2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <linux/async.h>
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_host.h>
63 #include <linux/libata.h>
64 #include <asm/byteorder.h>
65 #include <linux/cdrom.h>
70 /* debounce timing parameters in msecs { interval, duration, timeout } */
71 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
72 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
73 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
75 const struct ata_port_operations ata_base_port_ops
= {
76 .prereset
= ata_std_prereset
,
77 .postreset
= ata_std_postreset
,
78 .error_handler
= ata_std_error_handler
,
81 const struct ata_port_operations sata_port_ops
= {
82 .inherits
= &ata_base_port_ops
,
84 .qc_defer
= ata_std_qc_defer
,
85 .hardreset
= sata_std_hardreset
,
88 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
89 u16 heads
, u16 sectors
);
90 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
91 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
92 u8 enable
, u8 feature
);
93 static void ata_dev_xfermask(struct ata_device
*dev
);
94 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
96 unsigned int ata_print_id
= 1;
97 static struct workqueue_struct
*ata_wq
;
99 struct workqueue_struct
*ata_aux_wq
;
101 struct ata_force_param
{
105 unsigned long xfer_mask
;
106 unsigned int horkage_on
;
107 unsigned int horkage_off
;
111 struct ata_force_ent
{
114 struct ata_force_param param
;
117 static struct ata_force_ent
*ata_force_tbl
;
118 static int ata_force_tbl_size
;
120 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
121 /* param_buf is thrown away after initialization, disallow read */
122 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
123 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125 static int atapi_enabled
= 1;
126 module_param(atapi_enabled
, int, 0444);
127 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
129 static int atapi_dmadir
= 0;
130 module_param(atapi_dmadir
, int, 0444);
131 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
133 int atapi_passthru16
= 1;
134 module_param(atapi_passthru16
, int, 0444);
135 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
138 module_param_named(fua
, libata_fua
, int, 0444);
139 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
141 static int ata_ignore_hpa
;
142 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
143 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
146 module_param_named(dma
, libata_dma_mask
, int, 0444);
147 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149 static int ata_probe_timeout
;
150 module_param(ata_probe_timeout
, int, 0444);
151 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
153 int libata_noacpi
= 0;
154 module_param_named(noacpi
, libata_noacpi
, int, 0444);
155 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in probe/suspend/resume when set");
157 int libata_allow_tpm
= 0;
158 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
159 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands");
161 MODULE_AUTHOR("Jeff Garzik");
162 MODULE_DESCRIPTION("Library module for ATA devices");
163 MODULE_LICENSE("GPL");
164 MODULE_VERSION(DRV_VERSION
);
167 static bool ata_sstatus_online(u32 sstatus
)
169 return (sstatus
& 0xf) == 0x3;
173 * ata_link_next - link iteration helper
174 * @link: the previous link, NULL to start
175 * @ap: ATA port containing links to iterate
176 * @mode: iteration mode, one of ATA_LITER_*
179 * Host lock or EH context.
182 * Pointer to the next link.
184 struct ata_link
*ata_link_next(struct ata_link
*link
, struct ata_port
*ap
,
185 enum ata_link_iter_mode mode
)
187 BUG_ON(mode
!= ATA_LITER_EDGE
&&
188 mode
!= ATA_LITER_PMP_FIRST
&& mode
!= ATA_LITER_HOST_FIRST
);
190 /* NULL link indicates start of iteration */
194 case ATA_LITER_PMP_FIRST
:
195 if (sata_pmp_attached(ap
))
198 case ATA_LITER_HOST_FIRST
:
202 /* we just iterated over the host link, what's next? */
203 if (link
== &ap
->link
)
205 case ATA_LITER_HOST_FIRST
:
206 if (sata_pmp_attached(ap
))
209 case ATA_LITER_PMP_FIRST
:
210 if (unlikely(ap
->slave_link
))
211 return ap
->slave_link
;
217 /* slave_link excludes PMP */
218 if (unlikely(link
== ap
->slave_link
))
221 /* we were over a PMP link */
222 if (++link
< ap
->pmp_link
+ ap
->nr_pmp_links
)
225 if (mode
== ATA_LITER_PMP_FIRST
)
232 * ata_dev_next - device iteration helper
233 * @dev: the previous device, NULL to start
234 * @link: ATA link containing devices to iterate
235 * @mode: iteration mode, one of ATA_DITER_*
238 * Host lock or EH context.
241 * Pointer to the next device.
243 struct ata_device
*ata_dev_next(struct ata_device
*dev
, struct ata_link
*link
,
244 enum ata_dev_iter_mode mode
)
246 BUG_ON(mode
!= ATA_DITER_ENABLED
&& mode
!= ATA_DITER_ENABLED_REVERSE
&&
247 mode
!= ATA_DITER_ALL
&& mode
!= ATA_DITER_ALL_REVERSE
);
249 /* NULL dev indicates start of iteration */
252 case ATA_DITER_ENABLED
:
256 case ATA_DITER_ENABLED_REVERSE
:
257 case ATA_DITER_ALL_REVERSE
:
258 dev
= link
->device
+ ata_link_max_devices(link
) - 1;
263 /* move to the next one */
265 case ATA_DITER_ENABLED
:
267 if (++dev
< link
->device
+ ata_link_max_devices(link
))
270 case ATA_DITER_ENABLED_REVERSE
:
271 case ATA_DITER_ALL_REVERSE
:
272 if (--dev
>= link
->device
)
278 if ((mode
== ATA_DITER_ENABLED
|| mode
== ATA_DITER_ENABLED_REVERSE
) &&
279 !ata_dev_enabled(dev
))
285 * ata_dev_phys_link - find physical link for a device
286 * @dev: ATA device to look up physical link for
288 * Look up physical link which @dev is attached to. Note that
289 * this is different from @dev->link only when @dev is on slave
290 * link. For all other cases, it's the same as @dev->link.
296 * Pointer to the found physical link.
298 struct ata_link
*ata_dev_phys_link(struct ata_device
*dev
)
300 struct ata_port
*ap
= dev
->link
->ap
;
306 return ap
->slave_link
;
310 * ata_force_cbl - force cable type according to libata.force
311 * @ap: ATA port of interest
313 * Force cable type according to libata.force and whine about it.
314 * The last entry which has matching port number is used, so it
315 * can be specified as part of device force parameters. For
316 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322 void ata_force_cbl(struct ata_port
*ap
)
326 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
327 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
329 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
332 if (fe
->param
.cbl
== ATA_CBL_NONE
)
335 ap
->cbl
= fe
->param
.cbl
;
336 ata_port_printk(ap
, KERN_NOTICE
,
337 "FORCE: cable set to %s\n", fe
->param
.name
);
343 * ata_force_link_limits - force link limits according to libata.force
344 * @link: ATA link of interest
346 * Force link flags and SATA spd limit according to libata.force
347 * and whine about it. When only the port part is specified
348 * (e.g. 1:), the limit applies to all links connected to both
349 * the host link and all fan-out ports connected via PMP. If the
350 * device part is specified as 0 (e.g. 1.00:), it specifies the
351 * first fan-out link not the host link. Device number 15 always
352 * points to the host link whether PMP is attached or not. If the
353 * controller has slave link, device number 16 points to it.
358 static void ata_force_link_limits(struct ata_link
*link
)
360 bool did_spd
= false;
361 int linkno
= link
->pmp
;
364 if (ata_is_host_link(link
))
367 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
368 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
370 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
373 if (fe
->device
!= -1 && fe
->device
!= linkno
)
376 /* only honor the first spd limit */
377 if (!did_spd
&& fe
->param
.spd_limit
) {
378 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
379 ata_link_printk(link
, KERN_NOTICE
,
380 "FORCE: PHY spd limit set to %s\n",
385 /* let lflags stack */
386 if (fe
->param
.lflags
) {
387 link
->flags
|= fe
->param
.lflags
;
388 ata_link_printk(link
, KERN_NOTICE
,
389 "FORCE: link flag 0x%x forced -> 0x%x\n",
390 fe
->param
.lflags
, link
->flags
);
396 * ata_force_xfermask - force xfermask according to libata.force
397 * @dev: ATA device of interest
399 * Force xfer_mask according to libata.force and whine about it.
400 * For consistency with link selection, device number 15 selects
401 * the first device connected to the host link.
406 static void ata_force_xfermask(struct ata_device
*dev
)
408 int devno
= dev
->link
->pmp
+ dev
->devno
;
409 int alt_devno
= devno
;
412 /* allow n.15/16 for devices attached to host port */
413 if (ata_is_host_link(dev
->link
))
416 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
417 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
418 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
420 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
423 if (fe
->device
!= -1 && fe
->device
!= devno
&&
424 fe
->device
!= alt_devno
)
427 if (!fe
->param
.xfer_mask
)
430 ata_unpack_xfermask(fe
->param
.xfer_mask
,
431 &pio_mask
, &mwdma_mask
, &udma_mask
);
433 dev
->udma_mask
= udma_mask
;
434 else if (mwdma_mask
) {
436 dev
->mwdma_mask
= mwdma_mask
;
440 dev
->pio_mask
= pio_mask
;
443 ata_dev_printk(dev
, KERN_NOTICE
,
444 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
450 * ata_force_horkage - force horkage according to libata.force
451 * @dev: ATA device of interest
453 * Force horkage according to libata.force and whine about it.
454 * For consistency with link selection, device number 15 selects
455 * the first device connected to the host link.
460 static void ata_force_horkage(struct ata_device
*dev
)
462 int devno
= dev
->link
->pmp
+ dev
->devno
;
463 int alt_devno
= devno
;
466 /* allow n.15/16 for devices attached to host port */
467 if (ata_is_host_link(dev
->link
))
470 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
471 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
473 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
476 if (fe
->device
!= -1 && fe
->device
!= devno
&&
477 fe
->device
!= alt_devno
)
480 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
481 !(dev
->horkage
& fe
->param
.horkage_off
))
484 dev
->horkage
|= fe
->param
.horkage_on
;
485 dev
->horkage
&= ~fe
->param
.horkage_off
;
487 ata_dev_printk(dev
, KERN_NOTICE
,
488 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
493 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
494 * @opcode: SCSI opcode
496 * Determine ATAPI command type from @opcode.
502 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504 int atapi_cmd_type(u8 opcode
)
513 case GPCMD_WRITE_AND_VERIFY_10
:
517 case GPCMD_READ_CD_MSF
:
518 return ATAPI_READ_CD
;
522 if (atapi_passthru16
)
523 return ATAPI_PASS_THRU
;
531 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
532 * @tf: Taskfile to convert
533 * @pmp: Port multiplier port
534 * @is_cmd: This FIS is for command
535 * @fis: Buffer into which data will output
537 * Converts a standard ATA taskfile to a Serial ATA
538 * FIS structure (Register - Host to Device).
541 * Inherited from caller.
543 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
545 fis
[0] = 0x27; /* Register - Host to Device FIS */
546 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
548 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
550 fis
[2] = tf
->command
;
551 fis
[3] = tf
->feature
;
558 fis
[8] = tf
->hob_lbal
;
559 fis
[9] = tf
->hob_lbam
;
560 fis
[10] = tf
->hob_lbah
;
561 fis
[11] = tf
->hob_feature
;
564 fis
[13] = tf
->hob_nsect
;
575 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
576 * @fis: Buffer from which data will be input
577 * @tf: Taskfile to output
579 * Converts a serial ATA FIS structure to a standard ATA taskfile.
582 * Inherited from caller.
585 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
587 tf
->command
= fis
[2]; /* status */
588 tf
->feature
= fis
[3]; /* error */
595 tf
->hob_lbal
= fis
[8];
596 tf
->hob_lbam
= fis
[9];
597 tf
->hob_lbah
= fis
[10];
600 tf
->hob_nsect
= fis
[13];
603 static const u8 ata_rw_cmds
[] = {
607 ATA_CMD_READ_MULTI_EXT
,
608 ATA_CMD_WRITE_MULTI_EXT
,
612 ATA_CMD_WRITE_MULTI_FUA_EXT
,
616 ATA_CMD_PIO_READ_EXT
,
617 ATA_CMD_PIO_WRITE_EXT
,
630 ATA_CMD_WRITE_FUA_EXT
634 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
635 * @tf: command to examine and configure
636 * @dev: device tf belongs to
638 * Examine the device configuration and tf->flags to calculate
639 * the proper read/write commands and protocol to use.
644 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
648 int index
, fua
, lba48
, write
;
650 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
651 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
652 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
654 if (dev
->flags
& ATA_DFLAG_PIO
) {
655 tf
->protocol
= ATA_PROT_PIO
;
656 index
= dev
->multi_count
? 0 : 8;
657 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
658 /* Unable to use DMA due to host limitation */
659 tf
->protocol
= ATA_PROT_PIO
;
660 index
= dev
->multi_count
? 0 : 8;
662 tf
->protocol
= ATA_PROT_DMA
;
666 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
675 * ata_tf_read_block - Read block address from ATA taskfile
676 * @tf: ATA taskfile of interest
677 * @dev: ATA device @tf belongs to
682 * Read block address from @tf. This function can handle all
683 * three address formats - LBA, LBA48 and CHS. tf->protocol and
684 * flags select the address format to use.
687 * Block address read from @tf.
689 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
693 if (tf
->flags
& ATA_TFLAG_LBA
) {
694 if (tf
->flags
& ATA_TFLAG_LBA48
) {
695 block
|= (u64
)tf
->hob_lbah
<< 40;
696 block
|= (u64
)tf
->hob_lbam
<< 32;
697 block
|= (u64
)tf
->hob_lbal
<< 24;
699 block
|= (tf
->device
& 0xf) << 24;
701 block
|= tf
->lbah
<< 16;
702 block
|= tf
->lbam
<< 8;
707 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
708 head
= tf
->device
& 0xf;
711 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
718 * ata_build_rw_tf - Build ATA taskfile for given read/write request
719 * @tf: Target ATA taskfile
720 * @dev: ATA device @tf belongs to
721 * @block: Block address
722 * @n_block: Number of blocks
723 * @tf_flags: RW/FUA etc...
729 * Build ATA taskfile @tf for read/write request described by
730 * @block, @n_block, @tf_flags and @tag on @dev.
734 * 0 on success, -ERANGE if the request is too large for @dev,
735 * -EINVAL if the request is invalid.
737 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
738 u64 block
, u32 n_block
, unsigned int tf_flags
,
741 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
742 tf
->flags
|= tf_flags
;
744 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
746 if (!lba_48_ok(block
, n_block
))
749 tf
->protocol
= ATA_PROT_NCQ
;
750 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
752 if (tf
->flags
& ATA_TFLAG_WRITE
)
753 tf
->command
= ATA_CMD_FPDMA_WRITE
;
755 tf
->command
= ATA_CMD_FPDMA_READ
;
757 tf
->nsect
= tag
<< 3;
758 tf
->hob_feature
= (n_block
>> 8) & 0xff;
759 tf
->feature
= n_block
& 0xff;
761 tf
->hob_lbah
= (block
>> 40) & 0xff;
762 tf
->hob_lbam
= (block
>> 32) & 0xff;
763 tf
->hob_lbal
= (block
>> 24) & 0xff;
764 tf
->lbah
= (block
>> 16) & 0xff;
765 tf
->lbam
= (block
>> 8) & 0xff;
766 tf
->lbal
= block
& 0xff;
769 if (tf
->flags
& ATA_TFLAG_FUA
)
770 tf
->device
|= 1 << 7;
771 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
772 tf
->flags
|= ATA_TFLAG_LBA
;
774 if (lba_28_ok(block
, n_block
)) {
776 tf
->device
|= (block
>> 24) & 0xf;
777 } else if (lba_48_ok(block
, n_block
)) {
778 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
782 tf
->flags
|= ATA_TFLAG_LBA48
;
784 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
786 tf
->hob_lbah
= (block
>> 40) & 0xff;
787 tf
->hob_lbam
= (block
>> 32) & 0xff;
788 tf
->hob_lbal
= (block
>> 24) & 0xff;
790 /* request too large even for LBA48 */
793 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
796 tf
->nsect
= n_block
& 0xff;
798 tf
->lbah
= (block
>> 16) & 0xff;
799 tf
->lbam
= (block
>> 8) & 0xff;
800 tf
->lbal
= block
& 0xff;
802 tf
->device
|= ATA_LBA
;
805 u32 sect
, head
, cyl
, track
;
807 /* The request -may- be too large for CHS addressing. */
808 if (!lba_28_ok(block
, n_block
))
811 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
814 /* Convert LBA to CHS */
815 track
= (u32
)block
/ dev
->sectors
;
816 cyl
= track
/ dev
->heads
;
817 head
= track
% dev
->heads
;
818 sect
= (u32
)block
% dev
->sectors
+ 1;
820 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
821 (u32
)block
, track
, cyl
, head
, sect
);
823 /* Check whether the converted CHS can fit.
827 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
830 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
841 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
842 * @pio_mask: pio_mask
843 * @mwdma_mask: mwdma_mask
844 * @udma_mask: udma_mask
846 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
847 * unsigned int xfer_mask.
855 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
856 unsigned long mwdma_mask
,
857 unsigned long udma_mask
)
859 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
860 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
861 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
865 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
866 * @xfer_mask: xfer_mask to unpack
867 * @pio_mask: resulting pio_mask
868 * @mwdma_mask: resulting mwdma_mask
869 * @udma_mask: resulting udma_mask
871 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
872 * Any NULL distination masks will be ignored.
874 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
875 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
878 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
880 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
882 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
885 static const struct ata_xfer_ent
{
889 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
890 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
891 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
896 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
897 * @xfer_mask: xfer_mask of interest
899 * Return matching XFER_* value for @xfer_mask. Only the highest
900 * bit of @xfer_mask is considered.
906 * Matching XFER_* value, 0xff if no match found.
908 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
910 int highbit
= fls(xfer_mask
) - 1;
911 const struct ata_xfer_ent
*ent
;
913 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
914 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
915 return ent
->base
+ highbit
- ent
->shift
;
920 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
921 * @xfer_mode: XFER_* of interest
923 * Return matching xfer_mask for @xfer_mode.
929 * Matching xfer_mask, 0 if no match found.
931 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
933 const struct ata_xfer_ent
*ent
;
935 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
936 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
937 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
938 & ~((1 << ent
->shift
) - 1);
943 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
944 * @xfer_mode: XFER_* of interest
946 * Return matching xfer_shift for @xfer_mode.
952 * Matching xfer_shift, -1 if no match found.
954 int ata_xfer_mode2shift(unsigned long xfer_mode
)
956 const struct ata_xfer_ent
*ent
;
958 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
959 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
965 * ata_mode_string - convert xfer_mask to string
966 * @xfer_mask: mask of bits supported; only highest bit counts.
968 * Determine string which represents the highest speed
969 * (highest bit in @modemask).
975 * Constant C string representing highest speed listed in
976 * @mode_mask, or the constant C string "<n/a>".
978 const char *ata_mode_string(unsigned long xfer_mask
)
980 static const char * const xfer_mode_str
[] = {
1004 highbit
= fls(xfer_mask
) - 1;
1005 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
1006 return xfer_mode_str
[highbit
];
1010 static const char *sata_spd_string(unsigned int spd
)
1012 static const char * const spd_str
[] = {
1018 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
1020 return spd_str
[spd
- 1];
1023 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
1025 struct ata_link
*link
= dev
->link
;
1026 struct ata_port
*ap
= link
->ap
;
1028 unsigned int err_mask
;
1032 * disallow DIPM for drivers which haven't set
1033 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1034 * phy ready will be set in the interrupt status on
1035 * state changes, which will cause some drivers to
1036 * think there are errors - additionally drivers will
1037 * need to disable hot plug.
1039 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
1040 ap
->pm_policy
= NOT_AVAILABLE
;
1045 * For DIPM, we will only enable it for the
1046 * min_power setting.
1048 * Why? Because Disks are too stupid to know that
1049 * If the host rejects a request to go to SLUMBER
1050 * they should retry at PARTIAL, and instead it
1051 * just would give up. So, for medium_power to
1052 * work at all, we need to only allow HIPM.
1054 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
1060 /* no restrictions on IPM transitions */
1061 scontrol
&= ~(0x3 << 8);
1062 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1067 if (dev
->flags
& ATA_DFLAG_DIPM
)
1068 err_mask
= ata_dev_set_feature(dev
,
1069 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
1072 /* allow IPM to PARTIAL */
1073 scontrol
&= ~(0x1 << 8);
1074 scontrol
|= (0x2 << 8);
1075 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1080 * we don't have to disable DIPM since IPM flags
1081 * disallow transitions to SLUMBER, which effectively
1082 * disable DIPM if it does not support PARTIAL
1086 case MAX_PERFORMANCE
:
1087 /* disable all IPM transitions */
1088 scontrol
|= (0x3 << 8);
1089 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1094 * we don't have to disable DIPM since IPM flags
1095 * disallow all transitions which effectively
1096 * disable DIPM anyway.
1101 /* FIXME: handle SET FEATURES failure */
1108 * ata_dev_enable_pm - enable SATA interface power management
1109 * @dev: device to enable power management
1110 * @policy: the link power management policy
1112 * Enable SATA Interface power management. This will enable
1113 * Device Interface Power Management (DIPM) for min_power
1114 * policy, and then call driver specific callbacks for
1115 * enabling Host Initiated Power management.
1118 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1120 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
1123 struct ata_port
*ap
= dev
->link
->ap
;
1125 /* set HIPM first, then DIPM */
1126 if (ap
->ops
->enable_pm
)
1127 rc
= ap
->ops
->enable_pm(ap
, policy
);
1130 rc
= ata_dev_set_dipm(dev
, policy
);
1134 ap
->pm_policy
= MAX_PERFORMANCE
;
1136 ap
->pm_policy
= policy
;
1137 return /* rc */; /* hopefully we can use 'rc' eventually */
1142 * ata_dev_disable_pm - disable SATA interface power management
1143 * @dev: device to disable power management
1145 * Disable SATA Interface power management. This will disable
1146 * Device Interface Power Management (DIPM) without changing
1147 * policy, call driver specific callbacks for disabling Host
1148 * Initiated Power management.
1153 static void ata_dev_disable_pm(struct ata_device
*dev
)
1155 struct ata_port
*ap
= dev
->link
->ap
;
1157 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
1158 if (ap
->ops
->disable_pm
)
1159 ap
->ops
->disable_pm(ap
);
1161 #endif /* CONFIG_PM */
1163 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
1165 ap
->pm_policy
= policy
;
1166 ap
->link
.eh_info
.action
|= ATA_EH_LPM
;
1167 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
1168 ata_port_schedule_eh(ap
);
1172 static void ata_lpm_enable(struct ata_host
*host
)
1174 struct ata_link
*link
;
1175 struct ata_port
*ap
;
1176 struct ata_device
*dev
;
1179 for (i
= 0; i
< host
->n_ports
; i
++) {
1180 ap
= host
->ports
[i
];
1181 ata_for_each_link(link
, ap
, EDGE
) {
1182 ata_for_each_dev(dev
, link
, ALL
)
1183 ata_dev_disable_pm(dev
);
1188 static void ata_lpm_disable(struct ata_host
*host
)
1192 for (i
= 0; i
< host
->n_ports
; i
++) {
1193 struct ata_port
*ap
= host
->ports
[i
];
1194 ata_lpm_schedule(ap
, ap
->pm_policy
);
1197 #endif /* CONFIG_PM */
1200 * ata_dev_classify - determine device type based on ATA-spec signature
1201 * @tf: ATA taskfile register set for device to be identified
1203 * Determine from taskfile register contents whether a device is
1204 * ATA or ATAPI, as per "Signature and persistence" section
1205 * of ATA/PI spec (volume 1, sect 5.14).
1211 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1212 * %ATA_DEV_UNKNOWN the event of failure.
1214 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1216 /* Apple's open source Darwin code hints that some devices only
1217 * put a proper signature into the LBA mid/high registers,
1218 * So, we only check those. It's sufficient for uniqueness.
1220 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1221 * signatures for ATA and ATAPI devices attached on SerialATA,
1222 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1223 * spec has never mentioned about using different signatures
1224 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1225 * Multiplier specification began to use 0x69/0x96 to identify
1226 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1227 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1228 * 0x69/0x96 shortly and described them as reserved for
1231 * We follow the current spec and consider that 0x69/0x96
1232 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1234 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1235 DPRINTK("found ATA device by sig\n");
1239 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1240 DPRINTK("found ATAPI device by sig\n");
1241 return ATA_DEV_ATAPI
;
1244 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1245 DPRINTK("found PMP device by sig\n");
1249 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1250 printk(KERN_INFO
"ata: SEMB device ignored\n");
1251 return ATA_DEV_SEMB_UNSUP
; /* not yet */
1254 DPRINTK("unknown device\n");
1255 return ATA_DEV_UNKNOWN
;
1259 * ata_id_string - Convert IDENTIFY DEVICE page into string
1260 * @id: IDENTIFY DEVICE results we will examine
1261 * @s: string into which data is output
1262 * @ofs: offset into identify device page
1263 * @len: length of string to return. must be an even number.
1265 * The strings in the IDENTIFY DEVICE page are broken up into
1266 * 16-bit chunks. Run through the string, and output each
1267 * 8-bit chunk linearly, regardless of platform.
1273 void ata_id_string(const u16
*id
, unsigned char *s
,
1274 unsigned int ofs
, unsigned int len
)
1295 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1296 * @id: IDENTIFY DEVICE results we will examine
1297 * @s: string into which data is output
1298 * @ofs: offset into identify device page
1299 * @len: length of string to return. must be an odd number.
1301 * This function is identical to ata_id_string except that it
1302 * trims trailing spaces and terminates the resulting string with
1303 * null. @len must be actual maximum length (even number) + 1.
1308 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1309 unsigned int ofs
, unsigned int len
)
1313 ata_id_string(id
, s
, ofs
, len
- 1);
1315 p
= s
+ strnlen(s
, len
- 1);
1316 while (p
> s
&& p
[-1] == ' ')
1321 static u64
ata_id_n_sectors(const u16
*id
)
1323 if (ata_id_has_lba(id
)) {
1324 if (ata_id_has_lba48(id
))
1325 return ata_id_u64(id
, 100);
1327 return ata_id_u32(id
, 60);
1329 if (ata_id_current_chs_valid(id
))
1330 return ata_id_u32(id
, 57);
1332 return id
[1] * id
[3] * id
[6];
1336 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1340 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1341 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1342 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1343 sectors
|= (tf
->lbah
& 0xff) << 16;
1344 sectors
|= (tf
->lbam
& 0xff) << 8;
1345 sectors
|= (tf
->lbal
& 0xff);
1350 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1354 sectors
|= (tf
->device
& 0x0f) << 24;
1355 sectors
|= (tf
->lbah
& 0xff) << 16;
1356 sectors
|= (tf
->lbam
& 0xff) << 8;
1357 sectors
|= (tf
->lbal
& 0xff);
1363 * ata_read_native_max_address - Read native max address
1364 * @dev: target device
1365 * @max_sectors: out parameter for the result native max address
1367 * Perform an LBA48 or LBA28 native size query upon the device in
1371 * 0 on success, -EACCES if command is aborted by the drive.
1372 * -EIO on other errors.
1374 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1376 unsigned int err_mask
;
1377 struct ata_taskfile tf
;
1378 int lba48
= ata_id_has_lba48(dev
->id
);
1380 ata_tf_init(dev
, &tf
);
1382 /* always clear all address registers */
1383 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1386 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1387 tf
.flags
|= ATA_TFLAG_LBA48
;
1389 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1391 tf
.protocol
|= ATA_PROT_NODATA
;
1392 tf
.device
|= ATA_LBA
;
1394 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1396 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1397 "max address (err_mask=0x%x)\n", err_mask
);
1398 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1404 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1406 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1407 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1413 * ata_set_max_sectors - Set max sectors
1414 * @dev: target device
1415 * @new_sectors: new max sectors value to set for the device
1417 * Set max sectors of @dev to @new_sectors.
1420 * 0 on success, -EACCES if command is aborted or denied (due to
1421 * previous non-volatile SET_MAX) by the drive. -EIO on other
1424 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1426 unsigned int err_mask
;
1427 struct ata_taskfile tf
;
1428 int lba48
= ata_id_has_lba48(dev
->id
);
1432 ata_tf_init(dev
, &tf
);
1434 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1437 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1438 tf
.flags
|= ATA_TFLAG_LBA48
;
1440 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1441 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1442 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1444 tf
.command
= ATA_CMD_SET_MAX
;
1446 tf
.device
|= (new_sectors
>> 24) & 0xf;
1449 tf
.protocol
|= ATA_PROT_NODATA
;
1450 tf
.device
|= ATA_LBA
;
1452 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1453 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1454 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1456 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1458 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1459 "max address (err_mask=0x%x)\n", err_mask
);
1460 if (err_mask
== AC_ERR_DEV
&&
1461 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1470 * ata_hpa_resize - Resize a device with an HPA set
1471 * @dev: Device to resize
1473 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1474 * it if required to the full size of the media. The caller must check
1475 * the drive has the HPA feature set enabled.
1478 * 0 on success, -errno on failure.
1480 static int ata_hpa_resize(struct ata_device
*dev
)
1482 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1483 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1484 u64 sectors
= ata_id_n_sectors(dev
->id
);
1488 /* do we need to do it? */
1489 if (dev
->class != ATA_DEV_ATA
||
1490 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1491 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1494 /* read native max address */
1495 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1497 /* If device aborted the command or HPA isn't going to
1498 * be unlocked, skip HPA resizing.
1500 if (rc
== -EACCES
|| !ata_ignore_hpa
) {
1501 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1502 "broken, skipping HPA handling\n");
1503 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1505 /* we can continue if device aborted the command */
1513 /* nothing to do? */
1514 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1515 if (!print_info
|| native_sectors
== sectors
)
1518 if (native_sectors
> sectors
)
1519 ata_dev_printk(dev
, KERN_INFO
,
1520 "HPA detected: current %llu, native %llu\n",
1521 (unsigned long long)sectors
,
1522 (unsigned long long)native_sectors
);
1523 else if (native_sectors
< sectors
)
1524 ata_dev_printk(dev
, KERN_WARNING
,
1525 "native sectors (%llu) is smaller than "
1527 (unsigned long long)native_sectors
,
1528 (unsigned long long)sectors
);
1532 /* let's unlock HPA */
1533 rc
= ata_set_max_sectors(dev
, native_sectors
);
1534 if (rc
== -EACCES
) {
1535 /* if device aborted the command, skip HPA resizing */
1536 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1537 "(%llu -> %llu), skipping HPA handling\n",
1538 (unsigned long long)sectors
,
1539 (unsigned long long)native_sectors
);
1540 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1545 /* re-read IDENTIFY data */
1546 rc
= ata_dev_reread_id(dev
, 0);
1548 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1549 "data after HPA resizing\n");
1554 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1555 ata_dev_printk(dev
, KERN_INFO
,
1556 "HPA unlocked: %llu -> %llu, native %llu\n",
1557 (unsigned long long)sectors
,
1558 (unsigned long long)new_sectors
,
1559 (unsigned long long)native_sectors
);
1566 * ata_dump_id - IDENTIFY DEVICE info debugging output
1567 * @id: IDENTIFY DEVICE page to dump
1569 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1576 static inline void ata_dump_id(const u16
*id
)
1578 DPRINTK("49==0x%04x "
1588 DPRINTK("80==0x%04x "
1598 DPRINTK("88==0x%04x "
1605 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1606 * @id: IDENTIFY data to compute xfer mask from
1608 * Compute the xfermask for this device. This is not as trivial
1609 * as it seems if we must consider early devices correctly.
1611 * FIXME: pre IDE drive timing (do we care ?).
1619 unsigned long ata_id_xfermask(const u16
*id
)
1621 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1623 /* Usual case. Word 53 indicates word 64 is valid */
1624 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1625 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1629 /* If word 64 isn't valid then Word 51 high byte holds
1630 * the PIO timing number for the maximum. Turn it into
1633 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1634 if (mode
< 5) /* Valid PIO range */
1635 pio_mask
= (2 << mode
) - 1;
1639 /* But wait.. there's more. Design your standards by
1640 * committee and you too can get a free iordy field to
1641 * process. However its the speeds not the modes that
1642 * are supported... Note drivers using the timing API
1643 * will get this right anyway
1647 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1649 if (ata_id_is_cfa(id
)) {
1651 * Process compact flash extended modes
1653 int pio
= id
[163] & 0x7;
1654 int dma
= (id
[163] >> 3) & 7;
1657 pio_mask
|= (1 << 5);
1659 pio_mask
|= (1 << 6);
1661 mwdma_mask
|= (1 << 3);
1663 mwdma_mask
|= (1 << 4);
1667 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1668 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1670 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1674 * ata_pio_queue_task - Queue port_task
1675 * @ap: The ata_port to queue port_task for
1676 * @data: data for @fn to use
1677 * @delay: delay time in msecs for workqueue function
1679 * Schedule @fn(@data) for execution after @delay jiffies using
1680 * port_task. There is one port_task per port and it's the
1681 * user(low level driver)'s responsibility to make sure that only
1682 * one task is active at any given time.
1684 * libata core layer takes care of synchronization between
1685 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1689 * Inherited from caller.
1691 void ata_pio_queue_task(struct ata_port
*ap
, void *data
, unsigned long delay
)
1693 ap
->port_task_data
= data
;
1695 /* may fail if ata_port_flush_task() in progress */
1696 queue_delayed_work(ata_wq
, &ap
->port_task
, msecs_to_jiffies(delay
));
1700 * ata_port_flush_task - Flush port_task
1701 * @ap: The ata_port to flush port_task for
1703 * After this function completes, port_task is guranteed not to
1704 * be running or scheduled.
1707 * Kernel thread context (may sleep)
1709 void ata_port_flush_task(struct ata_port
*ap
)
1713 cancel_rearming_delayed_work(&ap
->port_task
);
1715 if (ata_msg_ctl(ap
))
1716 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1719 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1721 struct completion
*waiting
= qc
->private_data
;
1727 * ata_exec_internal_sg - execute libata internal command
1728 * @dev: Device to which the command is sent
1729 * @tf: Taskfile registers for the command and the result
1730 * @cdb: CDB for packet command
1731 * @dma_dir: Data tranfer direction of the command
1732 * @sgl: sg list for the data buffer of the command
1733 * @n_elem: Number of sg entries
1734 * @timeout: Timeout in msecs (0 for default)
1736 * Executes libata internal command with timeout. @tf contains
1737 * command on entry and result on return. Timeout and error
1738 * conditions are reported via return value. No recovery action
1739 * is taken after a command times out. It's caller's duty to
1740 * clean up after timeout.
1743 * None. Should be called with kernel context, might sleep.
1746 * Zero on success, AC_ERR_* mask on failure
1748 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1749 struct ata_taskfile
*tf
, const u8
*cdb
,
1750 int dma_dir
, struct scatterlist
*sgl
,
1751 unsigned int n_elem
, unsigned long timeout
)
1753 struct ata_link
*link
= dev
->link
;
1754 struct ata_port
*ap
= link
->ap
;
1755 u8 command
= tf
->command
;
1756 int auto_timeout
= 0;
1757 struct ata_queued_cmd
*qc
;
1758 unsigned int tag
, preempted_tag
;
1759 u32 preempted_sactive
, preempted_qc_active
;
1760 int preempted_nr_active_links
;
1761 DECLARE_COMPLETION_ONSTACK(wait
);
1762 unsigned long flags
;
1763 unsigned int err_mask
;
1766 spin_lock_irqsave(ap
->lock
, flags
);
1768 /* no internal command while frozen */
1769 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1770 spin_unlock_irqrestore(ap
->lock
, flags
);
1771 return AC_ERR_SYSTEM
;
1774 /* initialize internal qc */
1776 /* XXX: Tag 0 is used for drivers with legacy EH as some
1777 * drivers choke if any other tag is given. This breaks
1778 * ata_tag_internal() test for those drivers. Don't use new
1779 * EH stuff without converting to it.
1781 if (ap
->ops
->error_handler
)
1782 tag
= ATA_TAG_INTERNAL
;
1786 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1788 qc
= __ata_qc_from_tag(ap
, tag
);
1796 preempted_tag
= link
->active_tag
;
1797 preempted_sactive
= link
->sactive
;
1798 preempted_qc_active
= ap
->qc_active
;
1799 preempted_nr_active_links
= ap
->nr_active_links
;
1800 link
->active_tag
= ATA_TAG_POISON
;
1803 ap
->nr_active_links
= 0;
1805 /* prepare & issue qc */
1808 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1809 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1810 qc
->dma_dir
= dma_dir
;
1811 if (dma_dir
!= DMA_NONE
) {
1812 unsigned int i
, buflen
= 0;
1813 struct scatterlist
*sg
;
1815 for_each_sg(sgl
, sg
, n_elem
, i
)
1816 buflen
+= sg
->length
;
1818 ata_sg_init(qc
, sgl
, n_elem
);
1819 qc
->nbytes
= buflen
;
1822 qc
->private_data
= &wait
;
1823 qc
->complete_fn
= ata_qc_complete_internal
;
1827 spin_unlock_irqrestore(ap
->lock
, flags
);
1830 if (ata_probe_timeout
)
1831 timeout
= ata_probe_timeout
* 1000;
1833 timeout
= ata_internal_cmd_timeout(dev
, command
);
1838 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1840 ata_port_flush_task(ap
);
1843 spin_lock_irqsave(ap
->lock
, flags
);
1845 /* We're racing with irq here. If we lose, the
1846 * following test prevents us from completing the qc
1847 * twice. If we win, the port is frozen and will be
1848 * cleaned up by ->post_internal_cmd().
1850 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1851 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1853 if (ap
->ops
->error_handler
)
1854 ata_port_freeze(ap
);
1856 ata_qc_complete(qc
);
1858 if (ata_msg_warn(ap
))
1859 ata_dev_printk(dev
, KERN_WARNING
,
1860 "qc timeout (cmd 0x%x)\n", command
);
1863 spin_unlock_irqrestore(ap
->lock
, flags
);
1866 /* do post_internal_cmd */
1867 if (ap
->ops
->post_internal_cmd
)
1868 ap
->ops
->post_internal_cmd(qc
);
1870 /* perform minimal error analysis */
1871 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1872 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1873 qc
->err_mask
|= AC_ERR_DEV
;
1876 qc
->err_mask
|= AC_ERR_OTHER
;
1878 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1879 qc
->err_mask
&= ~AC_ERR_OTHER
;
1883 spin_lock_irqsave(ap
->lock
, flags
);
1885 *tf
= qc
->result_tf
;
1886 err_mask
= qc
->err_mask
;
1889 link
->active_tag
= preempted_tag
;
1890 link
->sactive
= preempted_sactive
;
1891 ap
->qc_active
= preempted_qc_active
;
1892 ap
->nr_active_links
= preempted_nr_active_links
;
1894 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1895 * Until those drivers are fixed, we detect the condition
1896 * here, fail the command with AC_ERR_SYSTEM and reenable the
1899 * Note that this doesn't change any behavior as internal
1900 * command failure results in disabling the device in the
1901 * higher layer for LLDDs without new reset/EH callbacks.
1903 * Kill the following code as soon as those drivers are fixed.
1905 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1906 err_mask
|= AC_ERR_SYSTEM
;
1910 spin_unlock_irqrestore(ap
->lock
, flags
);
1912 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1913 ata_internal_cmd_timed_out(dev
, command
);
1919 * ata_exec_internal - execute libata internal command
1920 * @dev: Device to which the command is sent
1921 * @tf: Taskfile registers for the command and the result
1922 * @cdb: CDB for packet command
1923 * @dma_dir: Data tranfer direction of the command
1924 * @buf: Data buffer of the command
1925 * @buflen: Length of data buffer
1926 * @timeout: Timeout in msecs (0 for default)
1928 * Wrapper around ata_exec_internal_sg() which takes simple
1929 * buffer instead of sg list.
1932 * None. Should be called with kernel context, might sleep.
1935 * Zero on success, AC_ERR_* mask on failure
1937 unsigned ata_exec_internal(struct ata_device
*dev
,
1938 struct ata_taskfile
*tf
, const u8
*cdb
,
1939 int dma_dir
, void *buf
, unsigned int buflen
,
1940 unsigned long timeout
)
1942 struct scatterlist
*psg
= NULL
, sg
;
1943 unsigned int n_elem
= 0;
1945 if (dma_dir
!= DMA_NONE
) {
1947 sg_init_one(&sg
, buf
, buflen
);
1952 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1957 * ata_do_simple_cmd - execute simple internal command
1958 * @dev: Device to which the command is sent
1959 * @cmd: Opcode to execute
1961 * Execute a 'simple' command, that only consists of the opcode
1962 * 'cmd' itself, without filling any other registers
1965 * Kernel thread context (may sleep).
1968 * Zero on success, AC_ERR_* mask on failure
1970 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1972 struct ata_taskfile tf
;
1974 ata_tf_init(dev
, &tf
);
1977 tf
.flags
|= ATA_TFLAG_DEVICE
;
1978 tf
.protocol
= ATA_PROT_NODATA
;
1980 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1984 * ata_pio_need_iordy - check if iordy needed
1987 * Check if the current speed of the device requires IORDY. Used
1988 * by various controllers for chip configuration.
1991 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1993 /* Controller doesn't support IORDY. Probably a pointless check
1994 as the caller should know this */
1995 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1997 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1998 if (ata_id_is_cfa(adev
->id
)
1999 && (adev
->pio_mode
== XFER_PIO_5
|| adev
->pio_mode
== XFER_PIO_6
))
2001 /* PIO3 and higher it is mandatory */
2002 if (adev
->pio_mode
> XFER_PIO_2
)
2004 /* We turn it on when possible */
2005 if (ata_id_has_iordy(adev
->id
))
2011 * ata_pio_mask_no_iordy - Return the non IORDY mask
2014 * Compute the highest mode possible if we are not using iordy. Return
2015 * -1 if no iordy mode is available.
2018 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
2020 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2021 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
2022 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
2023 /* Is the speed faster than the drive allows non IORDY ? */
2025 /* This is cycle times not frequency - watch the logic! */
2026 if (pio
> 240) /* PIO2 is 240nS per cycle */
2027 return 3 << ATA_SHIFT_PIO
;
2028 return 7 << ATA_SHIFT_PIO
;
2031 return 3 << ATA_SHIFT_PIO
;
2035 * ata_do_dev_read_id - default ID read method
2037 * @tf: proposed taskfile
2040 * Issue the identify taskfile and hand back the buffer containing
2041 * identify data. For some RAID controllers and for pre ATA devices
2042 * this function is wrapped or replaced by the driver
2044 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
2045 struct ata_taskfile
*tf
, u16
*id
)
2047 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
2048 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
2052 * ata_dev_read_id - Read ID data from the specified device
2053 * @dev: target device
2054 * @p_class: pointer to class of the target device (may be changed)
2055 * @flags: ATA_READID_* flags
2056 * @id: buffer to read IDENTIFY data into
2058 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2059 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2060 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2061 * for pre-ATA4 drives.
2063 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2064 * now we abort if we hit that case.
2067 * Kernel thread context (may sleep)
2070 * 0 on success, -errno otherwise.
2072 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
2073 unsigned int flags
, u16
*id
)
2075 struct ata_port
*ap
= dev
->link
->ap
;
2076 unsigned int class = *p_class
;
2077 struct ata_taskfile tf
;
2078 unsigned int err_mask
= 0;
2080 int may_fallback
= 1, tried_spinup
= 0;
2083 if (ata_msg_ctl(ap
))
2084 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2087 ata_tf_init(dev
, &tf
);
2091 tf
.command
= ATA_CMD_ID_ATA
;
2094 tf
.command
= ATA_CMD_ID_ATAPI
;
2098 reason
= "unsupported class";
2102 tf
.protocol
= ATA_PROT_PIO
;
2104 /* Some devices choke if TF registers contain garbage. Make
2105 * sure those are properly initialized.
2107 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2109 /* Device presence detection is unreliable on some
2110 * controllers. Always poll IDENTIFY if available.
2112 tf
.flags
|= ATA_TFLAG_POLLING
;
2114 if (ap
->ops
->read_id
)
2115 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
2117 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
2120 if (err_mask
& AC_ERR_NODEV_HINT
) {
2121 ata_dev_printk(dev
, KERN_DEBUG
,
2122 "NODEV after polling detection\n");
2126 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
2127 /* Device or controller might have reported
2128 * the wrong device class. Give a shot at the
2129 * other IDENTIFY if the current one is
2130 * aborted by the device.
2135 if (class == ATA_DEV_ATA
)
2136 class = ATA_DEV_ATAPI
;
2138 class = ATA_DEV_ATA
;
2142 /* Control reaches here iff the device aborted
2143 * both flavors of IDENTIFYs which happens
2144 * sometimes with phantom devices.
2146 ata_dev_printk(dev
, KERN_DEBUG
,
2147 "both IDENTIFYs aborted, assuming NODEV\n");
2152 reason
= "I/O error";
2156 /* Falling back doesn't make sense if ID data was read
2157 * successfully at least once.
2161 swap_buf_le16(id
, ATA_ID_WORDS
);
2165 reason
= "device reports invalid type";
2167 if (class == ATA_DEV_ATA
) {
2168 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
2171 if (ata_id_is_ata(id
))
2175 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2178 * Drive powered-up in standby mode, and requires a specific
2179 * SET_FEATURES spin-up subcommand before it will accept
2180 * anything other than the original IDENTIFY command.
2182 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2183 if (err_mask
&& id
[2] != 0x738c) {
2185 reason
= "SPINUP failed";
2189 * If the drive initially returned incomplete IDENTIFY info,
2190 * we now must reissue the IDENTIFY command.
2192 if (id
[2] == 0x37c8)
2196 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2198 * The exact sequence expected by certain pre-ATA4 drives is:
2200 * IDENTIFY (optional in early ATA)
2201 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2203 * Some drives were very specific about that exact sequence.
2205 * Note that ATA4 says lba is mandatory so the second check
2206 * shoud never trigger.
2208 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2209 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2212 reason
= "INIT_DEV_PARAMS failed";
2216 /* current CHS translation info (id[53-58]) might be
2217 * changed. reread the identify device info.
2219 flags
&= ~ATA_READID_POSTRESET
;
2229 if (ata_msg_warn(ap
))
2230 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2231 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2235 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2237 struct ata_port
*ap
= dev
->link
->ap
;
2239 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_BRIDGE_OK
)
2242 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2245 static void ata_dev_config_ncq(struct ata_device
*dev
,
2246 char *desc
, size_t desc_sz
)
2248 struct ata_port
*ap
= dev
->link
->ap
;
2249 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2251 if (!ata_id_has_ncq(dev
->id
)) {
2255 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2256 snprintf(desc
, desc_sz
, "NCQ (not used)");
2259 if (ap
->flags
& ATA_FLAG_NCQ
) {
2260 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2261 dev
->flags
|= ATA_DFLAG_NCQ
;
2264 if (hdepth
>= ddepth
)
2265 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
2267 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
2271 * ata_dev_configure - Configure the specified ATA/ATAPI device
2272 * @dev: Target device to configure
2274 * Configure @dev according to @dev->id. Generic and low-level
2275 * driver specific fixups are also applied.
2278 * Kernel thread context (may sleep)
2281 * 0 on success, -errno otherwise
2283 int ata_dev_configure(struct ata_device
*dev
)
2285 struct ata_port
*ap
= dev
->link
->ap
;
2286 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2287 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2288 const u16
*id
= dev
->id
;
2289 unsigned long xfer_mask
;
2290 char revbuf
[7]; /* XYZ-99\0 */
2291 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2292 char modelbuf
[ATA_ID_PROD_LEN
+1];
2295 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2296 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2301 if (ata_msg_probe(ap
))
2302 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2305 dev
->horkage
|= ata_dev_blacklisted(dev
);
2306 ata_force_horkage(dev
);
2308 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2309 ata_dev_printk(dev
, KERN_INFO
,
2310 "unsupported device, disabling\n");
2311 ata_dev_disable(dev
);
2315 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2316 dev
->class == ATA_DEV_ATAPI
) {
2317 ata_dev_printk(dev
, KERN_WARNING
,
2318 "WARNING: ATAPI is %s, device ignored.\n",
2319 atapi_enabled
? "not supported with this driver"
2321 ata_dev_disable(dev
);
2325 /* let ACPI work its magic */
2326 rc
= ata_acpi_on_devcfg(dev
);
2330 /* massage HPA, do it early as it might change IDENTIFY data */
2331 rc
= ata_hpa_resize(dev
);
2335 /* print device capabilities */
2336 if (ata_msg_probe(ap
))
2337 ata_dev_printk(dev
, KERN_DEBUG
,
2338 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2339 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2341 id
[49], id
[82], id
[83], id
[84],
2342 id
[85], id
[86], id
[87], id
[88]);
2344 /* initialize to-be-configured parameters */
2345 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2346 dev
->max_sectors
= 0;
2354 * common ATA, ATAPI feature tests
2357 /* find max transfer mode; for printk only */
2358 xfer_mask
= ata_id_xfermask(id
);
2360 if (ata_msg_probe(ap
))
2363 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2364 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2367 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2370 /* ATA-specific feature tests */
2371 if (dev
->class == ATA_DEV_ATA
) {
2372 if (ata_id_is_cfa(id
)) {
2373 if (id
[162] & 1) /* CPRM may make this media unusable */
2374 ata_dev_printk(dev
, KERN_WARNING
,
2375 "supports DRM functions and may "
2376 "not be fully accessable.\n");
2377 snprintf(revbuf
, 7, "CFA");
2379 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2380 /* Warn the user if the device has TPM extensions */
2381 if (ata_id_has_tpm(id
))
2382 ata_dev_printk(dev
, KERN_WARNING
,
2383 "supports DRM functions and may "
2384 "not be fully accessable.\n");
2387 dev
->n_sectors
= ata_id_n_sectors(id
);
2389 if (dev
->id
[59] & 0x100)
2390 dev
->multi_count
= dev
->id
[59] & 0xff;
2392 if (ata_id_has_lba(id
)) {
2393 const char *lba_desc
;
2397 dev
->flags
|= ATA_DFLAG_LBA
;
2398 if (ata_id_has_lba48(id
)) {
2399 dev
->flags
|= ATA_DFLAG_LBA48
;
2402 if (dev
->n_sectors
>= (1UL << 28) &&
2403 ata_id_has_flush_ext(id
))
2404 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2408 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2410 /* print device info to dmesg */
2411 if (ata_msg_drv(ap
) && print_info
) {
2412 ata_dev_printk(dev
, KERN_INFO
,
2413 "%s: %s, %s, max %s\n",
2414 revbuf
, modelbuf
, fwrevbuf
,
2415 ata_mode_string(xfer_mask
));
2416 ata_dev_printk(dev
, KERN_INFO
,
2417 "%Lu sectors, multi %u: %s %s\n",
2418 (unsigned long long)dev
->n_sectors
,
2419 dev
->multi_count
, lba_desc
, ncq_desc
);
2424 /* Default translation */
2425 dev
->cylinders
= id
[1];
2427 dev
->sectors
= id
[6];
2429 if (ata_id_current_chs_valid(id
)) {
2430 /* Current CHS translation is valid. */
2431 dev
->cylinders
= id
[54];
2432 dev
->heads
= id
[55];
2433 dev
->sectors
= id
[56];
2436 /* print device info to dmesg */
2437 if (ata_msg_drv(ap
) && print_info
) {
2438 ata_dev_printk(dev
, KERN_INFO
,
2439 "%s: %s, %s, max %s\n",
2440 revbuf
, modelbuf
, fwrevbuf
,
2441 ata_mode_string(xfer_mask
));
2442 ata_dev_printk(dev
, KERN_INFO
,
2443 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2444 (unsigned long long)dev
->n_sectors
,
2445 dev
->multi_count
, dev
->cylinders
,
2446 dev
->heads
, dev
->sectors
);
2453 /* ATAPI-specific feature tests */
2454 else if (dev
->class == ATA_DEV_ATAPI
) {
2455 const char *cdb_intr_string
= "";
2456 const char *atapi_an_string
= "";
2457 const char *dma_dir_string
= "";
2460 rc
= atapi_cdb_len(id
);
2461 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2462 if (ata_msg_warn(ap
))
2463 ata_dev_printk(dev
, KERN_WARNING
,
2464 "unsupported CDB len\n");
2468 dev
->cdb_len
= (unsigned int) rc
;
2470 /* Enable ATAPI AN if both the host and device have
2471 * the support. If PMP is attached, SNTF is required
2472 * to enable ATAPI AN to discern between PHY status
2473 * changed notifications and ATAPI ANs.
2475 if ((ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2476 (!sata_pmp_attached(ap
) ||
2477 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2478 unsigned int err_mask
;
2480 /* issue SET feature command to turn this on */
2481 err_mask
= ata_dev_set_feature(dev
,
2482 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2484 ata_dev_printk(dev
, KERN_ERR
,
2485 "failed to enable ATAPI AN "
2486 "(err_mask=0x%x)\n", err_mask
);
2488 dev
->flags
|= ATA_DFLAG_AN
;
2489 atapi_an_string
= ", ATAPI AN";
2493 if (ata_id_cdb_intr(dev
->id
)) {
2494 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2495 cdb_intr_string
= ", CDB intr";
2498 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2499 dev
->flags
|= ATA_DFLAG_DMADIR
;
2500 dma_dir_string
= ", DMADIR";
2503 /* print device info to dmesg */
2504 if (ata_msg_drv(ap
) && print_info
)
2505 ata_dev_printk(dev
, KERN_INFO
,
2506 "ATAPI: %s, %s, max %s%s%s%s\n",
2508 ata_mode_string(xfer_mask
),
2509 cdb_intr_string
, atapi_an_string
,
2513 /* determine max_sectors */
2514 dev
->max_sectors
= ATA_MAX_SECTORS
;
2515 if (dev
->flags
& ATA_DFLAG_LBA48
)
2516 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2518 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2519 if (ata_id_has_hipm(dev
->id
))
2520 dev
->flags
|= ATA_DFLAG_HIPM
;
2521 if (ata_id_has_dipm(dev
->id
))
2522 dev
->flags
|= ATA_DFLAG_DIPM
;
2525 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2527 if (ata_dev_knobble(dev
)) {
2528 if (ata_msg_drv(ap
) && print_info
)
2529 ata_dev_printk(dev
, KERN_INFO
,
2530 "applying bridge limits\n");
2531 dev
->udma_mask
&= ATA_UDMA5
;
2532 dev
->max_sectors
= ATA_MAX_SECTORS
;
2535 if ((dev
->class == ATA_DEV_ATAPI
) &&
2536 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2537 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2538 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2541 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2542 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2545 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2546 dev
->horkage
|= ATA_HORKAGE_IPM
;
2548 /* reset link pm_policy for this port to no pm */
2549 ap
->pm_policy
= MAX_PERFORMANCE
;
2552 if (ap
->ops
->dev_config
)
2553 ap
->ops
->dev_config(dev
);
2555 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2556 /* Let the user know. We don't want to disallow opens for
2557 rescue purposes, or in case the vendor is just a blithering
2558 idiot. Do this after the dev_config call as some controllers
2559 with buggy firmware may want to avoid reporting false device
2563 ata_dev_printk(dev
, KERN_WARNING
,
2564 "Drive reports diagnostics failure. This may indicate a drive\n");
2565 ata_dev_printk(dev
, KERN_WARNING
,
2566 "fault or invalid emulation. Contact drive vendor for information.\n");
2570 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2571 ata_dev_printk(dev
, KERN_WARNING
, "WARNING: device requires "
2572 "firmware update to be fully functional.\n");
2573 ata_dev_printk(dev
, KERN_WARNING
, " contact the vendor "
2574 "or visit http://ata.wiki.kernel.org.\n");
2580 if (ata_msg_probe(ap
))
2581 ata_dev_printk(dev
, KERN_DEBUG
,
2582 "%s: EXIT, err\n", __func__
);
2587 * ata_cable_40wire - return 40 wire cable type
2590 * Helper method for drivers which want to hardwire 40 wire cable
2594 int ata_cable_40wire(struct ata_port
*ap
)
2596 return ATA_CBL_PATA40
;
2600 * ata_cable_80wire - return 80 wire cable type
2603 * Helper method for drivers which want to hardwire 80 wire cable
2607 int ata_cable_80wire(struct ata_port
*ap
)
2609 return ATA_CBL_PATA80
;
2613 * ata_cable_unknown - return unknown PATA cable.
2616 * Helper method for drivers which have no PATA cable detection.
2619 int ata_cable_unknown(struct ata_port
*ap
)
2621 return ATA_CBL_PATA_UNK
;
2625 * ata_cable_ignore - return ignored PATA cable.
2628 * Helper method for drivers which don't use cable type to limit
2631 int ata_cable_ignore(struct ata_port
*ap
)
2633 return ATA_CBL_PATA_IGN
;
2637 * ata_cable_sata - return SATA cable type
2640 * Helper method for drivers which have SATA cables
2643 int ata_cable_sata(struct ata_port
*ap
)
2645 return ATA_CBL_SATA
;
2649 * ata_bus_probe - Reset and probe ATA bus
2652 * Master ATA bus probing function. Initiates a hardware-dependent
2653 * bus reset, then attempts to identify any devices found on
2657 * PCI/etc. bus probe sem.
2660 * Zero on success, negative errno otherwise.
2663 int ata_bus_probe(struct ata_port
*ap
)
2665 unsigned int classes
[ATA_MAX_DEVICES
];
2666 int tries
[ATA_MAX_DEVICES
];
2668 struct ata_device
*dev
;
2672 ata_for_each_dev(dev
, &ap
->link
, ALL
)
2673 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2676 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2677 /* If we issue an SRST then an ATA drive (not ATAPI)
2678 * may change configuration and be in PIO0 timing. If
2679 * we do a hard reset (or are coming from power on)
2680 * this is true for ATA or ATAPI. Until we've set a
2681 * suitable controller mode we should not touch the
2682 * bus as we may be talking too fast.
2684 dev
->pio_mode
= XFER_PIO_0
;
2686 /* If the controller has a pio mode setup function
2687 * then use it to set the chipset to rights. Don't
2688 * touch the DMA setup as that will be dealt with when
2689 * configuring devices.
2691 if (ap
->ops
->set_piomode
)
2692 ap
->ops
->set_piomode(ap
, dev
);
2695 /* reset and determine device classes */
2696 ap
->ops
->phy_reset(ap
);
2698 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2699 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2700 dev
->class != ATA_DEV_UNKNOWN
)
2701 classes
[dev
->devno
] = dev
->class;
2703 classes
[dev
->devno
] = ATA_DEV_NONE
;
2705 dev
->class = ATA_DEV_UNKNOWN
;
2710 /* read IDENTIFY page and configure devices. We have to do the identify
2711 specific sequence bass-ackwards so that PDIAG- is released by
2714 ata_for_each_dev(dev
, &ap
->link
, ALL_REVERSE
) {
2715 if (tries
[dev
->devno
])
2716 dev
->class = classes
[dev
->devno
];
2718 if (!ata_dev_enabled(dev
))
2721 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2727 /* Now ask for the cable type as PDIAG- should have been released */
2728 if (ap
->ops
->cable_detect
)
2729 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2731 /* We may have SATA bridge glue hiding here irrespective of
2732 * the reported cable types and sensed types. When SATA
2733 * drives indicate we have a bridge, we don't know which end
2734 * of the link the bridge is which is a problem.
2736 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2737 if (ata_id_is_sata(dev
->id
))
2738 ap
->cbl
= ATA_CBL_SATA
;
2740 /* After the identify sequence we can now set up the devices. We do
2741 this in the normal order so that the user doesn't get confused */
2743 ata_for_each_dev(dev
, &ap
->link
, ENABLED
) {
2744 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2745 rc
= ata_dev_configure(dev
);
2746 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2751 /* configure transfer mode */
2752 rc
= ata_set_mode(&ap
->link
, &dev
);
2756 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2759 /* no device present, disable port */
2760 ata_port_disable(ap
);
2764 tries
[dev
->devno
]--;
2768 /* eeek, something went very wrong, give up */
2769 tries
[dev
->devno
] = 0;
2773 /* give it just one more chance */
2774 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2776 if (tries
[dev
->devno
] == 1) {
2777 /* This is the last chance, better to slow
2778 * down than lose it.
2780 sata_down_spd_limit(&ap
->link
);
2781 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2785 if (!tries
[dev
->devno
])
2786 ata_dev_disable(dev
);
2792 * ata_port_probe - Mark port as enabled
2793 * @ap: Port for which we indicate enablement
2795 * Modify @ap data structure such that the system
2796 * thinks that the entire port is enabled.
2798 * LOCKING: host lock, or some other form of
2802 void ata_port_probe(struct ata_port
*ap
)
2804 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2808 * sata_print_link_status - Print SATA link status
2809 * @link: SATA link to printk link status about
2811 * This function prints link speed and status of a SATA link.
2816 static void sata_print_link_status(struct ata_link
*link
)
2818 u32 sstatus
, scontrol
, tmp
;
2820 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2822 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2824 if (ata_phys_link_online(link
)) {
2825 tmp
= (sstatus
>> 4) & 0xf;
2826 ata_link_printk(link
, KERN_INFO
,
2827 "SATA link up %s (SStatus %X SControl %X)\n",
2828 sata_spd_string(tmp
), sstatus
, scontrol
);
2830 ata_link_printk(link
, KERN_INFO
,
2831 "SATA link down (SStatus %X SControl %X)\n",
2837 * ata_dev_pair - return other device on cable
2840 * Obtain the other device on the same cable, or if none is
2841 * present NULL is returned
2844 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2846 struct ata_link
*link
= adev
->link
;
2847 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2848 if (!ata_dev_enabled(pair
))
2854 * ata_port_disable - Disable port.
2855 * @ap: Port to be disabled.
2857 * Modify @ap data structure such that the system
2858 * thinks that the entire port is disabled, and should
2859 * never attempt to probe or communicate with devices
2862 * LOCKING: host lock, or some other form of
2866 void ata_port_disable(struct ata_port
*ap
)
2868 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2869 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2870 ap
->flags
|= ATA_FLAG_DISABLED
;
2874 * sata_down_spd_limit - adjust SATA spd limit downward
2875 * @link: Link to adjust SATA spd limit for
2877 * Adjust SATA spd limit of @link downward. Note that this
2878 * function only adjusts the limit. The change must be applied
2879 * using sata_set_spd().
2882 * Inherited from caller.
2885 * 0 on success, negative errno on failure
2887 int sata_down_spd_limit(struct ata_link
*link
)
2889 u32 sstatus
, spd
, mask
;
2892 if (!sata_scr_valid(link
))
2895 /* If SCR can be read, use it to determine the current SPD.
2896 * If not, use cached value in link->sata_spd.
2898 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2899 if (rc
== 0 && ata_sstatus_online(sstatus
))
2900 spd
= (sstatus
>> 4) & 0xf;
2902 spd
= link
->sata_spd
;
2904 mask
= link
->sata_spd_limit
;
2908 /* unconditionally mask off the highest bit */
2909 highbit
= fls(mask
) - 1;
2910 mask
&= ~(1 << highbit
);
2912 /* Mask off all speeds higher than or equal to the current
2913 * one. Force 1.5Gbps if current SPD is not available.
2916 mask
&= (1 << (spd
- 1)) - 1;
2920 /* were we already at the bottom? */
2924 link
->sata_spd_limit
= mask
;
2926 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2927 sata_spd_string(fls(mask
)));
2932 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2934 struct ata_link
*host_link
= &link
->ap
->link
;
2935 u32 limit
, target
, spd
;
2937 limit
= link
->sata_spd_limit
;
2939 /* Don't configure downstream link faster than upstream link.
2940 * It doesn't speed up anything and some PMPs choke on such
2943 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2944 limit
&= (1 << host_link
->sata_spd
) - 1;
2946 if (limit
== UINT_MAX
)
2949 target
= fls(limit
);
2951 spd
= (*scontrol
>> 4) & 0xf;
2952 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2954 return spd
!= target
;
2958 * sata_set_spd_needed - is SATA spd configuration needed
2959 * @link: Link in question
2961 * Test whether the spd limit in SControl matches
2962 * @link->sata_spd_limit. This function is used to determine
2963 * whether hardreset is necessary to apply SATA spd
2967 * Inherited from caller.
2970 * 1 if SATA spd configuration is needed, 0 otherwise.
2972 static int sata_set_spd_needed(struct ata_link
*link
)
2976 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2979 return __sata_set_spd_needed(link
, &scontrol
);
2983 * sata_set_spd - set SATA spd according to spd limit
2984 * @link: Link to set SATA spd for
2986 * Set SATA spd of @link according to sata_spd_limit.
2989 * Inherited from caller.
2992 * 0 if spd doesn't need to be changed, 1 if spd has been
2993 * changed. Negative errno if SCR registers are inaccessible.
2995 int sata_set_spd(struct ata_link
*link
)
3000 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3003 if (!__sata_set_spd_needed(link
, &scontrol
))
3006 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3013 * This mode timing computation functionality is ported over from
3014 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3017 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3018 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3019 * for UDMA6, which is currently supported only by Maxtor drives.
3021 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3024 static const struct ata_timing ata_timing
[] = {
3025 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3026 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3027 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3028 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3029 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3030 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3031 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3032 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3034 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3035 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3036 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3038 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3039 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3040 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3041 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3042 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3044 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3045 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3046 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3047 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3048 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3049 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3050 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3051 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3056 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3057 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3059 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
3061 q
->setup
= EZ(t
->setup
* 1000, T
);
3062 q
->act8b
= EZ(t
->act8b
* 1000, T
);
3063 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
3064 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
3065 q
->active
= EZ(t
->active
* 1000, T
);
3066 q
->recover
= EZ(t
->recover
* 1000, T
);
3067 q
->dmack_hold
= EZ(t
->dmack_hold
* 1000, T
);
3068 q
->cycle
= EZ(t
->cycle
* 1000, T
);
3069 q
->udma
= EZ(t
->udma
* 1000, UT
);
3072 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
3073 struct ata_timing
*m
, unsigned int what
)
3075 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
3076 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
3077 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
3078 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
3079 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
3080 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
3081 if (what
& ATA_TIMING_DMACK_HOLD
) m
->dmack_hold
= max(a
->dmack_hold
, b
->dmack_hold
);
3082 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
3083 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
3086 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
3088 const struct ata_timing
*t
= ata_timing
;
3090 while (xfer_mode
> t
->mode
)
3093 if (xfer_mode
== t
->mode
)
3098 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3099 struct ata_timing
*t
, int T
, int UT
)
3101 const struct ata_timing
*s
;
3102 struct ata_timing p
;
3108 if (!(s
= ata_timing_find_mode(speed
)))
3111 memcpy(t
, s
, sizeof(*s
));
3114 * If the drive is an EIDE drive, it can tell us it needs extended
3115 * PIO/MW_DMA cycle timing.
3118 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3119 memset(&p
, 0, sizeof(p
));
3120 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
3121 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
3122 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
3123 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
3124 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
3126 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3130 * Convert the timing to bus clock counts.
3133 ata_timing_quantize(t
, t
, T
, UT
);
3136 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3137 * S.M.A.R.T * and some other commands. We have to ensure that the
3138 * DMA cycle timing is slower/equal than the fastest PIO timing.
3141 if (speed
> XFER_PIO_6
) {
3142 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3143 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3147 * Lengthen active & recovery time so that cycle time is correct.
3150 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3151 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3152 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3155 if (t
->active
+ t
->recover
< t
->cycle
) {
3156 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3157 t
->recover
= t
->cycle
- t
->active
;
3160 /* In a few cases quantisation may produce enough errors to
3161 leave t->cycle too low for the sum of active and recovery
3162 if so we must correct this */
3163 if (t
->active
+ t
->recover
> t
->cycle
)
3164 t
->cycle
= t
->active
+ t
->recover
;
3170 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3171 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3172 * @cycle: cycle duration in ns
3174 * Return matching xfer mode for @cycle. The returned mode is of
3175 * the transfer type specified by @xfer_shift. If @cycle is too
3176 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3177 * than the fastest known mode, the fasted mode is returned.
3183 * Matching xfer_mode, 0xff if no match found.
3185 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3187 u8 base_mode
= 0xff, last_mode
= 0xff;
3188 const struct ata_xfer_ent
*ent
;
3189 const struct ata_timing
*t
;
3191 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3192 if (ent
->shift
== xfer_shift
)
3193 base_mode
= ent
->base
;
3195 for (t
= ata_timing_find_mode(base_mode
);
3196 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3197 unsigned short this_cycle
;
3199 switch (xfer_shift
) {
3201 case ATA_SHIFT_MWDMA
:
3202 this_cycle
= t
->cycle
;
3204 case ATA_SHIFT_UDMA
:
3205 this_cycle
= t
->udma
;
3211 if (cycle
> this_cycle
)
3214 last_mode
= t
->mode
;
3221 * ata_down_xfermask_limit - adjust dev xfer masks downward
3222 * @dev: Device to adjust xfer masks
3223 * @sel: ATA_DNXFER_* selector
3225 * Adjust xfer masks of @dev downward. Note that this function
3226 * does not apply the change. Invoking ata_set_mode() afterwards
3227 * will apply the limit.
3230 * Inherited from caller.
3233 * 0 on success, negative errno on failure
3235 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3238 unsigned long orig_mask
, xfer_mask
;
3239 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3242 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3243 sel
&= ~ATA_DNXFER_QUIET
;
3245 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3248 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3251 case ATA_DNXFER_PIO
:
3252 highbit
= fls(pio_mask
) - 1;
3253 pio_mask
&= ~(1 << highbit
);
3256 case ATA_DNXFER_DMA
:
3258 highbit
= fls(udma_mask
) - 1;
3259 udma_mask
&= ~(1 << highbit
);
3262 } else if (mwdma_mask
) {
3263 highbit
= fls(mwdma_mask
) - 1;
3264 mwdma_mask
&= ~(1 << highbit
);
3270 case ATA_DNXFER_40C
:
3271 udma_mask
&= ATA_UDMA_MASK_40C
;
3274 case ATA_DNXFER_FORCE_PIO0
:
3276 case ATA_DNXFER_FORCE_PIO
:
3285 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3287 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3291 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3292 snprintf(buf
, sizeof(buf
), "%s:%s",
3293 ata_mode_string(xfer_mask
),
3294 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3296 snprintf(buf
, sizeof(buf
), "%s",
3297 ata_mode_string(xfer_mask
));
3299 ata_dev_printk(dev
, KERN_WARNING
,
3300 "limiting speed to %s\n", buf
);
3303 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3309 static int ata_dev_set_mode(struct ata_device
*dev
)
3311 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3312 const char *dev_err_whine
= "";
3313 int ign_dev_err
= 0;
3314 unsigned int err_mask
;
3317 dev
->flags
&= ~ATA_DFLAG_PIO
;
3318 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3319 dev
->flags
|= ATA_DFLAG_PIO
;
3321 err_mask
= ata_dev_set_xfermode(dev
);
3323 if (err_mask
& ~AC_ERR_DEV
)
3327 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3328 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3329 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3333 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3334 /* Old CFA may refuse this command, which is just fine */
3335 if (ata_id_is_cfa(dev
->id
))
3337 /* Catch several broken garbage emulations plus some pre
3339 if (ata_id_major_version(dev
->id
) == 0 &&
3340 dev
->pio_mode
<= XFER_PIO_2
)
3342 /* Some very old devices and some bad newer ones fail
3343 any kind of SET_XFERMODE request but support PIO0-2
3344 timings and no IORDY */
3345 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3348 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3349 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3350 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3351 dev
->dma_mode
== XFER_MW_DMA_0
&&
3352 (dev
->id
[63] >> 8) & 1)
3355 /* if the device is actually configured correctly, ignore dev err */
3356 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3359 if (err_mask
& AC_ERR_DEV
) {
3363 dev_err_whine
= " (device error ignored)";
3366 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3367 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3369 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3370 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3376 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3377 "(err_mask=0x%x)\n", err_mask
);
3382 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3383 * @link: link on which timings will be programmed
3384 * @r_failed_dev: out parameter for failed device
3386 * Standard implementation of the function used to tune and set
3387 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3388 * ata_dev_set_mode() fails, pointer to the failing device is
3389 * returned in @r_failed_dev.
3392 * PCI/etc. bus probe sem.
3395 * 0 on success, negative errno otherwise
3398 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3400 struct ata_port
*ap
= link
->ap
;
3401 struct ata_device
*dev
;
3402 int rc
= 0, used_dma
= 0, found
= 0;
3404 /* step 1: calculate xfer_mask */
3405 ata_for_each_dev(dev
, link
, ENABLED
) {
3406 unsigned long pio_mask
, dma_mask
;
3407 unsigned int mode_mask
;
3409 mode_mask
= ATA_DMA_MASK_ATA
;
3410 if (dev
->class == ATA_DEV_ATAPI
)
3411 mode_mask
= ATA_DMA_MASK_ATAPI
;
3412 else if (ata_id_is_cfa(dev
->id
))
3413 mode_mask
= ATA_DMA_MASK_CFA
;
3415 ata_dev_xfermask(dev
);
3416 ata_force_xfermask(dev
);
3418 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3419 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3421 if (libata_dma_mask
& mode_mask
)
3422 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3426 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3427 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3430 if (ata_dma_enabled(dev
))
3436 /* step 2: always set host PIO timings */
3437 ata_for_each_dev(dev
, link
, ENABLED
) {
3438 if (dev
->pio_mode
== 0xff) {
3439 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3444 dev
->xfer_mode
= dev
->pio_mode
;
3445 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3446 if (ap
->ops
->set_piomode
)
3447 ap
->ops
->set_piomode(ap
, dev
);
3450 /* step 3: set host DMA timings */
3451 ata_for_each_dev(dev
, link
, ENABLED
) {
3452 if (!ata_dma_enabled(dev
))
3455 dev
->xfer_mode
= dev
->dma_mode
;
3456 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3457 if (ap
->ops
->set_dmamode
)
3458 ap
->ops
->set_dmamode(ap
, dev
);
3461 /* step 4: update devices' xfer mode */
3462 ata_for_each_dev(dev
, link
, ENABLED
) {
3463 rc
= ata_dev_set_mode(dev
);
3468 /* Record simplex status. If we selected DMA then the other
3469 * host channels are not permitted to do so.
3471 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3472 ap
->host
->simplex_claimed
= ap
;
3476 *r_failed_dev
= dev
;
3481 * ata_wait_ready - wait for link to become ready
3482 * @link: link to be waited on
3483 * @deadline: deadline jiffies for the operation
3484 * @check_ready: callback to check link readiness
3486 * Wait for @link to become ready. @check_ready should return
3487 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3488 * link doesn't seem to be occupied, other errno for other error
3491 * Transient -ENODEV conditions are allowed for
3492 * ATA_TMOUT_FF_WAIT.
3498 * 0 if @linke is ready before @deadline; otherwise, -errno.
3500 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3501 int (*check_ready
)(struct ata_link
*link
))
3503 unsigned long start
= jiffies
;
3504 unsigned long nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3507 /* Slave readiness can't be tested separately from master. On
3508 * M/S emulation configuration, this function should be called
3509 * only on the master and it will handle both master and slave.
3511 WARN_ON(link
== link
->ap
->slave_link
);
3513 if (time_after(nodev_deadline
, deadline
))
3514 nodev_deadline
= deadline
;
3517 unsigned long now
= jiffies
;
3520 ready
= tmp
= check_ready(link
);
3524 /* -ENODEV could be transient. Ignore -ENODEV if link
3525 * is online. Also, some SATA devices take a long
3526 * time to clear 0xff after reset. For example,
3527 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3528 * GoVault needs even more than that. Wait for
3529 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3531 * Note that some PATA controllers (pata_ali) explode
3532 * if status register is read more than once when
3533 * there's no device attached.
3535 if (ready
== -ENODEV
) {
3536 if (ata_link_online(link
))
3538 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3539 !ata_link_offline(link
) &&
3540 time_before(now
, nodev_deadline
))
3546 if (time_after(now
, deadline
))
3549 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3550 (deadline
- now
> 3 * HZ
)) {
3551 ata_link_printk(link
, KERN_WARNING
,
3552 "link is slow to respond, please be patient "
3553 "(ready=%d)\n", tmp
);
3562 * ata_wait_after_reset - wait for link to become ready after reset
3563 * @link: link to be waited on
3564 * @deadline: deadline jiffies for the operation
3565 * @check_ready: callback to check link readiness
3567 * Wait for @link to become ready after reset.
3573 * 0 if @linke is ready before @deadline; otherwise, -errno.
3575 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3576 int (*check_ready
)(struct ata_link
*link
))
3578 msleep(ATA_WAIT_AFTER_RESET
);
3580 return ata_wait_ready(link
, deadline
, check_ready
);
3584 * sata_link_debounce - debounce SATA phy status
3585 * @link: ATA link to debounce SATA phy status for
3586 * @params: timing parameters { interval, duratinon, timeout } in msec
3587 * @deadline: deadline jiffies for the operation
3589 * Make sure SStatus of @link reaches stable state, determined by
3590 * holding the same value where DET is not 1 for @duration polled
3591 * every @interval, before @timeout. Timeout constraints the
3592 * beginning of the stable state. Because DET gets stuck at 1 on
3593 * some controllers after hot unplugging, this functions waits
3594 * until timeout then returns 0 if DET is stable at 1.
3596 * @timeout is further limited by @deadline. The sooner of the
3600 * Kernel thread context (may sleep)
3603 * 0 on success, -errno on failure.
3605 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3606 unsigned long deadline
)
3608 unsigned long interval
= params
[0];
3609 unsigned long duration
= params
[1];
3610 unsigned long last_jiffies
, t
;
3614 t
= ata_deadline(jiffies
, params
[2]);
3615 if (time_before(t
, deadline
))
3618 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3623 last_jiffies
= jiffies
;
3627 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3633 if (cur
== 1 && time_before(jiffies
, deadline
))
3635 if (time_after(jiffies
,
3636 ata_deadline(last_jiffies
, duration
)))
3641 /* unstable, start over */
3643 last_jiffies
= jiffies
;
3645 /* Check deadline. If debouncing failed, return
3646 * -EPIPE to tell upper layer to lower link speed.
3648 if (time_after(jiffies
, deadline
))
3654 * sata_link_resume - resume SATA link
3655 * @link: ATA link to resume SATA
3656 * @params: timing parameters { interval, duratinon, timeout } in msec
3657 * @deadline: deadline jiffies for the operation
3659 * Resume SATA phy @link and debounce it.
3662 * Kernel thread context (may sleep)
3665 * 0 on success, -errno on failure.
3667 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3668 unsigned long deadline
)
3670 u32 scontrol
, serror
;
3673 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3676 scontrol
= (scontrol
& 0x0f0) | 0x300;
3678 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3681 /* Some PHYs react badly if SStatus is pounded immediately
3682 * after resuming. Delay 200ms before debouncing.
3686 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3689 /* clear SError, some PHYs require this even for SRST to work */
3690 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3691 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3693 return rc
!= -EINVAL
? rc
: 0;
3697 * ata_std_prereset - prepare for reset
3698 * @link: ATA link to be reset
3699 * @deadline: deadline jiffies for the operation
3701 * @link is about to be reset. Initialize it. Failure from
3702 * prereset makes libata abort whole reset sequence and give up
3703 * that port, so prereset should be best-effort. It does its
3704 * best to prepare for reset sequence but if things go wrong, it
3705 * should just whine, not fail.
3708 * Kernel thread context (may sleep)
3711 * 0 on success, -errno otherwise.
3713 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3715 struct ata_port
*ap
= link
->ap
;
3716 struct ata_eh_context
*ehc
= &link
->eh_context
;
3717 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3720 /* if we're about to do hardreset, nothing more to do */
3721 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3724 /* if SATA, resume link */
3725 if (ap
->flags
& ATA_FLAG_SATA
) {
3726 rc
= sata_link_resume(link
, timing
, deadline
);
3727 /* whine about phy resume failure but proceed */
3728 if (rc
&& rc
!= -EOPNOTSUPP
)
3729 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3730 "link for reset (errno=%d)\n", rc
);
3733 /* no point in trying softreset on offline link */
3734 if (ata_phys_link_offline(link
))
3735 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3741 * sata_link_hardreset - reset link via SATA phy reset
3742 * @link: link to reset
3743 * @timing: timing parameters { interval, duratinon, timeout } in msec
3744 * @deadline: deadline jiffies for the operation
3745 * @online: optional out parameter indicating link onlineness
3746 * @check_ready: optional callback to check link readiness
3748 * SATA phy-reset @link using DET bits of SControl register.
3749 * After hardreset, link readiness is waited upon using
3750 * ata_wait_ready() if @check_ready is specified. LLDs are
3751 * allowed to not specify @check_ready and wait itself after this
3752 * function returns. Device classification is LLD's
3755 * *@online is set to one iff reset succeeded and @link is online
3759 * Kernel thread context (may sleep)
3762 * 0 on success, -errno otherwise.
3764 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3765 unsigned long deadline
,
3766 bool *online
, int (*check_ready
)(struct ata_link
*))
3776 if (sata_set_spd_needed(link
)) {
3777 /* SATA spec says nothing about how to reconfigure
3778 * spd. To be on the safe side, turn off phy during
3779 * reconfiguration. This works for at least ICH7 AHCI
3782 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3785 scontrol
= (scontrol
& 0x0f0) | 0x304;
3787 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3793 /* issue phy wake/reset */
3794 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3797 scontrol
= (scontrol
& 0x0f0) | 0x301;
3799 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3802 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3803 * 10.4.2 says at least 1 ms.
3807 /* bring link back */
3808 rc
= sata_link_resume(link
, timing
, deadline
);
3811 /* if link is offline nothing more to do */
3812 if (ata_phys_link_offline(link
))
3815 /* Link is online. From this point, -ENODEV too is an error. */
3819 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3820 /* If PMP is supported, we have to do follow-up SRST.
3821 * Some PMPs don't send D2H Reg FIS after hardreset if
3822 * the first port is empty. Wait only for
3823 * ATA_TMOUT_PMP_SRST_WAIT.
3826 unsigned long pmp_deadline
;
3828 pmp_deadline
= ata_deadline(jiffies
,
3829 ATA_TMOUT_PMP_SRST_WAIT
);
3830 if (time_after(pmp_deadline
, deadline
))
3831 pmp_deadline
= deadline
;
3832 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3840 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3842 if (rc
&& rc
!= -EAGAIN
) {
3843 /* online is set iff link is online && reset succeeded */
3846 ata_link_printk(link
, KERN_ERR
,
3847 "COMRESET failed (errno=%d)\n", rc
);
3849 DPRINTK("EXIT, rc=%d\n", rc
);
3854 * sata_std_hardreset - COMRESET w/o waiting or classification
3855 * @link: link to reset
3856 * @class: resulting class of attached device
3857 * @deadline: deadline jiffies for the operation
3859 * Standard SATA COMRESET w/o waiting or classification.
3862 * Kernel thread context (may sleep)
3865 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3867 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3868 unsigned long deadline
)
3870 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3875 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
3876 return online
? -EAGAIN
: rc
;
3880 * ata_std_postreset - standard postreset callback
3881 * @link: the target ata_link
3882 * @classes: classes of attached devices
3884 * This function is invoked after a successful reset. Note that
3885 * the device might have been reset more than once using
3886 * different reset methods before postreset is invoked.
3889 * Kernel thread context (may sleep)
3891 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
3897 /* reset complete, clear SError */
3898 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
3899 sata_scr_write(link
, SCR_ERROR
, serror
);
3901 /* print link status */
3902 sata_print_link_status(link
);
3908 * ata_dev_same_device - Determine whether new ID matches configured device
3909 * @dev: device to compare against
3910 * @new_class: class of the new device
3911 * @new_id: IDENTIFY page of the new device
3913 * Compare @new_class and @new_id against @dev and determine
3914 * whether @dev is the device indicated by @new_class and
3921 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3923 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3926 const u16
*old_id
= dev
->id
;
3927 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3928 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3930 if (dev
->class != new_class
) {
3931 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3932 dev
->class, new_class
);
3936 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3937 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3938 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3939 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3941 if (strcmp(model
[0], model
[1])) {
3942 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3943 "'%s' != '%s'\n", model
[0], model
[1]);
3947 if (strcmp(serial
[0], serial
[1])) {
3948 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3949 "'%s' != '%s'\n", serial
[0], serial
[1]);
3957 * ata_dev_reread_id - Re-read IDENTIFY data
3958 * @dev: target ATA device
3959 * @readid_flags: read ID flags
3961 * Re-read IDENTIFY page and make sure @dev is still attached to
3965 * Kernel thread context (may sleep)
3968 * 0 on success, negative errno otherwise
3970 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
3972 unsigned int class = dev
->class;
3973 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
3977 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3981 /* is the device still there? */
3982 if (!ata_dev_same_device(dev
, class, id
))
3985 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3990 * ata_dev_revalidate - Revalidate ATA device
3991 * @dev: device to revalidate
3992 * @new_class: new class code
3993 * @readid_flags: read ID flags
3995 * Re-read IDENTIFY page, make sure @dev is still attached to the
3996 * port and reconfigure it according to the new IDENTIFY page.
3999 * Kernel thread context (may sleep)
4002 * 0 on success, negative errno otherwise
4004 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4005 unsigned int readid_flags
)
4007 u64 n_sectors
= dev
->n_sectors
;
4010 if (!ata_dev_enabled(dev
))
4013 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4014 if (ata_class_enabled(new_class
) &&
4015 new_class
!= ATA_DEV_ATA
&& new_class
!= ATA_DEV_ATAPI
) {
4016 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
4017 dev
->class, new_class
);
4023 rc
= ata_dev_reread_id(dev
, readid_flags
);
4027 /* configure device according to the new ID */
4028 rc
= ata_dev_configure(dev
);
4032 /* verify n_sectors hasn't changed */
4033 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
4034 dev
->n_sectors
!= n_sectors
) {
4035 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
4037 (unsigned long long)n_sectors
,
4038 (unsigned long long)dev
->n_sectors
);
4040 /* restore original n_sectors */
4041 dev
->n_sectors
= n_sectors
;
4050 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
4054 struct ata_blacklist_entry
{
4055 const char *model_num
;
4056 const char *model_rev
;
4057 unsigned long horkage
;
4060 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4061 /* Devices with DMA related problems under Linux */
4062 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4063 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4064 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4065 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4066 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4067 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4068 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4069 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4070 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4071 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
4072 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
4073 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4074 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4075 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4076 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4077 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4078 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
4079 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
4080 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4081 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4082 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4083 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4084 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4085 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4086 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4087 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4088 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4089 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4090 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4091 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4092 /* Odd clown on sil3726/4726 PMPs */
4093 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
4095 /* Weird ATAPI devices */
4096 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4097 { "QUANTUM DAT DAT72-000", NULL
, ATA_HORKAGE_ATAPI_MOD16_DMA
},
4099 /* Devices we expect to fail diagnostics */
4101 /* Devices where NCQ should be avoided */
4103 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4104 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4105 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4106 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4108 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4109 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4110 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4111 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4112 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ
},
4114 /* Seagate NCQ + FLUSH CACHE firmware bug */
4115 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ
|
4116 ATA_HORKAGE_FIRMWARE_WARN
},
4117 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ
|
4118 ATA_HORKAGE_FIRMWARE_WARN
},
4119 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ
|
4120 ATA_HORKAGE_FIRMWARE_WARN
},
4121 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ
|
4122 ATA_HORKAGE_FIRMWARE_WARN
},
4123 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ
|
4124 ATA_HORKAGE_FIRMWARE_WARN
},
4126 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ
|
4127 ATA_HORKAGE_FIRMWARE_WARN
},
4128 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ
|
4129 ATA_HORKAGE_FIRMWARE_WARN
},
4130 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ
|
4131 ATA_HORKAGE_FIRMWARE_WARN
},
4132 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ
|
4133 ATA_HORKAGE_FIRMWARE_WARN
},
4134 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ
|
4135 ATA_HORKAGE_FIRMWARE_WARN
},
4137 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ
|
4138 ATA_HORKAGE_FIRMWARE_WARN
},
4139 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ
|
4140 ATA_HORKAGE_FIRMWARE_WARN
},
4141 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ
|
4142 ATA_HORKAGE_FIRMWARE_WARN
},
4143 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ
|
4144 ATA_HORKAGE_FIRMWARE_WARN
},
4145 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ
|
4146 ATA_HORKAGE_FIRMWARE_WARN
},
4148 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ
|
4149 ATA_HORKAGE_FIRMWARE_WARN
},
4150 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ
|
4151 ATA_HORKAGE_FIRMWARE_WARN
},
4152 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ
|
4153 ATA_HORKAGE_FIRMWARE_WARN
},
4154 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ
|
4155 ATA_HORKAGE_FIRMWARE_WARN
},
4156 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ
|
4157 ATA_HORKAGE_FIRMWARE_WARN
},
4159 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ
|
4160 ATA_HORKAGE_FIRMWARE_WARN
},
4161 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ
|
4162 ATA_HORKAGE_FIRMWARE_WARN
},
4163 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ
|
4164 ATA_HORKAGE_FIRMWARE_WARN
},
4165 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ
|
4166 ATA_HORKAGE_FIRMWARE_WARN
},
4167 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ
|
4168 ATA_HORKAGE_FIRMWARE_WARN
},
4170 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ
|
4171 ATA_HORKAGE_FIRMWARE_WARN
},
4172 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ
|
4173 ATA_HORKAGE_FIRMWARE_WARN
},
4174 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ
|
4175 ATA_HORKAGE_FIRMWARE_WARN
},
4176 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ
|
4177 ATA_HORKAGE_FIRMWARE_WARN
},
4178 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ
|
4179 ATA_HORKAGE_FIRMWARE_WARN
},
4181 /* Blacklist entries taken from Silicon Image 3124/3132
4182 Windows driver .inf file - also several Linux problem reports */
4183 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4184 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4185 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4187 /* devices which puke on READ_NATIVE_MAX */
4188 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4189 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4190 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4191 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4193 /* Devices which report 1 sector over size HPA */
4194 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4195 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4196 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4198 /* Devices which get the IVB wrong */
4199 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4200 /* Maybe we should just blacklist TSSTcorp... */
4201 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB
, },
4202 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB
, },
4203 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
4204 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
4205 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
4206 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
4208 /* Devices that do not need bridging limits applied */
4209 { "MTRON MSP-SATA*", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4215 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
4221 * check for trailing wildcard: *\0
4223 p
= strchr(patt
, wildchar
);
4224 if (p
&& ((*(p
+ 1)) == 0))
4235 return strncmp(patt
, name
, len
);
4238 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4240 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4241 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4242 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4244 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4245 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4247 while (ad
->model_num
) {
4248 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
4249 if (ad
->model_rev
== NULL
)
4251 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
4259 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4261 /* We don't support polling DMA.
4262 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4263 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4265 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4266 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4268 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4272 * ata_is_40wire - check drive side detection
4275 * Perform drive side detection decoding, allowing for device vendors
4276 * who can't follow the documentation.
4279 static int ata_is_40wire(struct ata_device
*dev
)
4281 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4282 return ata_drive_40wire_relaxed(dev
->id
);
4283 return ata_drive_40wire(dev
->id
);
4287 * cable_is_40wire - 40/80/SATA decider
4288 * @ap: port to consider
4290 * This function encapsulates the policy for speed management
4291 * in one place. At the moment we don't cache the result but
4292 * there is a good case for setting ap->cbl to the result when
4293 * we are called with unknown cables (and figuring out if it
4294 * impacts hotplug at all).
4296 * Return 1 if the cable appears to be 40 wire.
4299 static int cable_is_40wire(struct ata_port
*ap
)
4301 struct ata_link
*link
;
4302 struct ata_device
*dev
;
4304 /* If the controller thinks we are 40 wire, we are. */
4305 if (ap
->cbl
== ATA_CBL_PATA40
)
4308 /* If the controller thinks we are 80 wire, we are. */
4309 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4312 /* If the system is known to be 40 wire short cable (eg
4313 * laptop), then we allow 80 wire modes even if the drive
4316 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4319 /* If the controller doesn't know, we scan.
4321 * Note: We look for all 40 wire detects at this point. Any
4322 * 80 wire detect is taken to be 80 wire cable because
4323 * - in many setups only the one drive (slave if present) will
4324 * give a valid detect
4325 * - if you have a non detect capable drive you don't want it
4326 * to colour the choice
4328 ata_for_each_link(link
, ap
, EDGE
) {
4329 ata_for_each_dev(dev
, link
, ENABLED
) {
4330 if (!ata_is_40wire(dev
))
4338 * ata_dev_xfermask - Compute supported xfermask of the given device
4339 * @dev: Device to compute xfermask for
4341 * Compute supported xfermask of @dev and store it in
4342 * dev->*_mask. This function is responsible for applying all
4343 * known limits including host controller limits, device
4349 static void ata_dev_xfermask(struct ata_device
*dev
)
4351 struct ata_link
*link
= dev
->link
;
4352 struct ata_port
*ap
= link
->ap
;
4353 struct ata_host
*host
= ap
->host
;
4354 unsigned long xfer_mask
;
4356 /* controller modes available */
4357 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4358 ap
->mwdma_mask
, ap
->udma_mask
);
4360 /* drive modes available */
4361 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4362 dev
->mwdma_mask
, dev
->udma_mask
);
4363 xfer_mask
&= ata_id_xfermask(dev
->id
);
4366 * CFA Advanced TrueIDE timings are not allowed on a shared
4369 if (ata_dev_pair(dev
)) {
4370 /* No PIO5 or PIO6 */
4371 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4372 /* No MWDMA3 or MWDMA 4 */
4373 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4376 if (ata_dma_blacklisted(dev
)) {
4377 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4378 ata_dev_printk(dev
, KERN_WARNING
,
4379 "device is on DMA blacklist, disabling DMA\n");
4382 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4383 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4384 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4385 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4386 "other device, disabling DMA\n");
4389 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4390 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4392 if (ap
->ops
->mode_filter
)
4393 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4395 /* Apply cable rule here. Don't apply it early because when
4396 * we handle hot plug the cable type can itself change.
4397 * Check this last so that we know if the transfer rate was
4398 * solely limited by the cable.
4399 * Unknown or 80 wire cables reported host side are checked
4400 * drive side as well. Cases where we know a 40wire cable
4401 * is used safely for 80 are not checked here.
4403 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4404 /* UDMA/44 or higher would be available */
4405 if (cable_is_40wire(ap
)) {
4406 ata_dev_printk(dev
, KERN_WARNING
,
4407 "limited to UDMA/33 due to 40-wire cable\n");
4408 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4411 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4412 &dev
->mwdma_mask
, &dev
->udma_mask
);
4416 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4417 * @dev: Device to which command will be sent
4419 * Issue SET FEATURES - XFER MODE command to device @dev
4423 * PCI/etc. bus probe sem.
4426 * 0 on success, AC_ERR_* mask otherwise.
4429 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4431 struct ata_taskfile tf
;
4432 unsigned int err_mask
;
4434 /* set up set-features taskfile */
4435 DPRINTK("set features - xfer mode\n");
4437 /* Some controllers and ATAPI devices show flaky interrupt
4438 * behavior after setting xfer mode. Use polling instead.
4440 ata_tf_init(dev
, &tf
);
4441 tf
.command
= ATA_CMD_SET_FEATURES
;
4442 tf
.feature
= SETFEATURES_XFER
;
4443 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4444 tf
.protocol
= ATA_PROT_NODATA
;
4445 /* If we are using IORDY we must send the mode setting command */
4446 if (ata_pio_need_iordy(dev
))
4447 tf
.nsect
= dev
->xfer_mode
;
4448 /* If the device has IORDY and the controller does not - turn it off */
4449 else if (ata_id_has_iordy(dev
->id
))
4451 else /* In the ancient relic department - skip all of this */
4454 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4456 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4460 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4461 * @dev: Device to which command will be sent
4462 * @enable: Whether to enable or disable the feature
4463 * @feature: The sector count represents the feature to set
4465 * Issue SET FEATURES - SATA FEATURES command to device @dev
4466 * on port @ap with sector count
4469 * PCI/etc. bus probe sem.
4472 * 0 on success, AC_ERR_* mask otherwise.
4474 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4477 struct ata_taskfile tf
;
4478 unsigned int err_mask
;
4480 /* set up set-features taskfile */
4481 DPRINTK("set features - SATA features\n");
4483 ata_tf_init(dev
, &tf
);
4484 tf
.command
= ATA_CMD_SET_FEATURES
;
4485 tf
.feature
= enable
;
4486 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4487 tf
.protocol
= ATA_PROT_NODATA
;
4490 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4492 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4497 * ata_dev_init_params - Issue INIT DEV PARAMS command
4498 * @dev: Device to which command will be sent
4499 * @heads: Number of heads (taskfile parameter)
4500 * @sectors: Number of sectors (taskfile parameter)
4503 * Kernel thread context (may sleep)
4506 * 0 on success, AC_ERR_* mask otherwise.
4508 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4509 u16 heads
, u16 sectors
)
4511 struct ata_taskfile tf
;
4512 unsigned int err_mask
;
4514 /* Number of sectors per track 1-255. Number of heads 1-16 */
4515 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4516 return AC_ERR_INVALID
;
4518 /* set up init dev params taskfile */
4519 DPRINTK("init dev params \n");
4521 ata_tf_init(dev
, &tf
);
4522 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4523 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4524 tf
.protocol
= ATA_PROT_NODATA
;
4526 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4528 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4529 /* A clean abort indicates an original or just out of spec drive
4530 and we should continue as we issue the setup based on the
4531 drive reported working geometry */
4532 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4535 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4540 * ata_sg_clean - Unmap DMA memory associated with command
4541 * @qc: Command containing DMA memory to be released
4543 * Unmap all mapped DMA memory associated with this command.
4546 * spin_lock_irqsave(host lock)
4548 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4550 struct ata_port
*ap
= qc
->ap
;
4551 struct scatterlist
*sg
= qc
->sg
;
4552 int dir
= qc
->dma_dir
;
4554 WARN_ON_ONCE(sg
== NULL
);
4556 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4559 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
4561 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4566 * atapi_check_dma - Check whether ATAPI DMA can be supported
4567 * @qc: Metadata associated with taskfile to check
4569 * Allow low-level driver to filter ATA PACKET commands, returning
4570 * a status indicating whether or not it is OK to use DMA for the
4571 * supplied PACKET command.
4574 * spin_lock_irqsave(host lock)
4576 * RETURNS: 0 when ATAPI DMA can be used
4579 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4581 struct ata_port
*ap
= qc
->ap
;
4583 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4584 * few ATAPI devices choke on such DMA requests.
4586 if (!(qc
->dev
->horkage
& ATA_HORKAGE_ATAPI_MOD16_DMA
) &&
4587 unlikely(qc
->nbytes
& 15))
4590 if (ap
->ops
->check_atapi_dma
)
4591 return ap
->ops
->check_atapi_dma(qc
);
4597 * ata_std_qc_defer - Check whether a qc needs to be deferred
4598 * @qc: ATA command in question
4600 * Non-NCQ commands cannot run with any other command, NCQ or
4601 * not. As upper layer only knows the queue depth, we are
4602 * responsible for maintaining exclusion. This function checks
4603 * whether a new command @qc can be issued.
4606 * spin_lock_irqsave(host lock)
4609 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4611 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4613 struct ata_link
*link
= qc
->dev
->link
;
4615 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4616 if (!ata_tag_valid(link
->active_tag
))
4619 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4623 return ATA_DEFER_LINK
;
4626 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4629 * ata_sg_init - Associate command with scatter-gather table.
4630 * @qc: Command to be associated
4631 * @sg: Scatter-gather table.
4632 * @n_elem: Number of elements in s/g table.
4634 * Initialize the data-related elements of queued_cmd @qc
4635 * to point to a scatter-gather table @sg, containing @n_elem
4639 * spin_lock_irqsave(host lock)
4641 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4642 unsigned int n_elem
)
4645 qc
->n_elem
= n_elem
;
4650 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4651 * @qc: Command with scatter-gather table to be mapped.
4653 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4656 * spin_lock_irqsave(host lock)
4659 * Zero on success, negative on error.
4662 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4664 struct ata_port
*ap
= qc
->ap
;
4665 unsigned int n_elem
;
4667 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4669 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4673 DPRINTK("%d sg elements mapped\n", n_elem
);
4675 qc
->n_elem
= n_elem
;
4676 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4682 * swap_buf_le16 - swap halves of 16-bit words in place
4683 * @buf: Buffer to swap
4684 * @buf_words: Number of 16-bit words in buffer.
4686 * Swap halves of 16-bit words if needed to convert from
4687 * little-endian byte order to native cpu byte order, or
4691 * Inherited from caller.
4693 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4698 for (i
= 0; i
< buf_words
; i
++)
4699 buf
[i
] = le16_to_cpu(buf
[i
]);
4700 #endif /* __BIG_ENDIAN */
4704 * ata_qc_new - Request an available ATA command, for queueing
4711 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4713 struct ata_queued_cmd
*qc
= NULL
;
4716 /* no command while frozen */
4717 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4720 /* the last tag is reserved for internal command. */
4721 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4722 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4723 qc
= __ata_qc_from_tag(ap
, i
);
4734 * ata_qc_new_init - Request an available ATA command, and initialize it
4735 * @dev: Device from whom we request an available command structure
4741 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4743 struct ata_port
*ap
= dev
->link
->ap
;
4744 struct ata_queued_cmd
*qc
;
4746 qc
= ata_qc_new(ap
);
4759 * ata_qc_free - free unused ata_queued_cmd
4760 * @qc: Command to complete
4762 * Designed to free unused ata_queued_cmd object
4763 * in case something prevents using it.
4766 * spin_lock_irqsave(host lock)
4768 void ata_qc_free(struct ata_queued_cmd
*qc
)
4770 struct ata_port
*ap
= qc
->ap
;
4773 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4777 if (likely(ata_tag_valid(tag
))) {
4778 qc
->tag
= ATA_TAG_POISON
;
4779 clear_bit(tag
, &ap
->qc_allocated
);
4783 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4785 struct ata_port
*ap
= qc
->ap
;
4786 struct ata_link
*link
= qc
->dev
->link
;
4788 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4789 WARN_ON_ONCE(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4791 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4794 /* command should be marked inactive atomically with qc completion */
4795 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4796 link
->sactive
&= ~(1 << qc
->tag
);
4798 ap
->nr_active_links
--;
4800 link
->active_tag
= ATA_TAG_POISON
;
4801 ap
->nr_active_links
--;
4804 /* clear exclusive status */
4805 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4806 ap
->excl_link
== link
))
4807 ap
->excl_link
= NULL
;
4809 /* atapi: mark qc as inactive to prevent the interrupt handler
4810 * from completing the command twice later, before the error handler
4811 * is called. (when rc != 0 and atapi request sense is needed)
4813 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4814 ap
->qc_active
&= ~(1 << qc
->tag
);
4816 /* call completion callback */
4817 qc
->complete_fn(qc
);
4820 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4822 struct ata_port
*ap
= qc
->ap
;
4824 qc
->result_tf
.flags
= qc
->tf
.flags
;
4825 ap
->ops
->qc_fill_rtf(qc
);
4828 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
4830 struct ata_device
*dev
= qc
->dev
;
4832 if (ata_tag_internal(qc
->tag
))
4835 if (ata_is_nodata(qc
->tf
.protocol
))
4838 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
4841 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
4845 * ata_qc_complete - Complete an active ATA command
4846 * @qc: Command to complete
4848 * Indicate to the mid and upper layers that an ATA
4849 * command has completed, with either an ok or not-ok status.
4852 * spin_lock_irqsave(host lock)
4854 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4856 struct ata_port
*ap
= qc
->ap
;
4858 /* XXX: New EH and old EH use different mechanisms to
4859 * synchronize EH with regular execution path.
4861 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4862 * Normal execution path is responsible for not accessing a
4863 * failed qc. libata core enforces the rule by returning NULL
4864 * from ata_qc_from_tag() for failed qcs.
4866 * Old EH depends on ata_qc_complete() nullifying completion
4867 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4868 * not synchronize with interrupt handler. Only PIO task is
4871 if (ap
->ops
->error_handler
) {
4872 struct ata_device
*dev
= qc
->dev
;
4873 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
4875 WARN_ON_ONCE(ap
->pflags
& ATA_PFLAG_FROZEN
);
4877 if (unlikely(qc
->err_mask
))
4878 qc
->flags
|= ATA_QCFLAG_FAILED
;
4880 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4881 if (!ata_tag_internal(qc
->tag
)) {
4882 /* always fill result TF for failed qc */
4884 ata_qc_schedule_eh(qc
);
4889 /* read result TF if requested */
4890 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4893 /* Some commands need post-processing after successful
4896 switch (qc
->tf
.command
) {
4897 case ATA_CMD_SET_FEATURES
:
4898 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
4899 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
4902 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
4903 case ATA_CMD_SET_MULTI
: /* multi_count changed */
4904 /* revalidate device */
4905 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
4906 ata_port_schedule_eh(ap
);
4910 dev
->flags
|= ATA_DFLAG_SLEEPING
;
4914 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
4915 ata_verify_xfer(qc
);
4917 __ata_qc_complete(qc
);
4919 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
4922 /* read result TF if failed or requested */
4923 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4926 __ata_qc_complete(qc
);
4931 * ata_qc_complete_multiple - Complete multiple qcs successfully
4932 * @ap: port in question
4933 * @qc_active: new qc_active mask
4935 * Complete in-flight commands. This functions is meant to be
4936 * called from low-level driver's interrupt routine to complete
4937 * requests normally. ap->qc_active and @qc_active is compared
4938 * and commands are completed accordingly.
4941 * spin_lock_irqsave(host lock)
4944 * Number of completed commands on success, -errno otherwise.
4946 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
4952 done_mask
= ap
->qc_active
^ qc_active
;
4954 if (unlikely(done_mask
& qc_active
)) {
4955 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
4956 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
4960 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
4961 struct ata_queued_cmd
*qc
;
4963 if (!(done_mask
& (1 << i
)))
4966 if ((qc
= ata_qc_from_tag(ap
, i
))) {
4967 ata_qc_complete(qc
);
4976 * ata_qc_issue - issue taskfile to device
4977 * @qc: command to issue to device
4979 * Prepare an ATA command to submission to device.
4980 * This includes mapping the data into a DMA-able
4981 * area, filling in the S/G table, and finally
4982 * writing the taskfile to hardware, starting the command.
4985 * spin_lock_irqsave(host lock)
4987 void ata_qc_issue(struct ata_queued_cmd
*qc
)
4989 struct ata_port
*ap
= qc
->ap
;
4990 struct ata_link
*link
= qc
->dev
->link
;
4991 u8 prot
= qc
->tf
.protocol
;
4993 /* Make sure only one non-NCQ command is outstanding. The
4994 * check is skipped for old EH because it reuses active qc to
4995 * request ATAPI sense.
4997 WARN_ON_ONCE(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
4999 if (ata_is_ncq(prot
)) {
5000 WARN_ON_ONCE(link
->sactive
& (1 << qc
->tag
));
5003 ap
->nr_active_links
++;
5004 link
->sactive
|= 1 << qc
->tag
;
5006 WARN_ON_ONCE(link
->sactive
);
5008 ap
->nr_active_links
++;
5009 link
->active_tag
= qc
->tag
;
5012 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5013 ap
->qc_active
|= 1 << qc
->tag
;
5015 /* We guarantee to LLDs that they will have at least one
5016 * non-zero sg if the command is a data command.
5018 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
5020 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5021 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5022 if (ata_sg_setup(qc
))
5025 /* if device is sleeping, schedule reset and abort the link */
5026 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5027 link
->eh_info
.action
|= ATA_EH_RESET
;
5028 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5029 ata_link_abort(link
);
5033 ap
->ops
->qc_prep(qc
);
5035 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5036 if (unlikely(qc
->err_mask
))
5041 qc
->err_mask
|= AC_ERR_SYSTEM
;
5043 ata_qc_complete(qc
);
5047 * sata_scr_valid - test whether SCRs are accessible
5048 * @link: ATA link to test SCR accessibility for
5050 * Test whether SCRs are accessible for @link.
5056 * 1 if SCRs are accessible, 0 otherwise.
5058 int sata_scr_valid(struct ata_link
*link
)
5060 struct ata_port
*ap
= link
->ap
;
5062 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
5066 * sata_scr_read - read SCR register of the specified port
5067 * @link: ATA link to read SCR for
5069 * @val: Place to store read value
5071 * Read SCR register @reg of @link into *@val. This function is
5072 * guaranteed to succeed if @link is ap->link, the cable type of
5073 * the port is SATA and the port implements ->scr_read.
5076 * None if @link is ap->link. Kernel thread context otherwise.
5079 * 0 on success, negative errno on failure.
5081 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
5083 if (ata_is_host_link(link
)) {
5084 if (sata_scr_valid(link
))
5085 return link
->ap
->ops
->scr_read(link
, reg
, val
);
5089 return sata_pmp_scr_read(link
, reg
, val
);
5093 * sata_scr_write - write SCR register of the specified port
5094 * @link: ATA link to write SCR for
5095 * @reg: SCR to write
5096 * @val: value to write
5098 * Write @val to SCR register @reg of @link. This function is
5099 * guaranteed to succeed if @link is ap->link, the cable type of
5100 * the port is SATA and the port implements ->scr_read.
5103 * None if @link is ap->link. Kernel thread context otherwise.
5106 * 0 on success, negative errno on failure.
5108 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
5110 if (ata_is_host_link(link
)) {
5111 if (sata_scr_valid(link
))
5112 return link
->ap
->ops
->scr_write(link
, reg
, val
);
5116 return sata_pmp_scr_write(link
, reg
, val
);
5120 * sata_scr_write_flush - write SCR register of the specified port and flush
5121 * @link: ATA link to write SCR for
5122 * @reg: SCR to write
5123 * @val: value to write
5125 * This function is identical to sata_scr_write() except that this
5126 * function performs flush after writing to the register.
5129 * None if @link is ap->link. Kernel thread context otherwise.
5132 * 0 on success, negative errno on failure.
5134 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5136 if (ata_is_host_link(link
)) {
5139 if (sata_scr_valid(link
)) {
5140 rc
= link
->ap
->ops
->scr_write(link
, reg
, val
);
5142 rc
= link
->ap
->ops
->scr_read(link
, reg
, &val
);
5148 return sata_pmp_scr_write(link
, reg
, val
);
5152 * ata_phys_link_online - test whether the given link is online
5153 * @link: ATA link to test
5155 * Test whether @link is online. Note that this function returns
5156 * 0 if online status of @link cannot be obtained, so
5157 * ata_link_online(link) != !ata_link_offline(link).
5163 * True if the port online status is available and online.
5165 bool ata_phys_link_online(struct ata_link
*link
)
5169 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5170 ata_sstatus_online(sstatus
))
5176 * ata_phys_link_offline - test whether the given link is offline
5177 * @link: ATA link to test
5179 * Test whether @link is offline. Note that this function
5180 * returns 0 if offline status of @link cannot be obtained, so
5181 * ata_link_online(link) != !ata_link_offline(link).
5187 * True if the port offline status is available and offline.
5189 bool ata_phys_link_offline(struct ata_link
*link
)
5193 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5194 !ata_sstatus_online(sstatus
))
5200 * ata_link_online - test whether the given link is online
5201 * @link: ATA link to test
5203 * Test whether @link is online. This is identical to
5204 * ata_phys_link_online() when there's no slave link. When
5205 * there's a slave link, this function should only be called on
5206 * the master link and will return true if any of M/S links is
5213 * True if the port online status is available and online.
5215 bool ata_link_online(struct ata_link
*link
)
5217 struct ata_link
*slave
= link
->ap
->slave_link
;
5219 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5221 return ata_phys_link_online(link
) ||
5222 (slave
&& ata_phys_link_online(slave
));
5226 * ata_link_offline - test whether the given link is offline
5227 * @link: ATA link to test
5229 * Test whether @link is offline. This is identical to
5230 * ata_phys_link_offline() when there's no slave link. When
5231 * there's a slave link, this function should only be called on
5232 * the master link and will return true if both M/S links are
5239 * True if the port offline status is available and offline.
5241 bool ata_link_offline(struct ata_link
*link
)
5243 struct ata_link
*slave
= link
->ap
->slave_link
;
5245 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5247 return ata_phys_link_offline(link
) &&
5248 (!slave
|| ata_phys_link_offline(slave
));
5252 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5253 unsigned int action
, unsigned int ehi_flags
,
5256 unsigned long flags
;
5259 for (i
= 0; i
< host
->n_ports
; i
++) {
5260 struct ata_port
*ap
= host
->ports
[i
];
5261 struct ata_link
*link
;
5263 /* Previous resume operation might still be in
5264 * progress. Wait for PM_PENDING to clear.
5266 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5267 ata_port_wait_eh(ap
);
5268 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5271 /* request PM ops to EH */
5272 spin_lock_irqsave(ap
->lock
, flags
);
5277 ap
->pm_result
= &rc
;
5280 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5281 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5282 link
->eh_info
.action
|= action
;
5283 link
->eh_info
.flags
|= ehi_flags
;
5286 ata_port_schedule_eh(ap
);
5288 spin_unlock_irqrestore(ap
->lock
, flags
);
5290 /* wait and check result */
5292 ata_port_wait_eh(ap
);
5293 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5303 * ata_host_suspend - suspend host
5304 * @host: host to suspend
5307 * Suspend @host. Actual operation is performed by EH. This
5308 * function requests EH to perform PM operations and waits for EH
5312 * Kernel thread context (may sleep).
5315 * 0 on success, -errno on failure.
5317 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5322 * disable link pm on all ports before requesting
5325 ata_lpm_enable(host
);
5327 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5329 host
->dev
->power
.power_state
= mesg
;
5334 * ata_host_resume - resume host
5335 * @host: host to resume
5337 * Resume @host. Actual operation is performed by EH. This
5338 * function requests EH to perform PM operations and returns.
5339 * Note that all resume operations are performed parallely.
5342 * Kernel thread context (may sleep).
5344 void ata_host_resume(struct ata_host
*host
)
5346 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_RESET
,
5347 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5348 host
->dev
->power
.power_state
= PMSG_ON
;
5350 /* reenable link pm */
5351 ata_lpm_disable(host
);
5356 * ata_port_start - Set port up for dma.
5357 * @ap: Port to initialize
5359 * Called just after data structures for each port are
5360 * initialized. Allocates space for PRD table.
5362 * May be used as the port_start() entry in ata_port_operations.
5365 * Inherited from caller.
5367 int ata_port_start(struct ata_port
*ap
)
5369 struct device
*dev
= ap
->dev
;
5371 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5380 * ata_dev_init - Initialize an ata_device structure
5381 * @dev: Device structure to initialize
5383 * Initialize @dev in preparation for probing.
5386 * Inherited from caller.
5388 void ata_dev_init(struct ata_device
*dev
)
5390 struct ata_link
*link
= ata_dev_phys_link(dev
);
5391 struct ata_port
*ap
= link
->ap
;
5392 unsigned long flags
;
5394 /* SATA spd limit is bound to the attached device, reset together */
5395 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5398 /* High bits of dev->flags are used to record warm plug
5399 * requests which occur asynchronously. Synchronize using
5402 spin_lock_irqsave(ap
->lock
, flags
);
5403 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5405 spin_unlock_irqrestore(ap
->lock
, flags
);
5407 memset((void *)dev
+ ATA_DEVICE_CLEAR_BEGIN
, 0,
5408 ATA_DEVICE_CLEAR_END
- ATA_DEVICE_CLEAR_BEGIN
);
5409 dev
->pio_mask
= UINT_MAX
;
5410 dev
->mwdma_mask
= UINT_MAX
;
5411 dev
->udma_mask
= UINT_MAX
;
5415 * ata_link_init - Initialize an ata_link structure
5416 * @ap: ATA port link is attached to
5417 * @link: Link structure to initialize
5418 * @pmp: Port multiplier port number
5423 * Kernel thread context (may sleep)
5425 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5429 /* clear everything except for devices */
5430 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
5434 link
->active_tag
= ATA_TAG_POISON
;
5435 link
->hw_sata_spd_limit
= UINT_MAX
;
5437 /* can't use iterator, ap isn't initialized yet */
5438 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5439 struct ata_device
*dev
= &link
->device
[i
];
5442 dev
->devno
= dev
- link
->device
;
5448 * sata_link_init_spd - Initialize link->sata_spd_limit
5449 * @link: Link to configure sata_spd_limit for
5451 * Initialize @link->[hw_]sata_spd_limit to the currently
5455 * Kernel thread context (may sleep).
5458 * 0 on success, -errno on failure.
5460 int sata_link_init_spd(struct ata_link
*link
)
5465 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5469 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5471 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5473 ata_force_link_limits(link
);
5475 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5481 * ata_port_alloc - allocate and initialize basic ATA port resources
5482 * @host: ATA host this allocated port belongs to
5484 * Allocate and initialize basic ATA port resources.
5487 * Allocate ATA port on success, NULL on failure.
5490 * Inherited from calling layer (may sleep).
5492 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5494 struct ata_port
*ap
;
5498 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5502 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
5503 ap
->lock
= &host
->lock
;
5504 ap
->flags
= ATA_FLAG_DISABLED
;
5506 ap
->ctl
= ATA_DEVCTL_OBS
;
5508 ap
->dev
= host
->dev
;
5509 ap
->last_ctl
= 0xFF;
5511 #if defined(ATA_VERBOSE_DEBUG)
5512 /* turn on all debugging levels */
5513 ap
->msg_enable
= 0x00FF;
5514 #elif defined(ATA_DEBUG)
5515 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5517 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5520 #ifdef CONFIG_ATA_SFF
5521 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
5523 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
5525 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5526 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5527 INIT_LIST_HEAD(&ap
->eh_done_q
);
5528 init_waitqueue_head(&ap
->eh_wait_q
);
5529 init_completion(&ap
->park_req_pending
);
5530 init_timer_deferrable(&ap
->fastdrain_timer
);
5531 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5532 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5534 ap
->cbl
= ATA_CBL_NONE
;
5536 ata_link_init(ap
, &ap
->link
, 0);
5539 ap
->stats
.unhandled_irq
= 1;
5540 ap
->stats
.idle_irq
= 1;
5545 static void ata_host_release(struct device
*gendev
, void *res
)
5547 struct ata_host
*host
= dev_get_drvdata(gendev
);
5550 for (i
= 0; i
< host
->n_ports
; i
++) {
5551 struct ata_port
*ap
= host
->ports
[i
];
5557 scsi_host_put(ap
->scsi_host
);
5559 kfree(ap
->pmp_link
);
5560 kfree(ap
->slave_link
);
5562 host
->ports
[i
] = NULL
;
5565 dev_set_drvdata(gendev
, NULL
);
5569 * ata_host_alloc - allocate and init basic ATA host resources
5570 * @dev: generic device this host is associated with
5571 * @max_ports: maximum number of ATA ports associated with this host
5573 * Allocate and initialize basic ATA host resources. LLD calls
5574 * this function to allocate a host, initializes it fully and
5575 * attaches it using ata_host_register().
5577 * @max_ports ports are allocated and host->n_ports is
5578 * initialized to @max_ports. The caller is allowed to decrease
5579 * host->n_ports before calling ata_host_register(). The unused
5580 * ports will be automatically freed on registration.
5583 * Allocate ATA host on success, NULL on failure.
5586 * Inherited from calling layer (may sleep).
5588 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5590 struct ata_host
*host
;
5596 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5599 /* alloc a container for our list of ATA ports (buses) */
5600 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5601 /* alloc a container for our list of ATA ports (buses) */
5602 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5606 devres_add(dev
, host
);
5607 dev_set_drvdata(dev
, host
);
5609 spin_lock_init(&host
->lock
);
5611 host
->n_ports
= max_ports
;
5613 /* allocate ports bound to this host */
5614 for (i
= 0; i
< max_ports
; i
++) {
5615 struct ata_port
*ap
;
5617 ap
= ata_port_alloc(host
);
5622 host
->ports
[i
] = ap
;
5625 devres_remove_group(dev
, NULL
);
5629 devres_release_group(dev
, NULL
);
5634 * ata_host_alloc_pinfo - alloc host and init with port_info array
5635 * @dev: generic device this host is associated with
5636 * @ppi: array of ATA port_info to initialize host with
5637 * @n_ports: number of ATA ports attached to this host
5639 * Allocate ATA host and initialize with info from @ppi. If NULL
5640 * terminated, @ppi may contain fewer entries than @n_ports. The
5641 * last entry will be used for the remaining ports.
5644 * Allocate ATA host on success, NULL on failure.
5647 * Inherited from calling layer (may sleep).
5649 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5650 const struct ata_port_info
* const * ppi
,
5653 const struct ata_port_info
*pi
;
5654 struct ata_host
*host
;
5657 host
= ata_host_alloc(dev
, n_ports
);
5661 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5662 struct ata_port
*ap
= host
->ports
[i
];
5667 ap
->pio_mask
= pi
->pio_mask
;
5668 ap
->mwdma_mask
= pi
->mwdma_mask
;
5669 ap
->udma_mask
= pi
->udma_mask
;
5670 ap
->flags
|= pi
->flags
;
5671 ap
->link
.flags
|= pi
->link_flags
;
5672 ap
->ops
= pi
->port_ops
;
5674 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5675 host
->ops
= pi
->port_ops
;
5682 * ata_slave_link_init - initialize slave link
5683 * @ap: port to initialize slave link for
5685 * Create and initialize slave link for @ap. This enables slave
5686 * link handling on the port.
5688 * In libata, a port contains links and a link contains devices.
5689 * There is single host link but if a PMP is attached to it,
5690 * there can be multiple fan-out links. On SATA, there's usually
5691 * a single device connected to a link but PATA and SATA
5692 * controllers emulating TF based interface can have two - master
5695 * However, there are a few controllers which don't fit into this
5696 * abstraction too well - SATA controllers which emulate TF
5697 * interface with both master and slave devices but also have
5698 * separate SCR register sets for each device. These controllers
5699 * need separate links for physical link handling
5700 * (e.g. onlineness, link speed) but should be treated like a
5701 * traditional M/S controller for everything else (e.g. command
5702 * issue, softreset).
5704 * slave_link is libata's way of handling this class of
5705 * controllers without impacting core layer too much. For
5706 * anything other than physical link handling, the default host
5707 * link is used for both master and slave. For physical link
5708 * handling, separate @ap->slave_link is used. All dirty details
5709 * are implemented inside libata core layer. From LLD's POV, the
5710 * only difference is that prereset, hardreset and postreset are
5711 * called once more for the slave link, so the reset sequence
5712 * looks like the following.
5714 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5715 * softreset(M) -> postreset(M) -> postreset(S)
5717 * Note that softreset is called only for the master. Softreset
5718 * resets both M/S by definition, so SRST on master should handle
5719 * both (the standard method will work just fine).
5722 * Should be called before host is registered.
5725 * 0 on success, -errno on failure.
5727 int ata_slave_link_init(struct ata_port
*ap
)
5729 struct ata_link
*link
;
5731 WARN_ON(ap
->slave_link
);
5732 WARN_ON(ap
->flags
& ATA_FLAG_PMP
);
5734 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
5738 ata_link_init(ap
, link
, 1);
5739 ap
->slave_link
= link
;
5743 static void ata_host_stop(struct device
*gendev
, void *res
)
5745 struct ata_host
*host
= dev_get_drvdata(gendev
);
5748 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5750 for (i
= 0; i
< host
->n_ports
; i
++) {
5751 struct ata_port
*ap
= host
->ports
[i
];
5753 if (ap
->ops
->port_stop
)
5754 ap
->ops
->port_stop(ap
);
5757 if (host
->ops
->host_stop
)
5758 host
->ops
->host_stop(host
);
5762 * ata_finalize_port_ops - finalize ata_port_operations
5763 * @ops: ata_port_operations to finalize
5765 * An ata_port_operations can inherit from another ops and that
5766 * ops can again inherit from another. This can go on as many
5767 * times as necessary as long as there is no loop in the
5768 * inheritance chain.
5770 * Ops tables are finalized when the host is started. NULL or
5771 * unspecified entries are inherited from the closet ancestor
5772 * which has the method and the entry is populated with it.
5773 * After finalization, the ops table directly points to all the
5774 * methods and ->inherits is no longer necessary and cleared.
5776 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5781 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5783 static DEFINE_SPINLOCK(lock
);
5784 const struct ata_port_operations
*cur
;
5785 void **begin
= (void **)ops
;
5786 void **end
= (void **)&ops
->inherits
;
5789 if (!ops
|| !ops
->inherits
)
5794 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
5795 void **inherit
= (void **)cur
;
5797 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
5802 for (pp
= begin
; pp
< end
; pp
++)
5806 ops
->inherits
= NULL
;
5812 * ata_host_start - start and freeze ports of an ATA host
5813 * @host: ATA host to start ports for
5815 * Start and then freeze ports of @host. Started status is
5816 * recorded in host->flags, so this function can be called
5817 * multiple times. Ports are guaranteed to get started only
5818 * once. If host->ops isn't initialized yet, its set to the
5819 * first non-dummy port ops.
5822 * Inherited from calling layer (may sleep).
5825 * 0 if all ports are started successfully, -errno otherwise.
5827 int ata_host_start(struct ata_host
*host
)
5830 void *start_dr
= NULL
;
5833 if (host
->flags
& ATA_HOST_STARTED
)
5836 ata_finalize_port_ops(host
->ops
);
5838 for (i
= 0; i
< host
->n_ports
; i
++) {
5839 struct ata_port
*ap
= host
->ports
[i
];
5841 ata_finalize_port_ops(ap
->ops
);
5843 if (!host
->ops
&& !ata_port_is_dummy(ap
))
5844 host
->ops
= ap
->ops
;
5846 if (ap
->ops
->port_stop
)
5850 if (host
->ops
->host_stop
)
5854 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
5859 for (i
= 0; i
< host
->n_ports
; i
++) {
5860 struct ata_port
*ap
= host
->ports
[i
];
5862 if (ap
->ops
->port_start
) {
5863 rc
= ap
->ops
->port_start(ap
);
5866 dev_printk(KERN_ERR
, host
->dev
,
5867 "failed to start port %d "
5868 "(errno=%d)\n", i
, rc
);
5872 ata_eh_freeze_port(ap
);
5876 devres_add(host
->dev
, start_dr
);
5877 host
->flags
|= ATA_HOST_STARTED
;
5882 struct ata_port
*ap
= host
->ports
[i
];
5884 if (ap
->ops
->port_stop
)
5885 ap
->ops
->port_stop(ap
);
5887 devres_free(start_dr
);
5892 * ata_sas_host_init - Initialize a host struct
5893 * @host: host to initialize
5894 * @dev: device host is attached to
5895 * @flags: host flags
5899 * PCI/etc. bus probe sem.
5902 /* KILLME - the only user left is ipr */
5903 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
5904 unsigned long flags
, struct ata_port_operations
*ops
)
5906 spin_lock_init(&host
->lock
);
5908 host
->flags
= flags
;
5913 static void async_port_probe(void *data
, async_cookie_t cookie
)
5916 struct ata_port
*ap
= data
;
5919 * If we're not allowed to scan this host in parallel,
5920 * we need to wait until all previous scans have completed
5921 * before going further.
5922 * Jeff Garzik says this is only within a controller, so we
5923 * don't need to wait for port 0, only for later ports.
5925 if (!(ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
) && ap
->port_no
!= 0)
5926 async_synchronize_cookie(cookie
);
5929 if (ap
->ops
->error_handler
) {
5930 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
5931 unsigned long flags
;
5935 /* kick EH for boot probing */
5936 spin_lock_irqsave(ap
->lock
, flags
);
5938 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
5939 ehi
->action
|= ATA_EH_RESET
| ATA_EH_LPM
;
5940 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
5942 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
5943 ap
->pflags
|= ATA_PFLAG_LOADING
;
5944 ata_port_schedule_eh(ap
);
5946 spin_unlock_irqrestore(ap
->lock
, flags
);
5948 /* wait for EH to finish */
5949 ata_port_wait_eh(ap
);
5951 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
5952 rc
= ata_bus_probe(ap
);
5953 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
5956 /* FIXME: do something useful here?
5957 * Current libata behavior will
5958 * tear down everything when
5959 * the module is removed
5960 * or the h/w is unplugged.
5965 /* in order to keep device order, we need to synchronize at this point */
5966 async_synchronize_cookie(cookie
);
5968 ata_scsi_scan_host(ap
, 1);
5972 * ata_host_register - register initialized ATA host
5973 * @host: ATA host to register
5974 * @sht: template for SCSI host
5976 * Register initialized ATA host. @host is allocated using
5977 * ata_host_alloc() and fully initialized by LLD. This function
5978 * starts ports, registers @host with ATA and SCSI layers and
5979 * probe registered devices.
5982 * Inherited from calling layer (may sleep).
5985 * 0 on success, -errno otherwise.
5987 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
5991 /* host must have been started */
5992 if (!(host
->flags
& ATA_HOST_STARTED
)) {
5993 dev_printk(KERN_ERR
, host
->dev
,
5994 "BUG: trying to register unstarted host\n");
5999 /* Blow away unused ports. This happens when LLD can't
6000 * determine the exact number of ports to allocate at
6003 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6004 kfree(host
->ports
[i
]);
6006 /* give ports names and add SCSI hosts */
6007 for (i
= 0; i
< host
->n_ports
; i
++)
6008 host
->ports
[i
]->print_id
= ata_print_id
++;
6010 rc
= ata_scsi_add_hosts(host
, sht
);
6014 /* associate with ACPI nodes */
6015 ata_acpi_associate(host
);
6017 /* set cable, sata_spd_limit and report */
6018 for (i
= 0; i
< host
->n_ports
; i
++) {
6019 struct ata_port
*ap
= host
->ports
[i
];
6020 unsigned long xfer_mask
;
6022 /* set SATA cable type if still unset */
6023 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6024 ap
->cbl
= ATA_CBL_SATA
;
6026 /* init sata_spd_limit to the current value */
6027 sata_link_init_spd(&ap
->link
);
6029 sata_link_init_spd(ap
->slave_link
);
6031 /* print per-port info to dmesg */
6032 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6035 if (!ata_port_is_dummy(ap
)) {
6036 ata_port_printk(ap
, KERN_INFO
,
6037 "%cATA max %s %s\n",
6038 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
6039 ata_mode_string(xfer_mask
),
6040 ap
->link
.eh_info
.desc
);
6041 ata_ehi_clear_desc(&ap
->link
.eh_info
);
6043 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
6046 /* perform each probe synchronously */
6047 DPRINTK("probe begin\n");
6048 for (i
= 0; i
< host
->n_ports
; i
++) {
6049 struct ata_port
*ap
= host
->ports
[i
];
6050 async_schedule(async_port_probe
, ap
);
6052 DPRINTK("probe end\n");
6058 * ata_host_activate - start host, request IRQ and register it
6059 * @host: target ATA host
6060 * @irq: IRQ to request
6061 * @irq_handler: irq_handler used when requesting IRQ
6062 * @irq_flags: irq_flags used when requesting IRQ
6063 * @sht: scsi_host_template to use when registering the host
6065 * After allocating an ATA host and initializing it, most libata
6066 * LLDs perform three steps to activate the host - start host,
6067 * request IRQ and register it. This helper takes necessasry
6068 * arguments and performs the three steps in one go.
6070 * An invalid IRQ skips the IRQ registration and expects the host to
6071 * have set polling mode on the port. In this case, @irq_handler
6075 * Inherited from calling layer (may sleep).
6078 * 0 on success, -errno otherwise.
6080 int ata_host_activate(struct ata_host
*host
, int irq
,
6081 irq_handler_t irq_handler
, unsigned long irq_flags
,
6082 struct scsi_host_template
*sht
)
6086 rc
= ata_host_start(host
);
6090 /* Special case for polling mode */
6092 WARN_ON(irq_handler
);
6093 return ata_host_register(host
, sht
);
6096 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6097 dev_driver_string(host
->dev
), host
);
6101 for (i
= 0; i
< host
->n_ports
; i
++)
6102 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
6104 rc
= ata_host_register(host
, sht
);
6105 /* if failed, just free the IRQ and leave ports alone */
6107 devm_free_irq(host
->dev
, irq
, host
);
6113 * ata_port_detach - Detach ATA port in prepration of device removal
6114 * @ap: ATA port to be detached
6116 * Detach all ATA devices and the associated SCSI devices of @ap;
6117 * then, remove the associated SCSI host. @ap is guaranteed to
6118 * be quiescent on return from this function.
6121 * Kernel thread context (may sleep).
6123 static void ata_port_detach(struct ata_port
*ap
)
6125 unsigned long flags
;
6127 if (!ap
->ops
->error_handler
)
6130 /* tell EH we're leaving & flush EH */
6131 spin_lock_irqsave(ap
->lock
, flags
);
6132 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6133 ata_port_schedule_eh(ap
);
6134 spin_unlock_irqrestore(ap
->lock
, flags
);
6136 /* wait till EH commits suicide */
6137 ata_port_wait_eh(ap
);
6139 /* it better be dead now */
6140 WARN_ON(!(ap
->pflags
& ATA_PFLAG_UNLOADED
));
6142 cancel_rearming_delayed_work(&ap
->hotplug_task
);
6145 /* remove the associated SCSI host */
6146 scsi_remove_host(ap
->scsi_host
);
6150 * ata_host_detach - Detach all ports of an ATA host
6151 * @host: Host to detach
6153 * Detach all ports of @host.
6156 * Kernel thread context (may sleep).
6158 void ata_host_detach(struct ata_host
*host
)
6162 for (i
= 0; i
< host
->n_ports
; i
++)
6163 ata_port_detach(host
->ports
[i
]);
6165 /* the host is dead now, dissociate ACPI */
6166 ata_acpi_dissociate(host
);
6172 * ata_pci_remove_one - PCI layer callback for device removal
6173 * @pdev: PCI device that was removed
6175 * PCI layer indicates to libata via this hook that hot-unplug or
6176 * module unload event has occurred. Detach all ports. Resource
6177 * release is handled via devres.
6180 * Inherited from PCI layer (may sleep).
6182 void ata_pci_remove_one(struct pci_dev
*pdev
)
6184 struct device
*dev
= &pdev
->dev
;
6185 struct ata_host
*host
= dev_get_drvdata(dev
);
6187 ata_host_detach(host
);
6190 /* move to PCI subsystem */
6191 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6193 unsigned long tmp
= 0;
6195 switch (bits
->width
) {
6198 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6204 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6210 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6221 return (tmp
== bits
->val
) ? 1 : 0;
6225 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6227 pci_save_state(pdev
);
6228 pci_disable_device(pdev
);
6230 if (mesg
.event
& PM_EVENT_SLEEP
)
6231 pci_set_power_state(pdev
, PCI_D3hot
);
6234 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6238 pci_set_power_state(pdev
, PCI_D0
);
6239 pci_restore_state(pdev
);
6241 rc
= pcim_enable_device(pdev
);
6243 dev_printk(KERN_ERR
, &pdev
->dev
,
6244 "failed to enable device after resume (%d)\n", rc
);
6248 pci_set_master(pdev
);
6252 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6254 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6257 rc
= ata_host_suspend(host
, mesg
);
6261 ata_pci_device_do_suspend(pdev
, mesg
);
6266 int ata_pci_device_resume(struct pci_dev
*pdev
)
6268 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6271 rc
= ata_pci_device_do_resume(pdev
);
6273 ata_host_resume(host
);
6276 #endif /* CONFIG_PM */
6278 #endif /* CONFIG_PCI */
6280 static int __init
ata_parse_force_one(char **cur
,
6281 struct ata_force_ent
*force_ent
,
6282 const char **reason
)
6284 /* FIXME: Currently, there's no way to tag init const data and
6285 * using __initdata causes build failure on some versions of
6286 * gcc. Once __initdataconst is implemented, add const to the
6287 * following structure.
6289 static struct ata_force_param force_tbl
[] __initdata
= {
6290 { "40c", .cbl
= ATA_CBL_PATA40
},
6291 { "80c", .cbl
= ATA_CBL_PATA80
},
6292 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6293 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6294 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6295 { "sata", .cbl
= ATA_CBL_SATA
},
6296 { "1.5Gbps", .spd_limit
= 1 },
6297 { "3.0Gbps", .spd_limit
= 2 },
6298 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6299 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6300 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6301 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6302 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6303 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6304 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6305 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6306 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6307 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6308 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6309 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6310 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6311 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6312 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6313 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6314 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6315 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6316 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6317 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6318 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6319 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6320 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6321 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6322 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6323 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6324 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6325 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6326 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6327 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6328 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6329 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6330 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6331 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6332 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6333 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6334 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6335 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6336 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6338 char *start
= *cur
, *p
= *cur
;
6339 char *id
, *val
, *endp
;
6340 const struct ata_force_param
*match_fp
= NULL
;
6341 int nr_matches
= 0, i
;
6343 /* find where this param ends and update *cur */
6344 while (*p
!= '\0' && *p
!= ',')
6355 p
= strchr(start
, ':');
6357 val
= strstrip(start
);
6362 id
= strstrip(start
);
6363 val
= strstrip(p
+ 1);
6366 p
= strchr(id
, '.');
6369 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6370 if (p
== endp
|| *endp
!= '\0') {
6371 *reason
= "invalid device";
6376 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6377 if (p
== endp
|| *endp
!= '\0') {
6378 *reason
= "invalid port/link";
6383 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6384 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6385 const struct ata_force_param
*fp
= &force_tbl
[i
];
6387 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6393 if (strcasecmp(val
, fp
->name
) == 0) {
6400 *reason
= "unknown value";
6403 if (nr_matches
> 1) {
6404 *reason
= "ambigious value";
6408 force_ent
->param
= *match_fp
;
6413 static void __init
ata_parse_force_param(void)
6415 int idx
= 0, size
= 1;
6416 int last_port
= -1, last_device
= -1;
6417 char *p
, *cur
, *next
;
6419 /* calculate maximum number of params and allocate force_tbl */
6420 for (p
= ata_force_param_buf
; *p
; p
++)
6424 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6425 if (!ata_force_tbl
) {
6426 printk(KERN_WARNING
"ata: failed to extend force table, "
6427 "libata.force ignored\n");
6431 /* parse and populate the table */
6432 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6433 const char *reason
= "";
6434 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6437 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6438 printk(KERN_WARNING
"ata: failed to parse force "
6439 "parameter \"%s\" (%s)\n",
6444 if (te
.port
== -1) {
6445 te
.port
= last_port
;
6446 te
.device
= last_device
;
6449 ata_force_tbl
[idx
++] = te
;
6451 last_port
= te
.port
;
6452 last_device
= te
.device
;
6455 ata_force_tbl_size
= idx
;
6458 static int __init
ata_init(void)
6460 ata_parse_force_param();
6462 ata_wq
= create_workqueue("ata");
6464 goto free_force_tbl
;
6466 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6470 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6474 destroy_workqueue(ata_wq
);
6476 kfree(ata_force_tbl
);
6480 static void __exit
ata_exit(void)
6482 kfree(ata_force_tbl
);
6483 destroy_workqueue(ata_wq
);
6484 destroy_workqueue(ata_aux_wq
);
6487 subsys_initcall(ata_init
);
6488 module_exit(ata_exit
);
6490 static unsigned long ratelimit_time
;
6491 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6493 int ata_ratelimit(void)
6496 unsigned long flags
;
6498 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6500 if (time_after(jiffies
, ratelimit_time
)) {
6502 ratelimit_time
= jiffies
+ (HZ
/5);
6506 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6512 * ata_wait_register - wait until register value changes
6513 * @reg: IO-mapped register
6514 * @mask: Mask to apply to read register value
6515 * @val: Wait condition
6516 * @interval: polling interval in milliseconds
6517 * @timeout: timeout in milliseconds
6519 * Waiting for some bits of register to change is a common
6520 * operation for ATA controllers. This function reads 32bit LE
6521 * IO-mapped register @reg and tests for the following condition.
6523 * (*@reg & mask) != val
6525 * If the condition is met, it returns; otherwise, the process is
6526 * repeated after @interval_msec until timeout.
6529 * Kernel thread context (may sleep)
6532 * The final register value.
6534 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6535 unsigned long interval
, unsigned long timeout
)
6537 unsigned long deadline
;
6540 tmp
= ioread32(reg
);
6542 /* Calculate timeout _after_ the first read to make sure
6543 * preceding writes reach the controller before starting to
6544 * eat away the timeout.
6546 deadline
= ata_deadline(jiffies
, timeout
);
6548 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
6550 tmp
= ioread32(reg
);
6559 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6561 return AC_ERR_SYSTEM
;
6564 static void ata_dummy_error_handler(struct ata_port
*ap
)
6569 struct ata_port_operations ata_dummy_port_ops
= {
6570 .qc_prep
= ata_noop_qc_prep
,
6571 .qc_issue
= ata_dummy_qc_issue
,
6572 .error_handler
= ata_dummy_error_handler
,
6575 const struct ata_port_info ata_dummy_port_info
= {
6576 .port_ops
= &ata_dummy_port_ops
,
6580 * libata is essentially a library of internal helper functions for
6581 * low-level ATA host controller drivers. As such, the API/ABI is
6582 * likely to change as new drivers are added and updated.
6583 * Do not depend on ABI/API stability.
6585 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6586 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6587 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6588 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6589 EXPORT_SYMBOL_GPL(sata_port_ops
);
6590 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6591 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6592 EXPORT_SYMBOL_GPL(ata_link_next
);
6593 EXPORT_SYMBOL_GPL(ata_dev_next
);
6594 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6595 EXPORT_SYMBOL_GPL(ata_host_init
);
6596 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6597 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6598 EXPORT_SYMBOL_GPL(ata_slave_link_init
);
6599 EXPORT_SYMBOL_GPL(ata_host_start
);
6600 EXPORT_SYMBOL_GPL(ata_host_register
);
6601 EXPORT_SYMBOL_GPL(ata_host_activate
);
6602 EXPORT_SYMBOL_GPL(ata_host_detach
);
6603 EXPORT_SYMBOL_GPL(ata_sg_init
);
6604 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6605 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6606 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6607 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6608 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6609 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6610 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6611 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6612 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6613 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6614 EXPORT_SYMBOL_GPL(ata_mode_string
);
6615 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6616 EXPORT_SYMBOL_GPL(ata_port_start
);
6617 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6618 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6619 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6620 EXPORT_SYMBOL_GPL(ata_port_probe
);
6621 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6622 EXPORT_SYMBOL_GPL(sata_set_spd
);
6623 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6624 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6625 EXPORT_SYMBOL_GPL(sata_link_resume
);
6626 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6627 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6628 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6629 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6630 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6631 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6632 EXPORT_SYMBOL_GPL(ata_port_disable
);
6633 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6634 EXPORT_SYMBOL_GPL(ata_wait_register
);
6635 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6636 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6637 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6638 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6639 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6640 EXPORT_SYMBOL_GPL(sata_scr_read
);
6641 EXPORT_SYMBOL_GPL(sata_scr_write
);
6642 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6643 EXPORT_SYMBOL_GPL(ata_link_online
);
6644 EXPORT_SYMBOL_GPL(ata_link_offline
);
6646 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6647 EXPORT_SYMBOL_GPL(ata_host_resume
);
6648 #endif /* CONFIG_PM */
6649 EXPORT_SYMBOL_GPL(ata_id_string
);
6650 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6651 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
6652 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6654 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6655 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6656 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6657 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6658 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6661 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6662 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6664 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6665 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6666 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6667 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6668 #endif /* CONFIG_PM */
6669 #endif /* CONFIG_PCI */
6671 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
6672 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
6673 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
6674 EXPORT_SYMBOL_GPL(ata_port_desc
);
6676 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
6677 #endif /* CONFIG_PCI */
6678 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6679 EXPORT_SYMBOL_GPL(ata_link_abort
);
6680 EXPORT_SYMBOL_GPL(ata_port_abort
);
6681 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6682 EXPORT_SYMBOL_GPL(sata_async_notification
);
6683 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6684 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6685 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6686 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6687 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
6688 EXPORT_SYMBOL_GPL(ata_do_eh
);
6689 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
6691 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6692 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6693 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6694 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
6695 EXPORT_SYMBOL_GPL(ata_cable_sata
);