2 * linux/arch/arm/vfp/vfpmodule.c
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
18 #include <asm/thread_notify.h>
25 * Our undef handlers (in entry.S)
27 void vfp_testing_entry(void);
28 void vfp_support_entry(void);
29 void vfp_null_entry(void);
31 void (*vfp_vector
)(void) = vfp_null_entry
;
32 union vfp_state
*last_VFP_context
[NR_CPUS
];
36 * Used in startup: set to non-zero if VFP checks fail
37 * After startup, holds VFP architecture
39 unsigned int VFP_arch
;
41 static int vfp_notifier(struct notifier_block
*self
, unsigned long cmd
, void *v
)
43 struct thread_info
*thread
= v
;
45 __u32 cpu
= thread
->cpu
;
47 if (likely(cmd
== THREAD_NOTIFY_SWITCH
)) {
48 u32 fpexc
= fmrx(FPEXC
);
52 * On SMP, if VFP is enabled, save the old state in
53 * case the thread migrates to a different CPU. The
54 * restoring is done lazily.
56 if ((fpexc
& FPEXC_EN
) && last_VFP_context
[cpu
]) {
57 vfp_save_state(last_VFP_context
[cpu
], fpexc
);
58 last_VFP_context
[cpu
]->hard
.cpu
= cpu
;
61 * Thread migration, just force the reloading of the
62 * state on the new CPU in case the VFP registers
65 if (thread
->vfpstate
.hard
.cpu
!= cpu
)
66 last_VFP_context
[cpu
] = NULL
;
70 * Always disable VFP so we can lazily save/restore the
73 fmxr(FPEXC
, fpexc
& ~FPEXC_EN
);
77 vfp
= &thread
->vfpstate
;
78 if (cmd
== THREAD_NOTIFY_FLUSH
) {
80 * Per-thread VFP initialisation.
82 memset(vfp
, 0, sizeof(union vfp_state
));
84 vfp
->hard
.fpexc
= FPEXC_EN
;
85 vfp
->hard
.fpscr
= FPSCR_ROUND_NEAREST
;
88 * Disable VFP to ensure we initialise it first.
90 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
93 /* flush and release case: Per-thread VFP cleanup. */
94 if (last_VFP_context
[cpu
] == vfp
)
95 last_VFP_context
[cpu
] = NULL
;
100 static struct notifier_block vfp_notifier_block
= {
101 .notifier_call
= vfp_notifier
,
105 * Raise a SIGFPE for the current process.
106 * sicode describes the signal being raised.
108 void vfp_raise_sigfpe(unsigned int sicode
, struct pt_regs
*regs
)
112 memset(&info
, 0, sizeof(info
));
114 info
.si_signo
= SIGFPE
;
115 info
.si_code
= sicode
;
116 info
.si_addr
= (void __user
*)(instruction_pointer(regs
) - 4);
119 * This is the same as NWFPE, because it's not clear what
122 current
->thread
.error_code
= 0;
123 current
->thread
.trap_no
= 6;
125 send_sig_info(SIGFPE
, &info
, current
);
128 static void vfp_panic(char *reason
, u32 inst
)
132 printk(KERN_ERR
"VFP: Error: %s\n", reason
);
133 printk(KERN_ERR
"VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
134 fmrx(FPEXC
), fmrx(FPSCR
), inst
);
135 for (i
= 0; i
< 32; i
+= 2)
136 printk(KERN_ERR
"VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
137 i
, vfp_get_float(i
), i
+1, vfp_get_float(i
+1));
141 * Process bitmask of exception conditions.
143 static void vfp_raise_exceptions(u32 exceptions
, u32 inst
, u32 fpscr
, struct pt_regs
*regs
)
147 pr_debug("VFP: raising exceptions %08x\n", exceptions
);
149 if (exceptions
== VFP_EXCEPTION_ERROR
) {
150 vfp_panic("unhandled bounce", inst
);
151 vfp_raise_sigfpe(0, regs
);
156 * Update the FPSCR with the additional exception flags.
157 * Comparison instructions always return at least one of
164 #define RAISE(stat,en,sig) \
165 if (exceptions & stat && fpscr & en) \
169 * These are arranged in priority order, least to highest.
171 RAISE(FPSCR_DZC
, FPSCR_DZE
, FPE_FLTDIV
);
172 RAISE(FPSCR_IXC
, FPSCR_IXE
, FPE_FLTRES
);
173 RAISE(FPSCR_UFC
, FPSCR_UFE
, FPE_FLTUND
);
174 RAISE(FPSCR_OFC
, FPSCR_OFE
, FPE_FLTOVF
);
175 RAISE(FPSCR_IOC
, FPSCR_IOE
, FPE_FLTINV
);
178 vfp_raise_sigfpe(si_code
, regs
);
182 * Emulate a VFP instruction.
184 static u32
vfp_emulate_instruction(u32 inst
, u32 fpscr
, struct pt_regs
*regs
)
186 u32 exceptions
= VFP_EXCEPTION_ERROR
;
188 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst
, fpscr
);
190 if (INST_CPRTDO(inst
)) {
191 if (!INST_CPRT(inst
)) {
195 if (vfp_single(inst
)) {
196 exceptions
= vfp_single_cpdo(inst
, fpscr
);
198 exceptions
= vfp_double_cpdo(inst
, fpscr
);
202 * A CPRT instruction can not appear in FPINST2, nor
203 * can it cause an exception. Therefore, we do not
204 * have to emulate it.
209 * A CPDT instruction can not appear in FPINST2, nor can
210 * it cause an exception. Therefore, we do not have to
214 return exceptions
& ~VFP_NAN_FLAG
;
218 * Package up a bounce condition.
220 void VFP_bounce(u32 trigger
, u32 fpexc
, struct pt_regs
*regs
)
222 u32 fpscr
, orig_fpscr
, fpsid
, exceptions
;
224 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger
, fpexc
);
227 * At this point, FPEXC can have the following configuration:
230 * 0 1 x - synchronous exception
231 * 1 x 0 - asynchronous exception
232 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
233 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
234 * implementation), undefined otherwise
236 * Clear various bits and enable access to the VFP so we can
239 fmxr(FPEXC
, fpexc
& ~(FPEXC_EX
|FPEXC_DEX
|FPEXC_FP2V
|FPEXC_VV
|FPEXC_TRAP_MASK
));
242 orig_fpscr
= fpscr
= fmrx(FPSCR
);
245 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
247 if ((fpsid
& FPSID_ARCH_MASK
) == (1 << FPSID_ARCH_BIT
)
248 && (fpscr
& FPSCR_IXE
)) {
250 * Synchronous exception, emulate the trigger instruction
255 if (fpexc
& FPEXC_EX
) {
256 #ifndef CONFIG_CPU_FEROCEON
258 * Asynchronous exception. The instruction is read from FPINST
259 * and the interrupted instruction has to be restarted.
261 trigger
= fmrx(FPINST
);
264 } else if (!(fpexc
& FPEXC_DEX
)) {
266 * Illegal combination of bits. It can be caused by an
267 * unallocated VFP instruction but with FPSCR.IXE set and not
270 vfp_raise_exceptions(VFP_EXCEPTION_ERROR
, trigger
, fpscr
, regs
);
275 * Modify fpscr to indicate the number of iterations remaining.
276 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
277 * whether FPEXC.VECITR or FPSCR.LEN is used.
279 if (fpexc
& (FPEXC_EX
| FPEXC_VV
)) {
282 len
= fpexc
+ (1 << FPEXC_LENGTH_BIT
);
284 fpscr
&= ~FPSCR_LENGTH_MASK
;
285 fpscr
|= (len
& FPEXC_LENGTH_MASK
) << (FPSCR_LENGTH_BIT
- FPEXC_LENGTH_BIT
);
289 * Handle the first FP instruction. We used to take note of the
290 * FPEXC bounce reason, but this appears to be unreliable.
291 * Emulate the bounced instruction instead.
293 exceptions
= vfp_emulate_instruction(trigger
, fpscr
, regs
);
295 vfp_raise_exceptions(exceptions
, trigger
, orig_fpscr
, regs
);
298 * If there isn't a second FP instruction, exit now. Note that
299 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
301 if (fpexc
^ (FPEXC_EX
| FPEXC_FP2V
))
305 * The barrier() here prevents fpinst2 being read
306 * before the condition above.
309 trigger
= fmrx(FPINST2
);
312 exceptions
= vfp_emulate_instruction(trigger
, orig_fpscr
, regs
);
314 vfp_raise_exceptions(exceptions
, trigger
, orig_fpscr
, regs
);
319 static void vfp_enable(void *unused
)
321 u32 access
= get_copro_access();
324 * Enable full access to VFP (cp10 and cp11)
326 set_copro_access(access
| CPACC_FULL(10) | CPACC_FULL(11));
330 #include <linux/sysdev.h>
332 static int vfp_pm_suspend(struct sys_device
*dev
, pm_message_t state
)
334 struct thread_info
*ti
= current_thread_info();
335 u32 fpexc
= fmrx(FPEXC
);
337 /* if vfp is on, then save state for resumption */
338 if (fpexc
& FPEXC_EN
) {
339 printk(KERN_DEBUG
"%s: saving vfp state\n", __func__
);
340 vfp_save_state(&ti
->vfpstate
, fpexc
);
342 /* disable, just in case */
343 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
346 /* clear any information we had about last context state */
347 memset(last_VFP_context
, 0, sizeof(last_VFP_context
));
352 static int vfp_pm_resume(struct sys_device
*dev
)
354 /* ensure we have access to the vfp */
357 /* and disable it to ensure the next usage restores the state */
358 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
363 static struct sysdev_class vfp_pm_sysclass
= {
365 .suspend
= vfp_pm_suspend
,
366 .resume
= vfp_pm_resume
,
369 static struct sys_device vfp_pm_sysdev
= {
370 .cls
= &vfp_pm_sysclass
,
373 static void vfp_pm_init(void)
375 sysdev_class_register(&vfp_pm_sysclass
);
376 sysdev_register(&vfp_pm_sysdev
);
381 static inline void vfp_pm_init(void) { }
382 #endif /* CONFIG_PM */
385 * Synchronise the hardware VFP state of a thread other than current with the
386 * saved one. This function is used by the ptrace mechanism.
389 void vfp_sync_state(struct thread_info
*thread
)
392 * On SMP systems, the VFP state is automatically saved at every
393 * context switch. We mark the thread VFP state as belonging to a
394 * non-existent CPU so that the saved one will be reloaded when
397 thread
->vfpstate
.hard
.cpu
= NR_CPUS
;
400 void vfp_sync_state(struct thread_info
*thread
)
402 unsigned int cpu
= get_cpu();
403 u32 fpexc
= fmrx(FPEXC
);
406 * If VFP is enabled, the previous state was already saved and
407 * last_VFP_context updated.
409 if (fpexc
& FPEXC_EN
)
412 if (!last_VFP_context
[cpu
])
416 * Save the last VFP state on this CPU.
418 fmxr(FPEXC
, fpexc
| FPEXC_EN
);
419 vfp_save_state(last_VFP_context
[cpu
], fpexc
);
423 * Set the context to NULL to force a reload the next time the thread
426 last_VFP_context
[cpu
] = NULL
;
433 #include <linux/smp.h>
436 * VFP support code initialisation.
438 static int __init
vfp_init(void)
441 unsigned int cpu_arch
= cpu_architecture();
443 if (cpu_arch
>= CPU_ARCH_ARMv6
)
447 * First check that there is a VFP that we can use.
448 * The handler is already setup to just log calls, so
449 * we just need to read the VFPSID register.
451 vfp_vector
= vfp_testing_entry
;
453 vfpsid
= fmrx(FPSID
);
455 vfp_vector
= vfp_null_entry
;
457 printk(KERN_INFO
"VFP support v0.3: ");
459 printk("not present\n");
460 else if (vfpsid
& FPSID_NODOUBLE
) {
461 printk("no double precision support\n");
463 smp_call_function(vfp_enable
, NULL
, 1);
465 VFP_arch
= (vfpsid
& FPSID_ARCH_MASK
) >> FPSID_ARCH_BIT
; /* Extract the architecture version */
466 printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
467 (vfpsid
& FPSID_IMPLEMENTER_MASK
) >> FPSID_IMPLEMENTER_BIT
,
468 (vfpsid
& FPSID_ARCH_MASK
) >> FPSID_ARCH_BIT
,
469 (vfpsid
& FPSID_PART_MASK
) >> FPSID_PART_BIT
,
470 (vfpsid
& FPSID_VARIANT_MASK
) >> FPSID_VARIANT_BIT
,
471 (vfpsid
& FPSID_REV_MASK
) >> FPSID_REV_BIT
);
473 vfp_vector
= vfp_support_entry
;
475 thread_register_notifier(&vfp_notifier_block
);
479 * We detected VFP, and the support code is
480 * in place; report VFP support to userspace.
482 elf_hwcap
|= HWCAP_VFP
;
485 elf_hwcap
|= HWCAP_VFPv3
;
488 * Check for VFPv3 D16. CPUs in this configuration
489 * only have 16 x 64bit registers.
491 if (((fmrx(MVFR0
) & MVFR0_A_SIMD_MASK
)) == 1)
492 elf_hwcap
|= HWCAP_VFPv3D16
;
497 * Check for the presence of the Advanced SIMD
498 * load/store instructions, integer and single
499 * precision floating point operations.
501 if ((fmrx(MVFR1
) & 0x000fff00) == 0x00011100)
502 elf_hwcap
|= HWCAP_NEON
;
508 late_initcall(vfp_init
);