055 if (rc)
1056 return rc;
1058 switch (policy) {
1059 case MIN_POWER:
1060 /* no restrictions on IPM transitions */
1061 scontrol &= ~(0x3 << 8);
1062 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1063 if (rc)
1064 return rc;
1066 /* enable DIPM */
1067 if (dev->flags & ATA_DFLAG_DIPM)
1068 err_mask = ata_dev_set_feature(dev,
1069 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1070 break;
1071 case MEDIUM_POWER:
1072 /* allow IPM to PARTIAL */
1073 scontrol &= ~(0x1 << 8);
1074 scontrol |= (0x2 << 8);
1075 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1076 if (rc)
1077 return rc;
1080 * we don't have to disable DIPM since IPM flags
1081 * disallow transitions to SLUMBER, which effectively
1082 * disable DIPM if it does not support PARTIAL
1084 break;
1085 case NOT_AVAILABLE:
1086 case MAX_PERFORMANCE:
1087 /* disable all IPM transitions */
1088 scontrol |= (0x3 << 8);
1089 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1090 if (rc)
1091 return rc;
1094 * we don't have to disable DIPM since IPM flags
1095 * disallow all transitions which effectively
1096 * disable DIPM anyway.
1098 break;
1101 /* FIXME: handle SET FEATURES failure */
1102 (void) err_mask;
1104 return 0;
1108 * ata_dev_enable_pm - enable SATA interface power management
1109 * @dev: device to enable power management
1110 * @policy: the link power management policy
1112 * Enable SATA Interface power management. This will enable
1113 * Device Interface Power Management (DIPM) for min_power
1114 * policy, and then call driver specific callbacks for
1115 * enabling Host Initiated Power management.
1117 * Locking: Caller.
1118 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1120 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1122 int rc = 0;
1123 struct ata_port *ap = dev->link->ap;
1125 /* set HIPM first, then DIPM */
1126 if (ap->ops->enable_pm)
1127 rc = ap->ops->enable_pm(ap, policy);
1128 if (rc)
1129 goto enable_pm_out;
1130 rc = ata_dev_set_dipm(dev, policy);
1132 enable_pm_out:
1133 if (rc)
1134 ap->pm_policy = MAX_PERFORMANCE;
1135 else
1136 ap->pm_policy = policy;
1137 return /* rc */; /* hopefully we can use 'rc' eventually */
1140 #ifdef CONFIG_PM
1142 * ata_dev_disable_pm - disable SATA interface power management
1143 * @dev: device to disable power management
1145 * Disable SATA Interface power management. This will disable
1146 * Device Interface Power Management (DIPM) without changing
1147 * policy, call driver specific callbacks for disabling Host
1148 * Initiated Power management.
1150 * Locking: Caller.
1151 * Returns: void
1153 static void ata_dev_disable_pm(struct ata_device *dev)
1155 struct ata_port *ap = dev->link->ap;
1157 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1158 if (ap->ops->disable_pm)
1159 ap->ops->disable_pm(ap);
1161 #endif /* CONFIG_PM */
1163 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1165 ap->pm_policy = policy;
1166 ap->link.eh_info.action |= ATA_EH_LPM;
1167 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1168 ata_port_schedule_eh(ap);
1171 #ifdef CONFIG_PM
1172 static void ata_lpm_enable(struct ata_host *host)
1174 struct ata_link *link;
1175 struct ata_port *ap;
1176 struct ata_device *dev;
1177 int i;
1179 for (i = 0; i < host->n_ports; i++) {
1180 ap = host->ports[i];
1181 ata_for_each_link(link, ap, EDGE) {
1182 ata_for_each_dev(dev, link, ALL)
1183 ata_dev_disable_pm(dev);
1188 static void ata_lpm_disable(struct ata_host *host)
1190 int i;
1192 for (i = 0; i < host->n_ports; i++) {
1193 struct ata_port *ap = host->ports[i];
1194 ata_lpm_schedule(ap, ap->pm_policy);
1197 #endif /* CONFIG_PM */
1200 * ata_dev_classify - determine device type based on ATA-spec signature
1201 * @tf: ATA taskfile register set for device to be identified
1203 * Determine from taskfile register contents whether a device is
1204 * ATA or ATAPI, as per "Signature and persistence" section
1205 * of ATA/PI spec (volume 1, sect 5.14).
1207 * LOCKING:
1208 * None.
1210 * RETURNS:
1211 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1212 * %ATA_DEV_UNKNOWN the event of failure.
1214 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1216 /* Apple's open source Darwin code hints that some devices only
1217 * put a proper signature into the LBA mid/high registers,
1218 * So, we only check those. It's sufficient for uniqueness.
1220 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1221 * signatures for ATA and ATAPI devices attached on SerialATA,
1222 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1223 * spec has never mentioned about using different signatures
1224 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1225 * Multiplier specification began to use 0x69/0x96 to identify
1226 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1227 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1228 * 0x69/0x96 shortly and described them as reserved for
1229 * SerialATA.
1231 * We follow the current spec and consider that 0x69/0x96
1232 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1234 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1235 DPRINTK("found ATA device by sig\n");
1236 return ATA_DEV_ATA;
1239 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1240 DPRINTK("found ATAPI device by sig\n");
1241 return ATA_DEV_ATAPI;
1244 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1245 DPRINTK("found PMP device by sig\n");
1246 return ATA_DEV_PMP;
1249 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1250 printk(KERN_INFO "ata: SEMB device ignored\n");
1251 return ATA_DEV_SEMB_UNSUP; /* not yet */
1254 DPRINTK("unknown device\n");
1255 return ATA_DEV_UNKNOWN;
1259 * ata_id_string - Convert IDENTIFY DEVICE page into string
1260 * @id: IDENTIFY DEVICE results we will examine
1261 * @s: string into which data is output
1262 * @ofs: offset into identify device page
1263 * @len: length of string to return. must be an even number.
1265 * The strings in the IDENTIFY DEVICE page are broken up into
1266 * 16-bit chunks. Run through the string, and output each
1267 * 8-bit chunk linearly, regardless of platform.
1269 * LOCKING:
1270 * caller.
1273 void ata_id_string(const u16 *id, unsigned char *s,
1274 unsigned int ofs, unsigned int len)
1276 unsigned int c;
1278 BUG_ON(len & 1);
1280 while (len > 0) {
1281 c = id[ofs] >> 8;
1282 *s = c;
1283 s++;
1285 c = id[ofs] & 0xff;
1286 *s = c;
1287 s++;
1289 ofs++;
1290 len -= 2;
1295 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1296 * @id: IDENTIFY DEVICE results we will examine
1297 * @s: string into which data is output
1298 * @ofs: offset into identify device page
1299 * @len: length of string to return. must be an odd number.
1301 * This function is identical to ata_id_string except that it
1302 * trims trailing spaces and terminates the resulting string with
1303 * null. @len must be actual maximum length (even number) + 1.
1305 * LOCKING:
1306 * caller.
1308 void ata_id_c_string(const u16 *id, unsigned char *s,
1309 unsigned int ofs, unsigned int len)
1311 unsigned char *p;
1313 ata_id_string(id, s, ofs, len - 1);
1315 p = s + strnlen(s, len - 1);
1316 while (p > s && p[-1] == ' ')
1317 p--;
1318 *p = '\0';
1321 static u64 ata_id_n_sectors(const u16 *id)
1323 if (ata_id_has_lba(id)) {
1324 if (ata_id_has_lba48(id))
1325 return ata_id_u64(id, 100);
1326 else
1327 return ata_id_u32(id, 60);
1328 } else {
1329 if (ata_id_current_chs_valid(id))
1330 return ata_id_u32(id, 57);
1331 else
1332 return id[1] * id[3] * id[6];
1336 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1338 u64 sectors = 0;
1340 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1341 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1342 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1343 sectors |= (tf->lbah & 0xff) << 16;
1344 sectors |= (tf->lbam & 0xff) << 8;
1345 sectors |= (tf->lbal & 0xff);
1347 return sectors;
1350 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1352 u64 sectors = 0;
1354 sectors |= (tf->device & 0x0f) << 24;
1355 sectors |= (tf->lbah & 0xff) << 16;
1356 sectors |= (tf->lbam & 0xff) << 8;
1357 sectors |= (tf->lbal & 0xff);
1359 return sectors;
1363 * ata_read_native_max_address - Read native max address
1364 * @dev: target device
1365 * @max_sectors: out parameter for the result native max address
1367 * Perform an LBA48 or LBA28 native size query upon the device in
1368 * question.
1370 * RETURNS:
1371 * 0 on success, -EACCES if command is aborted by the drive.
1372 * -EIO on other errors.
1374 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1376 unsigned int err_mask;
1377 struct ata_taskfile tf;
1378 int lba48 = ata_id_has_lba48(dev->id);
1380 ata_tf_init(dev, &tf);
1382 /* always clear all address registers */
1383 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1385 if (lba48) {
1386 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1387 tf.flags |= ATA_TFLAG_LBA48;
1388 } else
1389 tf.command = ATA_CMD_READ_NATIVE_MAX;
1391 tf.protocol |= ATA_PROT_NODATA;
1392 tf.device |= ATA_LBA;
1394 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1395 if (err_mask) {
1396 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1397 "max address (err_mask=0x%x)\n", err_mask);
1398 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1399 return -EACCES;
1400 return -EIO;
1403 if (lba48)
1404 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1405 else
1406 *max_sectors = ata_tf_to_lba(&tf) + 1;
1407 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1408 (*max_sectors)--;
1409 return 0;
1413 * ata_set_max_sectors - Set max sectors
1414 * @dev: target device
1415 * @new_sectors: new max sectors value to set for the device
1417 * Set max sectors of @dev to @new_sectors.
1419 * RETURNS:
1420 * 0 on success, -EACCES if command is aborted or denied (due to
1421 * previous non-volatile SET_MAX) by the drive. -EIO on other
1422 * errors.
1424 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1426 unsigned int err_mask;
1427 struct ata_taskfile tf;
1428 int lba48 = ata_id_has_lba48(dev->id);
1430 new_sectors--;
1432 ata_tf_init(dev, &tf);
1434 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1436 if (lba48) {
1437 tf.command = ATA_CMD_SET_MAX_EXT;
1438 tf.flags |= ATA_TFLAG_LBA48;
1440 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1441 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1442 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1443 } else {
1444 tf.command = ATA_CMD_SET_MAX;
1446 tf.device |= (new_sectors >> 24) & 0xf;
1449 tf.protocol |= ATA_PROT_NODATA;
1450 tf.device |= ATA_LBA;
1452 tf.lbal = (new_sectors >> 0) & 0xff;
1453 tf.lbam = (new_sectors >> 8) & 0xff;
1454 tf.lbah = (new_sectors >> 16) & 0xff;
1456 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1457 if (err_mask) {
1458 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1459 "max address (err_mask=0x%x)\n", err_mask);
1460 if (err_mask == AC_ERR_DEV &&
1461 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1462 return -EACCES;
1463 return -EIO;
1466 return 0;
1470 * ata_hpa_resize - Resize a device with an HPA set
1471 * @dev: Device to resize
1473 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1474 * it if required to the full size of the media. The caller must check
1475 * the drive has the HPA feature set enabled.
1477 * RETURNS:
1478 * 0 on success, -errno on failure.
1480 static int ata_hpa_resize(struct ata_device *dev)
1482 struct ata_eh_context *ehc = &dev->link->eh_context;
1483 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1484 u64 sectors = ata_id_n_sectors(dev->id);
1485 u64 native_sectors;
1486 int rc;
1488 /* do we need to do it? */
1489 if (dev->class != ATA_DEV_ATA ||
1490 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1491 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1492 return 0;
1494 /* read native max address */
1495 rc = ata_read_native_max_address(dev, &native_sectors);
1496 if (rc) {
1497 /* If device aborted the command or HPA isn't going to
1498 * be unlocked, skip HPA resizing.
1500 if (rc == -EACCES || !ata_ignore_hpa) {
1501 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1502 "broken, skipping HPA handling\n");
1503 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1505 /* we can continue if device aborted the command */
1506 if (rc == -EACCES)
1507 rc = 0;
1510 return rc;
1513 /* nothing to do? */
1514 if (native_sectors <= sectors || !ata_ignore_hpa) {
1515 if (!print_info || native_sectors == sectors)
1516 return 0;
1518 if (native_sectors > sectors)
1519 ata_dev_printk(dev, KERN_INFO,
1520 "HPA detected: current %llu, native %llu\n",
1521 (unsigned long long)sectors,
1522 (unsigned long long)native_sectors);
1523 else if (native_sectors < sectors)
1524 ata_dev_printk(dev, KERN_WARNING,
1525 "native sectors (%llu) is smaller than "
1526 "sectors (%llu)\n",
1527 (unsigned long long)native_sectors,
1528 (unsigned long long)sectors);
1529 return 0;
1532 /* let's unlock HPA */
1533 rc = ata_set_max_sectors(dev, native_sectors);
1534 if (rc == -EACCES) {
1535 /* if device aborted the command, skip HPA resizing */
1536 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1537 "(%llu -> %llu), skipping HPA handling\n",
1538 (unsigned long long)sectors,
1539 (unsigned long long)native_sectors);
1540 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1541 return 0;
1542 } else if (rc)
1543 return rc;
1545 /* re-read IDENTIFY data */
1546 rc = ata_dev_reread_id(dev, 0);
1547 if (rc) {
1548 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1549 "data after HPA resizing\n");
1550 return rc;
1553 if (print_info) {
1554 u64 new_sectors = ata_id_n_sectors(dev->id);
1555 ata_dev_printk(dev, KERN_INFO,
1556 "HPA unlocked: %llu -> %llu, native %llu\n",
1557 (unsigned long long)sectors,
1558 (unsigned long long)new_sectors,
1559 (unsigned long long)native_sectors);
1562 return 0;
1566 * ata_dump_id - IDENTIFY DEVICE info debugging output
1567 * @id: IDENTIFY DEVICE page to dump
1569 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1570 * page.
1572 * LOCKING:
1573 * caller.
1576 static inline void ata_dump_id(const u16 *id)
1578 DPRINTK("49==0x%04x "
1579 "53==0x%04x "
1580 "63==0x%04x "
1581 "64==0x%04x "
1582 "75==0x%04x \n",
1583 id[49],
1584 id[53],
1585 id[63],
1586 id[64],
1587 id[75]);
1588 DPRINTK("80==0x%04x "
1589 "81==0x%04x "
1590 "82==0x%04x "
1591 "83==0x%04x "
1592 "84==0x%04x \n",
1593 id[80],
1594 id[81],
1595 id[82],
1596 id[83],
1597 id[84]);
1598 DPRINTK("88==0x%04x "
1599 "93==0x%04x\n",
1600 id[88],
1601 id[93]);
1605 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1606 * @id: IDENTIFY data to compute xfer mask from
1608 * Compute the xfermask for this device. This is not as trivial
1609 * as it seems if we must consider early devices correctly.
1611 * FIXME: pre IDE drive timing (do we care ?).
1613 * LOCKING:
1614 * None.
1616 * RETURNS:
1617 * Computed xfermask
1619 unsigned long ata_id_xfermask(const u16 *id)
1621 unsigned long pio_mask, mwdma_mask, udma_mask;
1623 /* Usual case. Word 53 indicates word 64 is valid */
1624 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1625 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1626 pio_mask <<= 3;
1627 pio_mask |= 0x7;
1628 } else {
1629 /* If word 64 isn't valid then Word 51 high byte holds
1630 * the PIO timing number for the maximum. Turn it into
1631 * a mask.
1633 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1634 if (mode < 5) /* Valid PIO range */
1635 pio_mask = (2 << mode) - 1;
1636 else
1637 pio_mask = 1;
1639 /* But wait.. there's more. Design your standards by
1640 * committee and you too can get a free iordy field to
1641 * process. However its the speeds not the modes that
1642 * are supported... Note drivers using the timing API
1643 * will get this right anyway
1647 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1649 if (ata_id_is_cfa(id)) {
1651 * Process compact flash extended modes
1653 int pio = id[163] & 0x7;
1654 int dma = (id[163] >> 3) & 7;
1656 if (pio)
1657 pio_mask |= (1 << 5);
1658 if (pio > 1)
1659 pio_mask |= (1 << 6);
1660 if (dma)
1661 mwdma_mask |= (1 << 3);
1662 if (dma > 1)
1663 mwdma_mask |= (1 << 4);
1666 udma_mask = 0;
1667 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1668 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1670 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1674 * ata_pio_queue_task - Queue port_task
1675 * @ap: The ata_port to queue port_task for
1676 * @data: data for @fn to use
1677 * @delay: delay time in msecs for workqueue function
1679 * Schedule @fn(@data) for execution after @delay jiffies using
1680 * port_task. There is one port_task per port and it's the
1681 * user(low level driver)'s responsibility to make sure that only
1682 * one task is active at any given time.
1684 * libata core layer takes care of synchronization between
1685 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1686 * synchronization.
1688 * LOCKING:
1689 * Inherited from caller.
1691 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1693 ap->port_task_data = data;
1695 /* may fail if ata_port_flush_task() in progress */
1696 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1700 * ata_port_flush_task - Flush port_task
1701 * @ap: The ata_port to flush port_task for
1703 * After this function completes, port_task is guranteed not to
1704 * be running or scheduled.
1706 * LOCKING:
1707 * Kernel thread context (may sleep)
1709 void ata_port_flush_task(struct ata_port *ap)
1711 DPRINTK("ENTER\n");
1713 cancel_rearming_delayed_work(&ap->port_task);
1715 if (ata_msg_ctl(ap))
1716 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1719 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1721 struct completion *waiting = qc->private_data;
1723 complete(waiting);
1727 * ata_exec_internal_sg - execute libata internal command
1728 * @dev: Device to which the command is sent
1729 * @tf: Taskfile registers for the command and the result
1730 * @cdb: CDB for packet command
1731 * @dma_dir: Data tranfer direction of the command
1732 * @sgl: sg list for the data buffer of the command
1733 * @n_elem: Number of sg entries
1734 * @timeout: Timeout in msecs (0 for default)
1736 * Executes libata internal command with timeout. @tf contains
1737 * command on entry and result on return. Timeout and error
1738 * conditions are reported via return value. No recovery action
1739 * is taken after a command times out. It's caller's duty to
1740 * clean up after timeout.
1742 * LOCKING:
1743 * None. Should be called with kernel context, might sleep.
1745 * RETURNS:
1746 * Zero on success, AC_ERR_* mask on failure
1748 unsigned ata_exec_internal_sg(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
1750 int dma_dir, struct scatterlist *sgl,
1751 unsigned int n_elem, unsigned long timeout)
1753 struct ata_link *link = dev->link;
1754 struct ata_port *ap = link->ap;
1755 u8 command = tf->command;
1756 int auto_timeout = 0;
1757 struct ata_queued_cmd *qc;
1758 unsigned int tag, preempted_tag;
1759 u32 preempted_sactive, preempted_qc_active;
1760 int preempted_nr_active_links;
1761 DECLARE_COMPLETION_ONSTACK(wait);
1762 unsigned long flags;
1763 unsigned int err_mask;
1764 int rc;
1766 spin_lock_irqsave(ap->lock, flags);
1768 /* no internal command while frozen */
1769 if (ap->pflags & ATA_PFLAG_FROZEN) {
1770 spin_unlock_irqrestore(ap->lock, flags);
1771 return AC_ERR_SYSTEM;
1774 /* initialize internal qc */
1776 /* XXX: Tag 0 is used for drivers with legacy EH as some
1777 * drivers choke if any other tag is given. This breaks
1778 * ata_tag_internal() test for those drivers. Don't use new
1779 * EH stuff without converting to it.
1781 if (ap->ops->error_handler)
1782 tag = ATA_TAG_INTERNAL;
1783 else
1784 tag = 0;
1786 if (test_and_set_bit(tag, &ap->qc_allocated))
1787 BUG();
1788 qc = __ata_qc_from_tag(ap, tag);
1790 qc->tag = tag;
1791 qc->scsicmd = NULL;
1792 qc->ap = ap;
1793 qc->dev = dev;
1794 ata_qc_reinit(qc);
1796 preempted_tag = link->active_tag;
1797 preempted_sactive = link->sactive;
1798 preempted_qc_active = ap->qc_active;
1799 preempted_nr_active_links = ap->nr_active_links;
1800 link->active_tag = ATA_TAG_POISON;
1801 link->sactive = 0;
1802 ap->qc_active = 0;
1803 ap->nr_active_links = 0;
1805 /* prepare & issue qc */
1806 qc->tf = *tf;
1807 if (cdb)
1808 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1809 qc->flags |= ATA_QCFLAG_RESULT_TF;
1810 qc->dma_dir = dma_dir;
1811 if (dma_dir != DMA_NONE) {
1812 unsigned int i, buflen = 0;
1813 struct scatterlist *sg;
1815 for_each_sg(sgl, sg, n_elem, i)
1816 buflen += sg->length;
1818 ata_sg_init(qc, sgl, n_elem);
1819 qc->nbytes = buflen;
1822 qc->private_data = &wait;
1823 qc->complete_fn = ata_qc_complete_internal;
1825 ata_qc_issue(qc);
1827 spin_unlock_irqrestore(ap->lock, flags);
1829 if (!timeout) {
1830 if (ata_probe_timeout)
1831 timeout = ata_probe_timeout * 1000;
1832 else {
1833 timeout = ata_internal_cmd_timeout(dev, command);
1834 auto_timeout = 1;
1838 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1840 ata_port_flush_task(ap);
1842 if (!rc) {
1843 spin_lock_irqsave(ap->lock, flags);
1845 /* We're racing with irq here. If we lose, the
1846 * following test prevents us from completing the qc
1847 * twice. If we win, the port is frozen and will be
1848 * cleaned up by ->post_internal_cmd().
1850 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1851 qc->err_mask |= AC_ERR_TIMEOUT;
1853 if (ap->ops->error_handler)
1854 ata_port_freeze(ap);
1855 else
1856 ata_qc_complete(qc);
1858 if (ata_msg_warn(ap))
1859 ata_dev_printk(dev, KERN_WARNING,
1860 "qc timeout (cmd 0x%x)\n", command);
1863 spin_unlock_irqrestore(ap->lock, flags);
1866 /* do post_internal_cmd */
1867 if (ap->ops->post_internal_cmd)
1868 ap->ops->post_internal_cmd(qc);
1870 /* perform minimal error analysis */
1871 if (qc->flags & ATA_QCFLAG_FAILED) {
1872 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1873 qc->err_mask |= AC_ERR_DEV;
1875 if (!qc->err_mask)
1876 qc->err_mask |= AC_ERR_OTHER;
1878 if (qc->err_mask & ~AC_ERR_OTHER)
1879 qc->err_mask &= ~AC_ERR_OTHER;
1882 /* finish up */
1883 spin_lock_irqsave(ap->lock, flags);
1885 *tf = qc->result_tf;
1886 err_mask = qc->err_mask;
1888 ata_qc_free(qc);
1889 link->active_tag = preempted_tag;
1890 link->sactive = preempted_sactive;
1891 ap->qc_active = preempted_qc_active;
1892 ap->nr_active_links = preempted_nr_active_links;
1894 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1895 * Until those drivers are fixed, we detect the condition
1896 * here, fail the command with AC_ERR_SYSTEM and reenable the
1897 * port.
1899 * Note that this doesn't change any behavior as internal
1900 * command failure results in disabling the device in the
1901 * higher layer for LLDDs without new reset/EH callbacks.
1903 * Kill the following code as soon as those drivers are fixed.
1905 if (ap->flags & ATA_FLAG_DISABLED) {
1906 err_mask |= AC_ERR_SYSTEM;
1907 ata_port_probe(ap);
1910 spin_unlock_irqrestore(ap->lock, flags);
1912 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1913 ata_internal_cmd_timed_out(dev, command);
1915 return err_mask;
1919 * ata_exec_internal - execute libata internal command
1920 * @dev: Device to which the command is sent
1921 * @tf: Taskfile registers for the command and the result
1922 * @cdb: CDB for packet command
1923 * @dma_dir: Data tranfer direction of the command
1924 * @buf: Data buffer of the command
1925 * @buflen: Length of data buffer
1926 * @timeout: Timeout in msecs (0 for default)
1928 * Wrapper around ata_exec_internal_sg() which takes simple
1929 * buffer instead of sg list.
1931 * LOCKING:
1932 * None. Should be called with kernel context, might sleep.
1934 * RETURNS:
1935 * Zero on success, AC_ERR_* mask on failure
1937 unsigned ata_exec_internal(struct ata_device *dev,
1938 struct ata_taskfile *tf, const u8 *cdb,
1939 int dma_dir, void *buf, unsigned int buflen,
1940 unsigned long timeout)
1942 struct scatterlist *psg = NULL, sg;
1943 unsigned int n_elem = 0;
1945 if (dma_dir != DMA_NONE) {
1946 WARN_ON(!buf);
1947 sg_init_one(&sg, buf, buflen);
1948 psg = &sg;
1949 n_elem++;
1952 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1953 timeout);
1957 * ata_do_simple_cmd - execute simple internal command
1958 * @dev: Device to which the command is sent
1959 * @cmd: Opcode to execute
1961 * Execute a 'simple' command, that only consists of the opcode
1962 * 'cmd' itself, without filling any other registers
1964 * LOCKING:
1965 * Kernel thread context (may sleep).
1967 * RETURNS:
1968 * Zero on success, AC_ERR_* mask on failure
1970 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1972 struct ata_taskfile tf;
1974 ata_tf_init(dev, &tf);
1976 tf.command = cmd;
1977 tf.flags |= ATA_TFLAG_DEVICE;
1978 tf.protocol = ATA_PROT_NODATA;
1980 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1984 * ata_pio_need_iordy - check if iordy needed
1985 * @adev: ATA device
1987 * Check if the current speed of the device requires IORDY. Used
1988 * by various controllers for chip configuration.
1991 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1993 /* Controller doesn't support IORDY. Probably a pointless check
1994 as the caller should know this */
1995 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1996 return 0;
1997 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1998 if (ata_id_is_cfa(adev->id)
1999 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2000 return 0;
2001 /* PIO3 and higher it is mandatory */
2002 if (adev->pio_mode > XFER_PIO_2)
2003 return 1;
2004 /* We turn it on when possible */
2005 if (ata_id_has_iordy(adev->id))
2006 return 1;
2007 return 0;
2011 * ata_pio_mask_no_iordy - Return the non IORDY mask
2012 * @adev: ATA device
2014 * Compute the highest mode possible if we are not using iordy. Return
2015 * -1 if no iordy mode is available.
2018 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2020 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2021 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2022 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2023 /* Is the speed faster than the drive allows non IORDY ? */
2024 if (pio) {
2025 /* This is cycle times not frequency - watch the logic! */
2026 if (pio > 240) /* PIO2 is 240nS per cycle */
2027 return 3 << ATA_SHIFT_PIO;
2028 return 7 << ATA_SHIFT_PIO;
2031 return 3 << ATA_SHIFT_PIO;
2035 * ata_do_dev_read_id - default ID read method
2036 * @dev: device
2037 * @tf: proposed taskfile
2038 * @id: data buffer
2040 * Issue the identify taskfile and hand back the buffer containing
2041 * identify data. For some RAID controllers and for pre ATA devices
2042 * this function is wrapped or replaced by the driver
2044 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2045 struct ata_taskfile *tf, u16 *id)
2047 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2048 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2052 * ata_dev_read_id - Read ID data from the specified device
2053 * @dev: target device
2054 * @p_class: pointer to class of the target device (may be changed)
2055 * @flags: ATA_READID_* flags
2056 * @id: buffer to read IDENTIFY data into
2058 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2059 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2060 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2061 * for pre-ATA4 drives.
2063 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2064 * now we abort if we hit that case.
2066 * LOCKING:
2067 * Kernel thread context (may sleep)
2069 * RETURNS:
2070 * 0 on success, -errno otherwise.
2072 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2073 unsigned int flags, u16 *id)
2075 struct ata_port *ap = dev->link->ap;
2076 unsigned int class = *p_class;
2077 struct ata_taskfile tf;
2078 unsigned int err_mask = 0;
2079 const char *reason;
2080 int may_fallback = 1, tried_spinup = 0;
2081 int rc;
2083 if (ata_msg_ctl(ap))
2084 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2086 retry:
2087 ata_tf_init(dev, &tf);
2089 switch (class) {
2090 case ATA_DEV_ATA:
2091 tf.command = ATA_CMD_ID_ATA;
2092 break;
2093 case ATA_DEV_ATAPI:
2094 tf.command = ATA_CMD_ID_ATAPI;
2095 break;
2096 default:
2097 rc = -ENODEV;
2098 reason = "unsupported class";
2099 goto err_out;
2102 tf.protocol = ATA_PROT_PIO;
2104 /* Some devices choke if TF registers contain garbage. Make
2105 * sure those are properly initialized.
2107 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2109 /* Device presence detection is unreliable on some
2110 * controllers. Always poll IDENTIFY if available.
2112 tf.flags |= ATA_TFLAG_POLLING;
2114 if (ap->ops->read_id)
2115 err_mask = ap->ops->read_id(dev, &tf, id);
2116 else
2117 err_mask = ata_do_dev_read_id(dev, &tf, id);
2119 if (err_mask) {
2120 if (err_mask & AC_ERR_NODEV_HINT) {
2121 ata_dev_printk(dev, KERN_DEBUG,
2122 "NODEV after polling detection\n");
2123 return -ENOENT;
2126 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2127 /* Device or controller might have reported
2128 * the wrong device class. Give a shot at the
2129 * other IDENTIFY if the current one is
2130 * aborted by the device.
2132 if (may_fallback) {
2133 may_fallback = 0;
2135 if (class == ATA_DEV_ATA)
2136 class = ATA_DEV_ATAPI;
2137 else
2138 class = ATA_DEV_ATA;
2139 goto retry;
2142 /* Control reaches here iff the device aborted
2143 * both flavors of IDENTIFYs which happens
2144 * sometimes with phantom devices.
2146 ata_dev_printk(dev, KERN_DEBUG,
2147 "both IDENTIFYs aborted, assuming NODEV\n");
2148 return -ENOENT;
2151 rc = -EIO;
2152 reason = "I/O error";
2153 goto err_out;
2156 /* Falling back doesn't make sense if ID data was read
2157 * successfully at least once.
2159 may_fallback = 0;
2161 swap_buf_le16(id, ATA_ID_WORDS);
2163 /* sanity check */
2164 rc = -EINVAL;
2165 reason = "device reports invalid type";
2167 if (class == ATA_DEV_ATA) {
2168 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2169 goto err_out;
2170 } else {
2171 if (ata_id_is_ata(id))
2172 goto err_out;
2175 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2176 tried_spinup = 1;
2178 * Drive powered-up in standby mode, and requires a specific
2179 * SET_FEATURES spin-up subcommand before it will accept
2180 * anything other than the original IDENTIFY command.
2182 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2183 if (err_mask && id[2] != 0x738c) {
2184 rc = -EIO;
2185 reason = "SPINUP failed";
2186 goto err_out;
2189 * If the drive initially returned incomplete IDENTIFY info,
2190 * we now must reissue the IDENTIFY command.
2192 if (id[2] == 0x37c8)
2193 goto retry;
2196 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2198 * The exact sequence expected by certain pre-ATA4 drives is:
2199 * SRST RESET
2200 * IDENTIFY (optional in early ATA)
2201 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2202 * anything else..
2203 * Some drives were very specific about that exact sequence.
2205 * Note that ATA4 says lba is mandatory so the second check
2206 * shoud never trigger.
2208 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2209 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2210 if (err_mask) {
2211 rc = -EIO;
2212 reason = "INIT_DEV_PARAMS failed";
2213 goto err_out;
2216 /* current CHS translation info (id[53-58]) might be
2217 * changed. reread the identify device info.
2219 flags &= ~ATA_READID_POSTRESET;
2220 goto retry;
2224 *p_class = class;
2226 return 0;
2228 err_out:
2229 if (ata_msg_warn(ap))
2230 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2231 "(%s, err_mask=0x%x)\n", reason, err_mask);
2232 return rc;
2235 static inline u8 ata_dev_knobble(struct ata_device *dev)
2237 struct ata_port *ap = dev->link->ap;
2239 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2240 return 0;
2242 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2245 static void ata_dev_config_ncq(struct ata_device *dev,
2246 char *desc, size_t desc_sz)
2248 struct ata_port *ap = dev->link->ap;
2249 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2251 if (!ata_id_has_ncq(dev->id)) {
2252 desc[0] = '\0';
2253 return;
2255 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2256 snprintf(desc, desc_sz, "NCQ (not used)");
2257 return;
2259 if (ap->flags & ATA_FLAG_NCQ) {
2260 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2261 dev->flags |= ATA_DFLAG_NCQ;
2264 if (hdepth >= ddepth)
2265 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2266 else
2267 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2271 * ata_dev_configure - Configure the specified ATA/ATAPI device
2272 * @dev: Target device to configure
2274 * Configure @dev according to @dev->id. Generic and low-level
2275 * driver specific fixups are also applied.
2277 * LOCKING:
2278 * Kernel thread context (may sleep)
2280 * RETURNS:
2281 * 0 on success, -errno otherwise
2283 int ata_dev_configure(struct ata_device *dev)
2285 struct ata_port *ap = dev->link->ap;
2286 struct ata_eh_context *ehc = &dev->link->eh_context;
2287 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2288 const u16 *id = dev->id;
2289 unsigned long xfer_mask;
2290 char revbuf[7]; /* XYZ-99\0 */
2291 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2292 char modelbuf[ATA_ID_PROD_LEN+1];
2293 int rc;
2295 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2296 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2297 __func__);
2298 return 0;
2301 if (ata_msg_probe(ap))
2302 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2304 /* set horkage */
2305 dev->horkage |= ata_dev_blacklisted(dev);
2306 ata_force_horkage(dev);
2308 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2309 ata_dev_printk(dev, KERN_INFO,
2310 "unsupported device, disabling\n");
2311 ata_dev_disable(dev);
2312 return 0;
2315 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2316 dev->class == ATA_DEV_ATAPI) {
2317 ata_dev_printk(dev, KERN_WARNING,
2318 "WARNING: ATAPI is %s, device ignored.\n",
2319 atapi_enabled ? "not supported with this driver"
2320 : "disabled");
2321 ata_dev_disable(dev);
2322 return 0;
2325 /* let ACPI work its magic */
2326 rc = ata_acpi_on_devcfg(dev);
2327 if (rc)
2328 return rc;
2330 /* massage HPA, do it early as it might change IDENTIFY data */
2331 rc = ata_hpa_resize(dev);
2332 if (rc)
2333 return rc;
2335 /* print device capabilities */
2336 if (ata_msg_probe(ap))
2337 ata_dev_printk(dev, KERN_DEBUG,
2338 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2339 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2340 __func__,
2341 id[49], id[82], id[83], id[84],
2342 id[85], id[86], id[87], id[88]);
2344 /* initialize to-be-configured parameters */
2345 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2346 dev->max_sectors = 0;
2347 dev->cdb_len = 0;
2348 dev->n_sectors = 0;
2349 dev->cylinders = 0;
2350 dev->heads = 0;
2351 dev->sectors = 0;
2354 * common ATA, ATAPI feature tests
2357 /* find max transfer mode; for printk only */
2358 xfer_mask = ata_id_xfermask(id);
2360 if (ata_msg_probe(ap))
2361 ata_dump_id(id);
2363 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2364 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2365 sizeof(fwrevbuf));
2367 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2368 sizeof(modelbuf));
2370 /* ATA-specific feature tests */
2371 if (dev->class == ATA_DEV_ATA) {
2372 if (ata_id_is_cfa(id)) {
2373 if (id[162] & 1) /* CPRM may make this media unusable */
2374 ata_dev_printk(dev, KERN_WARNING,
2375 "supports DRM functions and may "
2376 "not be fully accessable.\n");
2377 snprintf(revbuf, 7, "CFA");
2378 } else {
2379 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2380 /* Warn the user if the device has TPM extensions */
2381 if (ata_id_has_tpm(id))
2382 ata_dev_printk(dev, KERN_WARNING,
2383 "supports DRM functions and may "
2384 "not be fully accessable.\n");
2387 dev->n_sectors = ata_id_n_sectors(id);
2389 if (dev->id[59] & 0x100)
2390 dev->multi_count = dev->id[59] & 0xff;
2392 if (ata_id_has_lba(id)) {
2393 const char *lba_desc;
2394 char ncq_desc[20];
2396 lba_desc = "LBA";
2397 dev->flags |= ATA_DFLAG_LBA;
2398 if (ata_id_has_lba48(id)) {
2399 dev->flags |= ATA_DFLAG_LBA48;
2400 lba_desc = "LBA48";
2402 if (dev->n_sectors >= (1UL << 28) &&
2403 ata_id_has_flush_ext(id))
2404 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2407 /* config NCQ */
2408 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2410 /* print device info to dmesg */
2411 if (ata_msg_drv(ap) && print_info) {
2412 ata_dev_printk(dev, KERN_INFO,
2413 "%s: %s, %s, max %s\n",
2414 revbuf, modelbuf, fwrevbuf,
2415 ata_mode_string(xfer_mask));
2416 ata_dev_printk(dev, KERN_INFO,
2417 "%Lu sectors, multi %u: %s %s\n",
2418 (unsigned long long)dev->n_sectors,
2419 dev->multi_count, lba_desc, ncq_desc);
2421 } else {
2422 /* CHS */
2424 /* Default translation */
2425 dev->cylinders = id[1];
2426 dev->heads = id[3];
2427 dev->sectors = id[6];
2429 if (ata_id_current_chs_valid(id)) {
2430 /* Current CHS translation is valid. */
2431 dev->cylinders = id[54];
2432 dev->heads = id[55];
2433 dev->sectors = id[56];
2436 /* print device info to dmesg */
2437 if (ata_msg_drv(ap) && print_info) {
2438 ata_dev_printk(dev, KERN_INFO,
2439 "%s: %s, %s, max %s\n",
2440 revbuf, modelbuf, fwrevbuf,
2441 ata_mode_string(xfer_mask));
2442 ata_dev_printk(dev, KERN_INFO,
2443 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2444 (unsigned long long)dev->n_sectors,
2445 dev->multi_count, dev->cylinders,
2446 dev->heads, dev->sectors);
2450 dev->cdb_len = 16;
2453 /* ATAPI-specific feature tests */
2454 else if (dev->class == ATA_DEV_ATAPI) {
2455 const char *cdb_intr_string = "";
2456 const char *atapi_an_string = "";
2457 const char *dma_dir_string = "";
2458 u32 sntf;
2460 rc = atapi_cdb_len(id);
2461 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2462 if (ata_msg_warn(ap))
2463 ata_dev_printk(dev, KERN_WARNING,
2464 "unsupported CDB len\n");
2465 rc = -EINVAL;
2466 goto err_out_nosup;
2468 dev->cdb_len = (unsigned int) rc;
2470 /* Enable ATAPI AN if both the host and device have
2471 * the support. If PMP is attached, SNTF is required
2472 * to enable ATAPI AN to discern between PHY status
2473 * changed notifications and ATAPI ANs.
2475 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2476 (!sata_pmp_attached(ap) ||
2477 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2478 unsigned int err_mask;
2480 /* issue SET feature command to turn this on */
2481 err_mask = ata_dev_set_feature(dev,
2482 SETFEATURES_SATA_ENABLE, SATA_AN);
2483 if (err_mask)
2484 ata_dev_printk(dev, KERN_ERR,
2485 "failed to enable ATAPI AN "
2486 "(err_mask=0x%x)\n", err_mask);
2487 else {
2488 dev->flags |= ATA_DFLAG_AN;
2489 atapi_an_string = ", ATAPI AN";
2493 if (ata_id_cdb_intr(dev->id)) {
2494 dev->flags |= ATA_DFLAG_CDB_INTR;
2495 cdb_intr_string = ", CDB intr";
2498 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2499 dev->flags |= ATA_DFLAG_DMADIR;
2500 dma_dir_string = ", DMADIR";
2503 /* print device info to dmesg */
2504 if (ata_msg_drv(ap) && print_info)
2505 ata_dev_printk(dev, KERN_INFO,
2506 "ATAPI: %s, %s, max %s%s%s%s\n",
2507 modelbuf, fwrevbuf,
2508 ata_mode_string(xfer_mask),
2509 cdb_intr_string, atapi_an_string,
2510 dma_dir_string);
2513 /* determine max_sectors */
2514 dev->max_sectors = ATA_MAX_SECTORS;
2515 if (dev->flags & ATA_DFLAG_LBA48)
2516 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2518 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2519 if (ata_id_has_hipm(dev->id))
2520 dev->flags |= ATA_DFLAG_HIPM;
2521 if (ata_id_has_dipm(dev->id))
2522 dev->flags |= ATA_DFLAG_DIPM;
2525 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2526 200 sectors */
2527 if (ata_dev_knobble(dev)) {
2528 if (ata_msg_drv(ap) && print_info)
2529 ata_dev_printk(dev, KERN_INFO,
2530 "applying bridge limits\n");
2531 dev->udma_mask &= ATA_UDMA5;
2532 dev->max_sectors = ATA_MAX_SECTORS;
2535 if ((dev->class == ATA_DEV_ATAPI) &&
2536 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2537 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2538 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2541 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2542 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2543 dev->max_sectors);
2545 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2546 dev->horkage |= ATA_HORKAGE_IPM;
2548 /* reset link pm_policy for this port to no pm */
2549 ap->pm_policy = MAX_PERFORMANCE;
2552 if (ap->ops->dev_config)
2553 ap->ops->dev_config(dev);
2555 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2556 /* Let the user know. We don't want to disallow opens for
2557 rescue purposes, or in case the vendor is just a blithering
2558 idiot. Do this after the dev_config call as some controllers
2559 with buggy firmware may want to avoid reporting false device
2560 bugs */
2562 if (print_info) {
2563 ata_dev_printk(dev, KERN_WARNING,
2564 "Drive reports diagnostics failure. This may indicate a drive\n");
2565 ata_dev_printk(dev, KERN_WARNING,
2566 "fault or invalid emulation. Contact drive vendor for information.\n");
2570 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2571 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2572 "firmware update to be fully functional.\n");
2573 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2574 "or visit http://ata.wiki.kernel.org.\n");
2577 return 0;
2579 err_out_nosup:
2580 if (ata_msg_probe(ap))
2581 ata_dev_printk(dev, KERN_DEBUG,
2582 "%s: EXIT, err\n", __func__);
2583 return rc;
2587 * ata_cable_40wire - return 40 wire cable type
2588 * @ap: port
2590 * Helper method for drivers which want to hardwire 40 wire cable
2591 * detection.
2594 int ata_cable_40wire(struct ata_port *ap)
2596 return ATA_CBL_PATA40;
2600 * ata_cable_80wire - return 80 wire cable type
2601 * @ap: port
2603 * Helper method for drivers which want to hardwire 80 wire cable
2604 * detection.
2607 int ata_cable_80wire(struct ata_port *ap)
2609 return ATA_CBL_PATA80;
2613 * ata_cable_unknown - return unknown PATA cable.
2614 * @ap: port
2616 * Helper method for drivers which have no PATA cable detection.
2619 int ata_cable_unknown(struct ata_port *ap)
2621 return ATA_CBL_PATA_UNK;
2625 * ata_cable_ignore - return ignored PATA cable.
2626 * @ap: port
2628 * Helper method for drivers which don't use cable type to limit
2629 * transfer mode.
2631 int ata_cable_ignore(struct ata_port *ap)
2633 return ATA_CBL_PATA_IGN;
2637 * ata_cable_sata - return SATA cable type
2638 * @ap: port
2640 * Helper method for drivers which have SATA cables
2643 int ata_cable_sata(struct ata_port *ap)
2645 return ATA_CBL_SATA;
2649 * ata_bus_probe - Reset and probe ATA bus
2650 * @ap: Bus to probe
2652 * Master ATA bus probing function. Initiates a hardware-dependent
2653 * bus reset, then attempts to identify any devices found on
2654 * the bus.
2656 * LOCKING:
2657 * PCI/etc. bus probe sem.
2659 * RETURNS:
2660 * Zero on success, negative errno otherwise.
2663 int ata_bus_probe(struct ata_port *ap)
2665 unsigned int classes[ATA_MAX_DEVICES];
2666 int tries[ATA_MAX_DEVICES];
2667 int rc;
2668 struct ata_device *dev;
2670 ata_port_probe(ap);
2672 ata_for_each_dev(dev, &ap->link, ALL)
2673 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2675 retry:
2676 ata_for_each_dev(dev, &ap->link, ALL) {
2677 /* If we issue an SRST then an ATA drive (not ATAPI)
2678 * may change configuration and be in PIO0 timing. If
2679 * we do a hard reset (or are coming from power on)
2680 * this is true for ATA or ATAPI. Until we've set a
2681 * suitable controller mode we should not touch the
2682 * bus as we may be talking too fast.
2684 dev->pio_mode = XFER_PIO_0;
2686 /* If the controller has a pio mode setup function
2687 * then use it to set the chipset to rights. Don't
2688 * touch the DMA setup as that will be dealt with when
2689 * configuring devices.
2691 if (ap->ops->set_piomode)
2692 ap->ops->set_piomode(ap, dev);
2695 /* reset and determine device classes */
2696 ap->ops->phy_reset(ap);
2698 ata_for_each_dev(dev, &ap->link, ALL) {
2699 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2700 dev->class != ATA_DEV_UNKNOWN)
2701 classes[dev->devno] = dev->class;
2702 else
2703 classes[dev->devno] = ATA_DEV_NONE;
2705 dev->class = ATA_DEV_UNKNOWN;
2708 ata_port_probe(ap);
2710 /* read IDENTIFY page and configure devices. We have to do the identify
2711 specific sequence bass-ackwards so that PDIAG- is released by
2712 the slave device */
2714 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2715 if (tries[dev->devno])
2716 dev->class = classes[dev->devno];
2718 if (!ata_dev_enabled(dev))
2719 continue;
2721 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2722 dev->id);
2723 if (rc)
2724 goto fail;
2727 /* Now ask for the cable type as PDIAG- should have been released */
2728 if (ap->ops->cable_detect)
2729 ap->cbl = ap->ops->cable_detect(ap);
2731 /* We may have SATA bridge glue hiding here irrespective of
2732 * the reported cable types and sensed types. When SATA
2733 * drives indicate we have a bridge, we don't know which end
2734 * of the link the bridge is which is a problem.
2736 ata_for_each_dev(dev, &ap->link, ENABLED)
2737 if (ata_id_is_sata(dev->id))
2738 ap->cbl = ATA_CBL_SATA;
2740 /* After the identify sequence we can now set up the devices. We do
2741 this in the normal order so that the user doesn't get confused */
2743 ata_for_each_dev(dev, &ap->link, ENABLED) {
2744 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2745 rc = ata_dev_configure(dev);
2746 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2747 if (rc)
2748 goto fail;
2751 /* configure transfer mode */
2752 rc = ata_set_mode(&ap->link, &dev);
2753 if (rc)
2754 goto fail;
2756 ata_for_each_dev(dev, &ap->link, ENABLED)
2757 return 0;
2759 /* no device present, disable port */
2760 ata_port_disable(ap);
2761 return -ENODEV;
2763 fail:
2764 tries[dev->devno]--;
2766 switch (rc) {
2767 case -EINVAL:
2768 /* eeek, something went very wrong, give up */
2769 tries[dev->devno] = 0;
2770 break;
2772 case -ENODEV:
2773 /* give it just one more chance */
2774 tries[dev->devno] = min(tries[dev->devno], 1);
2775 case -EIO:
2776 if (tries[dev->devno] == 1) {
2777 /* This is the last chance, better to slow
2778 * down than lose it.
2780 sata_down_spd_limit(&ap->link);
2781 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2785 if (!tries[dev->devno])
2786 ata_dev_disable(dev);
2788 goto retry;
2792 * ata_port_probe - Mark port as enabled
2793 * @ap: Port for which we indicate enablement
2795 * Modify @ap data structure such that the system
2796 * thinks that the entire port is enabled.
2798 * LOCKING: host lock, or some other form of
2799 * serialization.
2802 void ata_port_probe(struct ata_port *ap)
2804 ap->flags &= ~ATA_FLAG_DISABLED;
2808 * sata_print_link_status - Print SATA link status
2809 * @link: SATA link to printk link status about
2811 * This function prints link speed and status of a SATA link.
2813 * LOCKING:
2814 * None.
2816 static void sata_print_link_status(struct ata_link *link)
2818 u32 sstatus, scontrol, tmp;
2820 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2821 return;
2822 sata_scr_read(link, SCR_CONTROL, &scontrol);
2824 if (ata_phys_link_online(link)) {
2825 tmp = (sstatus >> 4) & 0xf;
2826 ata_link_printk(link, KERN_INFO,
2827 "SATA link up %s (SStatus %X SControl %X)\n",
2828 sata_spd_string(tmp), sstatus, scontrol);
2829 } else {
2830 ata_link_printk(link, KERN_INFO,
2831 "SATA link down (SStatus %X SControl %X)\n",
2832 sstatus, scontrol);
2837 * ata_dev_pair - return other device on cable
2838 * @adev: device
2840 * Obtain the other device on the same cable, or if none is
2841 * present NULL is returned
2844 struct ata_device *ata_dev_pair(struct ata_device *adev)
2846 struct ata_link *link = adev->link;
2847 struct ata_device *pair = &link->device[1 - adev->devno];
2848 if (!ata_dev_enabled(pair))
2849 return NULL;
2850 return pair;
2854 * ata_port_disable - Disable port.
2855 * @ap: Port to be disabled.
2857 * Modify @ap data structure such that the system
2858 * thinks that the entire port is disabled, and should
2859 * never attempt to probe or communicate with devices
2860 * on this port.
2862 * LOCKING: host lock, or some other form of
2863 * serialization.
2866 void ata_port_disable(struct ata_port *ap)
2868 ap->link.device[0].class = ATA_DEV_NONE;
2869 ap->link.device[1].class = ATA_DEV_NONE;
2870 ap->flags |= ATA_FLAG_DISABLED;
2874 * sata_down_spd_limit - adjust SATA spd limit downward
2875 * @link: Link to adjust SATA spd limit for
2877 * Adjust SATA spd limit of @link downward. Note that this
2878 * function only adjusts the limit. The change must be applied
2879 * using sata_set_spd().
2881 * LOCKING:
2882 * Inherited from caller.
2884 * RETURNS:
2885 * 0 on success, negative errno on failure
2887 int sata_down_spd_limit(struct ata_link *link)
2889 u32 sstatus, spd, mask;
2890 int rc, highbit;
2892 if (!sata_scr_valid(link))
2893 return -EOPNOTSUPP;
2895 /* If SCR can be read, use it to determine the current SPD.
2896 * If not, use cached value in link->sata_spd.
2898 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2899 if (rc == 0 && ata_sstatus_online(sstatus))
2900 spd = (sstatus >> 4) & 0xf;
2901 else
2902 spd = link->sata_spd;
2904 mask = link->sata_spd_limit;
2905 if (mask <= 1)
2906 return -EINVAL;
2908 /* unconditionally mask off the highest bit */
2909 highbit = fls(mask) - 1;
2910 mask &= ~(1 << highbit);
2912 /* Mask off all speeds higher than or equal to the current
2913 * one. Force 1.5Gbps if current SPD is not available.
2915 if (spd > 1)
2916 mask &= (1 << (spd - 1)) - 1;
2917 else
2918 mask &= 1;
2920 /* were we already at the bottom? */
2921 if (!mask)
2922 return -EINVAL;
2924 link->sata_spd_limit = mask;
2926 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2927 sata_spd_string(fls(mask)));
2929 return 0;
2932 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2934 struct ata_link *host_link = &link->ap->link;
2935 u32 limit, target, spd;
2937 limit = link->sata_spd_limit;
2939 /* Don't configure downstream link faster than upstream link.
2940 * It doesn't speed up anything and some PMPs choke on such
2941 * configuration.
2943 if (!ata_is_host_link(link) && host_link->sata_spd)
2944 limit &= (1 << host_link->sata_spd) - 1;
2946 if (limit == UINT_MAX)
2947 target = 0;
2948 else
2949 target = fls(limit);
2951 spd = (*scontrol >> 4) & 0xf;
2952 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2954 return spd != target;
2958 * sata_set_spd_needed - is SATA spd configuration needed
2959 * @link: Link in question
2961 * Test whether the spd limit in SControl matches
2962 * @link->sata_spd_limit. This function is used to determine
2963 * whether hardreset is necessary to apply SATA spd
2964 * configuration.
2966 * LOCKING:
2967 * Inherited from caller.
2969 * RETURNS:
2970 * 1 if SATA spd configuration is needed, 0 otherwise.
2972 static int sata_set_spd_needed(struct ata_link *link)
2974 u32 scontrol;
2976 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2977 return 1;
2979 return __sata_set_spd_needed(link, &scontrol);
2983 * sata_set_spd - set SATA spd according to spd limit
2984 * @link: Link to set SATA spd for
2986 * Set SATA spd of @link according to sata_spd_limit.
2988 * LOCKING:
2989 * Inherited from caller.
2991 * RETURNS:
2992 * 0 if spd doesn't need to be changed, 1 if spd has been
2993 * changed. Negative errno if SCR registers are inaccessible.
2995 int sata_set_spd(struct ata_link *link)
2997 u32 scontrol;
2998 int rc;
3000 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3001 return rc;
3003 if (!__sata_set_spd_needed(link, &scontrol))
3004 return 0;
3006 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3007 return rc;
3009 return 1;
3013 * This mode timing computation functionality is ported over from
3014 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3017 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3018 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3019 * for UDMA6, which is currently supported only by Maxtor drives.
3021 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3024 static const struct ata_timing ata_timing[] = {
3025 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3026 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3027 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3028 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3029 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3030 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3031 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3032 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3034 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3035 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3036 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3038 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3039 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3040 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3041 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3042 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3044 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3045 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3046 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3047 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3048 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3049 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3050 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3051 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3053 { 0xFF }
3056 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3057 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3059 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3061 q->setup = EZ(t->setup * 1000, T);
3062 q->act8b = EZ(t->act8b * 1000, T);
3063 q->rec8b = EZ(t->rec8b * 1000, T);
3064 q->cyc8b = EZ(t->cyc8b * 1000, T);
3065 q->active = EZ(t->active * 1000, T);
3066 q->recover = EZ(t->recover * 1000, T);
3067 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3068 q->cycle = EZ(t->cycle * 1000, T);
3069 q->udma = EZ(t->udma * 1000, UT);
3072 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3073 struct ata_timing *m, unsigned int what)
3075 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3076 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3077 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3078 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3079 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3080 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3081 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3082 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3083 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3086 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3088 const struct ata_timing *t = ata_timing;
3090 while (xfer_mode > t->mode)
3091 t++;
3093 if (xfer_mode == t->mode)
3094 return t;
3095 return NULL;
3098 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3099 struct ata_timing *t, int T, int UT)
3101 const struct ata_timing *s;
3102 struct ata_timing p;
3105 * Find the mode.
3108 if (!(s = ata_timing_find_mode(speed)))
3109 return -EINVAL;
3111 memcpy(t, s, sizeof(*s));
3114 * If the drive is an EIDE drive, it can tell us it needs extended
3115 * PIO/MW_DMA cycle timing.
3118 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3119 memset(&p, 0, sizeof(p));
3120 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3121 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3122 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3123 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3124 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3126 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3130 * Convert the timing to bus clock counts.
3133 ata_timing_quantize(t, t, T, UT);
3136 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3137 * S.M.A.R.T * and some other commands. We have to ensure that the
3138 * DMA cycle timing is slower/equal than the fastest PIO timing.
3141 if (speed > XFER_PIO_6) {
3142 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3143 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3147 * Lengthen active & recovery time so that cycle time is correct.
3150 if (t->act8b + t->rec8b < t->cyc8b) {
3151 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3152 t->rec8b = t->cyc8b - t->act8b;
3155 if (t->active + t->recover < t->cycle) {
3156 t->active += (t->cycle - (t->active + t->recover)) / 2;
3157 t->recover = t->cycle - t->active;
3160 /* In a few cases quantisation may produce enough errors to
3161 leave t->cycle too low for the sum of active and recovery
3162 if so we must correct this */
3163 if (t->active + t->recover > t->cycle)
3164 t->cycle = t->active + t->recover;
3166 return 0;
3170 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3171 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3172 * @cycle: cycle duration in ns
3174 * Return matching xfer mode for @cycle. The returned mode is of
3175 * the transfer type specified by @xfer_shift. If @cycle is too
3176 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3177 * than the fastest known mode, the fasted mode is returned.
3179 * LOCKING:
3180 * None.
3182 * RETURNS:
3183 * Matching xfer_mode, 0xff if no match found.
3185 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3187 u8 base_mode = 0xff, last_mode = 0xff;
3188 const struct ata_xfer_ent *ent;
3189 const struct ata_timing *t;
3191 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3192 if (ent->shift == xfer_shift)
3193 base_mode = ent->base;
3195 for (t = ata_timing_find_mode(base_mode);
3196 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3197 unsigned short this_cycle;
3199 switch (xfer_shift) {
3200 case ATA_SHIFT_PIO:
3201 case ATA_SHIFT_MWDMA:
3202 this_cycle = t->cycle;
3203 break;
3204 case ATA_SHIFT_UDMA:
3205 this_cycle = t->udma;
3206 break;
3207 default:
3208 return 0xff;
3211 if (cycle > this_cycle)
3212 break;
3214 last_mode = t->mode;
3217 return last_mode;
3221 * ata_down_xfermask_limit - adjust dev xfer masks downward
3222 * @dev: Device to adjust xfer masks
3223 * @sel: ATA_DNXFER_* selector
3225 * Adjust xfer masks of @dev downward. Note that this function
3226 * does not apply the change. Invoking ata_set_mode() afterwards
3227 * will apply the limit.
3229 * LOCKING:
3230 * Inherited from caller.
3232 * RETURNS:
3233 * 0 on success, negative errno on failure
3235 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3237 char buf[32];
3238 unsigned long orig_mask, xfer_mask;
3239 unsigned long pio_mask, mwdma_mask, udma_mask;
3240 int quiet, highbit;
3242 quiet = !!(sel & ATA_DNXFER_QUIET);
3243 sel &= ~ATA_DNXFER_QUIET;
3245 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3246 dev->mwdma_mask,
3247 dev->udma_mask);
3248 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3250 switch (sel) {
3251 case ATA_DNXFER_PIO:
3252 highbit = fls(pio_mask) - 1;
3253 pio_mask &= ~(1 << highbit);
3254 break;
3256 case ATA_DNXFER_DMA:
3257 if (udma_mask) {
3258 highbit = fls(udma_mask) - 1;
3259 udma_mask &= ~(1 << highbit);
3260 if (!udma_mask)
3261 return -ENOENT;
3262 } else if (mwdma_mask) {
3263 highbit = fls(mwdma_mask) - 1;
3264 mwdma_mask &= ~(1 << highbit);
3265 if (!mwdma_mask)
3266 return -ENOENT;
3268 break;
3270 case ATA_DNXFER_40C:
3271 udma_mask &= ATA_UDMA_MASK_40C;
3272 break;
3274 case ATA_DNXFER_FORCE_PIO0:
3275 pio_mask &= 1;
3276 case ATA_DNXFER_FORCE_PIO:
3277 mwdma_mask = 0;
3278 udma_mask = 0;
3279 break;
3281 default:
3282 BUG();
3285 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3287 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3288 return -ENOENT;
3290 if (!quiet) {
3291 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3292 snprintf(buf, sizeof(buf), "%s:%s",
3293 ata_mode_string(xfer_mask),
3294 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3295 else
3296 snprintf(buf, sizeof(buf), "%s",
3297 ata_mode_string(xfer_mask));
3299 ata_dev_printk(dev, KERN_WARNING,
3300 "limiting speed to %s\n", buf);
3303 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3304 &dev->udma_mask);
3306 return 0;
3309 static int ata_dev_set_mode(struct ata_device *dev)
3311 struct ata_eh_context *ehc = &dev->link->eh_context;
3312 const char *dev_err_whine = "";
3313 int ign_dev_err = 0;
3314 unsigned int err_mask;
3315 int rc;
3317 dev->flags &= ~ATA_DFLAG_PIO;
3318 if (dev->xfer_shift == ATA_SHIFT_PIO)
3319 dev->flags |= ATA_DFLAG_PIO;
3321 err_mask = ata_dev_set_xfermode(dev);
3323 if (err_mask & ~AC_ERR_DEV)
3324 goto fail;
3326 /* revalidate */
3327 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3328 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3329 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3330 if (rc)
3331 return rc;
3333 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3334 /* Old CFA may refuse this command, which is just fine */
3335 if (ata_id_is_cfa(dev->id))
3336 ign_dev_err = 1;
3337 /* Catch several broken garbage emulations plus some pre
3338 ATA devices */
3339 if (ata_id_major_version(dev->id) == 0 &&
3340 dev->pio_mode <= XFER_PIO_2)
3341 ign_dev_err = 1;
3342 /* Some very old devices and some bad newer ones fail
3343 any kind of SET_XFERMODE request but support PIO0-2
3344 timings and no IORDY */
3345 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3346 ign_dev_err = 1;
3348 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3349 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3350 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3351 dev->dma_mode == XFER_MW_DMA_0 &&
3352 (dev->id[63] >> 8) & 1)
3353 ign_dev_err = 1;
3355 /* if the device is actually configured correctly, ignore dev err */
3356 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3357 ign_dev_err = 1;
3359 if (err_mask & AC_ERR_DEV) {
3360 if (!ign_dev_err)
3361 goto fail;
3362 else
3363 dev_err_whine = " (device error ignored)";
3366 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3367 dev->xfer_shift, (int)dev->xfer_mode);
3369 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3370 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3371 dev_err_whine);
3373 return 0;
3375 fail:
3376 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3377 "(err_mask=0x%x)\n", err_mask);
3378 return -EIO;
3382 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3383 * @link: link on which timings will be programmed
3384 * @r_failed_dev: out parameter for failed device
3386 * Standard implementation of the function used to tune and set
3387 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3388 * ata_dev_set_mode() fails, pointer to the failing device is
3389 * returned in @r_failed_dev.
3391 * LOCKING:
3392 * PCI/etc. bus probe sem.
3394 * RETURNS:
3395 * 0 on success, negative errno otherwise
3398 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3400 struct ata_port *ap = link->ap;
3401 struct ata_device *dev;
3402 int rc = 0, used_dma = 0, found = 0;
3404 /* step 1: calculate xfer_mask */
3405 ata_for_each_dev(dev, link, ENABLED) {
3406 unsigned long pio_mask, dma_mask;
3407 unsigned int mode_mask;
3409 mode_mask = ATA_DMA_MASK_ATA;
3410 if (dev->class == ATA_DEV_ATAPI)
3411 mode_mask = ATA_DMA_MASK_ATAPI;
3412 else if (ata_id_is_cfa(dev->id))
3413 mode_mask = ATA_DMA_MASK_CFA;
3415 ata_dev_xfermask(dev);
3416 ata_force_xfermask(dev);
3418 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3419 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3421 if (libata_dma_mask & mode_mask)
3422 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3423 else
3424 dma_mask = 0;
3426 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3427 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3429 found = 1;
3430 if (ata_dma_enabled(dev))
3431 used_dma = 1;
3433 if (!found)
3434 goto out;
3436 /* step 2: always set host PIO timings */
3437 ata_for_each_dev(dev, link, ENABLED) {
3438 if (dev->pio_mode == 0xff) {
3439 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3440 rc = -EINVAL;
3441 goto out;
3444 dev->xfer_mode = dev->pio_mode;
3445 dev->xfer_shift = ATA_SHIFT_PIO;
3446 if (ap->ops->set_piomode)
3447 ap->ops->set_piomode(ap, dev);
3450 /* step 3: set host DMA timings */
3451 ata_for_each_dev(dev, link, ENABLED) {
3452 if (!ata_dma_enabled(dev))
3453 continue;
3455 dev->xfer_mode = dev->dma_mode;
3456 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3457 if (ap->ops->set_dmamode)
3458 ap->ops->set_dmamode(ap, dev);
3461 /* step 4: update devices' xfer mode */
3462 ata_for_each_dev(dev, link, ENABLED) {
3463 rc = ata_dev_set_mode(dev);
3464 if (rc)
3465 goto out;
3468 /* Record simplex status. If we selected DMA then the other
3469 * host channels are not permitted to do so.
3471 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3472 ap->host->simplex_claimed = ap;
3474 out:
3475 if (rc)
3476 *r_failed_dev = dev;
3477 return rc;
3481 * ata_wait_ready - wait for link to become ready
3482 * @link: link to be waited on
3483 * @deadline: deadline jiffies for the operation
3484 * @check_ready: callback to check link readiness
3486 * Wait for @link to become ready. @check_ready should return
3487 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3488 * link doesn't seem to be occupied, other errno for other error
3489 * conditions.
3491 * Transient -ENODEV conditions are allowed for
3492 * ATA_TMOUT_FF_WAIT.
3494 * LOCKING:
3495 * EH context.
3497 * RETURNS:
3498 * 0 if @linke is ready before @deadline; otherwise, -errno.
3500 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3501 int (*check_ready)(struct ata_link *link))
3503 unsigned long start = jiffies;
3504 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3505 int warned = 0;
3507 /* Slave readiness can't be tested separately from master. On
3508 * M/S emulation configuration, this function should be called
3509 * only on the master and it will handle both master and slave.
3511 WARN_ON(link == link->ap->slave_link);
3513 if (time_after(nodev_deadline, deadline))
3514 nodev_deadline = deadline;
3516 while (1) {
3517 unsigned long now = jiffies;
3518 int ready, tmp;
3520 ready = tmp = check_ready(link);
3521 if (ready > 0)
3522 return 0;
3524 /* -ENODEV could be transient. Ignore -ENODEV if link
3525 * is online. Also, some SATA devices take a long
3526 * time to clear 0xff after reset. For example,
3527 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3528 * GoVault needs even more than that. Wait for
3529 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3531 * Note that some PATA controllers (pata_ali) explode
3532 * if status register is read more than once when
3533 * there's no device attached.
3535 if (ready == -ENODEV) {
3536 if (ata_link_online(link))
3537 ready = 0;
3538 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3539 !ata_link_offline(link) &&
3540 time_before(now, nodev_deadline))
3541 ready = 0;
3544 if (ready)
3545 return ready;
3546 if (time_after(now, deadline))
3547 return -EBUSY;
3549 if (!warned && time_after(now, start + 5 * HZ) &&
3550 (deadline - now > 3 * HZ)) {
3551 ata_link_printk(link, KERN_WARNING,
3552 "link is slow to respond, please be patient "
3553 "(ready=%d)\n", tmp);
3554 warned = 1;
3557 msleep(50);
3562 * ata_wait_after_reset - wait for link to become ready after reset
3563 * @link: link to be waited on
3564 * @deadline: deadline jiffies for the operation
3565 * @check_ready: callback to check link readiness
3567 * Wait for @link to become ready after reset.
3569 * LOCKING:
3570 * EH context.
3572 * RETURNS:
3573 * 0 if @linke is ready before @deadline; otherwise, -errno.
3575 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3576 int (*check_ready)(struct ata_link *link))
3578 msleep(ATA_WAIT_AFTER_RESET);
3580 return ata_wait_ready(link, deadline, check_ready);
3584 * sata_link_debounce - debounce SATA phy status
3585 * @link: ATA link to debounce SATA phy status for
3586 * @params: timing parameters { interval, duratinon, timeout } in msec
3587 * @deadline: deadline jiffies for the operation
3589 * Make sure SStatus of @link reaches stable state, determined by
3590 * holding the same value where DET is not 1 for @duration polled
3591 * every @interval, before @timeout. Timeout constraints the
3592 * beginning of the stable state. Because DET gets stuck at 1 on
3593 * some controllers after hot unplugging, this functions waits
3594 * until timeout then returns 0 if DET is stable at 1.
3596 * @timeout is further limited by @deadline. The sooner of the
3597 * two is used.
3599 * LOCKING:
3600 * Kernel thread context (may sleep)
3602 * RETURNS:
3603 * 0 on success, -errno on failure.
3605 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3606 unsigned long deadline)
3608 unsigned long interval = params[0];
3609 unsigned long duration = params[1];
3610 unsigned long last_jiffies, t;
3611 u32 last, cur;
3612 int rc;
3614 t = ata_deadline(jiffies, params[2]);
3615 if (time_before(t, deadline))
3616 deadline = t;
3618 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3619 return rc;
3620 cur &= 0xf;
3622 last = cur;
3623 last_jiffies = jiffies;
3625 while (1) {
3626 msleep(interval);
3627 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3628 return rc;
3629 cur &= 0xf;
3631 /* DET stable? */
3632 if (cur == last) {
3633 if (cur == 1 && time_before(jiffies, deadline))
3634 continue;
3635 if (time_after(jiffies,
3636 ata_deadline(last_jiffies, duration)))
3637 return 0;
3638 continue;
3641 /* unstable, start over */
3642 last = cur;
3643 last_jiffies = jiffies;
3645 /* Check deadline. If debouncing failed, return
3646 * -EPIPE to tell upper layer to lower link speed.
3648 if (time_after(jiffies, deadline))
3649 return -EPIPE;
3654 * sata_link_resume - resume SATA link
3655 * @link: ATA link to resume SATA
3656 * @params: timing parameters { interval, duratinon, timeout } in msec
3657 * @deadline: deadline jiffies for the operation
3659 * Resume SATA phy @link and debounce it.
3661 * LOCKING:
3662 * Kernel thread context (may sleep)
3664 * RETURNS:
3665 * 0 on success, -errno on failure.
3667 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3668 unsigned long deadline)
3670 u32 scontrol, serror;
3671 int rc;
3673 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3674 return rc;
3676 scontrol = (scontrol & 0x0f0) | 0x300;
3678 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3679 return rc;
3681 /* Some PHYs react badly if SStatus is pounded immediately
3682 * after resuming. Delay 200ms before debouncing.
3684 msleep(200);
3686 if ((rc = sata_link_debounce(link, params, deadline)))
3687 return rc;
3689 /* clear SError, some PHYs require this even for SRST to work */
3690 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3691 rc = sata_scr_write(link, SCR_ERROR, serror);
3693 return rc != -EINVAL ? rc : 0;
3697 * ata_std_prereset - prepare for reset
3698 * @link: ATA link to be reset
3699 * @deadline: deadline jiffies for the operation
3701 * @link is about to be reset. Initialize it. Failure from
3702 * prereset makes libata abort whole reset sequence and give up
3703 * that port, so prereset should be best-effort. It does its
3704 * best to prepare for reset sequence but if things go wrong, it
3705 * should just whine, not fail.
3707 * LOCKING:
3708 * Kernel thread context (may sleep)
3710 * RETURNS:
3711 * 0 on success, -errno otherwise.
3713 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3715 struct ata_port *ap = link->ap;
3716 struct ata_eh_context *ehc = &link->eh_context;
3717 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3718 int rc;
3720 /* if we're about to do hardreset, nothing more to do */
3721 if (ehc->i.action & ATA_EH_HARDRESET)
3722 return 0;
3724 /* if SATA, resume link */
3725 if (ap->flags & ATA_FLAG_SATA) {
3726 rc = sata_link_resume(link, timing, deadline);
3727 /* whine about phy resume failure but proceed */
3728 if (rc && rc != -EOPNOTSUPP)
3729 ata_link_printk(link, KERN_WARNING, "failed to resume "
3730 "link for reset (errno=%d)\n", rc);
3733 /* no point in trying softreset on offline link */
3734 if (ata_phys_link_offline(link))
3735 ehc->i.action &= ~ATA_EH_SOFTRESET;
3737 return 0;
3741 * sata_link_hardreset - reset link via SATA phy reset
3742 * @link: link to reset
3743 * @timing: timing parameters { interval, duratinon, timeout } in msec
3744 * @deadline: deadline jiffies for the operation
3745 * @online: optional out parameter indicating link onlineness
3746 * @check_ready: optional callback to check link readiness
3748 * SATA phy-reset @link using DET bits of SControl register.
3749 * After hardreset, link readiness is waited upon using
3750 * ata_wait_ready() if @check_ready is specified. LLDs are
3751 * allowed to not specify @check_ready and wait itself after this
3752 * function returns. Device classification is LLD's
3753 * responsibility.
3755 * *@online is set to one iff reset succeeded and @link is online
3756 * after reset.
3758 * LOCKING:
3759 * Kernel thread context (may sleep)
3761 * RETURNS:
3762 * 0 on success, -errno otherwise.
3764 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3765 unsigned long deadline,
3766 bool *online, int (*check_ready)(struct ata_link *))
3768 u32 scontrol;
3769 int rc;
3771 DPRINTK("ENTER\n");
3773 if (online)
3774 *online = false;
3776 if (sata_set_spd_needed(link)) {
3777 /* SATA spec says nothing about how to reconfigure
3778 * spd. To be on the safe side, turn off phy during
3779 * reconfiguration. This works for at least ICH7 AHCI
3780 * and Sil3124.
3782 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3783 goto out;
3785 scontrol = (scontrol & 0x0f0) | 0x304;
3787 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3788 goto out;
3790 sata_set_spd(link);
3793 /* issue phy wake/reset */
3794 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3795 goto out;
3797 scontrol = (scontrol & 0x0f0) | 0x301;
3799 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3800 goto out;
3802 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3803 * 10.4.2 says at least 1 ms.
3805 msleep(1);
3807 /* bring link back */
3808 rc = sata_link_resume(link, timing, deadline);
3809 if (rc)
3810 goto out;
3811 /* if link is offline nothing more to do */
3812 if (ata_phys_link_offline(link))
3813 goto out;
3815 /* Link is online. From this point, -ENODEV too is an error. */
3816 if (online)
3817 *online = true;
3819 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3820 /* If PMP is supported, we have to do follow-up SRST.
3821 * Some PMPs don't send D2H Reg FIS after hardreset if
3822 * the first port is empty. Wait only for
3823 * ATA_TMOUT_PMP_SRST_WAIT.
3825 if (check_ready) {
3826 unsigned long pmp_deadline;
3828 pmp_deadline = ata_deadline(jiffies,
3829 ATA_TMOUT_PMP_SRST_WAIT);
3830 if (time_after(pmp_deadline, deadline))
3831 pmp_deadline = deadline;
3832 ata_wait_ready(link, pmp_deadline, check_ready);
3834 rc = -EAGAIN;
3835 goto out;
3838 rc = 0;
3839 if (check_ready)
3840 rc = ata_wait_ready(link, deadline, check_ready);
3841 out:
3842 if (rc && rc != -EAGAIN) {
3843 /* online is set iff link is online && reset succeeded */
3844 if (online)
3845 *online = false;
3846 ata_link_printk(link, KERN_ERR,
3847 "COMRESET failed (errno=%d)\n", rc);
3849 DPRINTK("EXIT, rc=%d\n", rc);
3850 return rc;
3854 * sata_std_hardreset - COMRESET w/o waiting or classification
3855 * @link: link to reset
3856 * @class: resulting class of attached device
3857 * @deadline: deadline jiffies for the operation
3859 * Standard SATA COMRESET w/o waiting or classification.
3861 * LOCKING:
3862 * Kernel thread context (may sleep)
3864 * RETURNS:
3865 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3867 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3868 unsigned long deadline)
3870 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3871 bool online;
3872 int rc;
3874 /* do hardreset */
3875 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3876 return online ? -EAGAIN : rc;
3880 * ata_std_postreset - standard postreset callback
3881 * @link: the target ata_link
3882 * @classes: classes of attached devices
3884 * This function is invoked after a successful reset. Note that
3885 * the device might have been reset more than once using
3886 * different reset methods before postreset is invoked.
3888 * LOCKING:
3889 * Kernel thread context (may sleep)
3891 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3893 u32 serror;
3895 DPRINTK("ENTER\n");
3897 /* reset complete, clear SError */
3898 if (!sata_scr_read(link, SCR_ERROR, &serror))
3899 sata_scr_write(link, SCR_ERROR, serror);
3901 /* print link status */
3902 sata_print_link_status(link);
3904 DPRINTK("EXIT\n");
3908 * ata_dev_same_device - Determine whether new ID matches configured device
3909 * @dev: device to compare against
3910 * @new_class: class of the new device
3911 * @new_id: IDENTIFY page of the new device
3913 * Compare @new_class and @new_id against @dev and determine
3914 * whether @dev is the device indicated by @new_class and
3915 * @new_id.
3917 * LOCKING:
3918 * None.
3920 * RETURNS:
3921 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3923 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3924 const u16 *new_id)
3926 const u16 *old_id = dev->id;
3927 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3928 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3930 if (dev->class != new_class) {
3931 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3932 dev->class, new_class);
3933 return 0;
3936 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3937 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3938 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3939 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3941 if (strcmp(model[0], model[1])) {
3942 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3943 "'%s' != '%s'\n", model[0], model[1]);
3944 return 0;
3947 if (strcmp(serial[0], serial[1])) {
3948 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3949 "'%s' != '%s'\n", serial[0], serial[1]);
3950 return 0;
3953 return 1;
3957 * ata_dev_reread_id - Re-read IDENTIFY data
3958 * @dev: target ATA device
3959 * @readid_flags: read ID flags
3961 * Re-read IDENTIFY page and make sure @dev is still attached to
3962 * the port.
3964 * LOCKING:
3965 * Kernel thread context (may sleep)
3967 * RETURNS:
3968 * 0 on success, negative errno otherwise
3970 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3972 unsigned int class = dev->class;
3973 u16 *id = (void *)dev->link->ap->sector_buf;
3974 int rc;
3976 /* read ID data */
3977 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3978 if (rc)
3979 return rc;
3981 /* is the device still there? */
3982 if (!ata_dev_same_device(dev, class, id))
3983 return -ENODEV;
3985 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3986 return 0;
3990 * ata_dev_revalidate - Revalidate ATA device
3991 * @dev: device to revalidate
3992 * @new_class: new class code
3993 * @readid_flags: read ID flags
3995 * Re-read IDENTIFY page, make sure @dev is still attached to the
3996 * port and reconfigure it according to the new IDENTIFY page.
3998 * LOCKING:
3999 * Kernel thread context (may sleep)
4001 * RETURNS:
4002 * 0 on success, negative errno otherwise
4004 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4005 unsigned int readid_flags)
4007 u64 n_sectors = dev->n_sectors;
4008 int rc;
4010 if (!ata_dev_enabled(dev))
4011 return -ENODEV;
4013 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4014 if (ata_class_enabled(new_class) &&
4015 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4016 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4017 dev->class, new_class);
4018 rc = -ENODEV;
4019 goto fail;
4022 /* re-read ID */
4023 rc = ata_dev_reread_id(dev, readid_flags);
4024 if (rc)
4025 goto fail;
4027 /* configure device according to the new ID */
4028 rc = ata_dev_configure(dev);
4029 if (rc)
4030 goto fail;
4032 /* verify n_sectors hasn't changed */
4033 if (dev->class == ATA_DEV_ATA && n_sectors &&
4034 dev->n_sectors != n_sectors) {
4035 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4036 "%llu != %llu\n",
4037 (unsigned long long)n_sectors,
4038 (unsigned long long)dev->n_sectors);
4040 /* restore original n_sectors */
4041 dev->n_sectors = n_sectors;
4043 rc = -ENODEV;
4044 goto fail;
4047 return 0;
4049 fail:
4050 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4051 return rc;
4054 struct ata_blacklist_entry {
4055 const char *model_num;
4056 const char *model_rev;
4057 unsigned long horkage;
4060 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4061 /* Devices with DMA related problems under Linux */
4062 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4063 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4064 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4065 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4066 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4067 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4068 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4069 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4070 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4071 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4072 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4073 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4074 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4075 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4076 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4077 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4078 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4079 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4080 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4081 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4082 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4083 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4084 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4085 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4086 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4087 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4088 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4089 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4090 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4091 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4092 /* Odd clown on sil3726/4726 PMPs */
4093 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4095 /* Weird ATAPI devices */
4096 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4097 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4099 /* Devices we expect to fail diagnostics */
4101 /* Devices where NCQ should be avoided */
4102 /* NCQ is slow */
4103 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4104 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4105 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4106 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4107 /* NCQ is broken */
4108 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4109 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4110 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4111 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4112 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4114 /* Seagate NCQ + FLUSH CACHE firmware bug */
4115 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4116 ATA_HORKAGE_FIRMWARE_WARN },
4117 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4118 ATA_HORKAGE_FIRMWARE_WARN },
4119 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4120 ATA_HORKAGE_FIRMWARE_WARN },
4121 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4122 ATA_HORKAGE_FIRMWARE_WARN },
4123 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4124 ATA_HORKAGE_FIRMWARE_WARN },
4126 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4127 ATA_HORKAGE_FIRMWARE_WARN },
4128 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4129 ATA_HORKAGE_FIRMWARE_WARN },
4130 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4131 ATA_HORKAGE_FIRMWARE_WARN },
4132 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4133 ATA_HORKAGE_FIRMWARE_WARN },
4134 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4135 ATA_HORKAGE_FIRMWARE_WARN },
4137 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4138 ATA_HORKAGE_FIRMWARE_WARN },
4139 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4140 ATA_HORKAGE_FIRMWARE_WARN },
4141 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4142 ATA_HORKAGE_FIRMWARE_WARN },
4143 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4144 ATA_HORKAGE_FIRMWARE_WARN },
4145 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4146 ATA_HORKAGE_FIRMWARE_WARN },
4148 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4149 ATA_HORKAGE_FIRMWARE_WARN },
4150 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4151 ATA_HORKAGE_FIRMWARE_WARN },
4152 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4153 ATA_HORKAGE_FIRMWARE_WARN },
4154 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4155 ATA_HORKAGE_FIRMWARE_WARN },
4156 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4157 ATA_HORKAGE_FIRMWARE_WARN },
4159 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4160 ATA_HORKAGE_FIRMWARE_WARN },
4161 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4162 ATA_HORKAGE_FIRMWARE_WARN },
4163 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4164 ATA_HORKAGE_FIRMWARE_WARN },
4165 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4166 ATA_HORKAGE_FIRMWARE_WARN },
4167 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4168 ATA_HORKAGE_FIRMWARE_WARN },
4170 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4171 ATA_HORKAGE_FIRMWARE_WARN },
4172 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4173 ATA_HORKAGE_FIRMWARE_WARN },
4174 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4175 ATA_HORKAGE_FIRMWARE_WARN },
4176 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4177 ATA_HORKAGE_FIRMWARE_WARN },
4178 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4179 ATA_HORKAGE_FIRMWARE_WARN },
4181 /* Blacklist entries taken from Silicon Image 3124/3132
4182 Windows driver .inf file - also several Linux problem reports */
4183 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4184 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4185 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4187 /* devices which puke on READ_NATIVE_MAX */
4188 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4189 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4190 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4191 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4193 /* Devices which report 1 sector over size HPA */
4194 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4195 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4196 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4198 /* Devices which get the IVB wrong */
4199 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4200 /* Maybe we should just blacklist TSSTcorp... */
4201 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4202 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4203 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4204 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4205 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4206 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4208 /* Devices that do not need bridging limits applied */
4209 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4211 /* End Marker */
4215 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4217 const char *p;
4218 int len;
4221 * check for trailing wildcard: *\0
4223 p = strchr(patt, wildchar);
4224 if (p && ((*(p + 1)) == 0))
4225 len = p - patt;
4226 else {
4227 len = strlen(name);
4228 if (!len) {
4229 if (!*patt)
4230 return 0;
4231 return -1;
4235 return strncmp(patt, name, len);
4238 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4240 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4241 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4242 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4244 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4245 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4247 while (ad->model_num) {
4248 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4249 if (ad->model_rev == NULL)
4250 return ad->horkage;
4251 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4252 return ad->horkage;
4254 ad++;
4256 return 0;
4259 static int ata_dma_blacklisted(const struct ata_device *dev)
4261 /* We don't support polling DMA.
4262 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4263 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4265 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4266 (dev->flags & ATA_DFLAG_CDB_INTR))
4267 return 1;
4268 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4272 * ata_is_40wire - check drive side detection
4273 * @dev: device
4275 * Perform drive side detection decoding, allowing for device vendors
4276 * who can't follow the documentation.
4279 static int ata_is_40wire(struct ata_device *dev)
4281 if (dev->horkage & ATA_HORKAGE_IVB)
4282 return ata_drive_40wire_relaxed(dev->id);
4283 return ata_drive_40wire(dev->id);
4287 * cable_is_40wire - 40/80/SATA decider
4288 * @ap: port to consider
4290 * This function encapsulates the policy for speed management
4291 * in one place. At the moment we don't cache the result but
4292 * there is a good case for setting ap->cbl to the result when
4293 * we are called with unknown cables (and figuring out if it
4294 * impacts hotplug at all).
4296 * Return 1 if the cable appears to be 40 wire.
4299 static int cable_is_40wire(struct ata_port *ap)
4301 struct ata_link *link;
4302 struct ata_device *dev;
4304 /* If the controller thinks we are 40 wire, we are. */
4305 if (ap->cbl == ATA_CBL_PATA40)
4306 return 1;
4308 /* If the controller thinks we are 80 wire, we are. */
4309 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4310 return 0;
4312 /* If the system is known to be 40 wire short cable (eg
4313 * laptop), then we allow 80 wire modes even if the drive
4314 * isn't sure.
4316 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4317 return 0;
4319 /* If the controller doesn't know, we scan.
4321 * Note: We look for all 40 wire detects at this point. Any
4322 * 80 wire detect is taken to be 80 wire cable because
4323 * - in many setups only the one drive (slave if present) will
4324 * give a valid detect
4325 * - if you have a non detect capable drive you don't want it
4326 * to colour the choice
4328 ata_for_each_link(link, ap, EDGE) {
4329 ata_for_each_dev(dev, link, ENABLED) {
4330 if (!ata_is_40wire(dev))
4331 return 0;
4334 return 1;
4338 * ata_dev_xfermask - Compute supported xfermask of the given device
4339 * @dev: Device to compute xfermask for
4341 * Compute supported xfermask of @dev and store it in
4342 * dev->*_mask. This function is responsible for applying all
4343 * known limits including host controller limits, device
4344 * blacklist, etc...
4346 * LOCKING:
4347 * None.
4349 static void ata_dev_xfermask(struct ata_device *dev)
4351 struct ata_link *link = dev->link;
4352 struct ata_port *ap = link->ap;
4353 struct ata_host *host = ap->host;
4354 unsigned long xfer_mask;
4356 /* controller modes available */
4357 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4358 ap->mwdma_mask, ap->udma_mask);
4360 /* drive modes available */
4361 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4362 dev->mwdma_mask, dev->udma_mask);
4363 xfer_mask &= ata_id_xfermask(dev->id);
4366 * CFA Advanced TrueIDE timings are not allowed on a shared
4367 * cable
4369 if (ata_dev_pair(dev)) {
4370 /* No PIO5 or PIO6 */
4371 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4372 /* No MWDMA3 or MWDMA 4 */
4373 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4376 if (ata_dma_blacklisted(dev)) {
4377 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4378 ata_dev_printk(dev, KERN_WARNING,
4379 "device is on DMA blacklist, disabling DMA\n");
4382 if ((host->flags & ATA_HOST_SIMPLEX) &&
4383 host->simplex_claimed && host->simplex_claimed != ap) {
4384 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4385 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4386 "other device, disabling DMA\n");
4389 if (ap->flags & ATA_FLAG_NO_IORDY)
4390 xfer_mask &= ata_pio_mask_no_iordy(dev);
4392 if (ap->ops->mode_filter)
4393 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4395 /* Apply cable rule here. Don't apply it early because when
4396 * we handle hot plug the cable type can itself change.
4397 * Check this last so that we know if the transfer rate was
4398 * solely limited by the cable.
4399 * Unknown or 80 wire cables reported host side are checked
4400 * drive side as well. Cases where we know a 40wire cable
4401 * is used safely for 80 are not checked here.
4403 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4404 /* UDMA/44 or higher would be available */
4405 if (cable_is_40wire(ap)) {
4406 ata_dev_printk(dev, KERN_WARNING,
4407 "limited to UDMA/33 due to 40-wire cable\n");
4408 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4411 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4412 &dev->mwdma_mask, &dev->udma_mask);
4416 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4417 * @dev: Device to which command will be sent
4419 * Issue SET FEATURES - XFER MODE command to device @dev
4420 * on port @ap.
4422 * LOCKING:
4423 * PCI/etc. bus probe sem.
4425 * RETURNS:
4426 * 0 on success, AC_ERR_* mask otherwise.
4429 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4431 struct ata_taskfile tf;
4432 unsigned int err_mask;
4434 /* set up set-features taskfile */
4435 DPRINTK("set features - xfer mode\n");
4437 /* Some controllers and ATAPI devices show flaky interrupt
4438 * behavior after setting xfer mode. Use polling instead.
4440 ata_tf_init(dev, &tf);
4441 tf.command = ATA_CMD_SET_FEATURES;
4442 tf.feature = SETFEATURES_XFER;
4443 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4444 tf.protocol = ATA_PROT_NODATA;
4445 /* If we are using IORDY we must send the mode setting command */
4446 if (ata_pio_need_iordy(dev))
4447 tf.nsect = dev->xfer_mode;
4448 /* If the device has IORDY and the controller does not - turn it off */
4449 else if (ata_id_has_iordy(dev->id))
4450 tf.nsect = 0x01;
4451 else /* In the ancient relic department - skip all of this */
4452 return 0;
4454 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4456 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4457 return err_mask;
4460 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4461 * @dev: Device to which command will be sent
4462 * @enable: Whether to enable or disable the feature
4463 * @feature: The sector count represents the feature to set
4465 * Issue SET FEATURES - SATA FEATURES command to device @dev
4466 * on port @ap with sector count
4468 * LOCKING:
4469 * PCI/etc. bus probe sem.
4471 * RETURNS:
4472 * 0 on success, AC_ERR_* mask otherwise.
4474 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4475 u8 feature)
4477 struct ata_taskfile tf;
4478 unsigned int err_mask;
4480 /* set up set-features taskfile */
4481 DPRINTK("set features - SATA features\n");
4483 ata_tf_init(dev, &tf);
4484 tf.command = ATA_CMD_SET_FEATURES;
4485 tf.feature = enable;
4486 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4487 tf.protocol = ATA_PROT_NODATA;
4488 tf.nsect = feature;
4490 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4492 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4493 return err_mask;
4497 * ata_dev_init_params - Issue INIT DEV PARAMS command
4498 * @dev: Device to which command will be sent
4499 * @heads: Number of heads (taskfile parameter)
4500 * @sectors: Number of sectors (taskfile parameter)
4502 * LOCKING:
4503 * Kernel thread context (may sleep)
4505 * RETURNS:
4506 * 0 on success, AC_ERR_* mask otherwise.
4508 static unsigned int ata_dev_init_params(struct ata_device *dev,
4509 u16 heads, u16 sectors)
4511 struct ata_taskfile tf;
4512 unsigned int err_mask;
4514 /* Number of sectors per track 1-255. Number of heads 1-16 */
4515 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4516 return AC_ERR_INVALID;
4518 /* set up init dev params taskfile */
4519 DPRINTK("init dev params \n");
4521 ata_tf_init(dev, &tf);
4522 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4523 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4524 tf.protocol = ATA_PROT_NODATA;
4525 tf.nsect = sectors;
4526 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4528 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4529 /* A clean abort indicates an original or just out of spec drive
4530 and we should continue as we issue the setup based on the
4531 drive reported working geometry */
4532 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4533 err_mask = 0;
4535 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4536 return err_mask;
4540 * ata_sg_clean - Unmap DMA memory associated with command
4541 * @qc: Command containing DMA memory to be released
4543 * Unmap all mapped DMA memory associated with this command.
4545 * LOCKING:
4546 * spin_lock_irqsave(host lock)
4548 void ata_sg_clean(struct ata_queued_cmd *qc)
4550 struct ata_port *ap = qc->ap;
4551 struct scatterlist *sg = qc->sg;
4552 int dir = qc->dma_dir;
4554 WARN_ON_ONCE(sg == NULL);
4556 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4558 if (qc->n_elem)
4559 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4561 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4562 qc->sg = NULL;
4566 * atapi_check_dma - Check whether ATAPI DMA can be supported
4567 * @qc: Metadata associated with taskfile to check
4569 * Allow low-level driver to filter ATA PACKET commands, returning
4570 * a status indicating whether or not it is OK to use DMA for the
4571 * supplied PACKET command.
4573 * LOCKING:
4574 * spin_lock_irqsave(host lock)
4576 * RETURNS: 0 when ATAPI DMA can be used
4577 * nonzero otherwise
4579 int atapi_check_dma(struct ata_queued_cmd *qc)
4581 struct ata_port *ap = qc->ap;
4583 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4584 * few ATAPI devices choke on such DMA requests.
4586 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4587 unlikely(qc->nbytes & 15))
4588 return 1;
4590 if (ap->ops->check_atapi_dma)
4591 return ap->ops->check_atapi_dma(qc);
4593 return 0;
4597 * ata_std_qc_defer - Check whether a qc needs to be deferred
4598 * @qc: ATA command in question
4600 * Non-NCQ commands cannot run with any other command, NCQ or
4601 * not. As upper layer only knows the queue depth, we are
4602 * responsible for maintaining exclusion. This function checks
4603 * whether a new command @qc can be issued.
4605 * LOCKING:
4606 * spin_lock_irqsave(host lock)
4608 * RETURNS:
4609 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4611 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4613 struct ata_link *link = qc->dev->link;
4615 if (qc->tf.protocol == ATA_PROT_NCQ) {
4616 if (!ata_tag_valid(link->active_tag))
4617 return 0;
4618 } else {
4619 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4620 return 0;
4623 return ATA_DEFER_LINK;
4626 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4629 * ata_sg_init - Associate command with scatter-gather table.
4630 * @qc: Command to be associated
4631 * @sg: Scatter-gather table.
4632 * @n_elem: Number of elements in s/g table.
4634 * Initialize the data-related elements of queued_cmd @qc
4635 * to point to a scatter-gather table @sg, containing @n_elem
4636 * elements.
4638 * LOCKING:
4639 * spin_lock_irqsave(host lock)
4641 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4642 unsigned int n_elem)
4644 qc->sg = sg;
4645 qc->n_elem = n_elem;
4646 qc->cursg = qc->sg;
4650 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4651 * @qc: Command with scatter-gather table to be mapped.
4653 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4655 * LOCKING:
4656 * spin_lock_irqsave(host lock)
4658 * RETURNS:
4659 * Zero on success, negative on error.
4662 static int ata_sg_setup(struct ata_queued_cmd *qc)
4664 struct ata_port *ap = qc->ap;
4665 unsigned int n_elem;
4667 VPRINTK("ENTER, ata%u\n", ap->print_id);
4669 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4670 if (n_elem < 1)
4671 return -1;
4673 DPRINTK("%d sg elements mapped\n", n_elem);
4675 qc->n_elem = n_elem;
4676 qc->flags |= ATA_QCFLAG_DMAMAP;
4678 return 0;
4682 * swap_buf_le16 - swap halves of 16-bit words in place
4683 * @buf: Buffer to swap
4684 * @buf_words: Number of 16-bit words in buffer.
4686 * Swap halves of 16-bit words if needed to convert from
4687 * little-endian byte order to native cpu byte order, or
4688 * vice-versa.
4690 * LOCKING:
4691 * Inherited from caller.
4693 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4695 #ifdef __BIG_ENDIAN
4696 unsigned int i;
4698 for (i = 0; i < buf_words; i++)
4699 buf[i] = le16_to_cpu(buf[i]);
4700 #endif /* __BIG_ENDIAN */
4704 * ata_qc_new - Request an available ATA command, for queueing
4705 * @ap: target port
4707 * LOCKING:
4708 * None.
4711 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4713 struct ata_queued_cmd *qc = NULL;
4714 unsigned int i;
4716 /* no command while frozen */
4717 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4718 return NULL;
4720 /* the last tag is reserved for internal command. */
4721 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4722 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4723 qc = __ata_qc_from_tag(ap, i);
4724 break;
4727 if (qc)
4728 qc->tag = i;
4730 return qc;
4734 * ata_qc_new_init - Request an available ATA command, and initialize it
4735 * @dev: Device from whom we request an available command structure
4737 * LOCKING:
4738 * None.
4741 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4743 struct ata_port *ap = dev->link->ap;
4744 struct ata_queued_cmd *qc;
4746 qc = ata_qc_new(ap);
4747 if (qc) {
4748 qc->scsicmd = NULL;
4749 qc->ap = ap;
4750 qc->dev = dev;
4752 ata_qc_reinit(qc);
4755 return qc;
4759 * ata_qc_free - free unused ata_queued_cmd
4760 * @qc: Command to complete
4762 * Designed to free unused ata_queued_cmd object
4763 * in case something prevents using it.
4765 * LOCKING:
4766 * spin_lock_irqsave(host lock)
4768 void ata_qc_free(struct ata_queued_cmd *qc)
4770 struct ata_port *ap = qc->ap;
4771 unsigned int tag;
4773 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4775 qc->flags = 0;
4776 tag = qc->tag;
4777 if (likely(ata_tag_valid(tag))) {
4778 qc->tag = ATA_TAG_POISON;
4779 clear_bit(tag, &ap->qc_allocated);
4783 void __ata_qc_complete(struct ata_queued_cmd *qc)
4785 struct ata_port *ap = qc->ap;
4786 struct ata_link *link = qc->dev->link;
4788 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4789 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4791 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4792 ata_sg_clean(qc);
4794 /* command should be marked inactive atomically with qc completion */
4795 if (qc->tf.protocol == ATA_PROT_NCQ) {
4796 link->sactive &= ~(1 << qc->tag);
4797 if (!link->sactive)
4798 ap->nr_active_links--;
4799 } else {
4800 link->active_tag = ATA_TAG_POISON;
4801 ap->nr_active_links--;
4804 /* clear exclusive status */
4805 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4806 ap->excl_link == link))
4807 ap->excl_link = NULL;
4809 /* atapi: mark qc as inactive to prevent the interrupt handler
4810 * from completing the command twice later, before the error handler
4811 * is called. (when rc != 0 and atapi request sense is needed)
4813 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4814 ap->qc_active &= ~(1 << qc->tag);
4816 /* call completion callback */
4817 qc->complete_fn(qc);
4820 static void fill_result_tf(struct ata_queued_cmd *qc)
4822 struct ata_port *ap = qc->ap;
4824 qc->result_tf.flags = qc->tf.flags;
4825 ap->ops->qc_fill_rtf(qc);
4828 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4830 struct ata_device *dev = qc->dev;
4832 if (ata_tag_internal(qc->tag))
4833 return;
4835 if (ata_is_nodata(qc->tf.protocol))
4836 return;
4838 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4839 return;
4841 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4845 * ata_qc_complete - Complete an active ATA command
4846 * @qc: Command to complete
4848 * Indicate to the mid and upper layers that an ATA
4849 * command has completed, with either an ok or not-ok status.
4851 * LOCKING:
4852 * spin_lock_irqsave(host lock)
4854 void ata_qc_complete(struct ata_queued_cmd *qc)
4856 struct ata_port *ap = qc->ap;
4858 /* XXX: New EH and old EH use different mechanisms to
4859 * synchronize EH with regular execution path.
4861 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4862 * Normal execution path is responsible for not accessing a
4863 * failed qc. libata core enforces the rule by returning NULL
4864 * from ata_qc_from_tag() for failed qcs.
4866 * Old EH depends on ata_qc_complete() nullifying completion
4867 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4868 * not synchronize with interrupt handler. Only PIO task is
4869 * taken care of.
4871 if (ap->ops->error_handler) {
4872 struct ata_device *dev = qc->dev;
4873 struct ata_eh_info *ehi = &dev->link->eh_info;
4875 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4877 if (unlikely(qc->err_mask))
4878 qc->flags |= ATA_QCFLAG_FAILED;
4880 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4881 if (!ata_tag_internal(qc->tag)) {
4882 /* always fill result TF for failed qc */
4883 fill_result_tf(qc);
4884 ata_qc_schedule_eh(qc);
4885 return;
4889 /* read result TF if requested */
4890 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4891 fill_result_tf(qc);
4893 /* Some commands need post-processing after successful
4894 * completion.
4896 switch (qc->tf.command) {
4897 case ATA_CMD_SET_FEATURES:
4898 if (qc->tf.feature != SETFEATURES_WC_ON &&
4899 qc->tf.feature != SETFEATURES_WC_OFF)
4900 break;
4901 /* fall through */
4902 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4903 case ATA_CMD_SET_MULTI: /* multi_count changed */
4904 /* revalidate device */
4905 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4906 ata_port_schedule_eh(ap);
4907 break;
4909 case ATA_CMD_SLEEP:
4910 dev->flags |= ATA_DFLAG_SLEEPING;
4911 break;
4914 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4915 ata_verify_xfer(qc);
4917 __ata_qc_complete(qc);
4918 } else {
4919 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4920 return;
4922 /* read result TF if failed or requested */
4923 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4924 fill_result_tf(qc);
4926 __ata_qc_complete(qc);
4931 * ata_qc_complete_multiple - Complete multiple qcs successfully
4932 * @ap: port in question
4933 * @qc_active: new qc_active mask
4935 * Complete in-flight commands. This functions is meant to be
4936 * called from low-level driver's interrupt routine to complete
4937 * requests normally. ap->qc_active and @qc_active is compared
4938 * and commands are completed accordingly.
4940 * LOCKING:
4941 * spin_lock_irqsave(host lock)
4943 * RETURNS:
4944 * Number of completed commands on success, -errno otherwise.
4946 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4948 int nr_done = 0;
4949 u32 done_mask;
4950 int i;
4952 done_mask = ap->qc_active ^ qc_active;
4954 if (unlikely(done_mask & qc_active)) {
4955 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4956 "(%08x->%08x)\n", ap->qc_active, qc_active);
4957 return -EINVAL;
4960 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4961 struct ata_queued_cmd *qc;
4963 if (!(done_mask & (1 << i)))
4964 continue;
4966 if ((qc = ata_qc_from_tag(ap, i))) {
4967 ata_qc_complete(qc);
4968 nr_done++;
4972 return nr_done;
4976 * ata_qc_issue - issue taskfile to device
4977 * @qc: command to issue to device
4979 * Prepare an ATA command to submission to device.
4980 * This includes mapping the data into a DMA-able
4981 * area, filling in the S/G table, and finally
4982 * writing the taskfile to hardware, starting the command.
4984 * LOCKING:
4985 * spin_lock_irqsave(host lock)
4987 void ata_qc_issue(struct ata_queued_cmd *qc)
4989 struct ata_port *ap = qc->ap;
4990 struct ata_link *link = qc->dev->link;
4991 u8 prot = qc->tf.protocol;
4993 /* Make sure only one non-NCQ command is outstanding. The
4994 * check is skipped for old EH because it reuses active qc to
4995 * request ATAPI sense.
4997 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4999 if (ata_is_ncq(prot)) {
5000 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5002 if (!link->sactive)
5003 ap->nr_active_links++;
5004 link->sactive |= 1 << qc->tag;
5005 } else {
5006 WARN_ON_ONCE(link->sactive);
5008 ap->nr_active_links++;
5009 link->active_tag = qc->tag;
5012 qc->flags |= ATA_QCFLAG_ACTIVE;
5013 ap->qc_active |= 1 << qc->tag;
5015 /* We guarantee to LLDs that they will have at least one
5016 * non-zero sg if the command is a data command.
5018 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5020 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5021 (ap->flags & ATA_FLAG_PIO_DMA)))
5022 if (ata_sg_setup(qc))
5023 goto sg_err;
5025 /* if device is sleeping, schedule reset and abort the link */
5026 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5027 link->eh_info.action |= ATA_EH_RESET;
5028 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5029 ata_link_abort(link);
5030 return;
5033 ap->ops->qc_prep(qc);
5035 qc->err_mask |= ap->ops->qc_issue(qc);
5036 if (unlikely(qc->err_mask))
5037 goto err;
5038 return;
5040 sg_err:
5041 qc->err_mask |= AC_ERR_SYSTEM;
5042 err:
5043 ata_qc_complete(qc);
5047 * sata_scr_valid - test whether SCRs are accessible
5048 * @link: ATA link to test SCR accessibility for
5050 * Test whether SCRs are accessible for @link.
5052 * LOCKING:
5053 * None.
5055 * RETURNS:
5056 * 1 if SCRs are accessible, 0 otherwise.
5058 int sata_scr_valid(struct ata_link *link)
5060 struct ata_port *ap = link->ap;
5062 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5066 * sata_scr_read - read SCR register of the specified port
5067 * @link: ATA link to read SCR for
5068 * @reg: SCR to read
5069 * @val: Place to store read value
5071 * Read SCR register @reg of @link into *@val. This function is
5072 * guaranteed to succeed if @link is ap->link, the cable type of
5073 * the port is SATA and the port implements ->scr_read.
5075 * LOCKING:
5076 * None if @link is ap->link. Kernel thread context otherwise.
5078 * RETURNS:
5079 * 0 on success, negative errno on failure.
5081 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5083 if (ata_is_host_link(link)) {
5084 if (sata_scr_valid(link))
5085 return link->ap->ops->scr_read(link, reg, val);
5086 return -EOPNOTSUPP;
5089 return sata_pmp_scr_read(link, reg, val);
5093 * sata_scr_write - write SCR register of the specified port
5094 * @link: ATA link to write SCR for
5095 * @reg: SCR to write
5096 * @val: value to write
5098 * Write @val to SCR register @reg of @link. This function is
5099 * guaranteed to succeed if @link is ap->link, the cable type of
5100 * the port is SATA and the port implements ->scr_read.
5102 * LOCKING:
5103 * None if @link is ap->link. Kernel thread context otherwise.
5105 * RETURNS:
5106 * 0 on success, negative errno on failure.
5108 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5110 if (ata_is_host_link(link)) {
5111 if (sata_scr_valid(link))
5112 return link->ap->ops->scr_write(link, reg, val);
5113 return -EOPNOTSUPP;
5116 return sata_pmp_scr_write(link, reg, val);
5120 * sata_scr_write_flush - write SCR register of the specified port and flush
5121 * @link: ATA link to write SCR for
5122 * @reg: SCR to write
5123 * @val: value to write
5125 * This function is identical to sata_scr_write() except that this
5126 * function performs flush after writing to the register.
5128 * LOCKING:
5129 * None if @link is ap->link. Kernel thread context otherwise.
5131 * RETURNS:
5132 * 0 on success, negative errno on failure.
5134 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5136 if (ata_is_host_link(link)) {
5137 int rc;
5139 if (sata_scr_valid(link)) {
5140 rc = link->ap->ops->scr_write(link, reg, val);
5141 if (rc == 0)
5142 rc = link->ap->ops->scr_read(link, reg, &val);
5143 return rc;
5145 return -EOPNOTSUPP;
5148 return sata_pmp_scr_write(link, reg, val);
5152 * ata_phys_link_online - test whether the given link is online
5153 * @link: ATA link to test
5155 * Test whether @link is online. Note that this function returns
5156 * 0 if online status of @link cannot be obtained, so
5157 * ata_link_online(link) != !ata_link_offline(link).
5159 * LOCKING:
5160 * None.
5162 * RETURNS:
5163 * True if the port online status is available and online.
5165 bool ata_phys_link_online(struct ata_link *link)
5167 u32 sstatus;
5169 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5170 ata_sstatus_online(sstatus))
5171 return true;
5172 return false;
5176 * ata_phys_link_offline - test whether the given link is offline
5177 * @link: ATA link to test
5179 * Test whether @link is offline. Note that this function
5180 * returns 0 if offline status of @link cannot be obtained, so
5181 * ata_link_online(link) != !ata_link_offline(link).
5183 * LOCKING:
5184 * None.
5186 * RETURNS:
5187 * True if the port offline status is available and offline.
5189 bool ata_phys_link_offline(struct ata_link *link)
5191 u32 sstatus;
5193 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5194 !ata_sstatus_online(sstatus))
5195 return true;
5196 return false;
5200 * ata_link_online - test whether the given link is online
5201 * @link: ATA link to test
5203 * Test whether @link is online. This is identical to
5204 * ata_phys_link_online() when there's no slave link. When
5205 * there's a slave link, this function should only be called on
5206 * the master link and will return true if any of M/S links is
5207 * online.
5209 * LOCKING:
5210 * None.
5212 * RETURNS:
5213 * True if the port online status is available and online.
5215 bool ata_link_online(struct ata_link *link)
5217 struct ata_link *slave = link->ap->slave_link;
5219 WARN_ON(link == slave); /* shouldn't be called on slave link */
5221 return ata_phys_link_online(link) ||
5222 (slave && ata_phys_link_online(slave));
5226 * ata_link_offline - test whether the given link is offline
5227 * @link: ATA link to test
5229 * Test whether @link is offline. This is identical to
5230 * ata_phys_link_offline() when there's no slave link. When
5231 * there's a slave link, this function should only be called on
5232 * the master link and will return true if both M/S links are
5233 * offline.
5235 * LOCKING:
5236 * None.
5238 * RETURNS:
5239 * True if the port offline status is available and offline.
5241 bool ata_link_offline(struct ata_link *link)
5243 struct ata_link *slave = link->ap->slave_link;
5245 WARN_ON(link == slave); /* shouldn't be called on slave link */
5247 return ata_phys_link_offline(link) &&
5248 (!slave || ata_phys_link_offline(slave));
5251 #ifdef CONFIG_PM
5252 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5253 unsigned int action, unsigned int ehi_flags,
5254 int wait)
5256 unsigned long flags;
5257 int i, rc;
5259 for (i = 0; i < host->n_ports; i++) {
5260 struct ata_port *ap = host->ports[i];
5261 struct ata_link *link;
5263 /* Previous resume operation might still be in
5264 * progress. Wait for PM_PENDING to clear.
5266 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5267 ata_port_wait_eh(ap);
5268 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5271 /* request PM ops to EH */
5272 spin_lock_irqsave(ap->lock, flags);
5274 ap->pm_mesg = mesg;
5275 if (wait) {
5276 rc = 0;
5277 ap->pm_result = &rc;
5280 ap->pflags |= ATA_PFLAG_PM_PENDING;
5281 ata_for_each_link(link, ap, HOST_FIRST) {
5282 link->eh_info.action |= action;
5283 link->eh_info.flags |= ehi_flags;
5286 ata_port_schedule_eh(ap);
5288 spin_unlock_irqrestore(ap->lock, flags);
5290 /* wait and check result */
5291 if (wait) {
5292 ata_port_wait_eh(ap);
5293 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5294 if (rc)
5295 return rc;
5299 return 0;
5303 * ata_host_suspend - suspend host
5304 * @host: host to suspend
5305 * @mesg: PM message
5307 * Suspend @host. Actual operation is performed by EH. This
5308 * function requests EH to perform PM operations and waits for EH
5309 * to finish.
5311 * LOCKING:
5312 * Kernel thread context (may sleep).
5314 * RETURNS:
5315 * 0 on success, -errno on failure.
5317 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5319 int rc;
5322 * disable link pm on all ports before requesting
5323 * any pm activity
5325 ata_lpm_enable(host);
5327 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5328 if (rc == 0)
5329 host->dev->power.power_state = mesg;
5330 return rc;
5334 * ata_host_resume - resume host
5335 * @host: host to resume
5337 * Resume @host. Actual operation is performed by EH. This
5338 * function requests EH to perform PM operations and returns.
5339 * Note that all resume operations are performed parallely.
5341 * LOCKING:
5342 * Kernel thread context (may sleep).
5344 void ata_host_resume(struct ata_host *host)
5346 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5347 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5348 host->dev->power.power_state = PMSG_ON;
5350 /* reenable link pm */
5351 ata_lpm_disable(host);
5353 #endif
5356 * ata_port_start - Set port up for dma.
5357 * @ap: Port to initialize
5359 * Called just after data structures for each port are
5360 * initialized. Allocates space for PRD table.
5362 * May be used as the port_start() entry in ata_port_operations.
5364 * LOCKING:
5365 * Inherited from caller.
5367 int ata_port_start(struct ata_port *ap)
5369 struct device *dev = ap->dev;
5371 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5372 GFP_KERNEL);
5373 if (!ap->prd)
5374 return -ENOMEM;
5376 return 0;
5380 * ata_dev_init - Initialize an ata_device structure
5381 * @dev: Device structure to initialize
5383 * Initialize @dev in preparation for probing.
5385 * LOCKING:
5386 * Inherited from caller.
5388 void ata_dev_init(struct ata_device *dev)
5390 struct ata_link *link = ata_dev_phys_link(dev);
5391 struct ata_port *ap = link->ap;
5392 unsigned long flags;
5394 /* SATA spd limit is bound to the attached device, reset together */
5395 link->sata_spd_limit = link->hw_sata_spd_limit;
5396 link->sata_spd = 0;
5398 /* High bits of dev->flags are used to record warm plug
5399 * requests which occur asynchronously. Synchronize using
5400 * host lock.
5402 spin_lock_irqsave(ap->lock, flags);
5403 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5404 dev->horkage = 0;
5405 spin_unlock_irqrestore(ap->lock, flags);
5407 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5408 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5409 dev->pio_mask = UINT_MAX;
5410 dev->mwdma_mask = UINT_MAX;
5411 dev->udma_mask = UINT_MAX;
5415 * ata_link_init - Initialize an ata_link structure
5416 * @ap: ATA port link is attached to
5417 * @link: Link structure to initialize
5418 * @pmp: Port multiplier port number
5420 * Initialize @link.
5422 * LOCKING:
5423 * Kernel thread context (may sleep)
5425 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5427 int i;
5429 /* clear everything except for devices */
5430 memset(link, 0, offsetof(struct ata_link, device[0]));
5432 link->ap = ap;
5433 link->pmp = pmp;
5434 link->active_tag = ATA_TAG_POISON;
5435 link->hw_sata_spd_limit = UINT_MAX;
5437 /* can't use iterator, ap isn't initialized yet */
5438 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5439 struct ata_device *dev = &link->device[i];
5441 dev->link = link;
5442 dev->devno = dev - link->device;
5443 ata_dev_init(dev);
5448 * sata_link_init_spd - Initialize link->sata_spd_limit
5449 * @link: Link to configure sata_spd_limit for
5451 * Initialize @link->[hw_]sata_spd_limit to the currently
5452 * configured value.
5454 * LOCKING:
5455 * Kernel thread context (may sleep).
5457 * RETURNS:
5458 * 0 on success, -errno on failure.
5460 int sata_link_init_spd(struct ata_link *link)
5462 u8 spd;
5463 int rc;
5465 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5466 if (rc)
5467 return rc;
5469 spd = (link->saved_scontrol >> 4) & 0xf;
5470 if (spd)
5471 link->hw_sata_spd_limit &= (1 << spd) - 1;
5473 ata_force_link_limits(link);
5475 link->sata_spd_limit = link->hw_sata_spd_limit;
5477 return 0;
5481 * ata_port_alloc - allocate and initialize basic ATA port resources
5482 * @host: ATA host this allocated port belongs to
5484 * Allocate and initialize basic ATA port resources.
5486 * RETURNS:
5487 * Allocate ATA port on success, NULL on failure.
5489 * LOCKING:
5490 * Inherited from calling layer (may sleep).
5492 struct ata_port *ata_port_alloc(struct ata_host *host)
5494 struct ata_port *ap;
5496 DPRINTK("ENTER\n");
5498 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5499 if (!ap)
5500 return NULL;
5502 ap->pflags |= ATA_PFLAG_INITIALIZING;
5503 ap->lock = &host->lock;
5504 ap->flags = ATA_FLAG_DISABLED;
5505 ap->print_id = -1;
5506 ap->ctl = ATA_DEVCTL_OBS;
5507 ap->host = host;
5508 ap->dev = host->dev;
5509 ap->last_ctl = 0xFF;
5511 #if defined(ATA_VERBOSE_DEBUG)
5512 /* turn on all debugging levels */
5513 ap->msg_enable = 0x00FF;
5514 #elif defined(ATA_DEBUG)
5515 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5516 #else
5517 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5518 #endif
5520 #ifdef CONFIG_ATA_SFF
5521 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5522 #else
5523 INIT_DELAYED_WORK(&ap->port_task, NULL);
5524 #endif
5525 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5526 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5527 INIT_LIST_HEAD(&ap->eh_done_q);
5528 init_waitqueue_head(&ap->eh_wait_q);
5529 init_completion(&ap->park_req_pending);
5530 init_timer_deferrable(&ap->fastdrain_timer);
5531 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5532 ap->fastdrain_timer.data = (unsigned long)ap;
5534 ap->cbl = ATA_CBL_NONE;
5536 ata_link_init(ap, &ap->link, 0);
5538 #ifdef ATA_IRQ_TRAP
5539 ap->stats.unhandled_irq = 1;
5540 ap->stats.idle_irq = 1;
5541 #endif
5542 return ap;
5545 static void ata_host_release(struct device *gendev, void *res)
5547 struct ata_host *host = dev_get_drvdata(gendev);
5548 int i;
5550 for (i = 0; i < host->n_ports; i++) {
5551 struct ata_port *ap = host->ports[i];
5553 if (!ap)
5554 continue;
5556 if (ap->scsi_host)
5557 scsi_host_put(ap->scsi_host);
5559 kfree(ap->pmp_link);
5560 kfree(ap->slave_link);
5561 kfree(ap);
5562 host->ports[i] = NULL;
5565 dev_set_drvdata(gendev, NULL);
5569 * ata_host_alloc - allocate and init basic ATA host resources
5570 * @dev: generic device this host is associated with
5571 * @max_ports: maximum number of ATA ports associated with this host
5573 * Allocate and initialize basic ATA host resources. LLD calls
5574 * this function to allocate a host, initializes it fully and
5575 * attaches it using ata_host_register().
5577 * @max_ports ports are allocated and host->n_ports is
5578 * initialized to @max_ports. The caller is allowed to decrease
5579 * host->n_ports before calling ata_host_register(). The unused
5580 * ports will be automatically freed on registration.
5582 * RETURNS:
5583 * Allocate ATA host on success, NULL on failure.
5585 * LOCKING:
5586 * Inherited from calling layer (may sleep).
5588 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5590 struct ata_host *host;
5591 size_t sz;
5592 int i;
5594 DPRINTK("ENTER\n");
5596 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5597 return NULL;
5599 /* alloc a container for our list of ATA ports (buses) */
5600 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5601 /* alloc a container for our list of ATA ports (buses) */
5602 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5603 if (!host)
5604 goto err_out;
5606 devres_add(dev, host);
5607 dev_set_drvdata(dev, host);
5609 spin_lock_init(&host->lock);
5610 host->dev = dev;
5611 host->n_ports = max_ports;
5613 /* allocate ports bound to this host */
5614 for (i = 0; i < max_ports; i++) {
5615 struct ata_port *ap;
5617 ap = ata_port_alloc(host);
5618 if (!ap)
5619 goto err_out;
5621 ap->port_no = i;
5622 host->ports[i] = ap;
5625 devres_remove_group(dev, NULL);
5626 return host;
5628 err_out:
5629 devres_release_group(dev, NULL);
5630 return NULL;
5634 * ata_host_alloc_pinfo - alloc host and init with port_info array
5635 * @dev: generic device this host is associated with
5636 * @ppi: array of ATA port_info to initialize host with
5637 * @n_ports: number of ATA ports attached to this host
5639 * Allocate ATA host and initialize with info from @ppi. If NULL
5640 * terminated, @ppi may contain fewer entries than @n_ports. The
5641 * last entry will be used for the remaining ports.
5643 * RETURNS:
5644 * Allocate ATA host on success, NULL on failure.
5646 * LOCKING:
5647 * Inherited from calling layer (may sleep).
5649 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5650 const struct ata_port_info * const * ppi,
5651 int n_ports)
5653 const struct ata_port_info *pi;
5654 struct ata_host *host;
5655 int i, j;
5657 host = ata_host_alloc(dev, n_ports);
5658 if (!host)
5659 return NULL;
5661 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5662 struct ata_port *ap = host->ports[i];
5664 if (ppi[j])
5665 pi = ppi[j++];
5667 ap->pio_mask = pi->pio_mask;
5668 ap->mwdma_mask = pi->mwdma_mask;
5669 ap->udma_mask = pi->udma_mask;
5670 ap->flags |= pi->flags;
5671 ap->link.flags |= pi->link_flags;
5672 ap->ops = pi->port_ops;
5674 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5675 host->ops = pi->port_ops;
5678 return host;
5682 * ata_slave_link_init - initialize slave link
5683 * @ap: port to initialize slave link for
5685 * Create and initialize slave link for @ap. This enables slave
5686 * link handling on the port.
5688 * In libata, a port contains links and a link contains devices.
5689 * There is single host link but if a PMP is attached to it,
5690 * there can be multiple fan-out links. On SATA, there's usually
5691 * a single device connected to a link but PATA and SATA
5692 * controllers emulating TF based interface can have two - master
5693 * and slave.
5695 * However, there are a few controllers which don't fit into this
5696 * abstraction too well - SATA controllers which emulate TF
5697 * interface with both master and slave devices but also have
5698 * separate SCR register sets for each device. These controllers
5699 * need separate links for physical link handling
5700 * (e.g. onlineness, link speed) but should be treated like a
5701 * traditional M/S controller for everything else (e.g. command
5702 * issue, softreset).
5704 * slave_link is libata's way of handling this class of
5705 * controllers without impacting core layer too much. For
5706 * anything other than physical link handling, the default host
5707 * link is used for both master and slave. For physical link
5708 * handling, separate @ap->slave_link is used. All dirty details
5709 * are implemented inside libata core layer. From LLD's POV, the
5710 * only difference is that prereset, hardreset and postreset are
5711 * called once more for the slave link, so the reset sequence
5712 * looks like the following.
5714 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5715 * softreset(M) -> postreset(M) -> postreset(S)
5717 * Note that softreset is called only for the master. Softreset
5718 * resets both M/S by definition, so SRST on master should handle
5719 * both (the standard method will work just fine).
5721 * LOCKING:
5722 * Should be called before host is registered.
5724 * RETURNS:
5725 * 0 on success, -errno on failure.
5727 int ata_slave_link_init(struct ata_port *ap)
5729 struct ata_link *link;
5731 WARN_ON(ap->slave_link);
5732 WARN_ON(ap->flags & ATA_FLAG_PMP);
5734 link = kzalloc(sizeof(*link), GFP_KERNEL);
5735 if (!link)
5736 return -ENOMEM;
5738 ata_link_init(ap, link, 1);
5739 ap->slave_link = link;
5740 return 0;
5743 static void ata_host_stop(struct device *gendev, void *res)
5745 struct ata_host *host = dev_get_drvdata(gendev);
5746 int i;
5748 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5750 for (i = 0; i < host->n_ports; i++) {
5751 struct ata_port *ap = host->ports[i];
5753 if (ap->ops->port_stop)
5754 ap->ops->port_stop(ap);
5757 if (host->ops->host_stop)
5758 host->ops->host_stop(host);
5762 * ata_finalize_port_ops - finalize ata_port_operations
5763 * @ops: ata_port_operations to finalize
5765 * An ata_port_operations can inherit from another ops and that
5766 * ops can again inherit from another. This can go on as many
5767 * times as necessary as long as there is no loop in the
5768 * inheritance chain.
5770 * Ops tables are finalized when the host is started. NULL or
5771 * unspecified entries are inherited from the closet ancestor
5772 * which has the method and the entry is populated with it.
5773 * After finalization, the ops table directly points to all the
5774 * methods and ->inherits is no longer necessary and cleared.
5776 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5778 * LOCKING:
5779 * None.
5781 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5783 static DEFINE_SPINLOCK(lock);
5784 const struct ata_port_operations *cur;
5785 void **begin = (void **)ops;
5786 void **end = (void **)&ops->inherits;
5787 void **pp;
5789 if (!ops || !ops->inherits)
5790 return;
5792 spin_lock(&lock);
5794 for (cur = ops->inherits; cur; cur = cur->inherits) {
5795 void **inherit = (void **)cur;
5797 for (pp = begin; pp < end; pp++, inherit++)
5798 if (!*pp)
5799 *pp = *inherit;
5802 for (pp = begin; pp < end; pp++)
5803 if (IS_ERR(*pp))
5804 *pp = NULL;
5806 ops->inherits = NULL;
5808 spin_unlock(&lock);
5812 * ata_host_start - start and freeze ports of an ATA host
5813 * @host: ATA host to start ports for
5815 * Start and then freeze ports of @host. Started status is
5816 * recorded in host->flags, so this function can be called
5817 * multiple times. Ports are guaranteed to get started only
5818 * once. If host->ops isn't initialized yet, its set to the
5819 * first non-dummy port ops.
5821 * LOCKING:
5822 * Inherited from calling layer (may sleep).
5824 * RETURNS:
5825 * 0 if all ports are started successfully, -errno otherwise.
5827 int ata_host_start(struct ata_host *host)
5829 int have_stop = 0;
5830 void *start_dr = NULL;
5831 int i, rc;
5833 if (host->flags & ATA_HOST_STARTED)
5834 return 0;
5836 ata_finalize_port_ops(host->ops);
5838 for (i = 0; i < host->n_ports; i++) {
5839 struct ata_port *ap = host->ports[i];
5841 ata_finalize_port_ops(ap->ops);
5843 if (!host->ops && !ata_port_is_dummy(ap))
5844 host->ops = ap->ops;
5846 if (ap->ops->port_stop)
5847 have_stop = 1;
5850 if (host->ops->host_stop)
5851 have_stop = 1;
5853 if (have_stop) {
5854 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5855 if (!start_dr)
5856 return -ENOMEM;
5859 for (i = 0; i < host->n_ports; i++) {
5860 struct ata_port *ap = host->ports[i];
5862 if (ap->ops->port_start) {
5863 rc = ap->ops->port_start(ap);
5864 if (rc) {
5865 if (rc != -ENODEV)
5866 dev_printk(KERN_ERR, host->dev,
5867 "failed to start port %d "
5868 "(errno=%d)\n", i, rc);
5869 goto err_out;
5872 ata_eh_freeze_port(ap);
5875 if (start_dr)
5876 devres_add(host->dev, start_dr);
5877 host->flags |= ATA_HOST_STARTED;
5878 return 0;
5880 err_out:
5881 while (--i >= 0) {
5882 struct ata_port *ap = host->ports[i];
5884 if (ap->ops->port_stop)
5885 ap->ops->port_stop(ap);
5887 devres_free(start_dr);
5888 return rc;
5892 * ata_sas_host_init - Initialize a host struct
5893 * @host: host to initialize
5894 * @dev: device host is attached to
5895 * @flags: host flags
5896 * @ops: port_ops
5898 * LOCKING:
5899 * PCI/etc. bus probe sem.
5902 /* KILLME - the only user left is ipr */
5903 void ata_host_init(struct ata_host *host, struct device *dev,
5904 unsigned long flags, struct ata_port_operations *ops)
5906 spin_lock_init(&host->lock);
5907 host->dev = dev;
5908 host->flags = flags;
5909 host->ops = ops;
5913 static void async_port_probe(void *data, async_cookie_t cookie)
5915 int rc;
5916 struct ata_port *ap = data;
5919 * If we're not allowed to scan this host in parallel,
5920 * we need to wait until all previous scans have completed
5921 * before going further.
5922 * Jeff Garzik says this is only within a controller, so we
5923 * don't need to wait for port 0, only for later ports.
5925 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5926 async_synchronize_cookie(cookie);
5928 /* probe */
5929 if (ap->ops->error_handler) {
5930 struct ata_eh_info *ehi = &ap->link.eh_info;
5931 unsigned long flags;
5933 ata_port_probe(ap);
5935 /* kick EH for boot probing */
5936 spin_lock_irqsave(ap->lock, flags);
5938 ehi->probe_mask |= ATA_ALL_DEVICES;
5939 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5940 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5942 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5943 ap->pflags |= ATA_PFLAG_LOADING;
5944 ata_port_schedule_eh(ap);
5946 spin_unlock_irqrestore(ap->lock, flags);
5948 /* wait for EH to finish */
5949 ata_port_wait_eh(ap);
5950 } else {
5951 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5952 rc = ata_bus_probe(ap);
5953 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5955 if (rc) {
5956 /* FIXME: do something useful here?
5957 * Current libata behavior will
5958 * tear down everything when
5959 * the module is removed
5960 * or the h/w is unplugged.
5965 /* in order to keep device order, we need to synchronize at this point */
5966 async_synchronize_cookie(cookie);
5968 ata_scsi_scan_host(ap, 1);
5972 * ata_host_register - register initialized ATA host
5973 * @host: ATA host to register
5974 * @sht: template for SCSI host
5976 * Register initialized ATA host. @host is allocated using
5977 * ata_host_alloc() and fully initialized by LLD. This function
5978 * starts ports, registers @host with ATA and SCSI layers and
5979 * probe registered devices.
5981 * LOCKING:
5982 * Inherited from calling layer (may sleep).
5984 * RETURNS:
5985 * 0 on success, -errno otherwise.
5987 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5989 int i, rc;
5991 /* host must have been started */
5992 if (!(host->flags & ATA_HOST_STARTED)) {
5993 dev_printk(KERN_ERR, host->dev,
5994 "BUG: trying to register unstarted host\n");
5995 WARN_ON(1);
5996 return -EINVAL;
5999 /* Blow away unused ports. This happens when LLD can't
6000 * determine the exact number of ports to allocate at
6001 * allocation time.
6003 for (i = host->n_ports; host->ports[i]; i++)
6004 kfree(host->ports[i]);
6006 /* give ports names and add SCSI hosts */
6007 for (i = 0; i < host->n_ports; i++)
6008 host->ports[i]->print_id = ata_print_id++;
6010 rc = ata_scsi_add_hosts(host, sht);
6011 if (rc)
6012 return rc;
6014 /* associate with ACPI nodes */
6015 ata_acpi_associate(host);
6017 /* set cable, sata_spd_limit and report */
6018 for (i = 0; i < host->n_ports; i++) {
6019 struct ata_port *ap = host->ports[i];
6020 unsigned long xfer_mask;
6022 /* set SATA cable type if still unset */
6023 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6024 ap->cbl = ATA_CBL_SATA;
6026 /* init sata_spd_limit to the current value */
6027 sata_link_init_spd(&ap->link);
6028 if (ap->slave_link)
6029 sata_link_init_spd(ap->slave_link);
6031 /* print per-port info to dmesg */
6032 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6033 ap->udma_mask);
6035 if (!ata_port_is_dummy(ap)) {
6036 ata_port_printk(ap, KERN_INFO,
6037 "%cATA max %s %s\n",
6038 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6039 ata_mode_string(xfer_mask),
6040 ap->link.eh_info.desc);
6041 ata_ehi_clear_desc(&ap->link.eh_info);
6042 } else
6043 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6046 /* perform each probe synchronously */
6047 DPRINTK("probe begin\n");
6048 for (i = 0; i < host->n_ports; i++) {
6049 struct ata_port *ap = host->ports[i];
6050 async_schedule(async_port_probe, ap);
6052 DPRINTK("probe end\n");
6054 return 0;
6058 * ata_host_activate - start host, request IRQ and register it
6059 * @host: target ATA host
6060 * @irq: IRQ to request
6061 * @irq_handler: irq_handler used when requesting IRQ
6062 * @irq_flags: irq_flags used when requesting IRQ
6063 * @sht: scsi_host_template to use when registering the host
6065 * After allocating an ATA host and initializing it, most libata
6066 * LLDs perform three steps to activate the host - start host,
6067 * request IRQ and register it. This helper takes necessasry
6068 * arguments and performs the three steps in one go.
6070 * An invalid IRQ skips the IRQ registration and expects the host to
6071 * have set polling mode on the port. In this case, @irq_handler
6072 * should be NULL.
6074 * LOCKING:
6075 * Inherited from calling layer (may sleep).
6077 * RETURNS:
6078 * 0 on success, -errno otherwise.
6080 int ata_host_activate(struct ata_host *host, int irq,
6081 irq_handler_t irq_handler, unsigned long irq_flags,
6082 struct scsi_host_template *sht)
6084 int i, rc;
6086 rc = ata_host_start(host);
6087 if (rc)
6088 return rc;
6090 /* Special case for polling mode */
6091 if (!irq) {
6092 WARN_ON(irq_handler);
6093 return ata_host_register(host, sht);
6096 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6097 dev_driver_string(host->dev), host);
6098 if (rc)
6099 return rc;
6101 for (i = 0; i < host->n_ports; i++)
6102 ata_port_desc(host->ports[i], "irq %d", irq);
6104 rc = ata_host_register(host, sht);
6105 /* if failed, just free the IRQ and leave ports alone */
6106 if (rc)
6107 devm_free_irq(host->dev, irq, host);
6109 return rc;
6113 * ata_port_detach - Detach ATA port in prepration of device removal
6114 * @ap: ATA port to be detached
6116 * Detach all ATA devices and the associated SCSI devices of @ap;
6117 * then, remove the associated SCSI host. @ap is guaranteed to
6118 * be quiescent on return from this function.
6120 * LOCKING:
6121 * Kernel thread context (may sleep).
6123 static void ata_port_detach(struct ata_port *ap)
6125 unsigned long flags;
6127 if (!ap->ops->error_handler)
6128 goto skip_eh;
6130 /* tell EH we're leaving & flush EH */
6131 spin_lock_irqsave(ap->lock, flags);
6132 ap->pflags |= ATA_PFLAG_UNLOADING;
6133 ata_port_schedule_eh(ap);
6134 spin_unlock_irqrestore(ap->lock, flags);
6136 /* wait till EH commits suicide */
6137 ata_port_wait_eh(ap);
6139 /* it better be dead now */
6140 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6142 cancel_rearming_delayed_work(&ap->hotplug_task);
6144 skip_eh:
6145 /* remove the associated SCSI host */
6146 scsi_remove_host(ap->scsi_host);
6150 * ata_host_detach - Detach all ports of an ATA host
6151 * @host: Host to detach
6153 * Detach all ports of @host.
6155 * LOCKING:
6156 * Kernel thread context (may sleep).
6158 void ata_host_detach(struct ata_host *host)
6160 int i;
6162 for (i = 0; i < host->n_ports; i++)
6163 ata_port_detach(host->ports[i]);
6165 /* the host is dead now, dissociate ACPI */
6166 ata_acpi_dissociate(host);
6169 #ifdef CONFIG_PCI
6172 * ata_pci_remove_one - PCI layer callback for device removal
6173 * @pdev: PCI device that was removed
6175 * PCI layer indicates to libata via this hook that hot-unplug or
6176 * module unload event has occurred. Detach all ports. Resource
6177 * release is handled via devres.
6179 * LOCKING:
6180 * Inherited from PCI layer (may sleep).
6182 void ata_pci_remove_one(struct pci_dev *pdev)
6184 struct device *dev = &pdev->dev;
6185 struct ata_host *host = dev_get_drvdata(dev);
6187 ata_host_detach(host);
6190 /* move to PCI subsystem */
6191 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6193 unsigned long tmp = 0;
6195 switch (bits->width) {
6196 case 1: {
6197 u8 tmp8 = 0;
6198 pci_read_config_byte(pdev, bits->reg, &tmp8);
6199 tmp = tmp8;
6200 break;
6202 case 2: {
6203 u16 tmp16 = 0;
6204 pci_read_config_word(pdev, bits->reg, &tmp16);
6205 tmp = tmp16;
6206 break;
6208 case 4: {
6209 u32 tmp32 = 0;
6210 pci_read_config_dword(pdev, bits->reg, &tmp32);
6211 tmp = tmp32;
6212 break;
6215 default:
6216 return -EINVAL;
6219 tmp &= bits->mask;
6221 return (tmp == bits->val) ? 1 : 0;
6224 #ifdef CONFIG_PM
6225 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6227 pci_save_state(pdev);
6228 pci_disable_device(pdev);
6230 if (mesg.event & PM_EVENT_SLEEP)
6231 pci_set_power_state(pdev, PCI_D3hot);
6234 int ata_pci_device_do_resume(struct pci_dev *pdev)
6236 int rc;
6238 pci_set_power_state(pdev, PCI_D0);
6239 pci_restore_state(pdev);
6241 rc = pcim_enable_device(pdev);
6242 if (rc) {
6243 dev_printk(KERN_ERR, &pdev->dev,
6244 "failed to enable device after resume (%d)\n", rc);
6245 return rc;
6248 pci_set_master(pdev);
6249 return 0;
6252 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6254 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6255 int rc = 0;
6257 rc = ata_host_suspend(host, mesg);
6258 if (rc)
6259 return rc;
6261 ata_pci_device_do_suspend(pdev, mesg);
6263 return 0;
6266 int ata_pci_device_resume(struct pci_dev *pdev)
6268 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6269 int rc;
6271 rc = ata_pci_device_do_resume(pdev);
6272 if (rc == 0)
6273 ata_host_resume(host);
6274 return rc;
6276 #endif /* CONFIG_PM */
6278 #endif /* CONFIG_PCI */
6280 static int __init ata_parse_force_one(char **cur,
6281 struct ata_force_ent *force_ent,
6282 const char **reason)
6284 /* FIXME: Currently, there's no way to tag init const data and
6285 * using __initdata causes build failure on some versions of
6286 * gcc. Once __initdataconst is implemented, add const to the
6287 * following structure.
6289 static struct ata_force_param force_tbl[] __initdata = {
6290 { "40c", .cbl = ATA_CBL_PATA40 },
6291 { "80c", .cbl = ATA_CBL_PATA80 },
6292 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6293 { "unk", .cbl = ATA_CBL_PATA_UNK },
6294 { "ign", .cbl = ATA_CBL_PATA_IGN },
6295 { "sata", .cbl = ATA_CBL_SATA },
6296 { "1.5Gbps", .spd_limit = 1 },
6297 { "3.0Gbps", .spd_limit = 2 },
6298 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6299 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6300 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6301 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6302 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6303 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6304 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6305 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6306 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6307 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6308 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6309 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6310 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6311 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6312 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6313 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6314 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6315 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6316 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6317 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6318 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6319 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6320 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6321 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6322 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6323 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6324 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6325 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6326 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6327 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6328 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6329 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6330 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6331 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6332 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6333 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6334 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6335 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6336 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6338 char *start = *cur, *p = *cur;
6339 char *id, *val, *endp;
6340 const struct ata_force_param *match_fp = NULL;
6341 int nr_matches = 0, i;
6343 /* find where this param ends and update *cur */
6344 while (*p != '\0' && *p != ',')
6345 p++;
6347 if (*p == '\0')
6348 *cur = p;
6349 else
6350 *cur = p + 1;
6352 *p = '\0';
6354 /* parse */
6355 p = strchr(start, ':');
6356 if (!p) {
6357 val = strstrip(start);
6358 goto parse_val;
6360 *p = '\0';
6362 id = strstrip(start);
6363 val = strstrip(p + 1);
6365 /* parse id */
6366 p = strchr(id, '.');
6367 if (p) {
6368 *p++ = '\0';
6369 force_ent->device = simple_strtoul(p, &endp, 10);
6370 if (p == endp || *endp != '\0') {
6371 *reason = "invalid device";
6372 return -EINVAL;
6376 force_ent->port = simple_strtoul(id, &endp, 10);
6377 if (p == endp || *endp != '\0') {
6378 *reason = "invalid port/link";
6379 return -EINVAL;
6382 parse_val:
6383 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6384 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6385 const struct ata_force_param *fp = &force_tbl[i];
6387 if (strncasecmp(val, fp->name, strlen(val)))
6388 continue;
6390 nr_matches++;
6391 match_fp = fp;
6393 if (strcasecmp(val, fp->name) == 0) {
6394 nr_matches = 1;
6395 break;
6399 if (!nr_matches) {
6400 *reason = "unknown value";
6401 return -EINVAL;
6403 if (nr_matches > 1) {
6404 *reason = "ambigious value";
6405 return -EINVAL;
6408 force_ent->param = *match_fp;
6410 return 0;
6413 static void __init ata_parse_force_param(void)
6415 int idx = 0, size = 1;
6416 int last_port = -1, last_device = -1;
6417 char *p, *cur, *next;
6419 /* calculate maximum number of params and allocate force_tbl */
6420 for (p = ata_force_param_buf; *p; p++)
6421 if (*p == ',')
6422 size++;
6424 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6425 if (!ata_force_tbl) {
6426 printk(KERN_WARNING "ata: failed to extend force table, "
6427 "libata.force ignored\n");
6428 return;
6431 /* parse and populate the table */
6432 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6433 const char *reason = "";
6434 struct ata_force_ent te = { .port = -1, .device = -1 };
6436 next = cur;
6437 if (ata_parse_force_one(&next, &te, &reason)) {
6438 printk(KERN_WARNING "ata: failed to parse force "
6439 "parameter \"%s\" (%s)\n",
6440 cur, reason);
6441 continue;
6444 if (te.port == -1) {
6445 te.port = last_port;
6446 te.device = last_device;
6449 ata_force_tbl[idx++] = te;
6451 last_port = te.port;
6452 last_device = te.device;
6455 ata_force_tbl_size = idx;
6458 static int __init ata_init(void)
6460 ata_parse_force_param();
6462 ata_wq = create_workqueue("ata");
6463 if (!ata_wq)
6464 goto free_force_tbl;
6466 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6467 if (!ata_aux_wq)
6468 goto free_wq;
6470 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6471 return 0;
6473 free_wq:
6474 destroy_workqueue(ata_wq);
6475 free_force_tbl:
6476 kfree(ata_force_tbl);
6477 return -ENOMEM;
6480 static void __exit ata_exit(void)
6482 kfree(ata_force_tbl);
6483 destroy_workqueue(ata_wq);
6484 destroy_workqueue(ata_aux_wq);
6487 subsys_initcall(ata_init);
6488 module_exit(ata_exit);
6490 static unsigned long ratelimit_time;
6491 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6493 int ata_ratelimit(void)
6495 int rc;
6496 unsigned long flags;
6498 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6500 if (time_after(jiffies, ratelimit_time)) {
6501 rc = 1;
6502 ratelimit_time = jiffies + (HZ/5);
6503 } else
6504 rc = 0;
6506 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6508 return rc;
6512 * ata_wait_register - wait until register value changes
6513 * @reg: IO-mapped register
6514 * @mask: Mask to apply to read register value
6515 * @val: Wait condition
6516 * @interval: polling interval in milliseconds
6517 * @timeout: timeout in milliseconds
6519 * Waiting for some bits of register to change is a common
6520 * operation for ATA controllers. This function reads 32bit LE
6521 * IO-mapped register @reg and tests for the following condition.
6523 * (*@reg & mask) != val
6525 * If the condition is met, it returns; otherwise, the process is
6526 * repeated after @interval_msec until timeout.
6528 * LOCKING:
6529 * Kernel thread context (may sleep)
6531 * RETURNS:
6532 * The final register value.
6534 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6535 unsigned long interval, unsigned long timeout)
6537 unsigned long deadline;
6538 u32 tmp;
6540 tmp = ioread32(reg);
6542 /* Calculate timeout _after_ the first read to make sure
6543 * preceding writes reach the controller before starting to
6544 * eat away the timeout.
6546 deadline = ata_deadline(jiffies, timeout);
6548 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6549 msleep(interval);
6550 tmp = ioread32(reg);
6553 return tmp;
6557 * Dummy port_ops
6559 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6561 return AC_ERR_SYSTEM;
6564 static void ata_dummy_error_handler(struct ata_port *ap)
6566 /* truly dummy */
6569 struct ata_port_operations ata_dummy_port_ops = {
6570 .qc_prep = ata_noop_qc_prep,
6571 .qc_issue = ata_dummy_qc_issue,
6572 .error_handler = ata_dummy_error_handler,
6575 const struct ata_port_info ata_dummy_port_info = {
6576 .port_ops = &ata_dummy_port_ops,
6580 * libata is essentially a library of internal helper functions for
6581 * low-level ATA host controller drivers. As such, the API/ABI is
6582 * likely to change as new drivers are added and updated.
6583 * Do not depend on ABI/API stability.
6585 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6586 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6587 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6588 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6589 EXPORT_SYMBOL_GPL(sata_port_ops);
6590 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6591 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6592 EXPORT_SYMBOL_GPL(ata_link_next);
6593 EXPORT_SYMBOL_GPL(ata_dev_next);
6594 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6595 EXPORT_SYMBOL_GPL(ata_host_init);
6596 EXPORT_SYMBOL_GPL(ata_host_alloc);
6597 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6598 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6599 EXPORT_SYMBOL_GPL(ata_host_start);
6600 EXPORT_SYMBOL_GPL(ata_host_register);
6601 EXPORT_SYMBOL_GPL(ata_host_activate);
6602 EXPORT_SYMBOL_GPL(ata_host_detach);
6603 EXPORT_SYMBOL_GPL(ata_sg_init);
6604 EXPORT_SYMBOL_GPL(ata_qc_complete);
6605 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6606 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6607 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6608 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6609 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6610 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6611 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6612 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6613 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6614 EXPORT_SYMBOL_GPL(ata_mode_string);
6615 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6616 EXPORT_SYMBOL_GPL(ata_port_start);
6617 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6618 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6619 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6620 EXPORT_SYMBOL_GPL(ata_port_probe);
6621 EXPORT_SYMBOL_GPL(ata_dev_disable);
6622 EXPORT_SYMBOL_GPL(sata_set_spd);
6623 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6624 EXPORT_SYMBOL_GPL(sata_link_debounce);
6625 EXPORT_SYMBOL_GPL(sata_link_resume);
6626 EXPORT_SYMBOL_GPL(ata_std_prereset);
6627 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6628 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6629 EXPORT_SYMBOL_GPL(ata_std_postreset);
6630 EXPORT_SYMBOL_GPL(ata_dev_classify);
6631 EXPORT_SYMBOL_GPL(ata_dev_pair);
6632 EXPORT_SYMBOL_GPL(ata_port_disable);
6633 EXPORT_SYMBOL_GPL(ata_ratelimit);
6634 EXPORT_SYMBOL_GPL(ata_wait_register);
6635 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6636 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6637 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6638 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6639 EXPORT_SYMBOL_GPL(sata_scr_valid);
6640 EXPORT_SYMBOL_GPL(sata_scr_read);
6641 EXPORT_SYMBOL_GPL(sata_scr_write);
6642 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6643 EXPORT_SYMBOL_GPL(ata_link_online);
6644 EXPORT_SYMBOL_GPL(ata_link_offline);
6645 #ifdef CONFIG_PM
6646 EXPORT_SYMBOL_GPL(ata_host_suspend);
6647 EXPORT_SYMBOL_GPL(ata_host_resume);
6648 #endif /* CONFIG_PM */
6649 EXPORT_SYMBOL_GPL(ata_id_string);
6650 EXPORT_SYMBOL_GPL(ata_id_c_string);
6651 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6652 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6654 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6655 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6656 EXPORT_SYMBOL_GPL(ata_timing_compute);
6657 EXPORT_SYMBOL_GPL(ata_timing_merge);
6658 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6660 #ifdef CONFIG_PCI
6661 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6662 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6663 #ifdef CONFIG_PM
6664 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6665 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6666 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6667 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6668 #endif /* CONFIG_PM */
6669 #endif /* CONFIG_PCI */
6671 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6672 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6673 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6674 EXPORT_SYMBOL_GPL(ata_port_desc);
6675 #ifdef CONFIG_PCI
6676 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6677 #endif /* CONFIG_PCI */
6678 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6679 EXPORT_SYMBOL_GPL(ata_link_abort);
6680 EXPORT_SYMBOL_GPL(ata_port_abort);
6681 EXPORT_SYMBOL_GPL(ata_port_freeze);
6682 EXPORT_SYMBOL_GPL(sata_async_notification);
6683 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6684 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6685 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6686 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6687 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6688 EXPORT_SYMBOL_GPL(ata_do_eh);
6689 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6691 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6692 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6693 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6694 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6695 EXPORT_SYMBOL_GPL(ata_cable_sata);