PCI PM: Return error codes from pci_pm_resume()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / gianfar.c
bloba00ec639c38039ad56f17706a5441cabe2c3fc20
1 /*
2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
26 * Theory of operation
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
85 #include <asm/io.h>
86 #include <asm/irq.h>
87 #include <asm/uaccess.h>
88 #include <linux/module.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/crc32.h>
91 #include <linux/mii.h>
92 #include <linux/phy.h>
93 #include <linux/phy_fixed.h>
94 #include <linux/of.h>
96 #include "gianfar.h"
97 #include "fsl_pq_mdio.h"
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct of_device *ofdev,
123 const struct of_device_id *match);
124 static int gfar_remove(struct of_device *ofdev);
125 static void free_skb_resources(struct gfar_private *priv);
126 static void gfar_set_multi(struct net_device *dev);
127 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
128 static void gfar_configure_serdes(struct net_device *dev);
129 static int gfar_poll(struct napi_struct *napi, int budget);
130 #ifdef CONFIG_NET_POLL_CONTROLLER
131 static void gfar_netpoll(struct net_device *dev);
132 #endif
133 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
134 static int gfar_clean_tx_ring(struct net_device *dev);
135 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
136 int amount_pull);
137 static void gfar_vlan_rx_register(struct net_device *netdev,
138 struct vlan_group *grp);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
150 static const struct net_device_ops gfar_netdev_ops = {
151 .ndo_open = gfar_enet_open,
152 .ndo_start_xmit = gfar_start_xmit,
153 .ndo_stop = gfar_close,
154 .ndo_change_mtu = gfar_change_mtu,
155 .ndo_set_multicast_list = gfar_set_multi,
156 .ndo_tx_timeout = gfar_timeout,
157 .ndo_do_ioctl = gfar_ioctl,
158 .ndo_vlan_rx_register = gfar_vlan_rx_register,
159 .ndo_set_mac_address = eth_mac_addr,
160 .ndo_validate_addr = eth_validate_addr,
161 #ifdef CONFIG_NET_POLL_CONTROLLER
162 .ndo_poll_controller = gfar_netpoll,
163 #endif
166 /* Returns 1 if incoming frames use an FCB */
167 static inline int gfar_uses_fcb(struct gfar_private *priv)
169 return priv->vlgrp || priv->rx_csum_enable;
172 static int gfar_of_init(struct net_device *dev)
174 const char *model;
175 const char *ctype;
176 const void *mac_addr;
177 u64 addr, size;
178 int err = 0;
179 struct gfar_private *priv = netdev_priv(dev);
180 struct device_node *np = priv->node;
181 const u32 *stash;
182 const u32 *stash_len;
183 const u32 *stash_idx;
185 if (!np || !of_device_is_available(np))
186 return -ENODEV;
188 /* get a pointer to the register memory */
189 addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
190 priv->regs = ioremap(addr, size);
192 if (priv->regs == NULL)
193 return -ENOMEM;
195 priv->interruptTransmit = irq_of_parse_and_map(np, 0);
197 model = of_get_property(np, "model", NULL);
199 /* If we aren't the FEC we have multiple interrupts */
200 if (model && strcasecmp(model, "FEC")) {
201 priv->interruptReceive = irq_of_parse_and_map(np, 1);
203 priv->interruptError = irq_of_parse_and_map(np, 2);
205 if (priv->interruptTransmit < 0 ||
206 priv->interruptReceive < 0 ||
207 priv->interruptError < 0) {
208 err = -EINVAL;
209 goto err_out;
213 stash = of_get_property(np, "bd-stash", NULL);
215 if(stash) {
216 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
217 priv->bd_stash_en = 1;
220 stash_len = of_get_property(np, "rx-stash-len", NULL);
222 if (stash_len)
223 priv->rx_stash_size = *stash_len;
225 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
227 if (stash_idx)
228 priv->rx_stash_index = *stash_idx;
230 if (stash_len || stash_idx)
231 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
233 mac_addr = of_get_mac_address(np);
234 if (mac_addr)
235 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
237 if (model && !strcasecmp(model, "TSEC"))
238 priv->device_flags =
239 FSL_GIANFAR_DEV_HAS_GIGABIT |
240 FSL_GIANFAR_DEV_HAS_COALESCE |
241 FSL_GIANFAR_DEV_HAS_RMON |
242 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
243 if (model && !strcasecmp(model, "eTSEC"))
244 priv->device_flags =
245 FSL_GIANFAR_DEV_HAS_GIGABIT |
246 FSL_GIANFAR_DEV_HAS_COALESCE |
247 FSL_GIANFAR_DEV_HAS_RMON |
248 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
249 FSL_GIANFAR_DEV_HAS_PADDING |
250 FSL_GIANFAR_DEV_HAS_CSUM |
251 FSL_GIANFAR_DEV_HAS_VLAN |
252 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
253 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
255 ctype = of_get_property(np, "phy-connection-type", NULL);
257 /* We only care about rgmii-id. The rest are autodetected */
258 if (ctype && !strcmp(ctype, "rgmii-id"))
259 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
260 else
261 priv->interface = PHY_INTERFACE_MODE_MII;
263 if (of_get_property(np, "fsl,magic-packet", NULL))
264 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
266 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
268 /* Find the TBI PHY. If it's not there, we don't support SGMII */
269 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
271 return 0;
273 err_out:
274 iounmap(priv->regs);
275 return err;
278 /* Ioctl MII Interface */
279 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
281 struct gfar_private *priv = netdev_priv(dev);
283 if (!netif_running(dev))
284 return -EINVAL;
286 if (!priv->phydev)
287 return -ENODEV;
289 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
292 /* Set up the ethernet device structure, private data,
293 * and anything else we need before we start */
294 static int gfar_probe(struct of_device *ofdev,
295 const struct of_device_id *match)
297 u32 tempval;
298 struct net_device *dev = NULL;
299 struct gfar_private *priv = NULL;
300 DECLARE_MAC_BUF(mac);
301 int err = 0;
302 int len_devname;
304 /* Create an ethernet device instance */
305 dev = alloc_etherdev(sizeof (*priv));
307 if (NULL == dev)
308 return -ENOMEM;
310 priv = netdev_priv(dev);
311 priv->ndev = dev;
312 priv->ofdev = ofdev;
313 priv->node = ofdev->node;
314 SET_NETDEV_DEV(dev, &ofdev->dev);
316 err = gfar_of_init(dev);
318 if (err)
319 goto regs_fail;
321 spin_lock_init(&priv->txlock);
322 spin_lock_init(&priv->rxlock);
323 spin_lock_init(&priv->bflock);
324 INIT_WORK(&priv->reset_task, gfar_reset_task);
326 dev_set_drvdata(&ofdev->dev, priv);
328 /* Stop the DMA engine now, in case it was running before */
329 /* (The firmware could have used it, and left it running). */
330 gfar_halt(dev);
332 /* Reset MAC layer */
333 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
335 /* We need to delay at least 3 TX clocks */
336 udelay(2);
338 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
339 gfar_write(&priv->regs->maccfg1, tempval);
341 /* Initialize MACCFG2. */
342 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
344 /* Initialize ECNTRL */
345 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
347 /* Set the dev->base_addr to the gfar reg region */
348 dev->base_addr = (unsigned long) (priv->regs);
350 SET_NETDEV_DEV(dev, &ofdev->dev);
352 /* Fill in the dev structure */
353 dev->watchdog_timeo = TX_TIMEOUT;
354 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
355 dev->mtu = 1500;
357 dev->netdev_ops = &gfar_netdev_ops;
358 dev->ethtool_ops = &gfar_ethtool_ops;
360 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
361 priv->rx_csum_enable = 1;
362 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
363 } else
364 priv->rx_csum_enable = 0;
366 priv->vlgrp = NULL;
368 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
369 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
371 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
372 priv->extended_hash = 1;
373 priv->hash_width = 9;
375 priv->hash_regs[0] = &priv->regs->igaddr0;
376 priv->hash_regs[1] = &priv->regs->igaddr1;
377 priv->hash_regs[2] = &priv->regs->igaddr2;
378 priv->hash_regs[3] = &priv->regs->igaddr3;
379 priv->hash_regs[4] = &priv->regs->igaddr4;
380 priv->hash_regs[5] = &priv->regs->igaddr5;
381 priv->hash_regs[6] = &priv->regs->igaddr6;
382 priv->hash_regs[7] = &priv->regs->igaddr7;
383 priv->hash_regs[8] = &priv->regs->gaddr0;
384 priv->hash_regs[9] = &priv->regs->gaddr1;
385 priv->hash_regs[10] = &priv->regs->gaddr2;
386 priv->hash_regs[11] = &priv->regs->gaddr3;
387 priv->hash_regs[12] = &priv->regs->gaddr4;
388 priv->hash_regs[13] = &priv->regs->gaddr5;
389 priv->hash_regs[14] = &priv->regs->gaddr6;
390 priv->hash_regs[15] = &priv->regs->gaddr7;
392 } else {
393 priv->extended_hash = 0;
394 priv->hash_width = 8;
396 priv->hash_regs[0] = &priv->regs->gaddr0;
397 priv->hash_regs[1] = &priv->regs->gaddr1;
398 priv->hash_regs[2] = &priv->regs->gaddr2;
399 priv->hash_regs[3] = &priv->regs->gaddr3;
400 priv->hash_regs[4] = &priv->regs->gaddr4;
401 priv->hash_regs[5] = &priv->regs->gaddr5;
402 priv->hash_regs[6] = &priv->regs->gaddr6;
403 priv->hash_regs[7] = &priv->regs->gaddr7;
406 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
407 priv->padding = DEFAULT_PADDING;
408 else
409 priv->padding = 0;
411 if (dev->features & NETIF_F_IP_CSUM)
412 dev->hard_header_len += GMAC_FCB_LEN;
414 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
415 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
416 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
417 priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
419 priv->txcoalescing = DEFAULT_TX_COALESCE;
420 priv->txic = DEFAULT_TXIC;
421 priv->rxcoalescing = DEFAULT_RX_COALESCE;
422 priv->rxic = DEFAULT_RXIC;
424 /* Enable most messages by default */
425 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
427 /* Carrier starts down, phylib will bring it up */
428 netif_carrier_off(dev);
430 err = register_netdev(dev);
432 if (err) {
433 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
434 dev->name);
435 goto register_fail;
438 device_init_wakeup(&dev->dev,
439 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
441 /* fill out IRQ number and name fields */
442 len_devname = strlen(dev->name);
443 strncpy(&priv->int_name_tx[0], dev->name, len_devname);
444 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
445 strncpy(&priv->int_name_tx[len_devname],
446 "_tx", sizeof("_tx") + 1);
448 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
449 strncpy(&priv->int_name_rx[len_devname],
450 "_rx", sizeof("_rx") + 1);
452 strncpy(&priv->int_name_er[0], dev->name, len_devname);
453 strncpy(&priv->int_name_er[len_devname],
454 "_er", sizeof("_er") + 1);
455 } else
456 priv->int_name_tx[len_devname] = '\0';
458 /* Create all the sysfs files */
459 gfar_init_sysfs(dev);
461 /* Print out the device info */
462 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
464 /* Even more device info helps when determining which kernel */
465 /* provided which set of benchmarks. */
466 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
467 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
468 dev->name, priv->rx_ring_size, priv->tx_ring_size);
470 return 0;
472 register_fail:
473 iounmap(priv->regs);
474 regs_fail:
475 if (priv->phy_node)
476 of_node_put(priv->phy_node);
477 if (priv->tbi_node)
478 of_node_put(priv->tbi_node);
479 free_netdev(dev);
480 return err;
483 static int gfar_remove(struct of_device *ofdev)
485 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
487 if (priv->phy_node)
488 of_node_put(priv->phy_node);
489 if (priv->tbi_node)
490 of_node_put(priv->tbi_node);
492 dev_set_drvdata(&ofdev->dev, NULL);
494 unregister_netdev(priv->ndev);
495 iounmap(priv->regs);
496 free_netdev(priv->ndev);
498 return 0;
501 #ifdef CONFIG_PM
502 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
504 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
505 struct net_device *dev = priv->ndev;
506 unsigned long flags;
507 u32 tempval;
509 int magic_packet = priv->wol_en &&
510 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
512 netif_device_detach(dev);
514 if (netif_running(dev)) {
515 spin_lock_irqsave(&priv->txlock, flags);
516 spin_lock(&priv->rxlock);
518 gfar_halt_nodisable(dev);
520 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
521 tempval = gfar_read(&priv->regs->maccfg1);
523 tempval &= ~MACCFG1_TX_EN;
525 if (!magic_packet)
526 tempval &= ~MACCFG1_RX_EN;
528 gfar_write(&priv->regs->maccfg1, tempval);
530 spin_unlock(&priv->rxlock);
531 spin_unlock_irqrestore(&priv->txlock, flags);
533 napi_disable(&priv->napi);
535 if (magic_packet) {
536 /* Enable interrupt on Magic Packet */
537 gfar_write(&priv->regs->imask, IMASK_MAG);
539 /* Enable Magic Packet mode */
540 tempval = gfar_read(&priv->regs->maccfg2);
541 tempval |= MACCFG2_MPEN;
542 gfar_write(&priv->regs->maccfg2, tempval);
543 } else {
544 phy_stop(priv->phydev);
548 return 0;
551 static int gfar_resume(struct of_device *ofdev)
553 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
554 struct net_device *dev = priv->ndev;
555 unsigned long flags;
556 u32 tempval;
557 int magic_packet = priv->wol_en &&
558 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
560 if (!netif_running(dev)) {
561 netif_device_attach(dev);
562 return 0;
565 if (!magic_packet && priv->phydev)
566 phy_start(priv->phydev);
568 /* Disable Magic Packet mode, in case something
569 * else woke us up.
572 spin_lock_irqsave(&priv->txlock, flags);
573 spin_lock(&priv->rxlock);
575 tempval = gfar_read(&priv->regs->maccfg2);
576 tempval &= ~MACCFG2_MPEN;
577 gfar_write(&priv->regs->maccfg2, tempval);
579 gfar_start(dev);
581 spin_unlock(&priv->rxlock);
582 spin_unlock_irqrestore(&priv->txlock, flags);
584 netif_device_attach(dev);
586 napi_enable(&priv->napi);
588 return 0;
590 #else
591 #define gfar_suspend NULL
592 #define gfar_resume NULL
593 #endif
595 /* Reads the controller's registers to determine what interface
596 * connects it to the PHY.
598 static phy_interface_t gfar_get_interface(struct net_device *dev)
600 struct gfar_private *priv = netdev_priv(dev);
601 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
603 if (ecntrl & ECNTRL_SGMII_MODE)
604 return PHY_INTERFACE_MODE_SGMII;
606 if (ecntrl & ECNTRL_TBI_MODE) {
607 if (ecntrl & ECNTRL_REDUCED_MODE)
608 return PHY_INTERFACE_MODE_RTBI;
609 else
610 return PHY_INTERFACE_MODE_TBI;
613 if (ecntrl & ECNTRL_REDUCED_MODE) {
614 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
615 return PHY_INTERFACE_MODE_RMII;
616 else {
617 phy_interface_t interface = priv->interface;
620 * This isn't autodetected right now, so it must
621 * be set by the device tree or platform code.
623 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
624 return PHY_INTERFACE_MODE_RGMII_ID;
626 return PHY_INTERFACE_MODE_RGMII;
630 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
631 return PHY_INTERFACE_MODE_GMII;
633 return PHY_INTERFACE_MODE_MII;
637 /* Initializes driver's PHY state, and attaches to the PHY.
638 * Returns 0 on success.
640 static int init_phy(struct net_device *dev)
642 struct gfar_private *priv = netdev_priv(dev);
643 uint gigabit_support =
644 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
645 SUPPORTED_1000baseT_Full : 0;
646 phy_interface_t interface;
648 priv->oldlink = 0;
649 priv->oldspeed = 0;
650 priv->oldduplex = -1;
652 interface = gfar_get_interface(dev);
654 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
655 interface);
656 if (!priv->phydev)
657 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
658 interface);
659 if (!priv->phydev) {
660 dev_err(&dev->dev, "could not attach to PHY\n");
661 return -ENODEV;
664 if (interface == PHY_INTERFACE_MODE_SGMII)
665 gfar_configure_serdes(dev);
667 /* Remove any features not supported by the controller */
668 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
669 priv->phydev->advertising = priv->phydev->supported;
671 return 0;
675 * Initialize TBI PHY interface for communicating with the
676 * SERDES lynx PHY on the chip. We communicate with this PHY
677 * through the MDIO bus on each controller, treating it as a
678 * "normal" PHY at the address found in the TBIPA register. We assume
679 * that the TBIPA register is valid. Either the MDIO bus code will set
680 * it to a value that doesn't conflict with other PHYs on the bus, or the
681 * value doesn't matter, as there are no other PHYs on the bus.
683 static void gfar_configure_serdes(struct net_device *dev)
685 struct gfar_private *priv = netdev_priv(dev);
686 struct phy_device *tbiphy;
688 if (!priv->tbi_node) {
689 dev_warn(&dev->dev, "error: SGMII mode requires that the "
690 "device tree specify a tbi-handle\n");
691 return;
694 tbiphy = of_phy_find_device(priv->tbi_node);
695 if (!tbiphy) {
696 dev_err(&dev->dev, "error: Could not get TBI device\n");
697 return;
701 * If the link is already up, we must already be ok, and don't need to
702 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
703 * everything for us? Resetting it takes the link down and requires
704 * several seconds for it to come back.
706 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
707 return;
709 /* Single clk mode, mii mode off(for serdes communication) */
710 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
712 phy_write(tbiphy, MII_ADVERTISE,
713 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
714 ADVERTISE_1000XPSE_ASYM);
716 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
717 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
720 static void init_registers(struct net_device *dev)
722 struct gfar_private *priv = netdev_priv(dev);
724 /* Clear IEVENT */
725 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
727 /* Initialize IMASK */
728 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
730 /* Init hash registers to zero */
731 gfar_write(&priv->regs->igaddr0, 0);
732 gfar_write(&priv->regs->igaddr1, 0);
733 gfar_write(&priv->regs->igaddr2, 0);
734 gfar_write(&priv->regs->igaddr3, 0);
735 gfar_write(&priv->regs->igaddr4, 0);
736 gfar_write(&priv->regs->igaddr5, 0);
737 gfar_write(&priv->regs->igaddr6, 0);
738 gfar_write(&priv->regs->igaddr7, 0);
740 gfar_write(&priv->regs->gaddr0, 0);
741 gfar_write(&priv->regs->gaddr1, 0);
742 gfar_write(&priv->regs->gaddr2, 0);
743 gfar_write(&priv->regs->gaddr3, 0);
744 gfar_write(&priv->regs->gaddr4, 0);
745 gfar_write(&priv->regs->gaddr5, 0);
746 gfar_write(&priv->regs->gaddr6, 0);
747 gfar_write(&priv->regs->gaddr7, 0);
749 /* Zero out the rmon mib registers if it has them */
750 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
751 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
753 /* Mask off the CAM interrupts */
754 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
755 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
758 /* Initialize the max receive buffer length */
759 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
761 /* Initialize the Minimum Frame Length Register */
762 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
766 /* Halt the receive and transmit queues */
767 static void gfar_halt_nodisable(struct net_device *dev)
769 struct gfar_private *priv = netdev_priv(dev);
770 struct gfar __iomem *regs = priv->regs;
771 u32 tempval;
773 /* Mask all interrupts */
774 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
776 /* Clear all interrupts */
777 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
779 /* Stop the DMA, and wait for it to stop */
780 tempval = gfar_read(&priv->regs->dmactrl);
781 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
782 != (DMACTRL_GRS | DMACTRL_GTS)) {
783 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
784 gfar_write(&priv->regs->dmactrl, tempval);
786 while (!(gfar_read(&priv->regs->ievent) &
787 (IEVENT_GRSC | IEVENT_GTSC)))
788 cpu_relax();
792 /* Halt the receive and transmit queues */
793 void gfar_halt(struct net_device *dev)
795 struct gfar_private *priv = netdev_priv(dev);
796 struct gfar __iomem *regs = priv->regs;
797 u32 tempval;
799 gfar_halt_nodisable(dev);
801 /* Disable Rx and Tx */
802 tempval = gfar_read(&regs->maccfg1);
803 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
804 gfar_write(&regs->maccfg1, tempval);
807 void stop_gfar(struct net_device *dev)
809 struct gfar_private *priv = netdev_priv(dev);
810 struct gfar __iomem *regs = priv->regs;
811 unsigned long flags;
813 phy_stop(priv->phydev);
815 /* Lock it down */
816 spin_lock_irqsave(&priv->txlock, flags);
817 spin_lock(&priv->rxlock);
819 gfar_halt(dev);
821 spin_unlock(&priv->rxlock);
822 spin_unlock_irqrestore(&priv->txlock, flags);
824 /* Free the IRQs */
825 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
826 free_irq(priv->interruptError, dev);
827 free_irq(priv->interruptTransmit, dev);
828 free_irq(priv->interruptReceive, dev);
829 } else {
830 free_irq(priv->interruptTransmit, dev);
833 free_skb_resources(priv);
835 dma_free_coherent(&priv->ofdev->dev,
836 sizeof(struct txbd8)*priv->tx_ring_size
837 + sizeof(struct rxbd8)*priv->rx_ring_size,
838 priv->tx_bd_base,
839 gfar_read(&regs->tbase0));
842 /* If there are any tx skbs or rx skbs still around, free them.
843 * Then free tx_skbuff and rx_skbuff */
844 static void free_skb_resources(struct gfar_private *priv)
846 struct rxbd8 *rxbdp;
847 struct txbd8 *txbdp;
848 int i, j;
850 /* Go through all the buffer descriptors and free their data buffers */
851 txbdp = priv->tx_bd_base;
853 for (i = 0; i < priv->tx_ring_size; i++) {
854 if (!priv->tx_skbuff[i])
855 continue;
857 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
858 txbdp->length, DMA_TO_DEVICE);
859 txbdp->lstatus = 0;
860 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
861 txbdp++;
862 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
863 txbdp->length, DMA_TO_DEVICE);
865 txbdp++;
866 dev_kfree_skb_any(priv->tx_skbuff[i]);
867 priv->tx_skbuff[i] = NULL;
870 kfree(priv->tx_skbuff);
872 rxbdp = priv->rx_bd_base;
874 /* rx_skbuff is not guaranteed to be allocated, so only
875 * free it and its contents if it is allocated */
876 if(priv->rx_skbuff != NULL) {
877 for (i = 0; i < priv->rx_ring_size; i++) {
878 if (priv->rx_skbuff[i]) {
879 dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr,
880 priv->rx_buffer_size,
881 DMA_FROM_DEVICE);
883 dev_kfree_skb_any(priv->rx_skbuff[i]);
884 priv->rx_skbuff[i] = NULL;
887 rxbdp->lstatus = 0;
888 rxbdp->bufPtr = 0;
890 rxbdp++;
893 kfree(priv->rx_skbuff);
897 void gfar_start(struct net_device *dev)
899 struct gfar_private *priv = netdev_priv(dev);
900 struct gfar __iomem *regs = priv->regs;
901 u32 tempval;
903 /* Enable Rx and Tx in MACCFG1 */
904 tempval = gfar_read(&regs->maccfg1);
905 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
906 gfar_write(&regs->maccfg1, tempval);
908 /* Initialize DMACTRL to have WWR and WOP */
909 tempval = gfar_read(&priv->regs->dmactrl);
910 tempval |= DMACTRL_INIT_SETTINGS;
911 gfar_write(&priv->regs->dmactrl, tempval);
913 /* Make sure we aren't stopped */
914 tempval = gfar_read(&priv->regs->dmactrl);
915 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
916 gfar_write(&priv->regs->dmactrl, tempval);
918 /* Clear THLT/RHLT, so that the DMA starts polling now */
919 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
920 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
922 /* Unmask the interrupts we look for */
923 gfar_write(&regs->imask, IMASK_DEFAULT);
925 dev->trans_start = jiffies;
928 /* Bring the controller up and running */
929 int startup_gfar(struct net_device *dev)
931 struct txbd8 *txbdp;
932 struct rxbd8 *rxbdp;
933 dma_addr_t addr = 0;
934 unsigned long vaddr;
935 int i;
936 struct gfar_private *priv = netdev_priv(dev);
937 struct gfar __iomem *regs = priv->regs;
938 int err = 0;
939 u32 rctrl = 0;
940 u32 tctrl = 0;
941 u32 attrs = 0;
943 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
945 /* Allocate memory for the buffer descriptors */
946 vaddr = (unsigned long) dma_alloc_coherent(&priv->ofdev->dev,
947 sizeof (struct txbd8) * priv->tx_ring_size +
948 sizeof (struct rxbd8) * priv->rx_ring_size,
949 &addr, GFP_KERNEL);
951 if (vaddr == 0) {
952 if (netif_msg_ifup(priv))
953 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
954 dev->name);
955 return -ENOMEM;
958 priv->tx_bd_base = (struct txbd8 *) vaddr;
960 /* enet DMA only understands physical addresses */
961 gfar_write(&regs->tbase0, addr);
963 /* Start the rx descriptor ring where the tx ring leaves off */
964 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
965 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
966 priv->rx_bd_base = (struct rxbd8 *) vaddr;
967 gfar_write(&regs->rbase0, addr);
969 /* Setup the skbuff rings */
970 priv->tx_skbuff =
971 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
972 priv->tx_ring_size, GFP_KERNEL);
974 if (NULL == priv->tx_skbuff) {
975 if (netif_msg_ifup(priv))
976 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
977 dev->name);
978 err = -ENOMEM;
979 goto tx_skb_fail;
982 for (i = 0; i < priv->tx_ring_size; i++)
983 priv->tx_skbuff[i] = NULL;
985 priv->rx_skbuff =
986 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
987 priv->rx_ring_size, GFP_KERNEL);
989 if (NULL == priv->rx_skbuff) {
990 if (netif_msg_ifup(priv))
991 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
992 dev->name);
993 err = -ENOMEM;
994 goto rx_skb_fail;
997 for (i = 0; i < priv->rx_ring_size; i++)
998 priv->rx_skbuff[i] = NULL;
1000 /* Initialize some variables in our dev structure */
1001 priv->num_txbdfree = priv->tx_ring_size;
1002 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
1003 priv->cur_rx = priv->rx_bd_base;
1004 priv->skb_curtx = priv->skb_dirtytx = 0;
1005 priv->skb_currx = 0;
1007 /* Initialize Transmit Descriptor Ring */
1008 txbdp = priv->tx_bd_base;
1009 for (i = 0; i < priv->tx_ring_size; i++) {
1010 txbdp->lstatus = 0;
1011 txbdp->bufPtr = 0;
1012 txbdp++;
1015 /* Set the last descriptor in the ring to indicate wrap */
1016 txbdp--;
1017 txbdp->status |= TXBD_WRAP;
1019 rxbdp = priv->rx_bd_base;
1020 for (i = 0; i < priv->rx_ring_size; i++) {
1021 struct sk_buff *skb;
1023 skb = gfar_new_skb(dev);
1025 if (!skb) {
1026 printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1027 dev->name);
1029 goto err_rxalloc_fail;
1032 priv->rx_skbuff[i] = skb;
1034 gfar_new_rxbdp(dev, rxbdp, skb);
1036 rxbdp++;
1039 /* Set the last descriptor in the ring to wrap */
1040 rxbdp--;
1041 rxbdp->status |= RXBD_WRAP;
1043 /* If the device has multiple interrupts, register for
1044 * them. Otherwise, only register for the one */
1045 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1046 /* Install our interrupt handlers for Error,
1047 * Transmit, and Receive */
1048 if (request_irq(priv->interruptError, gfar_error,
1049 0, priv->int_name_er, dev) < 0) {
1050 if (netif_msg_intr(priv))
1051 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1052 dev->name, priv->interruptError);
1054 err = -1;
1055 goto err_irq_fail;
1058 if (request_irq(priv->interruptTransmit, gfar_transmit,
1059 0, priv->int_name_tx, dev) < 0) {
1060 if (netif_msg_intr(priv))
1061 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1062 dev->name, priv->interruptTransmit);
1064 err = -1;
1066 goto tx_irq_fail;
1069 if (request_irq(priv->interruptReceive, gfar_receive,
1070 0, priv->int_name_rx, dev) < 0) {
1071 if (netif_msg_intr(priv))
1072 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1073 dev->name, priv->interruptReceive);
1075 err = -1;
1076 goto rx_irq_fail;
1078 } else {
1079 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1080 0, priv->int_name_tx, dev) < 0) {
1081 if (netif_msg_intr(priv))
1082 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1083 dev->name, priv->interruptTransmit);
1085 err = -1;
1086 goto err_irq_fail;
1090 phy_start(priv->phydev);
1092 /* Configure the coalescing support */
1093 gfar_write(&regs->txic, 0);
1094 if (priv->txcoalescing)
1095 gfar_write(&regs->txic, priv->txic);
1097 gfar_write(&regs->rxic, 0);
1098 if (priv->rxcoalescing)
1099 gfar_write(&regs->rxic, priv->rxic);
1101 if (priv->rx_csum_enable)
1102 rctrl |= RCTRL_CHECKSUMMING;
1104 if (priv->extended_hash) {
1105 rctrl |= RCTRL_EXTHASH;
1107 gfar_clear_exact_match(dev);
1108 rctrl |= RCTRL_EMEN;
1111 if (priv->padding) {
1112 rctrl &= ~RCTRL_PAL_MASK;
1113 rctrl |= RCTRL_PADDING(priv->padding);
1116 /* keep vlan related bits if it's enabled */
1117 if (priv->vlgrp) {
1118 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
1119 tctrl |= TCTRL_VLINS;
1122 /* Init rctrl based on our settings */
1123 gfar_write(&priv->regs->rctrl, rctrl);
1125 if (dev->features & NETIF_F_IP_CSUM)
1126 tctrl |= TCTRL_INIT_CSUM;
1128 gfar_write(&priv->regs->tctrl, tctrl);
1130 /* Set the extraction length and index */
1131 attrs = ATTRELI_EL(priv->rx_stash_size) |
1132 ATTRELI_EI(priv->rx_stash_index);
1134 gfar_write(&priv->regs->attreli, attrs);
1136 /* Start with defaults, and add stashing or locking
1137 * depending on the approprate variables */
1138 attrs = ATTR_INIT_SETTINGS;
1140 if (priv->bd_stash_en)
1141 attrs |= ATTR_BDSTASH;
1143 if (priv->rx_stash_size != 0)
1144 attrs |= ATTR_BUFSTASH;
1146 gfar_write(&priv->regs->attr, attrs);
1148 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1149 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1150 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1152 /* Start the controller */
1153 gfar_start(dev);
1155 return 0;
1157 rx_irq_fail:
1158 free_irq(priv->interruptTransmit, dev);
1159 tx_irq_fail:
1160 free_irq(priv->interruptError, dev);
1161 err_irq_fail:
1162 err_rxalloc_fail:
1163 rx_skb_fail:
1164 free_skb_resources(priv);
1165 tx_skb_fail:
1166 dma_free_coherent(&priv->ofdev->dev,
1167 sizeof(struct txbd8)*priv->tx_ring_size
1168 + sizeof(struct rxbd8)*priv->rx_ring_size,
1169 priv->tx_bd_base,
1170 gfar_read(&regs->tbase0));
1172 return err;
1175 /* Called when something needs to use the ethernet device */
1176 /* Returns 0 for success. */
1177 static int gfar_enet_open(struct net_device *dev)
1179 struct gfar_private *priv = netdev_priv(dev);
1180 int err;
1182 napi_enable(&priv->napi);
1184 skb_queue_head_init(&priv->rx_recycle);
1186 /* Initialize a bunch of registers */
1187 init_registers(dev);
1189 gfar_set_mac_address(dev);
1191 err = init_phy(dev);
1193 if(err) {
1194 napi_disable(&priv->napi);
1195 return err;
1198 err = startup_gfar(dev);
1199 if (err) {
1200 napi_disable(&priv->napi);
1201 return err;
1204 netif_start_queue(dev);
1206 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1208 return err;
1211 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1213 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1215 memset(fcb, 0, GMAC_FCB_LEN);
1217 return fcb;
1220 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1222 u8 flags = 0;
1224 /* If we're here, it's a IP packet with a TCP or UDP
1225 * payload. We set it to checksum, using a pseudo-header
1226 * we provide
1228 flags = TXFCB_DEFAULT;
1230 /* Tell the controller what the protocol is */
1231 /* And provide the already calculated phcs */
1232 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1233 flags |= TXFCB_UDP;
1234 fcb->phcs = udp_hdr(skb)->check;
1235 } else
1236 fcb->phcs = tcp_hdr(skb)->check;
1238 /* l3os is the distance between the start of the
1239 * frame (skb->data) and the start of the IP hdr.
1240 * l4os is the distance between the start of the
1241 * l3 hdr and the l4 hdr */
1242 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1243 fcb->l4os = skb_network_header_len(skb);
1245 fcb->flags = flags;
1248 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1250 fcb->flags |= TXFCB_VLN;
1251 fcb->vlctl = vlan_tx_tag_get(skb);
1254 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1255 struct txbd8 *base, int ring_size)
1257 struct txbd8 *new_bd = bdp + stride;
1259 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1262 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1263 int ring_size)
1265 return skip_txbd(bdp, 1, base, ring_size);
1268 /* This is called by the kernel when a frame is ready for transmission. */
1269 /* It is pointed to by the dev->hard_start_xmit function pointer */
1270 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1272 struct gfar_private *priv = netdev_priv(dev);
1273 struct txfcb *fcb = NULL;
1274 struct txbd8 *txbdp, *txbdp_start, *base;
1275 u32 lstatus;
1276 int i;
1277 u32 bufaddr;
1278 unsigned long flags;
1279 unsigned int nr_frags, length;
1281 base = priv->tx_bd_base;
1283 /* make space for additional header when fcb is needed */
1284 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1285 (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1286 (skb_headroom(skb) < GMAC_FCB_LEN)) {
1287 struct sk_buff *skb_new;
1289 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1290 if (!skb_new) {
1291 dev->stats.tx_errors++;
1292 kfree_skb(skb);
1293 return NETDEV_TX_OK;
1295 kfree_skb(skb);
1296 skb = skb_new;
1299 /* total number of fragments in the SKB */
1300 nr_frags = skb_shinfo(skb)->nr_frags;
1302 spin_lock_irqsave(&priv->txlock, flags);
1304 /* check if there is space to queue this packet */
1305 if ((nr_frags+1) > priv->num_txbdfree) {
1306 /* no space, stop the queue */
1307 netif_stop_queue(dev);
1308 dev->stats.tx_fifo_errors++;
1309 spin_unlock_irqrestore(&priv->txlock, flags);
1310 return NETDEV_TX_BUSY;
1313 /* Update transmit stats */
1314 dev->stats.tx_bytes += skb->len;
1316 txbdp = txbdp_start = priv->cur_tx;
1318 if (nr_frags == 0) {
1319 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1320 } else {
1321 /* Place the fragment addresses and lengths into the TxBDs */
1322 for (i = 0; i < nr_frags; i++) {
1323 /* Point at the next BD, wrapping as needed */
1324 txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1326 length = skb_shinfo(skb)->frags[i].size;
1328 lstatus = txbdp->lstatus | length |
1329 BD_LFLAG(TXBD_READY);
1331 /* Handle the last BD specially */
1332 if (i == nr_frags - 1)
1333 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1335 bufaddr = dma_map_page(&priv->ofdev->dev,
1336 skb_shinfo(skb)->frags[i].page,
1337 skb_shinfo(skb)->frags[i].page_offset,
1338 length,
1339 DMA_TO_DEVICE);
1341 /* set the TxBD length and buffer pointer */
1342 txbdp->bufPtr = bufaddr;
1343 txbdp->lstatus = lstatus;
1346 lstatus = txbdp_start->lstatus;
1349 /* Set up checksumming */
1350 if (CHECKSUM_PARTIAL == skb->ip_summed) {
1351 fcb = gfar_add_fcb(skb);
1352 lstatus |= BD_LFLAG(TXBD_TOE);
1353 gfar_tx_checksum(skb, fcb);
1356 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1357 if (unlikely(NULL == fcb)) {
1358 fcb = gfar_add_fcb(skb);
1359 lstatus |= BD_LFLAG(TXBD_TOE);
1362 gfar_tx_vlan(skb, fcb);
1365 /* setup the TxBD length and buffer pointer for the first BD */
1366 priv->tx_skbuff[priv->skb_curtx] = skb;
1367 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1368 skb_headlen(skb), DMA_TO_DEVICE);
1370 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1373 * The powerpc-specific eieio() is used, as wmb() has too strong
1374 * semantics (it requires synchronization between cacheable and
1375 * uncacheable mappings, which eieio doesn't provide and which we
1376 * don't need), thus requiring a more expensive sync instruction. At
1377 * some point, the set of architecture-independent barrier functions
1378 * should be expanded to include weaker barriers.
1380 eieio();
1382 txbdp_start->lstatus = lstatus;
1384 /* Update the current skb pointer to the next entry we will use
1385 * (wrapping if necessary) */
1386 priv->skb_curtx = (priv->skb_curtx + 1) &
1387 TX_RING_MOD_MASK(priv->tx_ring_size);
1389 priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1391 /* reduce TxBD free count */
1392 priv->num_txbdfree -= (nr_frags + 1);
1394 dev->trans_start = jiffies;
1396 /* If the next BD still needs to be cleaned up, then the bds
1397 are full. We need to tell the kernel to stop sending us stuff. */
1398 if (!priv->num_txbdfree) {
1399 netif_stop_queue(dev);
1401 dev->stats.tx_fifo_errors++;
1404 /* Tell the DMA to go go go */
1405 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1407 /* Unlock priv */
1408 spin_unlock_irqrestore(&priv->txlock, flags);
1410 return NETDEV_TX_OK;
1413 /* Stops the kernel queue, and halts the controller */
1414 static int gfar_close(struct net_device *dev)
1416 struct gfar_private *priv = netdev_priv(dev);
1418 napi_disable(&priv->napi);
1420 skb_queue_purge(&priv->rx_recycle);
1421 cancel_work_sync(&priv->reset_task);
1422 stop_gfar(dev);
1424 /* Disconnect from the PHY */
1425 phy_disconnect(priv->phydev);
1426 priv->phydev = NULL;
1428 netif_stop_queue(dev);
1430 return 0;
1433 /* Changes the mac address if the controller is not running. */
1434 static int gfar_set_mac_address(struct net_device *dev)
1436 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1438 return 0;
1442 /* Enables and disables VLAN insertion/extraction */
1443 static void gfar_vlan_rx_register(struct net_device *dev,
1444 struct vlan_group *grp)
1446 struct gfar_private *priv = netdev_priv(dev);
1447 unsigned long flags;
1448 u32 tempval;
1450 spin_lock_irqsave(&priv->rxlock, flags);
1452 priv->vlgrp = grp;
1454 if (grp) {
1455 /* Enable VLAN tag insertion */
1456 tempval = gfar_read(&priv->regs->tctrl);
1457 tempval |= TCTRL_VLINS;
1459 gfar_write(&priv->regs->tctrl, tempval);
1461 /* Enable VLAN tag extraction */
1462 tempval = gfar_read(&priv->regs->rctrl);
1463 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1464 gfar_write(&priv->regs->rctrl, tempval);
1465 } else {
1466 /* Disable VLAN tag insertion */
1467 tempval = gfar_read(&priv->regs->tctrl);
1468 tempval &= ~TCTRL_VLINS;
1469 gfar_write(&priv->regs->tctrl, tempval);
1471 /* Disable VLAN tag extraction */
1472 tempval = gfar_read(&priv->regs->rctrl);
1473 tempval &= ~RCTRL_VLEX;
1474 /* If parse is no longer required, then disable parser */
1475 if (tempval & RCTRL_REQ_PARSER)
1476 tempval |= RCTRL_PRSDEP_INIT;
1477 else
1478 tempval &= ~RCTRL_PRSDEP_INIT;
1479 gfar_write(&priv->regs->rctrl, tempval);
1482 gfar_change_mtu(dev, dev->mtu);
1484 spin_unlock_irqrestore(&priv->rxlock, flags);
1487 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1489 int tempsize, tempval;
1490 struct gfar_private *priv = netdev_priv(dev);
1491 int oldsize = priv->rx_buffer_size;
1492 int frame_size = new_mtu + ETH_HLEN;
1494 if (priv->vlgrp)
1495 frame_size += VLAN_HLEN;
1497 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1498 if (netif_msg_drv(priv))
1499 printk(KERN_ERR "%s: Invalid MTU setting\n",
1500 dev->name);
1501 return -EINVAL;
1504 if (gfar_uses_fcb(priv))
1505 frame_size += GMAC_FCB_LEN;
1507 frame_size += priv->padding;
1509 tempsize =
1510 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1511 INCREMENTAL_BUFFER_SIZE;
1513 /* Only stop and start the controller if it isn't already
1514 * stopped, and we changed something */
1515 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1516 stop_gfar(dev);
1518 priv->rx_buffer_size = tempsize;
1520 dev->mtu = new_mtu;
1522 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1523 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1525 /* If the mtu is larger than the max size for standard
1526 * ethernet frames (ie, a jumbo frame), then set maccfg2
1527 * to allow huge frames, and to check the length */
1528 tempval = gfar_read(&priv->regs->maccfg2);
1530 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1531 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1532 else
1533 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1535 gfar_write(&priv->regs->maccfg2, tempval);
1537 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1538 startup_gfar(dev);
1540 return 0;
1543 /* gfar_reset_task gets scheduled when a packet has not been
1544 * transmitted after a set amount of time.
1545 * For now, assume that clearing out all the structures, and
1546 * starting over will fix the problem.
1548 static void gfar_reset_task(struct work_struct *work)
1550 struct gfar_private *priv = container_of(work, struct gfar_private,
1551 reset_task);
1552 struct net_device *dev = priv->ndev;
1554 if (dev->flags & IFF_UP) {
1555 netif_stop_queue(dev);
1556 stop_gfar(dev);
1557 startup_gfar(dev);
1558 netif_start_queue(dev);
1561 netif_tx_schedule_all(dev);
1564 static void gfar_timeout(struct net_device *dev)
1566 struct gfar_private *priv = netdev_priv(dev);
1568 dev->stats.tx_errors++;
1569 schedule_work(&priv->reset_task);
1572 /* Interrupt Handler for Transmit complete */
1573 static int gfar_clean_tx_ring(struct net_device *dev)
1575 struct gfar_private *priv = netdev_priv(dev);
1576 struct txbd8 *bdp;
1577 struct txbd8 *lbdp = NULL;
1578 struct txbd8 *base = priv->tx_bd_base;
1579 struct sk_buff *skb;
1580 int skb_dirtytx;
1581 int tx_ring_size = priv->tx_ring_size;
1582 int frags = 0;
1583 int i;
1584 int howmany = 0;
1585 u32 lstatus;
1587 bdp = priv->dirty_tx;
1588 skb_dirtytx = priv->skb_dirtytx;
1590 while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1591 frags = skb_shinfo(skb)->nr_frags;
1592 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1594 lstatus = lbdp->lstatus;
1596 /* Only clean completed frames */
1597 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1598 (lstatus & BD_LENGTH_MASK))
1599 break;
1601 dma_unmap_single(&priv->ofdev->dev,
1602 bdp->bufPtr,
1603 bdp->length,
1604 DMA_TO_DEVICE);
1606 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1607 bdp = next_txbd(bdp, base, tx_ring_size);
1609 for (i = 0; i < frags; i++) {
1610 dma_unmap_page(&priv->ofdev->dev,
1611 bdp->bufPtr,
1612 bdp->length,
1613 DMA_TO_DEVICE);
1614 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1615 bdp = next_txbd(bdp, base, tx_ring_size);
1619 * If there's room in the queue (limit it to rx_buffer_size)
1620 * we add this skb back into the pool, if it's the right size
1622 if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
1623 skb_recycle_check(skb, priv->rx_buffer_size +
1624 RXBUF_ALIGNMENT))
1625 __skb_queue_head(&priv->rx_recycle, skb);
1626 else
1627 dev_kfree_skb_any(skb);
1629 priv->tx_skbuff[skb_dirtytx] = NULL;
1631 skb_dirtytx = (skb_dirtytx + 1) &
1632 TX_RING_MOD_MASK(tx_ring_size);
1634 howmany++;
1635 priv->num_txbdfree += frags + 1;
1638 /* If we freed a buffer, we can restart transmission, if necessary */
1639 if (netif_queue_stopped(dev) && priv->num_txbdfree)
1640 netif_wake_queue(dev);
1642 /* Update dirty indicators */
1643 priv->skb_dirtytx = skb_dirtytx;
1644 priv->dirty_tx = bdp;
1646 dev->stats.tx_packets += howmany;
1648 return howmany;
1651 static void gfar_schedule_cleanup(struct net_device *dev)
1653 struct gfar_private *priv = netdev_priv(dev);
1654 unsigned long flags;
1656 spin_lock_irqsave(&priv->txlock, flags);
1657 spin_lock(&priv->rxlock);
1659 if (napi_schedule_prep(&priv->napi)) {
1660 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1661 __napi_schedule(&priv->napi);
1662 } else {
1664 * Clear IEVENT, so interrupts aren't called again
1665 * because of the packets that have already arrived.
1667 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1670 spin_unlock(&priv->rxlock);
1671 spin_unlock_irqrestore(&priv->txlock, flags);
1674 /* Interrupt Handler for Transmit complete */
1675 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1677 gfar_schedule_cleanup((struct net_device *)dev_id);
1678 return IRQ_HANDLED;
1681 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1682 struct sk_buff *skb)
1684 struct gfar_private *priv = netdev_priv(dev);
1685 u32 lstatus;
1687 bdp->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1688 priv->rx_buffer_size, DMA_FROM_DEVICE);
1690 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1692 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1693 lstatus |= BD_LFLAG(RXBD_WRAP);
1695 eieio();
1697 bdp->lstatus = lstatus;
1701 struct sk_buff * gfar_new_skb(struct net_device *dev)
1703 unsigned int alignamount;
1704 struct gfar_private *priv = netdev_priv(dev);
1705 struct sk_buff *skb = NULL;
1707 skb = __skb_dequeue(&priv->rx_recycle);
1708 if (!skb)
1709 skb = netdev_alloc_skb(dev,
1710 priv->rx_buffer_size + RXBUF_ALIGNMENT);
1712 if (!skb)
1713 return NULL;
1715 alignamount = RXBUF_ALIGNMENT -
1716 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1718 /* We need the data buffer to be aligned properly. We will reserve
1719 * as many bytes as needed to align the data properly
1721 skb_reserve(skb, alignamount);
1723 return skb;
1726 static inline void count_errors(unsigned short status, struct net_device *dev)
1728 struct gfar_private *priv = netdev_priv(dev);
1729 struct net_device_stats *stats = &dev->stats;
1730 struct gfar_extra_stats *estats = &priv->extra_stats;
1732 /* If the packet was truncated, none of the other errors
1733 * matter */
1734 if (status & RXBD_TRUNCATED) {
1735 stats->rx_length_errors++;
1737 estats->rx_trunc++;
1739 return;
1741 /* Count the errors, if there were any */
1742 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1743 stats->rx_length_errors++;
1745 if (status & RXBD_LARGE)
1746 estats->rx_large++;
1747 else
1748 estats->rx_short++;
1750 if (status & RXBD_NONOCTET) {
1751 stats->rx_frame_errors++;
1752 estats->rx_nonoctet++;
1754 if (status & RXBD_CRCERR) {
1755 estats->rx_crcerr++;
1756 stats->rx_crc_errors++;
1758 if (status & RXBD_OVERRUN) {
1759 estats->rx_overrun++;
1760 stats->rx_crc_errors++;
1764 irqreturn_t gfar_receive(int irq, void *dev_id)
1766 gfar_schedule_cleanup((struct net_device *)dev_id);
1767 return IRQ_HANDLED;
1770 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1772 /* If valid headers were found, and valid sums
1773 * were verified, then we tell the kernel that no
1774 * checksumming is necessary. Otherwise, it is */
1775 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1776 skb->ip_summed = CHECKSUM_UNNECESSARY;
1777 else
1778 skb->ip_summed = CHECKSUM_NONE;
1782 /* gfar_process_frame() -- handle one incoming packet if skb
1783 * isn't NULL. */
1784 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1785 int amount_pull)
1787 struct gfar_private *priv = netdev_priv(dev);
1788 struct rxfcb *fcb = NULL;
1790 int ret;
1792 /* fcb is at the beginning if exists */
1793 fcb = (struct rxfcb *)skb->data;
1795 /* Remove the FCB from the skb */
1796 /* Remove the padded bytes, if there are any */
1797 if (amount_pull)
1798 skb_pull(skb, amount_pull);
1800 if (priv->rx_csum_enable)
1801 gfar_rx_checksum(skb, fcb);
1803 /* Tell the skb what kind of packet this is */
1804 skb->protocol = eth_type_trans(skb, dev);
1806 /* Send the packet up the stack */
1807 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1808 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1809 else
1810 ret = netif_receive_skb(skb);
1812 if (NET_RX_DROP == ret)
1813 priv->extra_stats.kernel_dropped++;
1815 return 0;
1818 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1819 * until the budget/quota has been reached. Returns the number
1820 * of frames handled
1822 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1824 struct rxbd8 *bdp, *base;
1825 struct sk_buff *skb;
1826 int pkt_len;
1827 int amount_pull;
1828 int howmany = 0;
1829 struct gfar_private *priv = netdev_priv(dev);
1831 /* Get the first full descriptor */
1832 bdp = priv->cur_rx;
1833 base = priv->rx_bd_base;
1835 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1836 priv->padding;
1838 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1839 struct sk_buff *newskb;
1840 rmb();
1842 /* Add another skb for the future */
1843 newskb = gfar_new_skb(dev);
1845 skb = priv->rx_skbuff[priv->skb_currx];
1847 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
1848 priv->rx_buffer_size, DMA_FROM_DEVICE);
1850 /* We drop the frame if we failed to allocate a new buffer */
1851 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1852 bdp->status & RXBD_ERR)) {
1853 count_errors(bdp->status, dev);
1855 if (unlikely(!newskb))
1856 newskb = skb;
1857 else if (skb) {
1859 * We need to reset ->data to what it
1860 * was before gfar_new_skb() re-aligned
1861 * it to an RXBUF_ALIGNMENT boundary
1862 * before we put the skb back on the
1863 * recycle list.
1865 skb->data = skb->head + NET_SKB_PAD;
1866 __skb_queue_head(&priv->rx_recycle, skb);
1868 } else {
1869 /* Increment the number of packets */
1870 dev->stats.rx_packets++;
1871 howmany++;
1873 if (likely(skb)) {
1874 pkt_len = bdp->length - ETH_FCS_LEN;
1875 /* Remove the FCS from the packet length */
1876 skb_put(skb, pkt_len);
1877 dev->stats.rx_bytes += pkt_len;
1879 if (in_irq() || irqs_disabled())
1880 printk("Interrupt problem!\n");
1881 gfar_process_frame(dev, skb, amount_pull);
1883 } else {
1884 if (netif_msg_rx_err(priv))
1885 printk(KERN_WARNING
1886 "%s: Missing skb!\n", dev->name);
1887 dev->stats.rx_dropped++;
1888 priv->extra_stats.rx_skbmissing++;
1893 priv->rx_skbuff[priv->skb_currx] = newskb;
1895 /* Setup the new bdp */
1896 gfar_new_rxbdp(dev, bdp, newskb);
1898 /* Update to the next pointer */
1899 bdp = next_bd(bdp, base, priv->rx_ring_size);
1901 /* update to point at the next skb */
1902 priv->skb_currx =
1903 (priv->skb_currx + 1) &
1904 RX_RING_MOD_MASK(priv->rx_ring_size);
1907 /* Update the current rxbd pointer to be the next one */
1908 priv->cur_rx = bdp;
1910 return howmany;
1913 static int gfar_poll(struct napi_struct *napi, int budget)
1915 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1916 struct net_device *dev = priv->ndev;
1917 int tx_cleaned = 0;
1918 int rx_cleaned = 0;
1919 unsigned long flags;
1921 /* Clear IEVENT, so interrupts aren't called again
1922 * because of the packets that have already arrived */
1923 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1925 /* If we fail to get the lock, don't bother with the TX BDs */
1926 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1927 tx_cleaned = gfar_clean_tx_ring(dev);
1928 spin_unlock_irqrestore(&priv->txlock, flags);
1931 rx_cleaned = gfar_clean_rx_ring(dev, budget);
1933 if (tx_cleaned)
1934 return budget;
1936 if (rx_cleaned < budget) {
1937 napi_complete(napi);
1939 /* Clear the halt bit in RSTAT */
1940 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1942 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1944 /* If we are coalescing interrupts, update the timer */
1945 /* Otherwise, clear it */
1946 if (likely(priv->rxcoalescing)) {
1947 gfar_write(&priv->regs->rxic, 0);
1948 gfar_write(&priv->regs->rxic, priv->rxic);
1950 if (likely(priv->txcoalescing)) {
1951 gfar_write(&priv->regs->txic, 0);
1952 gfar_write(&priv->regs->txic, priv->txic);
1956 return rx_cleaned;
1959 #ifdef CONFIG_NET_POLL_CONTROLLER
1961 * Polling 'interrupt' - used by things like netconsole to send skbs
1962 * without having to re-enable interrupts. It's not called while
1963 * the interrupt routine is executing.
1965 static void gfar_netpoll(struct net_device *dev)
1967 struct gfar_private *priv = netdev_priv(dev);
1969 /* If the device has multiple interrupts, run tx/rx */
1970 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1971 disable_irq(priv->interruptTransmit);
1972 disable_irq(priv->interruptReceive);
1973 disable_irq(priv->interruptError);
1974 gfar_interrupt(priv->interruptTransmit, dev);
1975 enable_irq(priv->interruptError);
1976 enable_irq(priv->interruptReceive);
1977 enable_irq(priv->interruptTransmit);
1978 } else {
1979 disable_irq(priv->interruptTransmit);
1980 gfar_interrupt(priv->interruptTransmit, dev);
1981 enable_irq(priv->interruptTransmit);
1984 #endif
1986 /* The interrupt handler for devices with one interrupt */
1987 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1989 struct net_device *dev = dev_id;
1990 struct gfar_private *priv = netdev_priv(dev);
1992 /* Save ievent for future reference */
1993 u32 events = gfar_read(&priv->regs->ievent);
1995 /* Check for reception */
1996 if (events & IEVENT_RX_MASK)
1997 gfar_receive(irq, dev_id);
1999 /* Check for transmit completion */
2000 if (events & IEVENT_TX_MASK)
2001 gfar_transmit(irq, dev_id);
2003 /* Check for errors */
2004 if (events & IEVENT_ERR_MASK)
2005 gfar_error(irq, dev_id);
2007 return IRQ_HANDLED;
2010 /* Called every time the controller might need to be made
2011 * aware of new link state. The PHY code conveys this
2012 * information through variables in the phydev structure, and this
2013 * function converts those variables into the appropriate
2014 * register values, and can bring down the device if needed.
2016 static void adjust_link(struct net_device *dev)
2018 struct gfar_private *priv = netdev_priv(dev);
2019 struct gfar __iomem *regs = priv->regs;
2020 unsigned long flags;
2021 struct phy_device *phydev = priv->phydev;
2022 int new_state = 0;
2024 spin_lock_irqsave(&priv->txlock, flags);
2025 if (phydev->link) {
2026 u32 tempval = gfar_read(&regs->maccfg2);
2027 u32 ecntrl = gfar_read(&regs->ecntrl);
2029 /* Now we make sure that we can be in full duplex mode.
2030 * If not, we operate in half-duplex mode. */
2031 if (phydev->duplex != priv->oldduplex) {
2032 new_state = 1;
2033 if (!(phydev->duplex))
2034 tempval &= ~(MACCFG2_FULL_DUPLEX);
2035 else
2036 tempval |= MACCFG2_FULL_DUPLEX;
2038 priv->oldduplex = phydev->duplex;
2041 if (phydev->speed != priv->oldspeed) {
2042 new_state = 1;
2043 switch (phydev->speed) {
2044 case 1000:
2045 tempval =
2046 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2048 ecntrl &= ~(ECNTRL_R100);
2049 break;
2050 case 100:
2051 case 10:
2052 tempval =
2053 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2055 /* Reduced mode distinguishes
2056 * between 10 and 100 */
2057 if (phydev->speed == SPEED_100)
2058 ecntrl |= ECNTRL_R100;
2059 else
2060 ecntrl &= ~(ECNTRL_R100);
2061 break;
2062 default:
2063 if (netif_msg_link(priv))
2064 printk(KERN_WARNING
2065 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2066 dev->name, phydev->speed);
2067 break;
2070 priv->oldspeed = phydev->speed;
2073 gfar_write(&regs->maccfg2, tempval);
2074 gfar_write(&regs->ecntrl, ecntrl);
2076 if (!priv->oldlink) {
2077 new_state = 1;
2078 priv->oldlink = 1;
2080 } else if (priv->oldlink) {
2081 new_state = 1;
2082 priv->oldlink = 0;
2083 priv->oldspeed = 0;
2084 priv->oldduplex = -1;
2087 if (new_state && netif_msg_link(priv))
2088 phy_print_status(phydev);
2090 spin_unlock_irqrestore(&priv->txlock, flags);
2093 /* Update the hash table based on the current list of multicast
2094 * addresses we subscribe to. Also, change the promiscuity of
2095 * the device based on the flags (this function is called
2096 * whenever dev->flags is changed */
2097 static void gfar_set_multi(struct net_device *dev)
2099 struct dev_mc_list *mc_ptr;
2100 struct gfar_private *priv = netdev_priv(dev);
2101 struct gfar __iomem *regs = priv->regs;
2102 u32 tempval;
2104 if(dev->flags & IFF_PROMISC) {
2105 /* Set RCTRL to PROM */
2106 tempval = gfar_read(&regs->rctrl);
2107 tempval |= RCTRL_PROM;
2108 gfar_write(&regs->rctrl, tempval);
2109 } else {
2110 /* Set RCTRL to not PROM */
2111 tempval = gfar_read(&regs->rctrl);
2112 tempval &= ~(RCTRL_PROM);
2113 gfar_write(&regs->rctrl, tempval);
2116 if(dev->flags & IFF_ALLMULTI) {
2117 /* Set the hash to rx all multicast frames */
2118 gfar_write(&regs->igaddr0, 0xffffffff);
2119 gfar_write(&regs->igaddr1, 0xffffffff);
2120 gfar_write(&regs->igaddr2, 0xffffffff);
2121 gfar_write(&regs->igaddr3, 0xffffffff);
2122 gfar_write(&regs->igaddr4, 0xffffffff);
2123 gfar_write(&regs->igaddr5, 0xffffffff);
2124 gfar_write(&regs->igaddr6, 0xffffffff);
2125 gfar_write(&regs->igaddr7, 0xffffffff);
2126 gfar_write(&regs->gaddr0, 0xffffffff);
2127 gfar_write(&regs->gaddr1, 0xffffffff);
2128 gfar_write(&regs->gaddr2, 0xffffffff);
2129 gfar_write(&regs->gaddr3, 0xffffffff);
2130 gfar_write(&regs->gaddr4, 0xffffffff);
2131 gfar_write(&regs->gaddr5, 0xffffffff);
2132 gfar_write(&regs->gaddr6, 0xffffffff);
2133 gfar_write(&regs->gaddr7, 0xffffffff);
2134 } else {
2135 int em_num;
2136 int idx;
2138 /* zero out the hash */
2139 gfar_write(&regs->igaddr0, 0x0);
2140 gfar_write(&regs->igaddr1, 0x0);
2141 gfar_write(&regs->igaddr2, 0x0);
2142 gfar_write(&regs->igaddr3, 0x0);
2143 gfar_write(&regs->igaddr4, 0x0);
2144 gfar_write(&regs->igaddr5, 0x0);
2145 gfar_write(&regs->igaddr6, 0x0);
2146 gfar_write(&regs->igaddr7, 0x0);
2147 gfar_write(&regs->gaddr0, 0x0);
2148 gfar_write(&regs->gaddr1, 0x0);
2149 gfar_write(&regs->gaddr2, 0x0);
2150 gfar_write(&regs->gaddr3, 0x0);
2151 gfar_write(&regs->gaddr4, 0x0);
2152 gfar_write(&regs->gaddr5, 0x0);
2153 gfar_write(&regs->gaddr6, 0x0);
2154 gfar_write(&regs->gaddr7, 0x0);
2156 /* If we have extended hash tables, we need to
2157 * clear the exact match registers to prepare for
2158 * setting them */
2159 if (priv->extended_hash) {
2160 em_num = GFAR_EM_NUM + 1;
2161 gfar_clear_exact_match(dev);
2162 idx = 1;
2163 } else {
2164 idx = 0;
2165 em_num = 0;
2168 if(dev->mc_count == 0)
2169 return;
2171 /* Parse the list, and set the appropriate bits */
2172 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2173 if (idx < em_num) {
2174 gfar_set_mac_for_addr(dev, idx,
2175 mc_ptr->dmi_addr);
2176 idx++;
2177 } else
2178 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2182 return;
2186 /* Clears each of the exact match registers to zero, so they
2187 * don't interfere with normal reception */
2188 static void gfar_clear_exact_match(struct net_device *dev)
2190 int idx;
2191 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2193 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2194 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2197 /* Set the appropriate hash bit for the given addr */
2198 /* The algorithm works like so:
2199 * 1) Take the Destination Address (ie the multicast address), and
2200 * do a CRC on it (little endian), and reverse the bits of the
2201 * result.
2202 * 2) Use the 8 most significant bits as a hash into a 256-entry
2203 * table. The table is controlled through 8 32-bit registers:
2204 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2205 * gaddr7. This means that the 3 most significant bits in the
2206 * hash index which gaddr register to use, and the 5 other bits
2207 * indicate which bit (assuming an IBM numbering scheme, which
2208 * for PowerPC (tm) is usually the case) in the register holds
2209 * the entry. */
2210 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2212 u32 tempval;
2213 struct gfar_private *priv = netdev_priv(dev);
2214 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2215 int width = priv->hash_width;
2216 u8 whichbit = (result >> (32 - width)) & 0x1f;
2217 u8 whichreg = result >> (32 - width + 5);
2218 u32 value = (1 << (31-whichbit));
2220 tempval = gfar_read(priv->hash_regs[whichreg]);
2221 tempval |= value;
2222 gfar_write(priv->hash_regs[whichreg], tempval);
2224 return;
2228 /* There are multiple MAC Address register pairs on some controllers
2229 * This function sets the numth pair to a given address
2231 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2233 struct gfar_private *priv = netdev_priv(dev);
2234 int idx;
2235 char tmpbuf[MAC_ADDR_LEN];
2236 u32 tempval;
2237 u32 __iomem *macptr = &priv->regs->macstnaddr1;
2239 macptr += num*2;
2241 /* Now copy it into the mac registers backwards, cuz */
2242 /* little endian is silly */
2243 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2244 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2246 gfar_write(macptr, *((u32 *) (tmpbuf)));
2248 tempval = *((u32 *) (tmpbuf + 4));
2250 gfar_write(macptr+1, tempval);
2253 /* GFAR error interrupt handler */
2254 static irqreturn_t gfar_error(int irq, void *dev_id)
2256 struct net_device *dev = dev_id;
2257 struct gfar_private *priv = netdev_priv(dev);
2259 /* Save ievent for future reference */
2260 u32 events = gfar_read(&priv->regs->ievent);
2262 /* Clear IEVENT */
2263 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2265 /* Magic Packet is not an error. */
2266 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2267 (events & IEVENT_MAG))
2268 events &= ~IEVENT_MAG;
2270 /* Hmm... */
2271 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2272 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2273 dev->name, events, gfar_read(&priv->regs->imask));
2275 /* Update the error counters */
2276 if (events & IEVENT_TXE) {
2277 dev->stats.tx_errors++;
2279 if (events & IEVENT_LC)
2280 dev->stats.tx_window_errors++;
2281 if (events & IEVENT_CRL)
2282 dev->stats.tx_aborted_errors++;
2283 if (events & IEVENT_XFUN) {
2284 if (netif_msg_tx_err(priv))
2285 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2286 "packet dropped.\n", dev->name);
2287 dev->stats.tx_dropped++;
2288 priv->extra_stats.tx_underrun++;
2290 /* Reactivate the Tx Queues */
2291 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2293 if (netif_msg_tx_err(priv))
2294 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2296 if (events & IEVENT_BSY) {
2297 dev->stats.rx_errors++;
2298 priv->extra_stats.rx_bsy++;
2300 gfar_receive(irq, dev_id);
2302 if (netif_msg_rx_err(priv))
2303 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2304 dev->name, gfar_read(&priv->regs->rstat));
2306 if (events & IEVENT_BABR) {
2307 dev->stats.rx_errors++;
2308 priv->extra_stats.rx_babr++;
2310 if (netif_msg_rx_err(priv))
2311 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2313 if (events & IEVENT_EBERR) {
2314 priv->extra_stats.eberr++;
2315 if (netif_msg_rx_err(priv))
2316 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2318 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2319 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2321 if (events & IEVENT_BABT) {
2322 priv->extra_stats.tx_babt++;
2323 if (netif_msg_tx_err(priv))
2324 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2326 return IRQ_HANDLED;
2329 /* work with hotplug and coldplug */
2330 MODULE_ALIAS("platform:fsl-gianfar");
2332 static struct of_device_id gfar_match[] =
2335 .type = "network",
2336 .compatible = "gianfar",
2341 /* Structure for a device driver */
2342 static struct of_platform_driver gfar_driver = {
2343 .name = "fsl-gianfar",
2344 .match_table = gfar_match,
2346 .probe = gfar_probe,
2347 .remove = gfar_remove,
2348 .suspend = gfar_suspend,
2349 .resume = gfar_resume,
2352 static int __init gfar_init(void)
2354 return of_register_platform_driver(&gfar_driver);
2357 static void __exit gfar_exit(void)
2359 of_unregister_platform_driver(&gfar_driver);
2362 module_init(gfar_init);
2363 module_exit(gfar_exit);