firewire: ohci: fix regression with Agere FW643 rev 06, disable MSI
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / firewire / ohci.c
blobe3c8b60bd86be8873e781bef053f466898be16c2
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/pci_ids.h>
39 #include <linux/slab.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/time.h>
44 #include <asm/byteorder.h>
45 #include <asm/page.h>
46 #include <asm/system.h>
48 #ifdef CONFIG_PPC_PMAC
49 #include <asm/pmac_feature.h>
50 #endif
52 #include "core.h"
53 #include "ohci.h"
55 #define DESCRIPTOR_OUTPUT_MORE 0
56 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
57 #define DESCRIPTOR_INPUT_MORE (2 << 12)
58 #define DESCRIPTOR_INPUT_LAST (3 << 12)
59 #define DESCRIPTOR_STATUS (1 << 11)
60 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
61 #define DESCRIPTOR_PING (1 << 7)
62 #define DESCRIPTOR_YY (1 << 6)
63 #define DESCRIPTOR_NO_IRQ (0 << 4)
64 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
65 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
66 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
67 #define DESCRIPTOR_WAIT (3 << 0)
69 struct descriptor {
70 __le16 req_count;
71 __le16 control;
72 __le32 data_address;
73 __le32 branch_address;
74 __le16 res_count;
75 __le16 transfer_status;
76 } __attribute__((aligned(16)));
78 #define CONTROL_SET(regs) (regs)
79 #define CONTROL_CLEAR(regs) ((regs) + 4)
80 #define COMMAND_PTR(regs) ((regs) + 12)
81 #define CONTEXT_MATCH(regs) ((regs) + 16)
83 struct ar_buffer {
84 struct descriptor descriptor;
85 struct ar_buffer *next;
86 __le32 data[0];
89 struct ar_context {
90 struct fw_ohci *ohci;
91 struct ar_buffer *current_buffer;
92 struct ar_buffer *last_buffer;
93 void *pointer;
94 u32 regs;
95 struct tasklet_struct tasklet;
98 struct context;
100 typedef int (*descriptor_callback_t)(struct context *ctx,
101 struct descriptor *d,
102 struct descriptor *last);
105 * A buffer that contains a block of DMA-able coherent memory used for
106 * storing a portion of a DMA descriptor program.
108 struct descriptor_buffer {
109 struct list_head list;
110 dma_addr_t buffer_bus;
111 size_t buffer_size;
112 size_t used;
113 struct descriptor buffer[0];
116 struct context {
117 struct fw_ohci *ohci;
118 u32 regs;
119 int total_allocation;
122 * List of page-sized buffers for storing DMA descriptors.
123 * Head of list contains buffers in use and tail of list contains
124 * free buffers.
126 struct list_head buffer_list;
129 * Pointer to a buffer inside buffer_list that contains the tail
130 * end of the current DMA program.
132 struct descriptor_buffer *buffer_tail;
135 * The descriptor containing the branch address of the first
136 * descriptor that has not yet been filled by the device.
138 struct descriptor *last;
141 * The last descriptor in the DMA program. It contains the branch
142 * address that must be updated upon appending a new descriptor.
144 struct descriptor *prev;
146 descriptor_callback_t callback;
148 struct tasklet_struct tasklet;
151 #define IT_HEADER_SY(v) ((v) << 0)
152 #define IT_HEADER_TCODE(v) ((v) << 4)
153 #define IT_HEADER_CHANNEL(v) ((v) << 8)
154 #define IT_HEADER_TAG(v) ((v) << 14)
155 #define IT_HEADER_SPEED(v) ((v) << 16)
156 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
158 struct iso_context {
159 struct fw_iso_context base;
160 struct context context;
161 int excess_bytes;
162 void *header;
163 size_t header_length;
166 #define CONFIG_ROM_SIZE 1024
168 struct fw_ohci {
169 struct fw_card card;
171 __iomem char *registers;
172 int node_id;
173 int generation;
174 int request_generation; /* for timestamping incoming requests */
175 unsigned quirks;
176 unsigned int pri_req_max;
177 u32 bus_time;
178 bool is_root;
179 bool csr_state_setclear_abdicate;
182 * Spinlock for accessing fw_ohci data. Never call out of
183 * this driver with this lock held.
185 spinlock_t lock;
187 struct mutex phy_reg_mutex;
189 struct ar_context ar_request_ctx;
190 struct ar_context ar_response_ctx;
191 struct context at_request_ctx;
192 struct context at_response_ctx;
194 u32 it_context_mask; /* unoccupied IT contexts */
195 struct iso_context *it_context_list;
196 u64 ir_context_channels; /* unoccupied channels */
197 u32 ir_context_mask; /* unoccupied IR contexts */
198 struct iso_context *ir_context_list;
199 u64 mc_channels; /* channels in use by the multichannel IR context */
200 bool mc_allocated;
202 __be32 *config_rom;
203 dma_addr_t config_rom_bus;
204 __be32 *next_config_rom;
205 dma_addr_t next_config_rom_bus;
206 __be32 next_header;
208 __le32 *self_id_cpu;
209 dma_addr_t self_id_bus;
210 struct tasklet_struct bus_reset_tasklet;
212 u32 self_id_buffer[512];
215 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
217 return container_of(card, struct fw_ohci, card);
220 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
221 #define IR_CONTEXT_BUFFER_FILL 0x80000000
222 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
223 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
224 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
225 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
227 #define CONTEXT_RUN 0x8000
228 #define CONTEXT_WAKE 0x1000
229 #define CONTEXT_DEAD 0x0800
230 #define CONTEXT_ACTIVE 0x0400
232 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
233 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
234 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
236 #define OHCI1394_REGISTER_SIZE 0x800
237 #define OHCI_LOOP_COUNT 500
238 #define OHCI1394_PCI_HCI_Control 0x40
239 #define SELF_ID_BUF_SIZE 0x800
240 #define OHCI_TCODE_PHY_PACKET 0x0e
241 #define OHCI_VERSION_1_1 0x010010
243 static char ohci_driver_name[] = KBUILD_MODNAME;
245 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
246 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
247 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
249 #define QUIRK_CYCLE_TIMER 1
250 #define QUIRK_RESET_PACKET 2
251 #define QUIRK_BE_HEADERS 4
252 #define QUIRK_NO_1394A 8
253 #define QUIRK_NO_MSI 16
255 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
256 static const struct {
257 unsigned short vendor, device, revision, flags;
258 } ohci_quirks[] = {
259 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
260 QUIRK_CYCLE_TIMER},
262 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
263 QUIRK_BE_HEADERS},
265 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
266 QUIRK_NO_MSI},
268 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
269 QUIRK_NO_MSI},
271 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
272 QUIRK_CYCLE_TIMER},
274 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
275 QUIRK_CYCLE_TIMER},
277 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
278 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
280 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
281 QUIRK_RESET_PACKET},
283 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
284 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
287 /* This overrides anything that was found in ohci_quirks[]. */
288 static int param_quirks;
289 module_param_named(quirks, param_quirks, int, 0644);
290 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
291 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
292 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
293 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
294 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
295 ", disable MSI = " __stringify(QUIRK_NO_MSI)
296 ")");
298 #define OHCI_PARAM_DEBUG_AT_AR 1
299 #define OHCI_PARAM_DEBUG_SELFIDS 2
300 #define OHCI_PARAM_DEBUG_IRQS 4
301 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
303 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
305 static int param_debug;
306 module_param_named(debug, param_debug, int, 0644);
307 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
308 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
309 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
310 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
311 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
312 ", or a combination, or all = -1)");
314 static void log_irqs(u32 evt)
316 if (likely(!(param_debug &
317 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
318 return;
320 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
321 !(evt & OHCI1394_busReset))
322 return;
324 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
325 evt & OHCI1394_selfIDComplete ? " selfID" : "",
326 evt & OHCI1394_RQPkt ? " AR_req" : "",
327 evt & OHCI1394_RSPkt ? " AR_resp" : "",
328 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
329 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
330 evt & OHCI1394_isochRx ? " IR" : "",
331 evt & OHCI1394_isochTx ? " IT" : "",
332 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
333 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
334 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
335 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
336 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
337 evt & OHCI1394_busReset ? " busReset" : "",
338 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
339 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
340 OHCI1394_respTxComplete | OHCI1394_isochRx |
341 OHCI1394_isochTx | OHCI1394_postedWriteErr |
342 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
343 OHCI1394_cycleInconsistent |
344 OHCI1394_regAccessFail | OHCI1394_busReset)
345 ? " ?" : "");
348 static const char *speed[] = {
349 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
351 static const char *power[] = {
352 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
353 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
355 static const char port[] = { '.', '-', 'p', 'c', };
357 static char _p(u32 *s, int shift)
359 return port[*s >> shift & 3];
362 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
364 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
365 return;
367 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
368 self_id_count, generation, node_id);
370 for (; self_id_count--; ++s)
371 if ((*s & 1 << 23) == 0)
372 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
373 "%s gc=%d %s %s%s%s\n",
374 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
375 speed[*s >> 14 & 3], *s >> 16 & 63,
376 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
377 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
378 else
379 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
380 *s, *s >> 24 & 63,
381 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
382 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
385 static const char *evts[] = {
386 [0x00] = "evt_no_status", [0x01] = "-reserved-",
387 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
388 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
389 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
390 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
391 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
392 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
393 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
394 [0x10] = "-reserved-", [0x11] = "ack_complete",
395 [0x12] = "ack_pending ", [0x13] = "-reserved-",
396 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
397 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
398 [0x18] = "-reserved-", [0x19] = "-reserved-",
399 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
400 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
401 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
402 [0x20] = "pending/cancelled",
404 static const char *tcodes[] = {
405 [0x0] = "QW req", [0x1] = "BW req",
406 [0x2] = "W resp", [0x3] = "-reserved-",
407 [0x4] = "QR req", [0x5] = "BR req",
408 [0x6] = "QR resp", [0x7] = "BR resp",
409 [0x8] = "cycle start", [0x9] = "Lk req",
410 [0xa] = "async stream packet", [0xb] = "Lk resp",
411 [0xc] = "-reserved-", [0xd] = "-reserved-",
412 [0xe] = "link internal", [0xf] = "-reserved-",
414 static const char *phys[] = {
415 [0x0] = "phy config packet", [0x1] = "link-on packet",
416 [0x2] = "self-id packet", [0x3] = "-reserved-",
419 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
421 int tcode = header[0] >> 4 & 0xf;
422 char specific[12];
424 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
425 return;
427 if (unlikely(evt >= ARRAY_SIZE(evts)))
428 evt = 0x1f;
430 if (evt == OHCI1394_evt_bus_reset) {
431 fw_notify("A%c evt_bus_reset, generation %d\n",
432 dir, (header[2] >> 16) & 0xff);
433 return;
436 if (header[0] == ~header[1]) {
437 fw_notify("A%c %s, %s, %08x\n",
438 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
439 return;
442 switch (tcode) {
443 case 0x0: case 0x6: case 0x8:
444 snprintf(specific, sizeof(specific), " = %08x",
445 be32_to_cpu((__force __be32)header[3]));
446 break;
447 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
448 snprintf(specific, sizeof(specific), " %x,%x",
449 header[3] >> 16, header[3] & 0xffff);
450 break;
451 default:
452 specific[0] = '\0';
455 switch (tcode) {
456 case 0xe: case 0xa:
457 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
458 break;
459 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
460 fw_notify("A%c spd %x tl %02x, "
461 "%04x -> %04x, %s, "
462 "%s, %04x%08x%s\n",
463 dir, speed, header[0] >> 10 & 0x3f,
464 header[1] >> 16, header[0] >> 16, evts[evt],
465 tcodes[tcode], header[1] & 0xffff, header[2], specific);
466 break;
467 default:
468 fw_notify("A%c spd %x tl %02x, "
469 "%04x -> %04x, %s, "
470 "%s%s\n",
471 dir, speed, header[0] >> 10 & 0x3f,
472 header[1] >> 16, header[0] >> 16, evts[evt],
473 tcodes[tcode], specific);
477 #else
479 #define param_debug 0
480 static inline void log_irqs(u32 evt) {}
481 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
482 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
484 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
486 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
488 writel(data, ohci->registers + offset);
491 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
493 return readl(ohci->registers + offset);
496 static inline void flush_writes(const struct fw_ohci *ohci)
498 /* Do a dummy read to flush writes. */
499 reg_read(ohci, OHCI1394_Version);
502 static int read_phy_reg(struct fw_ohci *ohci, int addr)
504 u32 val;
505 int i;
507 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
508 for (i = 0; i < 3 + 100; i++) {
509 val = reg_read(ohci, OHCI1394_PhyControl);
510 if (val & OHCI1394_PhyControl_ReadDone)
511 return OHCI1394_PhyControl_ReadData(val);
514 * Try a few times without waiting. Sleeping is necessary
515 * only when the link/PHY interface is busy.
517 if (i >= 3)
518 msleep(1);
520 fw_error("failed to read phy reg\n");
522 return -EBUSY;
525 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
527 int i;
529 reg_write(ohci, OHCI1394_PhyControl,
530 OHCI1394_PhyControl_Write(addr, val));
531 for (i = 0; i < 3 + 100; i++) {
532 val = reg_read(ohci, OHCI1394_PhyControl);
533 if (!(val & OHCI1394_PhyControl_WritePending))
534 return 0;
536 if (i >= 3)
537 msleep(1);
539 fw_error("failed to write phy reg\n");
541 return -EBUSY;
544 static int update_phy_reg(struct fw_ohci *ohci, int addr,
545 int clear_bits, int set_bits)
547 int ret = read_phy_reg(ohci, addr);
548 if (ret < 0)
549 return ret;
552 * The interrupt status bits are cleared by writing a one bit.
553 * Avoid clearing them unless explicitly requested in set_bits.
555 if (addr == 5)
556 clear_bits |= PHY_INT_STATUS_BITS;
558 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
561 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
563 int ret;
565 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
566 if (ret < 0)
567 return ret;
569 return read_phy_reg(ohci, addr);
572 static int ohci_read_phy_reg(struct fw_card *card, int addr)
574 struct fw_ohci *ohci = fw_ohci(card);
575 int ret;
577 mutex_lock(&ohci->phy_reg_mutex);
578 ret = read_phy_reg(ohci, addr);
579 mutex_unlock(&ohci->phy_reg_mutex);
581 return ret;
584 static int ohci_update_phy_reg(struct fw_card *card, int addr,
585 int clear_bits, int set_bits)
587 struct fw_ohci *ohci = fw_ohci(card);
588 int ret;
590 mutex_lock(&ohci->phy_reg_mutex);
591 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
592 mutex_unlock(&ohci->phy_reg_mutex);
594 return ret;
597 static void ar_context_link_page(struct ar_context *ctx,
598 struct ar_buffer *ab, dma_addr_t ab_bus)
600 size_t offset;
602 ab->next = NULL;
603 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
604 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
605 DESCRIPTOR_STATUS |
606 DESCRIPTOR_BRANCH_ALWAYS);
607 offset = offsetof(struct ar_buffer, data);
608 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
609 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
610 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
611 ab->descriptor.branch_address = 0;
613 wmb(); /* finish init of new descriptors before branch_address update */
614 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
615 ctx->last_buffer->next = ab;
616 ctx->last_buffer = ab;
618 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
619 flush_writes(ctx->ohci);
622 static int ar_context_add_page(struct ar_context *ctx)
624 struct device *dev = ctx->ohci->card.device;
625 struct ar_buffer *ab;
626 dma_addr_t uninitialized_var(ab_bus);
628 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
629 if (ab == NULL)
630 return -ENOMEM;
632 ar_context_link_page(ctx, ab, ab_bus);
634 return 0;
637 static void ar_context_release(struct ar_context *ctx)
639 struct ar_buffer *ab, *ab_next;
640 size_t offset;
641 dma_addr_t ab_bus;
643 for (ab = ctx->current_buffer; ab; ab = ab_next) {
644 ab_next = ab->next;
645 offset = offsetof(struct ar_buffer, data);
646 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
647 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
648 ab, ab_bus);
652 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
653 #define cond_le32_to_cpu(v) \
654 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
655 #else
656 #define cond_le32_to_cpu(v) le32_to_cpu(v)
657 #endif
659 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
661 struct fw_ohci *ohci = ctx->ohci;
662 struct fw_packet p;
663 u32 status, length, tcode;
664 int evt;
666 p.header[0] = cond_le32_to_cpu(buffer[0]);
667 p.header[1] = cond_le32_to_cpu(buffer[1]);
668 p.header[2] = cond_le32_to_cpu(buffer[2]);
670 tcode = (p.header[0] >> 4) & 0x0f;
671 switch (tcode) {
672 case TCODE_WRITE_QUADLET_REQUEST:
673 case TCODE_READ_QUADLET_RESPONSE:
674 p.header[3] = (__force __u32) buffer[3];
675 p.header_length = 16;
676 p.payload_length = 0;
677 break;
679 case TCODE_READ_BLOCK_REQUEST :
680 p.header[3] = cond_le32_to_cpu(buffer[3]);
681 p.header_length = 16;
682 p.payload_length = 0;
683 break;
685 case TCODE_WRITE_BLOCK_REQUEST:
686 case TCODE_READ_BLOCK_RESPONSE:
687 case TCODE_LOCK_REQUEST:
688 case TCODE_LOCK_RESPONSE:
689 p.header[3] = cond_le32_to_cpu(buffer[3]);
690 p.header_length = 16;
691 p.payload_length = p.header[3] >> 16;
692 break;
694 case TCODE_WRITE_RESPONSE:
695 case TCODE_READ_QUADLET_REQUEST:
696 case OHCI_TCODE_PHY_PACKET:
697 p.header_length = 12;
698 p.payload_length = 0;
699 break;
701 default:
702 /* FIXME: Stop context, discard everything, and restart? */
703 p.header_length = 0;
704 p.payload_length = 0;
707 p.payload = (void *) buffer + p.header_length;
709 /* FIXME: What to do about evt_* errors? */
710 length = (p.header_length + p.payload_length + 3) / 4;
711 status = cond_le32_to_cpu(buffer[length]);
712 evt = (status >> 16) & 0x1f;
714 p.ack = evt - 16;
715 p.speed = (status >> 21) & 0x7;
716 p.timestamp = status & 0xffff;
717 p.generation = ohci->request_generation;
719 log_ar_at_event('R', p.speed, p.header, evt);
722 * Several controllers, notably from NEC and VIA, forget to
723 * write ack_complete status at PHY packet reception.
725 if (evt == OHCI1394_evt_no_status &&
726 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
727 p.ack = ACK_COMPLETE;
730 * The OHCI bus reset handler synthesizes a PHY packet with
731 * the new generation number when a bus reset happens (see
732 * section 8.4.2.3). This helps us determine when a request
733 * was received and make sure we send the response in the same
734 * generation. We only need this for requests; for responses
735 * we use the unique tlabel for finding the matching
736 * request.
738 * Alas some chips sometimes emit bus reset packets with a
739 * wrong generation. We set the correct generation for these
740 * at a slightly incorrect time (in bus_reset_tasklet).
742 if (evt == OHCI1394_evt_bus_reset) {
743 if (!(ohci->quirks & QUIRK_RESET_PACKET))
744 ohci->request_generation = (p.header[2] >> 16) & 0xff;
745 } else if (ctx == &ohci->ar_request_ctx) {
746 fw_core_handle_request(&ohci->card, &p);
747 } else {
748 fw_core_handle_response(&ohci->card, &p);
751 return buffer + length + 1;
754 static void ar_context_tasklet(unsigned long data)
756 struct ar_context *ctx = (struct ar_context *)data;
757 struct ar_buffer *ab;
758 struct descriptor *d;
759 void *buffer, *end;
760 __le16 res_count;
762 ab = ctx->current_buffer;
763 d = &ab->descriptor;
765 res_count = ACCESS_ONCE(d->res_count);
766 if (res_count == 0) {
767 size_t size, size2, rest, pktsize, size3, offset;
768 dma_addr_t start_bus;
769 void *start;
772 * This descriptor is finished and we may have a
773 * packet split across this and the next buffer. We
774 * reuse the page for reassembling the split packet.
777 offset = offsetof(struct ar_buffer, data);
778 start = ab;
779 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
780 buffer = ab->data;
782 ab = ab->next;
783 d = &ab->descriptor;
784 size = start + PAGE_SIZE - ctx->pointer;
785 /* valid buffer data in the next page */
786 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
787 /* what actually fits in this page */
788 size2 = min(rest, (size_t)PAGE_SIZE - offset - size);
789 memmove(buffer, ctx->pointer, size);
790 memcpy(buffer + size, ab->data, size2);
792 while (size > 0) {
793 void *next = handle_ar_packet(ctx, buffer);
794 pktsize = next - buffer;
795 if (pktsize >= size) {
797 * We have handled all the data that was
798 * originally in this page, so we can now
799 * continue in the next page.
801 buffer = next;
802 break;
804 /* move the next packet to the start of the buffer */
805 memmove(buffer, next, size + size2 - pktsize);
806 size -= pktsize;
807 /* fill up this page again */
808 size3 = min(rest - size2,
809 (size_t)PAGE_SIZE - offset - size - size2);
810 memcpy(buffer + size + size2,
811 (void *) ab->data + size2, size3);
812 size2 += size3;
815 if (rest > 0) {
816 /* handle the packets that are fully in the next page */
817 buffer = (void *) ab->data +
818 (buffer - (start + offset + size));
819 end = (void *) ab->data + rest;
821 while (buffer < end)
822 buffer = handle_ar_packet(ctx, buffer);
824 ctx->current_buffer = ab;
825 ctx->pointer = end;
827 ar_context_link_page(ctx, start, start_bus);
828 } else {
829 ctx->pointer = start + PAGE_SIZE;
831 } else {
832 buffer = ctx->pointer;
833 ctx->pointer = end =
834 (void *) ab + PAGE_SIZE - le16_to_cpu(res_count);
836 while (buffer < end)
837 buffer = handle_ar_packet(ctx, buffer);
841 static int ar_context_init(struct ar_context *ctx,
842 struct fw_ohci *ohci, u32 regs)
844 struct ar_buffer ab;
846 ctx->regs = regs;
847 ctx->ohci = ohci;
848 ctx->last_buffer = &ab;
849 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
851 ar_context_add_page(ctx);
852 ar_context_add_page(ctx);
853 ctx->current_buffer = ab.next;
854 ctx->pointer = ctx->current_buffer->data;
856 return 0;
859 static void ar_context_run(struct ar_context *ctx)
861 struct ar_buffer *ab = ctx->current_buffer;
862 dma_addr_t ab_bus;
863 size_t offset;
865 offset = offsetof(struct ar_buffer, data);
866 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
868 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
869 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
870 flush_writes(ctx->ohci);
873 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
875 int b, key;
877 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
878 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
880 /* figure out which descriptor the branch address goes in */
881 if (z == 2 && (b == 3 || key == 2))
882 return d;
883 else
884 return d + z - 1;
887 static void context_tasklet(unsigned long data)
889 struct context *ctx = (struct context *) data;
890 struct descriptor *d, *last;
891 u32 address;
892 int z;
893 struct descriptor_buffer *desc;
895 desc = list_entry(ctx->buffer_list.next,
896 struct descriptor_buffer, list);
897 last = ctx->last;
898 while (last->branch_address != 0) {
899 struct descriptor_buffer *old_desc = desc;
900 address = le32_to_cpu(last->branch_address);
901 z = address & 0xf;
902 address &= ~0xf;
904 /* If the branch address points to a buffer outside of the
905 * current buffer, advance to the next buffer. */
906 if (address < desc->buffer_bus ||
907 address >= desc->buffer_bus + desc->used)
908 desc = list_entry(desc->list.next,
909 struct descriptor_buffer, list);
910 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
911 last = find_branch_descriptor(d, z);
913 if (!ctx->callback(ctx, d, last))
914 break;
916 if (old_desc != desc) {
917 /* If we've advanced to the next buffer, move the
918 * previous buffer to the free list. */
919 unsigned long flags;
920 old_desc->used = 0;
921 spin_lock_irqsave(&ctx->ohci->lock, flags);
922 list_move_tail(&old_desc->list, &ctx->buffer_list);
923 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
925 ctx->last = last;
930 * Allocate a new buffer and add it to the list of free buffers for this
931 * context. Must be called with ohci->lock held.
933 static int context_add_buffer(struct context *ctx)
935 struct descriptor_buffer *desc;
936 dma_addr_t uninitialized_var(bus_addr);
937 int offset;
940 * 16MB of descriptors should be far more than enough for any DMA
941 * program. This will catch run-away userspace or DoS attacks.
943 if (ctx->total_allocation >= 16*1024*1024)
944 return -ENOMEM;
946 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
947 &bus_addr, GFP_ATOMIC);
948 if (!desc)
949 return -ENOMEM;
951 offset = (void *)&desc->buffer - (void *)desc;
952 desc->buffer_size = PAGE_SIZE - offset;
953 desc->buffer_bus = bus_addr + offset;
954 desc->used = 0;
956 list_add_tail(&desc->list, &ctx->buffer_list);
957 ctx->total_allocation += PAGE_SIZE;
959 return 0;
962 static int context_init(struct context *ctx, struct fw_ohci *ohci,
963 u32 regs, descriptor_callback_t callback)
965 ctx->ohci = ohci;
966 ctx->regs = regs;
967 ctx->total_allocation = 0;
969 INIT_LIST_HEAD(&ctx->buffer_list);
970 if (context_add_buffer(ctx) < 0)
971 return -ENOMEM;
973 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
974 struct descriptor_buffer, list);
976 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
977 ctx->callback = callback;
980 * We put a dummy descriptor in the buffer that has a NULL
981 * branch address and looks like it's been sent. That way we
982 * have a descriptor to append DMA programs to.
984 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
985 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
986 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
987 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
988 ctx->last = ctx->buffer_tail->buffer;
989 ctx->prev = ctx->buffer_tail->buffer;
991 return 0;
994 static void context_release(struct context *ctx)
996 struct fw_card *card = &ctx->ohci->card;
997 struct descriptor_buffer *desc, *tmp;
999 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1000 dma_free_coherent(card->device, PAGE_SIZE, desc,
1001 desc->buffer_bus -
1002 ((void *)&desc->buffer - (void *)desc));
1005 /* Must be called with ohci->lock held */
1006 static struct descriptor *context_get_descriptors(struct context *ctx,
1007 int z, dma_addr_t *d_bus)
1009 struct descriptor *d = NULL;
1010 struct descriptor_buffer *desc = ctx->buffer_tail;
1012 if (z * sizeof(*d) > desc->buffer_size)
1013 return NULL;
1015 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1016 /* No room for the descriptor in this buffer, so advance to the
1017 * next one. */
1019 if (desc->list.next == &ctx->buffer_list) {
1020 /* If there is no free buffer next in the list,
1021 * allocate one. */
1022 if (context_add_buffer(ctx) < 0)
1023 return NULL;
1025 desc = list_entry(desc->list.next,
1026 struct descriptor_buffer, list);
1027 ctx->buffer_tail = desc;
1030 d = desc->buffer + desc->used / sizeof(*d);
1031 memset(d, 0, z * sizeof(*d));
1032 *d_bus = desc->buffer_bus + desc->used;
1034 return d;
1037 static void context_run(struct context *ctx, u32 extra)
1039 struct fw_ohci *ohci = ctx->ohci;
1041 reg_write(ohci, COMMAND_PTR(ctx->regs),
1042 le32_to_cpu(ctx->last->branch_address));
1043 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1044 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1045 flush_writes(ohci);
1048 static void context_append(struct context *ctx,
1049 struct descriptor *d, int z, int extra)
1051 dma_addr_t d_bus;
1052 struct descriptor_buffer *desc = ctx->buffer_tail;
1054 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1056 desc->used += (z + extra) * sizeof(*d);
1058 wmb(); /* finish init of new descriptors before branch_address update */
1059 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1060 ctx->prev = find_branch_descriptor(d, z);
1062 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1063 flush_writes(ctx->ohci);
1066 static void context_stop(struct context *ctx)
1068 u32 reg;
1069 int i;
1071 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1072 flush_writes(ctx->ohci);
1074 for (i = 0; i < 10; i++) {
1075 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1076 if ((reg & CONTEXT_ACTIVE) == 0)
1077 return;
1079 mdelay(1);
1081 fw_error("Error: DMA context still active (0x%08x)\n", reg);
1084 struct driver_data {
1085 struct fw_packet *packet;
1089 * This function apppends a packet to the DMA queue for transmission.
1090 * Must always be called with the ochi->lock held to ensure proper
1091 * generation handling and locking around packet queue manipulation.
1093 static int at_context_queue_packet(struct context *ctx,
1094 struct fw_packet *packet)
1096 struct fw_ohci *ohci = ctx->ohci;
1097 dma_addr_t d_bus, uninitialized_var(payload_bus);
1098 struct driver_data *driver_data;
1099 struct descriptor *d, *last;
1100 __le32 *header;
1101 int z, tcode;
1102 u32 reg;
1104 d = context_get_descriptors(ctx, 4, &d_bus);
1105 if (d == NULL) {
1106 packet->ack = RCODE_SEND_ERROR;
1107 return -1;
1110 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1111 d[0].res_count = cpu_to_le16(packet->timestamp);
1114 * The DMA format for asyncronous link packets is different
1115 * from the IEEE1394 layout, so shift the fields around
1116 * accordingly. If header_length is 8, it's a PHY packet, to
1117 * which we need to prepend an extra quadlet.
1120 header = (__le32 *) &d[1];
1121 switch (packet->header_length) {
1122 case 16:
1123 case 12:
1124 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1125 (packet->speed << 16));
1126 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1127 (packet->header[0] & 0xffff0000));
1128 header[2] = cpu_to_le32(packet->header[2]);
1130 tcode = (packet->header[0] >> 4) & 0x0f;
1131 if (TCODE_IS_BLOCK_PACKET(tcode))
1132 header[3] = cpu_to_le32(packet->header[3]);
1133 else
1134 header[3] = (__force __le32) packet->header[3];
1136 d[0].req_count = cpu_to_le16(packet->header_length);
1137 break;
1139 case 8:
1140 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1141 (packet->speed << 16));
1142 header[1] = cpu_to_le32(packet->header[0]);
1143 header[2] = cpu_to_le32(packet->header[1]);
1144 d[0].req_count = cpu_to_le16(12);
1146 if (is_ping_packet(packet->header))
1147 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1148 break;
1150 case 4:
1151 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1152 (packet->speed << 16));
1153 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1154 d[0].req_count = cpu_to_le16(8);
1155 break;
1157 default:
1158 /* BUG(); */
1159 packet->ack = RCODE_SEND_ERROR;
1160 return -1;
1163 driver_data = (struct driver_data *) &d[3];
1164 driver_data->packet = packet;
1165 packet->driver_data = driver_data;
1167 if (packet->payload_length > 0) {
1168 payload_bus =
1169 dma_map_single(ohci->card.device, packet->payload,
1170 packet->payload_length, DMA_TO_DEVICE);
1171 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1172 packet->ack = RCODE_SEND_ERROR;
1173 return -1;
1175 packet->payload_bus = payload_bus;
1176 packet->payload_mapped = true;
1178 d[2].req_count = cpu_to_le16(packet->payload_length);
1179 d[2].data_address = cpu_to_le32(payload_bus);
1180 last = &d[2];
1181 z = 3;
1182 } else {
1183 last = &d[0];
1184 z = 2;
1187 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1188 DESCRIPTOR_IRQ_ALWAYS |
1189 DESCRIPTOR_BRANCH_ALWAYS);
1192 * If the controller and packet generations don't match, we need to
1193 * bail out and try again. If IntEvent.busReset is set, the AT context
1194 * is halted, so appending to the context and trying to run it is
1195 * futile. Most controllers do the right thing and just flush the AT
1196 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1197 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1198 * up stalling out. So we just bail out in software and try again
1199 * later, and everyone is happy.
1200 * FIXME: Document how the locking works.
1202 if (ohci->generation != packet->generation ||
1203 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1204 if (packet->payload_mapped)
1205 dma_unmap_single(ohci->card.device, payload_bus,
1206 packet->payload_length, DMA_TO_DEVICE);
1207 packet->ack = RCODE_GENERATION;
1208 return -1;
1211 context_append(ctx, d, z, 4 - z);
1213 /* If the context isn't already running, start it up. */
1214 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1215 if ((reg & CONTEXT_RUN) == 0)
1216 context_run(ctx, 0);
1218 return 0;
1221 static int handle_at_packet(struct context *context,
1222 struct descriptor *d,
1223 struct descriptor *last)
1225 struct driver_data *driver_data;
1226 struct fw_packet *packet;
1227 struct fw_ohci *ohci = context->ohci;
1228 int evt;
1230 if (last->transfer_status == 0)
1231 /* This descriptor isn't done yet, stop iteration. */
1232 return 0;
1234 driver_data = (struct driver_data *) &d[3];
1235 packet = driver_data->packet;
1236 if (packet == NULL)
1237 /* This packet was cancelled, just continue. */
1238 return 1;
1240 if (packet->payload_mapped)
1241 dma_unmap_single(ohci->card.device, packet->payload_bus,
1242 packet->payload_length, DMA_TO_DEVICE);
1244 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1245 packet->timestamp = le16_to_cpu(last->res_count);
1247 log_ar_at_event('T', packet->speed, packet->header, evt);
1249 switch (evt) {
1250 case OHCI1394_evt_timeout:
1251 /* Async response transmit timed out. */
1252 packet->ack = RCODE_CANCELLED;
1253 break;
1255 case OHCI1394_evt_flushed:
1257 * The packet was flushed should give same error as
1258 * when we try to use a stale generation count.
1260 packet->ack = RCODE_GENERATION;
1261 break;
1263 case OHCI1394_evt_missing_ack:
1265 * Using a valid (current) generation count, but the
1266 * node is not on the bus or not sending acks.
1268 packet->ack = RCODE_NO_ACK;
1269 break;
1271 case ACK_COMPLETE + 0x10:
1272 case ACK_PENDING + 0x10:
1273 case ACK_BUSY_X + 0x10:
1274 case ACK_BUSY_A + 0x10:
1275 case ACK_BUSY_B + 0x10:
1276 case ACK_DATA_ERROR + 0x10:
1277 case ACK_TYPE_ERROR + 0x10:
1278 packet->ack = evt - 0x10;
1279 break;
1281 default:
1282 packet->ack = RCODE_SEND_ERROR;
1283 break;
1286 packet->callback(packet, &ohci->card, packet->ack);
1288 return 1;
1291 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1292 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1293 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1294 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1295 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1297 static void handle_local_rom(struct fw_ohci *ohci,
1298 struct fw_packet *packet, u32 csr)
1300 struct fw_packet response;
1301 int tcode, length, i;
1303 tcode = HEADER_GET_TCODE(packet->header[0]);
1304 if (TCODE_IS_BLOCK_PACKET(tcode))
1305 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1306 else
1307 length = 4;
1309 i = csr - CSR_CONFIG_ROM;
1310 if (i + length > CONFIG_ROM_SIZE) {
1311 fw_fill_response(&response, packet->header,
1312 RCODE_ADDRESS_ERROR, NULL, 0);
1313 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1314 fw_fill_response(&response, packet->header,
1315 RCODE_TYPE_ERROR, NULL, 0);
1316 } else {
1317 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1318 (void *) ohci->config_rom + i, length);
1321 fw_core_handle_response(&ohci->card, &response);
1324 static void handle_local_lock(struct fw_ohci *ohci,
1325 struct fw_packet *packet, u32 csr)
1327 struct fw_packet response;
1328 int tcode, length, ext_tcode, sel, try;
1329 __be32 *payload, lock_old;
1330 u32 lock_arg, lock_data;
1332 tcode = HEADER_GET_TCODE(packet->header[0]);
1333 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1334 payload = packet->payload;
1335 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1337 if (tcode == TCODE_LOCK_REQUEST &&
1338 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1339 lock_arg = be32_to_cpu(payload[0]);
1340 lock_data = be32_to_cpu(payload[1]);
1341 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1342 lock_arg = 0;
1343 lock_data = 0;
1344 } else {
1345 fw_fill_response(&response, packet->header,
1346 RCODE_TYPE_ERROR, NULL, 0);
1347 goto out;
1350 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1351 reg_write(ohci, OHCI1394_CSRData, lock_data);
1352 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1353 reg_write(ohci, OHCI1394_CSRControl, sel);
1355 for (try = 0; try < 20; try++)
1356 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1357 lock_old = cpu_to_be32(reg_read(ohci,
1358 OHCI1394_CSRData));
1359 fw_fill_response(&response, packet->header,
1360 RCODE_COMPLETE,
1361 &lock_old, sizeof(lock_old));
1362 goto out;
1365 fw_error("swap not done (CSR lock timeout)\n");
1366 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1368 out:
1369 fw_core_handle_response(&ohci->card, &response);
1372 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1374 u64 offset, csr;
1376 if (ctx == &ctx->ohci->at_request_ctx) {
1377 packet->ack = ACK_PENDING;
1378 packet->callback(packet, &ctx->ohci->card, packet->ack);
1381 offset =
1382 ((unsigned long long)
1383 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1384 packet->header[2];
1385 csr = offset - CSR_REGISTER_BASE;
1387 /* Handle config rom reads. */
1388 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1389 handle_local_rom(ctx->ohci, packet, csr);
1390 else switch (csr) {
1391 case CSR_BUS_MANAGER_ID:
1392 case CSR_BANDWIDTH_AVAILABLE:
1393 case CSR_CHANNELS_AVAILABLE_HI:
1394 case CSR_CHANNELS_AVAILABLE_LO:
1395 handle_local_lock(ctx->ohci, packet, csr);
1396 break;
1397 default:
1398 if (ctx == &ctx->ohci->at_request_ctx)
1399 fw_core_handle_request(&ctx->ohci->card, packet);
1400 else
1401 fw_core_handle_response(&ctx->ohci->card, packet);
1402 break;
1405 if (ctx == &ctx->ohci->at_response_ctx) {
1406 packet->ack = ACK_COMPLETE;
1407 packet->callback(packet, &ctx->ohci->card, packet->ack);
1411 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1413 unsigned long flags;
1414 int ret;
1416 spin_lock_irqsave(&ctx->ohci->lock, flags);
1418 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1419 ctx->ohci->generation == packet->generation) {
1420 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1421 handle_local_request(ctx, packet);
1422 return;
1425 ret = at_context_queue_packet(ctx, packet);
1426 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1428 if (ret < 0)
1429 packet->callback(packet, &ctx->ohci->card, packet->ack);
1433 static u32 cycle_timer_ticks(u32 cycle_timer)
1435 u32 ticks;
1437 ticks = cycle_timer & 0xfff;
1438 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1439 ticks += (3072 * 8000) * (cycle_timer >> 25);
1441 return ticks;
1445 * Some controllers exhibit one or more of the following bugs when updating the
1446 * iso cycle timer register:
1447 * - When the lowest six bits are wrapping around to zero, a read that happens
1448 * at the same time will return garbage in the lowest ten bits.
1449 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1450 * not incremented for about 60 ns.
1451 * - Occasionally, the entire register reads zero.
1453 * To catch these, we read the register three times and ensure that the
1454 * difference between each two consecutive reads is approximately the same, i.e.
1455 * less than twice the other. Furthermore, any negative difference indicates an
1456 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1457 * execute, so we have enough precision to compute the ratio of the differences.)
1459 static u32 get_cycle_time(struct fw_ohci *ohci)
1461 u32 c0, c1, c2;
1462 u32 t0, t1, t2;
1463 s32 diff01, diff12;
1464 int i;
1466 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1468 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1469 i = 0;
1470 c1 = c2;
1471 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1472 do {
1473 c0 = c1;
1474 c1 = c2;
1475 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1476 t0 = cycle_timer_ticks(c0);
1477 t1 = cycle_timer_ticks(c1);
1478 t2 = cycle_timer_ticks(c2);
1479 diff01 = t1 - t0;
1480 diff12 = t2 - t1;
1481 } while ((diff01 <= 0 || diff12 <= 0 ||
1482 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1483 && i++ < 20);
1486 return c2;
1490 * This function has to be called at least every 64 seconds. The bus_time
1491 * field stores not only the upper 25 bits of the BUS_TIME register but also
1492 * the most significant bit of the cycle timer in bit 6 so that we can detect
1493 * changes in this bit.
1495 static u32 update_bus_time(struct fw_ohci *ohci)
1497 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1499 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1500 ohci->bus_time += 0x40;
1502 return ohci->bus_time | cycle_time_seconds;
1505 static void bus_reset_tasklet(unsigned long data)
1507 struct fw_ohci *ohci = (struct fw_ohci *)data;
1508 int self_id_count, i, j, reg;
1509 int generation, new_generation;
1510 unsigned long flags;
1511 void *free_rom = NULL;
1512 dma_addr_t free_rom_bus = 0;
1513 bool is_new_root;
1515 reg = reg_read(ohci, OHCI1394_NodeID);
1516 if (!(reg & OHCI1394_NodeID_idValid)) {
1517 fw_notify("node ID not valid, new bus reset in progress\n");
1518 return;
1520 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1521 fw_notify("malconfigured bus\n");
1522 return;
1524 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1525 OHCI1394_NodeID_nodeNumber);
1527 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1528 if (!(ohci->is_root && is_new_root))
1529 reg_write(ohci, OHCI1394_LinkControlSet,
1530 OHCI1394_LinkControl_cycleMaster);
1531 ohci->is_root = is_new_root;
1533 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1534 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1535 fw_notify("inconsistent self IDs\n");
1536 return;
1539 * The count in the SelfIDCount register is the number of
1540 * bytes in the self ID receive buffer. Since we also receive
1541 * the inverted quadlets and a header quadlet, we shift one
1542 * bit extra to get the actual number of self IDs.
1544 self_id_count = (reg >> 3) & 0xff;
1545 if (self_id_count == 0 || self_id_count > 252) {
1546 fw_notify("inconsistent self IDs\n");
1547 return;
1549 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1550 rmb();
1552 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1553 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1554 fw_notify("inconsistent self IDs\n");
1555 return;
1557 ohci->self_id_buffer[j] =
1558 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1560 rmb();
1563 * Check the consistency of the self IDs we just read. The
1564 * problem we face is that a new bus reset can start while we
1565 * read out the self IDs from the DMA buffer. If this happens,
1566 * the DMA buffer will be overwritten with new self IDs and we
1567 * will read out inconsistent data. The OHCI specification
1568 * (section 11.2) recommends a technique similar to
1569 * linux/seqlock.h, where we remember the generation of the
1570 * self IDs in the buffer before reading them out and compare
1571 * it to the current generation after reading them out. If
1572 * the two generations match we know we have a consistent set
1573 * of self IDs.
1576 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1577 if (new_generation != generation) {
1578 fw_notify("recursive bus reset detected, "
1579 "discarding self ids\n");
1580 return;
1583 /* FIXME: Document how the locking works. */
1584 spin_lock_irqsave(&ohci->lock, flags);
1586 ohci->generation = generation;
1587 context_stop(&ohci->at_request_ctx);
1588 context_stop(&ohci->at_response_ctx);
1589 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1591 if (ohci->quirks & QUIRK_RESET_PACKET)
1592 ohci->request_generation = generation;
1595 * This next bit is unrelated to the AT context stuff but we
1596 * have to do it under the spinlock also. If a new config rom
1597 * was set up before this reset, the old one is now no longer
1598 * in use and we can free it. Update the config rom pointers
1599 * to point to the current config rom and clear the
1600 * next_config_rom pointer so a new update can take place.
1603 if (ohci->next_config_rom != NULL) {
1604 if (ohci->next_config_rom != ohci->config_rom) {
1605 free_rom = ohci->config_rom;
1606 free_rom_bus = ohci->config_rom_bus;
1608 ohci->config_rom = ohci->next_config_rom;
1609 ohci->config_rom_bus = ohci->next_config_rom_bus;
1610 ohci->next_config_rom = NULL;
1613 * Restore config_rom image and manually update
1614 * config_rom registers. Writing the header quadlet
1615 * will indicate that the config rom is ready, so we
1616 * do that last.
1618 reg_write(ohci, OHCI1394_BusOptions,
1619 be32_to_cpu(ohci->config_rom[2]));
1620 ohci->config_rom[0] = ohci->next_header;
1621 reg_write(ohci, OHCI1394_ConfigROMhdr,
1622 be32_to_cpu(ohci->next_header));
1625 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1626 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1627 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1628 #endif
1630 spin_unlock_irqrestore(&ohci->lock, flags);
1632 if (free_rom)
1633 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1634 free_rom, free_rom_bus);
1636 log_selfids(ohci->node_id, generation,
1637 self_id_count, ohci->self_id_buffer);
1639 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1640 self_id_count, ohci->self_id_buffer,
1641 ohci->csr_state_setclear_abdicate);
1642 ohci->csr_state_setclear_abdicate = false;
1645 static irqreturn_t irq_handler(int irq, void *data)
1647 struct fw_ohci *ohci = data;
1648 u32 event, iso_event;
1649 int i;
1651 event = reg_read(ohci, OHCI1394_IntEventClear);
1653 if (!event || !~event)
1654 return IRQ_NONE;
1656 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1657 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1658 log_irqs(event);
1660 if (event & OHCI1394_selfIDComplete)
1661 tasklet_schedule(&ohci->bus_reset_tasklet);
1663 if (event & OHCI1394_RQPkt)
1664 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1666 if (event & OHCI1394_RSPkt)
1667 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1669 if (event & OHCI1394_reqTxComplete)
1670 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1672 if (event & OHCI1394_respTxComplete)
1673 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1675 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1676 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1678 while (iso_event) {
1679 i = ffs(iso_event) - 1;
1680 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1681 iso_event &= ~(1 << i);
1684 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1685 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1687 while (iso_event) {
1688 i = ffs(iso_event) - 1;
1689 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1690 iso_event &= ~(1 << i);
1693 if (unlikely(event & OHCI1394_regAccessFail))
1694 fw_error("Register access failure - "
1695 "please notify linux1394-devel@lists.sf.net\n");
1697 if (unlikely(event & OHCI1394_postedWriteErr))
1698 fw_error("PCI posted write error\n");
1700 if (unlikely(event & OHCI1394_cycleTooLong)) {
1701 if (printk_ratelimit())
1702 fw_notify("isochronous cycle too long\n");
1703 reg_write(ohci, OHCI1394_LinkControlSet,
1704 OHCI1394_LinkControl_cycleMaster);
1707 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1709 * We need to clear this event bit in order to make
1710 * cycleMatch isochronous I/O work. In theory we should
1711 * stop active cycleMatch iso contexts now and restart
1712 * them at least two cycles later. (FIXME?)
1714 if (printk_ratelimit())
1715 fw_notify("isochronous cycle inconsistent\n");
1718 if (event & OHCI1394_cycle64Seconds) {
1719 spin_lock(&ohci->lock);
1720 update_bus_time(ohci);
1721 spin_unlock(&ohci->lock);
1724 return IRQ_HANDLED;
1727 static int software_reset(struct fw_ohci *ohci)
1729 int i;
1731 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1733 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1734 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1735 OHCI1394_HCControl_softReset) == 0)
1736 return 0;
1737 msleep(1);
1740 return -EBUSY;
1743 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1745 size_t size = length * 4;
1747 memcpy(dest, src, size);
1748 if (size < CONFIG_ROM_SIZE)
1749 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1752 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1754 bool enable_1394a;
1755 int ret, clear, set, offset;
1757 /* Check if the driver should configure link and PHY. */
1758 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1759 OHCI1394_HCControl_programPhyEnable))
1760 return 0;
1762 /* Paranoia: check whether the PHY supports 1394a, too. */
1763 enable_1394a = false;
1764 ret = read_phy_reg(ohci, 2);
1765 if (ret < 0)
1766 return ret;
1767 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1768 ret = read_paged_phy_reg(ohci, 1, 8);
1769 if (ret < 0)
1770 return ret;
1771 if (ret >= 1)
1772 enable_1394a = true;
1775 if (ohci->quirks & QUIRK_NO_1394A)
1776 enable_1394a = false;
1778 /* Configure PHY and link consistently. */
1779 if (enable_1394a) {
1780 clear = 0;
1781 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1782 } else {
1783 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1784 set = 0;
1786 ret = update_phy_reg(ohci, 5, clear, set);
1787 if (ret < 0)
1788 return ret;
1790 if (enable_1394a)
1791 offset = OHCI1394_HCControlSet;
1792 else
1793 offset = OHCI1394_HCControlClear;
1794 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1796 /* Clean up: configuration has been taken care of. */
1797 reg_write(ohci, OHCI1394_HCControlClear,
1798 OHCI1394_HCControl_programPhyEnable);
1800 return 0;
1803 static int ohci_enable(struct fw_card *card,
1804 const __be32 *config_rom, size_t length)
1806 struct fw_ohci *ohci = fw_ohci(card);
1807 struct pci_dev *dev = to_pci_dev(card->device);
1808 u32 lps, seconds, version, irqs;
1809 int i, ret;
1811 if (software_reset(ohci)) {
1812 fw_error("Failed to reset ohci card.\n");
1813 return -EBUSY;
1817 * Now enable LPS, which we need in order to start accessing
1818 * most of the registers. In fact, on some cards (ALI M5251),
1819 * accessing registers in the SClk domain without LPS enabled
1820 * will lock up the machine. Wait 50msec to make sure we have
1821 * full link enabled. However, with some cards (well, at least
1822 * a JMicron PCIe card), we have to try again sometimes.
1824 reg_write(ohci, OHCI1394_HCControlSet,
1825 OHCI1394_HCControl_LPS |
1826 OHCI1394_HCControl_postedWriteEnable);
1827 flush_writes(ohci);
1829 for (lps = 0, i = 0; !lps && i < 3; i++) {
1830 msleep(50);
1831 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1832 OHCI1394_HCControl_LPS;
1835 if (!lps) {
1836 fw_error("Failed to set Link Power Status\n");
1837 return -EIO;
1840 reg_write(ohci, OHCI1394_HCControlClear,
1841 OHCI1394_HCControl_noByteSwapData);
1843 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1844 reg_write(ohci, OHCI1394_LinkControlSet,
1845 OHCI1394_LinkControl_rcvSelfID |
1846 OHCI1394_LinkControl_rcvPhyPkt |
1847 OHCI1394_LinkControl_cycleTimerEnable |
1848 OHCI1394_LinkControl_cycleMaster);
1850 reg_write(ohci, OHCI1394_ATRetries,
1851 OHCI1394_MAX_AT_REQ_RETRIES |
1852 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1853 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1854 (200 << 16));
1856 seconds = lower_32_bits(get_seconds());
1857 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1858 ohci->bus_time = seconds & ~0x3f;
1860 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1861 if (version >= OHCI_VERSION_1_1) {
1862 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1863 0xfffffffe);
1864 card->broadcast_channel_auto_allocated = true;
1867 /* Get implemented bits of the priority arbitration request counter. */
1868 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1869 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1870 reg_write(ohci, OHCI1394_FairnessControl, 0);
1871 card->priority_budget_implemented = ohci->pri_req_max != 0;
1873 ar_context_run(&ohci->ar_request_ctx);
1874 ar_context_run(&ohci->ar_response_ctx);
1876 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1877 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1878 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1880 ret = configure_1394a_enhancements(ohci);
1881 if (ret < 0)
1882 return ret;
1884 /* Activate link_on bit and contender bit in our self ID packets.*/
1885 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1886 if (ret < 0)
1887 return ret;
1890 * When the link is not yet enabled, the atomic config rom
1891 * update mechanism described below in ohci_set_config_rom()
1892 * is not active. We have to update ConfigRomHeader and
1893 * BusOptions manually, and the write to ConfigROMmap takes
1894 * effect immediately. We tie this to the enabling of the
1895 * link, so we have a valid config rom before enabling - the
1896 * OHCI requires that ConfigROMhdr and BusOptions have valid
1897 * values before enabling.
1899 * However, when the ConfigROMmap is written, some controllers
1900 * always read back quadlets 0 and 2 from the config rom to
1901 * the ConfigRomHeader and BusOptions registers on bus reset.
1902 * They shouldn't do that in this initial case where the link
1903 * isn't enabled. This means we have to use the same
1904 * workaround here, setting the bus header to 0 and then write
1905 * the right values in the bus reset tasklet.
1908 if (config_rom) {
1909 ohci->next_config_rom =
1910 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1911 &ohci->next_config_rom_bus,
1912 GFP_KERNEL);
1913 if (ohci->next_config_rom == NULL)
1914 return -ENOMEM;
1916 copy_config_rom(ohci->next_config_rom, config_rom, length);
1917 } else {
1919 * In the suspend case, config_rom is NULL, which
1920 * means that we just reuse the old config rom.
1922 ohci->next_config_rom = ohci->config_rom;
1923 ohci->next_config_rom_bus = ohci->config_rom_bus;
1926 ohci->next_header = ohci->next_config_rom[0];
1927 ohci->next_config_rom[0] = 0;
1928 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1929 reg_write(ohci, OHCI1394_BusOptions,
1930 be32_to_cpu(ohci->next_config_rom[2]));
1931 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1933 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1935 if (!(ohci->quirks & QUIRK_NO_MSI))
1936 pci_enable_msi(dev);
1937 if (request_irq(dev->irq, irq_handler,
1938 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1939 ohci_driver_name, ohci)) {
1940 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1941 pci_disable_msi(dev);
1942 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1943 ohci->config_rom, ohci->config_rom_bus);
1944 return -EIO;
1947 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1948 OHCI1394_RQPkt | OHCI1394_RSPkt |
1949 OHCI1394_isochTx | OHCI1394_isochRx |
1950 OHCI1394_postedWriteErr |
1951 OHCI1394_selfIDComplete |
1952 OHCI1394_regAccessFail |
1953 OHCI1394_cycle64Seconds |
1954 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1955 OHCI1394_masterIntEnable;
1956 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1957 irqs |= OHCI1394_busReset;
1958 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1960 reg_write(ohci, OHCI1394_HCControlSet,
1961 OHCI1394_HCControl_linkEnable |
1962 OHCI1394_HCControl_BIBimageValid);
1963 flush_writes(ohci);
1965 /* We are ready to go, reset bus to finish initialization. */
1966 fw_schedule_bus_reset(&ohci->card, false, true);
1968 return 0;
1971 static int ohci_set_config_rom(struct fw_card *card,
1972 const __be32 *config_rom, size_t length)
1974 struct fw_ohci *ohci;
1975 unsigned long flags;
1976 int ret = -EBUSY;
1977 __be32 *next_config_rom;
1978 dma_addr_t uninitialized_var(next_config_rom_bus);
1980 ohci = fw_ohci(card);
1983 * When the OHCI controller is enabled, the config rom update
1984 * mechanism is a bit tricky, but easy enough to use. See
1985 * section 5.5.6 in the OHCI specification.
1987 * The OHCI controller caches the new config rom address in a
1988 * shadow register (ConfigROMmapNext) and needs a bus reset
1989 * for the changes to take place. When the bus reset is
1990 * detected, the controller loads the new values for the
1991 * ConfigRomHeader and BusOptions registers from the specified
1992 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1993 * shadow register. All automatically and atomically.
1995 * Now, there's a twist to this story. The automatic load of
1996 * ConfigRomHeader and BusOptions doesn't honor the
1997 * noByteSwapData bit, so with a be32 config rom, the
1998 * controller will load be32 values in to these registers
1999 * during the atomic update, even on litte endian
2000 * architectures. The workaround we use is to put a 0 in the
2001 * header quadlet; 0 is endian agnostic and means that the
2002 * config rom isn't ready yet. In the bus reset tasklet we
2003 * then set up the real values for the two registers.
2005 * We use ohci->lock to avoid racing with the code that sets
2006 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2009 next_config_rom =
2010 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2011 &next_config_rom_bus, GFP_KERNEL);
2012 if (next_config_rom == NULL)
2013 return -ENOMEM;
2015 spin_lock_irqsave(&ohci->lock, flags);
2017 if (ohci->next_config_rom == NULL) {
2018 ohci->next_config_rom = next_config_rom;
2019 ohci->next_config_rom_bus = next_config_rom_bus;
2021 copy_config_rom(ohci->next_config_rom, config_rom, length);
2023 ohci->next_header = config_rom[0];
2024 ohci->next_config_rom[0] = 0;
2026 reg_write(ohci, OHCI1394_ConfigROMmap,
2027 ohci->next_config_rom_bus);
2028 ret = 0;
2031 spin_unlock_irqrestore(&ohci->lock, flags);
2034 * Now initiate a bus reset to have the changes take
2035 * effect. We clean up the old config rom memory and DMA
2036 * mappings in the bus reset tasklet, since the OHCI
2037 * controller could need to access it before the bus reset
2038 * takes effect.
2040 if (ret == 0)
2041 fw_schedule_bus_reset(&ohci->card, true, true);
2042 else
2043 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2044 next_config_rom, next_config_rom_bus);
2046 return ret;
2049 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2051 struct fw_ohci *ohci = fw_ohci(card);
2053 at_context_transmit(&ohci->at_request_ctx, packet);
2056 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2058 struct fw_ohci *ohci = fw_ohci(card);
2060 at_context_transmit(&ohci->at_response_ctx, packet);
2063 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2065 struct fw_ohci *ohci = fw_ohci(card);
2066 struct context *ctx = &ohci->at_request_ctx;
2067 struct driver_data *driver_data = packet->driver_data;
2068 int ret = -ENOENT;
2070 tasklet_disable(&ctx->tasklet);
2072 if (packet->ack != 0)
2073 goto out;
2075 if (packet->payload_mapped)
2076 dma_unmap_single(ohci->card.device, packet->payload_bus,
2077 packet->payload_length, DMA_TO_DEVICE);
2079 log_ar_at_event('T', packet->speed, packet->header, 0x20);
2080 driver_data->packet = NULL;
2081 packet->ack = RCODE_CANCELLED;
2082 packet->callback(packet, &ohci->card, packet->ack);
2083 ret = 0;
2084 out:
2085 tasklet_enable(&ctx->tasklet);
2087 return ret;
2090 static int ohci_enable_phys_dma(struct fw_card *card,
2091 int node_id, int generation)
2093 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2094 return 0;
2095 #else
2096 struct fw_ohci *ohci = fw_ohci(card);
2097 unsigned long flags;
2098 int n, ret = 0;
2101 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2102 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2105 spin_lock_irqsave(&ohci->lock, flags);
2107 if (ohci->generation != generation) {
2108 ret = -ESTALE;
2109 goto out;
2113 * Note, if the node ID contains a non-local bus ID, physical DMA is
2114 * enabled for _all_ nodes on remote buses.
2117 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2118 if (n < 32)
2119 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2120 else
2121 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2123 flush_writes(ohci);
2124 out:
2125 spin_unlock_irqrestore(&ohci->lock, flags);
2127 return ret;
2128 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2131 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2133 struct fw_ohci *ohci = fw_ohci(card);
2134 unsigned long flags;
2135 u32 value;
2137 switch (csr_offset) {
2138 case CSR_STATE_CLEAR:
2139 case CSR_STATE_SET:
2140 if (ohci->is_root &&
2141 (reg_read(ohci, OHCI1394_LinkControlSet) &
2142 OHCI1394_LinkControl_cycleMaster))
2143 value = CSR_STATE_BIT_CMSTR;
2144 else
2145 value = 0;
2146 if (ohci->csr_state_setclear_abdicate)
2147 value |= CSR_STATE_BIT_ABDICATE;
2149 return value;
2151 case CSR_NODE_IDS:
2152 return reg_read(ohci, OHCI1394_NodeID) << 16;
2154 case CSR_CYCLE_TIME:
2155 return get_cycle_time(ohci);
2157 case CSR_BUS_TIME:
2159 * We might be called just after the cycle timer has wrapped
2160 * around but just before the cycle64Seconds handler, so we
2161 * better check here, too, if the bus time needs to be updated.
2163 spin_lock_irqsave(&ohci->lock, flags);
2164 value = update_bus_time(ohci);
2165 spin_unlock_irqrestore(&ohci->lock, flags);
2166 return value;
2168 case CSR_BUSY_TIMEOUT:
2169 value = reg_read(ohci, OHCI1394_ATRetries);
2170 return (value >> 4) & 0x0ffff00f;
2172 case CSR_PRIORITY_BUDGET:
2173 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2174 (ohci->pri_req_max << 8);
2176 default:
2177 WARN_ON(1);
2178 return 0;
2182 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2184 struct fw_ohci *ohci = fw_ohci(card);
2185 unsigned long flags;
2187 switch (csr_offset) {
2188 case CSR_STATE_CLEAR:
2189 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2190 reg_write(ohci, OHCI1394_LinkControlClear,
2191 OHCI1394_LinkControl_cycleMaster);
2192 flush_writes(ohci);
2194 if (value & CSR_STATE_BIT_ABDICATE)
2195 ohci->csr_state_setclear_abdicate = false;
2196 break;
2198 case CSR_STATE_SET:
2199 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2200 reg_write(ohci, OHCI1394_LinkControlSet,
2201 OHCI1394_LinkControl_cycleMaster);
2202 flush_writes(ohci);
2204 if (value & CSR_STATE_BIT_ABDICATE)
2205 ohci->csr_state_setclear_abdicate = true;
2206 break;
2208 case CSR_NODE_IDS:
2209 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2210 flush_writes(ohci);
2211 break;
2213 case CSR_CYCLE_TIME:
2214 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2215 reg_write(ohci, OHCI1394_IntEventSet,
2216 OHCI1394_cycleInconsistent);
2217 flush_writes(ohci);
2218 break;
2220 case CSR_BUS_TIME:
2221 spin_lock_irqsave(&ohci->lock, flags);
2222 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2223 spin_unlock_irqrestore(&ohci->lock, flags);
2224 break;
2226 case CSR_BUSY_TIMEOUT:
2227 value = (value & 0xf) | ((value & 0xf) << 4) |
2228 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2229 reg_write(ohci, OHCI1394_ATRetries, value);
2230 flush_writes(ohci);
2231 break;
2233 case CSR_PRIORITY_BUDGET:
2234 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2235 flush_writes(ohci);
2236 break;
2238 default:
2239 WARN_ON(1);
2240 break;
2244 static void copy_iso_headers(struct iso_context *ctx, void *p)
2246 int i = ctx->header_length;
2248 if (i + ctx->base.header_size > PAGE_SIZE)
2249 return;
2252 * The iso header is byteswapped to little endian by
2253 * the controller, but the remaining header quadlets
2254 * are big endian. We want to present all the headers
2255 * as big endian, so we have to swap the first quadlet.
2257 if (ctx->base.header_size > 0)
2258 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2259 if (ctx->base.header_size > 4)
2260 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2261 if (ctx->base.header_size > 8)
2262 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2263 ctx->header_length += ctx->base.header_size;
2266 static int handle_ir_packet_per_buffer(struct context *context,
2267 struct descriptor *d,
2268 struct descriptor *last)
2270 struct iso_context *ctx =
2271 container_of(context, struct iso_context, context);
2272 struct descriptor *pd;
2273 __le32 *ir_header;
2274 void *p;
2276 for (pd = d; pd <= last; pd++)
2277 if (pd->transfer_status)
2278 break;
2279 if (pd > last)
2280 /* Descriptor(s) not done yet, stop iteration */
2281 return 0;
2283 p = last + 1;
2284 copy_iso_headers(ctx, p);
2286 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2287 ir_header = (__le32 *) p;
2288 ctx->base.callback.sc(&ctx->base,
2289 le32_to_cpu(ir_header[0]) & 0xffff,
2290 ctx->header_length, ctx->header,
2291 ctx->base.callback_data);
2292 ctx->header_length = 0;
2295 return 1;
2298 /* d == last because each descriptor block is only a single descriptor. */
2299 static int handle_ir_buffer_fill(struct context *context,
2300 struct descriptor *d,
2301 struct descriptor *last)
2303 struct iso_context *ctx =
2304 container_of(context, struct iso_context, context);
2306 if (!last->transfer_status)
2307 /* Descriptor(s) not done yet, stop iteration */
2308 return 0;
2310 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2311 ctx->base.callback.mc(&ctx->base,
2312 le32_to_cpu(last->data_address) +
2313 le16_to_cpu(last->req_count) -
2314 le16_to_cpu(last->res_count),
2315 ctx->base.callback_data);
2317 return 1;
2320 static int handle_it_packet(struct context *context,
2321 struct descriptor *d,
2322 struct descriptor *last)
2324 struct iso_context *ctx =
2325 container_of(context, struct iso_context, context);
2326 int i;
2327 struct descriptor *pd;
2329 for (pd = d; pd <= last; pd++)
2330 if (pd->transfer_status)
2331 break;
2332 if (pd > last)
2333 /* Descriptor(s) not done yet, stop iteration */
2334 return 0;
2336 i = ctx->header_length;
2337 if (i + 4 < PAGE_SIZE) {
2338 /* Present this value as big-endian to match the receive code */
2339 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2340 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2341 le16_to_cpu(pd->res_count));
2342 ctx->header_length += 4;
2344 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2345 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2346 ctx->header_length, ctx->header,
2347 ctx->base.callback_data);
2348 ctx->header_length = 0;
2350 return 1;
2353 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2355 u32 hi = channels >> 32, lo = channels;
2357 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2358 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2359 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2360 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2361 mmiowb();
2362 ohci->mc_channels = channels;
2365 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2366 int type, int channel, size_t header_size)
2368 struct fw_ohci *ohci = fw_ohci(card);
2369 struct iso_context *uninitialized_var(ctx);
2370 descriptor_callback_t uninitialized_var(callback);
2371 u64 *uninitialized_var(channels);
2372 u32 *uninitialized_var(mask), uninitialized_var(regs);
2373 unsigned long flags;
2374 int index, ret = -EBUSY;
2376 spin_lock_irqsave(&ohci->lock, flags);
2378 switch (type) {
2379 case FW_ISO_CONTEXT_TRANSMIT:
2380 mask = &ohci->it_context_mask;
2381 callback = handle_it_packet;
2382 index = ffs(*mask) - 1;
2383 if (index >= 0) {
2384 *mask &= ~(1 << index);
2385 regs = OHCI1394_IsoXmitContextBase(index);
2386 ctx = &ohci->it_context_list[index];
2388 break;
2390 case FW_ISO_CONTEXT_RECEIVE:
2391 channels = &ohci->ir_context_channels;
2392 mask = &ohci->ir_context_mask;
2393 callback = handle_ir_packet_per_buffer;
2394 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2395 if (index >= 0) {
2396 *channels &= ~(1ULL << channel);
2397 *mask &= ~(1 << index);
2398 regs = OHCI1394_IsoRcvContextBase(index);
2399 ctx = &ohci->ir_context_list[index];
2401 break;
2403 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2404 mask = &ohci->ir_context_mask;
2405 callback = handle_ir_buffer_fill;
2406 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2407 if (index >= 0) {
2408 ohci->mc_allocated = true;
2409 *mask &= ~(1 << index);
2410 regs = OHCI1394_IsoRcvContextBase(index);
2411 ctx = &ohci->ir_context_list[index];
2413 break;
2415 default:
2416 index = -1;
2417 ret = -ENOSYS;
2420 spin_unlock_irqrestore(&ohci->lock, flags);
2422 if (index < 0)
2423 return ERR_PTR(ret);
2425 memset(ctx, 0, sizeof(*ctx));
2426 ctx->header_length = 0;
2427 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2428 if (ctx->header == NULL) {
2429 ret = -ENOMEM;
2430 goto out;
2432 ret = context_init(&ctx->context, ohci, regs, callback);
2433 if (ret < 0)
2434 goto out_with_header;
2436 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2437 set_multichannel_mask(ohci, 0);
2439 return &ctx->base;
2441 out_with_header:
2442 free_page((unsigned long)ctx->header);
2443 out:
2444 spin_lock_irqsave(&ohci->lock, flags);
2446 switch (type) {
2447 case FW_ISO_CONTEXT_RECEIVE:
2448 *channels |= 1ULL << channel;
2449 break;
2451 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2452 ohci->mc_allocated = false;
2453 break;
2455 *mask |= 1 << index;
2457 spin_unlock_irqrestore(&ohci->lock, flags);
2459 return ERR_PTR(ret);
2462 static int ohci_start_iso(struct fw_iso_context *base,
2463 s32 cycle, u32 sync, u32 tags)
2465 struct iso_context *ctx = container_of(base, struct iso_context, base);
2466 struct fw_ohci *ohci = ctx->context.ohci;
2467 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2468 int index;
2470 switch (ctx->base.type) {
2471 case FW_ISO_CONTEXT_TRANSMIT:
2472 index = ctx - ohci->it_context_list;
2473 match = 0;
2474 if (cycle >= 0)
2475 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2476 (cycle & 0x7fff) << 16;
2478 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2479 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2480 context_run(&ctx->context, match);
2481 break;
2483 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2484 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2485 /* fall through */
2486 case FW_ISO_CONTEXT_RECEIVE:
2487 index = ctx - ohci->ir_context_list;
2488 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2489 if (cycle >= 0) {
2490 match |= (cycle & 0x07fff) << 12;
2491 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2494 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2495 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2496 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2497 context_run(&ctx->context, control);
2498 break;
2501 return 0;
2504 static int ohci_stop_iso(struct fw_iso_context *base)
2506 struct fw_ohci *ohci = fw_ohci(base->card);
2507 struct iso_context *ctx = container_of(base, struct iso_context, base);
2508 int index;
2510 switch (ctx->base.type) {
2511 case FW_ISO_CONTEXT_TRANSMIT:
2512 index = ctx - ohci->it_context_list;
2513 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2514 break;
2516 case FW_ISO_CONTEXT_RECEIVE:
2517 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2518 index = ctx - ohci->ir_context_list;
2519 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2520 break;
2522 flush_writes(ohci);
2523 context_stop(&ctx->context);
2525 return 0;
2528 static void ohci_free_iso_context(struct fw_iso_context *base)
2530 struct fw_ohci *ohci = fw_ohci(base->card);
2531 struct iso_context *ctx = container_of(base, struct iso_context, base);
2532 unsigned long flags;
2533 int index;
2535 ohci_stop_iso(base);
2536 context_release(&ctx->context);
2537 free_page((unsigned long)ctx->header);
2539 spin_lock_irqsave(&ohci->lock, flags);
2541 switch (base->type) {
2542 case FW_ISO_CONTEXT_TRANSMIT:
2543 index = ctx - ohci->it_context_list;
2544 ohci->it_context_mask |= 1 << index;
2545 break;
2547 case FW_ISO_CONTEXT_RECEIVE:
2548 index = ctx - ohci->ir_context_list;
2549 ohci->ir_context_mask |= 1 << index;
2550 ohci->ir_context_channels |= 1ULL << base->channel;
2551 break;
2553 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2554 index = ctx - ohci->ir_context_list;
2555 ohci->ir_context_mask |= 1 << index;
2556 ohci->ir_context_channels |= ohci->mc_channels;
2557 ohci->mc_channels = 0;
2558 ohci->mc_allocated = false;
2559 break;
2562 spin_unlock_irqrestore(&ohci->lock, flags);
2565 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2567 struct fw_ohci *ohci = fw_ohci(base->card);
2568 unsigned long flags;
2569 int ret;
2571 switch (base->type) {
2572 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2574 spin_lock_irqsave(&ohci->lock, flags);
2576 /* Don't allow multichannel to grab other contexts' channels. */
2577 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2578 *channels = ohci->ir_context_channels;
2579 ret = -EBUSY;
2580 } else {
2581 set_multichannel_mask(ohci, *channels);
2582 ret = 0;
2585 spin_unlock_irqrestore(&ohci->lock, flags);
2587 break;
2588 default:
2589 ret = -EINVAL;
2592 return ret;
2595 static int queue_iso_transmit(struct iso_context *ctx,
2596 struct fw_iso_packet *packet,
2597 struct fw_iso_buffer *buffer,
2598 unsigned long payload)
2600 struct descriptor *d, *last, *pd;
2601 struct fw_iso_packet *p;
2602 __le32 *header;
2603 dma_addr_t d_bus, page_bus;
2604 u32 z, header_z, payload_z, irq;
2605 u32 payload_index, payload_end_index, next_page_index;
2606 int page, end_page, i, length, offset;
2608 p = packet;
2609 payload_index = payload;
2611 if (p->skip)
2612 z = 1;
2613 else
2614 z = 2;
2615 if (p->header_length > 0)
2616 z++;
2618 /* Determine the first page the payload isn't contained in. */
2619 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2620 if (p->payload_length > 0)
2621 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2622 else
2623 payload_z = 0;
2625 z += payload_z;
2627 /* Get header size in number of descriptors. */
2628 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2630 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2631 if (d == NULL)
2632 return -ENOMEM;
2634 if (!p->skip) {
2635 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2636 d[0].req_count = cpu_to_le16(8);
2638 * Link the skip address to this descriptor itself. This causes
2639 * a context to skip a cycle whenever lost cycles or FIFO
2640 * overruns occur, without dropping the data. The application
2641 * should then decide whether this is an error condition or not.
2642 * FIXME: Make the context's cycle-lost behaviour configurable?
2644 d[0].branch_address = cpu_to_le32(d_bus | z);
2646 header = (__le32 *) &d[1];
2647 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2648 IT_HEADER_TAG(p->tag) |
2649 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2650 IT_HEADER_CHANNEL(ctx->base.channel) |
2651 IT_HEADER_SPEED(ctx->base.speed));
2652 header[1] =
2653 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2654 p->payload_length));
2657 if (p->header_length > 0) {
2658 d[2].req_count = cpu_to_le16(p->header_length);
2659 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2660 memcpy(&d[z], p->header, p->header_length);
2663 pd = d + z - payload_z;
2664 payload_end_index = payload_index + p->payload_length;
2665 for (i = 0; i < payload_z; i++) {
2666 page = payload_index >> PAGE_SHIFT;
2667 offset = payload_index & ~PAGE_MASK;
2668 next_page_index = (page + 1) << PAGE_SHIFT;
2669 length =
2670 min(next_page_index, payload_end_index) - payload_index;
2671 pd[i].req_count = cpu_to_le16(length);
2673 page_bus = page_private(buffer->pages[page]);
2674 pd[i].data_address = cpu_to_le32(page_bus + offset);
2676 payload_index += length;
2679 if (p->interrupt)
2680 irq = DESCRIPTOR_IRQ_ALWAYS;
2681 else
2682 irq = DESCRIPTOR_NO_IRQ;
2684 last = z == 2 ? d : d + z - 1;
2685 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2686 DESCRIPTOR_STATUS |
2687 DESCRIPTOR_BRANCH_ALWAYS |
2688 irq);
2690 context_append(&ctx->context, d, z, header_z);
2692 return 0;
2695 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2696 struct fw_iso_packet *packet,
2697 struct fw_iso_buffer *buffer,
2698 unsigned long payload)
2700 struct descriptor *d, *pd;
2701 dma_addr_t d_bus, page_bus;
2702 u32 z, header_z, rest;
2703 int i, j, length;
2704 int page, offset, packet_count, header_size, payload_per_buffer;
2707 * The OHCI controller puts the isochronous header and trailer in the
2708 * buffer, so we need at least 8 bytes.
2710 packet_count = packet->header_length / ctx->base.header_size;
2711 header_size = max(ctx->base.header_size, (size_t)8);
2713 /* Get header size in number of descriptors. */
2714 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2715 page = payload >> PAGE_SHIFT;
2716 offset = payload & ~PAGE_MASK;
2717 payload_per_buffer = packet->payload_length / packet_count;
2719 for (i = 0; i < packet_count; i++) {
2720 /* d points to the header descriptor */
2721 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2722 d = context_get_descriptors(&ctx->context,
2723 z + header_z, &d_bus);
2724 if (d == NULL)
2725 return -ENOMEM;
2727 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2728 DESCRIPTOR_INPUT_MORE);
2729 if (packet->skip && i == 0)
2730 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2731 d->req_count = cpu_to_le16(header_size);
2732 d->res_count = d->req_count;
2733 d->transfer_status = 0;
2734 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2736 rest = payload_per_buffer;
2737 pd = d;
2738 for (j = 1; j < z; j++) {
2739 pd++;
2740 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2741 DESCRIPTOR_INPUT_MORE);
2743 if (offset + rest < PAGE_SIZE)
2744 length = rest;
2745 else
2746 length = PAGE_SIZE - offset;
2747 pd->req_count = cpu_to_le16(length);
2748 pd->res_count = pd->req_count;
2749 pd->transfer_status = 0;
2751 page_bus = page_private(buffer->pages[page]);
2752 pd->data_address = cpu_to_le32(page_bus + offset);
2754 offset = (offset + length) & ~PAGE_MASK;
2755 rest -= length;
2756 if (offset == 0)
2757 page++;
2759 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2760 DESCRIPTOR_INPUT_LAST |
2761 DESCRIPTOR_BRANCH_ALWAYS);
2762 if (packet->interrupt && i == packet_count - 1)
2763 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2765 context_append(&ctx->context, d, z, header_z);
2768 return 0;
2771 static int queue_iso_buffer_fill(struct iso_context *ctx,
2772 struct fw_iso_packet *packet,
2773 struct fw_iso_buffer *buffer,
2774 unsigned long payload)
2776 struct descriptor *d;
2777 dma_addr_t d_bus, page_bus;
2778 int page, offset, rest, z, i, length;
2780 page = payload >> PAGE_SHIFT;
2781 offset = payload & ~PAGE_MASK;
2782 rest = packet->payload_length;
2784 /* We need one descriptor for each page in the buffer. */
2785 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
2787 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
2788 return -EFAULT;
2790 for (i = 0; i < z; i++) {
2791 d = context_get_descriptors(&ctx->context, 1, &d_bus);
2792 if (d == NULL)
2793 return -ENOMEM;
2795 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
2796 DESCRIPTOR_BRANCH_ALWAYS);
2797 if (packet->skip && i == 0)
2798 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2799 if (packet->interrupt && i == z - 1)
2800 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2802 if (offset + rest < PAGE_SIZE)
2803 length = rest;
2804 else
2805 length = PAGE_SIZE - offset;
2806 d->req_count = cpu_to_le16(length);
2807 d->res_count = d->req_count;
2808 d->transfer_status = 0;
2810 page_bus = page_private(buffer->pages[page]);
2811 d->data_address = cpu_to_le32(page_bus + offset);
2813 rest -= length;
2814 offset = 0;
2815 page++;
2817 context_append(&ctx->context, d, 1, 0);
2820 return 0;
2823 static int ohci_queue_iso(struct fw_iso_context *base,
2824 struct fw_iso_packet *packet,
2825 struct fw_iso_buffer *buffer,
2826 unsigned long payload)
2828 struct iso_context *ctx = container_of(base, struct iso_context, base);
2829 unsigned long flags;
2830 int ret = -ENOSYS;
2832 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2833 switch (base->type) {
2834 case FW_ISO_CONTEXT_TRANSMIT:
2835 ret = queue_iso_transmit(ctx, packet, buffer, payload);
2836 break;
2837 case FW_ISO_CONTEXT_RECEIVE:
2838 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
2839 break;
2840 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2841 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
2842 break;
2844 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2846 return ret;
2849 static const struct fw_card_driver ohci_driver = {
2850 .enable = ohci_enable,
2851 .read_phy_reg = ohci_read_phy_reg,
2852 .update_phy_reg = ohci_update_phy_reg,
2853 .set_config_rom = ohci_set_config_rom,
2854 .send_request = ohci_send_request,
2855 .send_response = ohci_send_response,
2856 .cancel_packet = ohci_cancel_packet,
2857 .enable_phys_dma = ohci_enable_phys_dma,
2858 .read_csr = ohci_read_csr,
2859 .write_csr = ohci_write_csr,
2861 .allocate_iso_context = ohci_allocate_iso_context,
2862 .free_iso_context = ohci_free_iso_context,
2863 .set_iso_channels = ohci_set_iso_channels,
2864 .queue_iso = ohci_queue_iso,
2865 .start_iso = ohci_start_iso,
2866 .stop_iso = ohci_stop_iso,
2869 #ifdef CONFIG_PPC_PMAC
2870 static void pmac_ohci_on(struct pci_dev *dev)
2872 if (machine_is(powermac)) {
2873 struct device_node *ofn = pci_device_to_OF_node(dev);
2875 if (ofn) {
2876 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2877 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2882 static void pmac_ohci_off(struct pci_dev *dev)
2884 if (machine_is(powermac)) {
2885 struct device_node *ofn = pci_device_to_OF_node(dev);
2887 if (ofn) {
2888 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2889 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2893 #else
2894 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2895 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2896 #endif /* CONFIG_PPC_PMAC */
2898 static int __devinit pci_probe(struct pci_dev *dev,
2899 const struct pci_device_id *ent)
2901 struct fw_ohci *ohci;
2902 u32 bus_options, max_receive, link_speed, version;
2903 u64 guid;
2904 int i, err, n_ir, n_it;
2905 size_t size;
2907 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2908 if (ohci == NULL) {
2909 err = -ENOMEM;
2910 goto fail;
2913 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2915 pmac_ohci_on(dev);
2917 err = pci_enable_device(dev);
2918 if (err) {
2919 fw_error("Failed to enable OHCI hardware\n");
2920 goto fail_free;
2923 pci_set_master(dev);
2924 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2925 pci_set_drvdata(dev, ohci);
2927 spin_lock_init(&ohci->lock);
2928 mutex_init(&ohci->phy_reg_mutex);
2930 tasklet_init(&ohci->bus_reset_tasklet,
2931 bus_reset_tasklet, (unsigned long)ohci);
2933 err = pci_request_region(dev, 0, ohci_driver_name);
2934 if (err) {
2935 fw_error("MMIO resource unavailable\n");
2936 goto fail_disable;
2939 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2940 if (ohci->registers == NULL) {
2941 fw_error("Failed to remap registers\n");
2942 err = -ENXIO;
2943 goto fail_iomem;
2946 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2947 if ((ohci_quirks[i].vendor == dev->vendor) &&
2948 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
2949 ohci_quirks[i].device == dev->device) &&
2950 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
2951 ohci_quirks[i].revision >= dev->revision)) {
2952 ohci->quirks = ohci_quirks[i].flags;
2953 break;
2955 if (param_quirks)
2956 ohci->quirks = param_quirks;
2958 ar_context_init(&ohci->ar_request_ctx, ohci,
2959 OHCI1394_AsReqRcvContextControlSet);
2961 ar_context_init(&ohci->ar_response_ctx, ohci,
2962 OHCI1394_AsRspRcvContextControlSet);
2964 context_init(&ohci->at_request_ctx, ohci,
2965 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2967 context_init(&ohci->at_response_ctx, ohci,
2968 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2970 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2971 ohci->ir_context_channels = ~0ULL;
2972 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2973 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2974 n_ir = hweight32(ohci->ir_context_mask);
2975 size = sizeof(struct iso_context) * n_ir;
2976 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2978 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2979 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2980 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2981 n_it = hweight32(ohci->it_context_mask);
2982 size = sizeof(struct iso_context) * n_it;
2983 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2985 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2986 err = -ENOMEM;
2987 goto fail_contexts;
2990 /* self-id dma buffer allocation */
2991 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2992 SELF_ID_BUF_SIZE,
2993 &ohci->self_id_bus,
2994 GFP_KERNEL);
2995 if (ohci->self_id_cpu == NULL) {
2996 err = -ENOMEM;
2997 goto fail_contexts;
3000 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3001 max_receive = (bus_options >> 12) & 0xf;
3002 link_speed = bus_options & 0x7;
3003 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3004 reg_read(ohci, OHCI1394_GUIDLo);
3006 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3007 if (err)
3008 goto fail_self_id;
3010 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3011 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3012 "%d IR + %d IT contexts, quirks 0x%x\n",
3013 dev_name(&dev->dev), version >> 16, version & 0xff,
3014 n_ir, n_it, ohci->quirks);
3016 return 0;
3018 fail_self_id:
3019 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
3020 ohci->self_id_cpu, ohci->self_id_bus);
3021 fail_contexts:
3022 kfree(ohci->ir_context_list);
3023 kfree(ohci->it_context_list);
3024 context_release(&ohci->at_response_ctx);
3025 context_release(&ohci->at_request_ctx);
3026 ar_context_release(&ohci->ar_response_ctx);
3027 ar_context_release(&ohci->ar_request_ctx);
3028 pci_iounmap(dev, ohci->registers);
3029 fail_iomem:
3030 pci_release_region(dev, 0);
3031 fail_disable:
3032 pci_disable_device(dev);
3033 fail_free:
3034 kfree(&ohci->card);
3035 pmac_ohci_off(dev);
3036 fail:
3037 if (err == -ENOMEM)
3038 fw_error("Out of memory\n");
3040 return err;
3043 static void pci_remove(struct pci_dev *dev)
3045 struct fw_ohci *ohci;
3047 ohci = pci_get_drvdata(dev);
3048 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3049 flush_writes(ohci);
3050 fw_core_remove_card(&ohci->card);
3053 * FIXME: Fail all pending packets here, now that the upper
3054 * layers can't queue any more.
3057 software_reset(ohci);
3058 free_irq(dev->irq, ohci);
3060 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3061 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3062 ohci->next_config_rom, ohci->next_config_rom_bus);
3063 if (ohci->config_rom)
3064 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3065 ohci->config_rom, ohci->config_rom_bus);
3066 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
3067 ohci->self_id_cpu, ohci->self_id_bus);
3068 ar_context_release(&ohci->ar_request_ctx);
3069 ar_context_release(&ohci->ar_response_ctx);
3070 context_release(&ohci->at_request_ctx);
3071 context_release(&ohci->at_response_ctx);
3072 kfree(ohci->it_context_list);
3073 kfree(ohci->ir_context_list);
3074 pci_disable_msi(dev);
3075 pci_iounmap(dev, ohci->registers);
3076 pci_release_region(dev, 0);
3077 pci_disable_device(dev);
3078 kfree(&ohci->card);
3079 pmac_ohci_off(dev);
3081 fw_notify("Removed fw-ohci device.\n");
3084 #ifdef CONFIG_PM
3085 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3087 struct fw_ohci *ohci = pci_get_drvdata(dev);
3088 int err;
3090 software_reset(ohci);
3091 free_irq(dev->irq, ohci);
3092 pci_disable_msi(dev);
3093 err = pci_save_state(dev);
3094 if (err) {
3095 fw_error("pci_save_state failed\n");
3096 return err;
3098 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3099 if (err)
3100 fw_error("pci_set_power_state failed with %d\n", err);
3101 pmac_ohci_off(dev);
3103 return 0;
3106 static int pci_resume(struct pci_dev *dev)
3108 struct fw_ohci *ohci = pci_get_drvdata(dev);
3109 int err;
3111 pmac_ohci_on(dev);
3112 pci_set_power_state(dev, PCI_D0);
3113 pci_restore_state(dev);
3114 err = pci_enable_device(dev);
3115 if (err) {
3116 fw_error("pci_enable_device failed\n");
3117 return err;
3120 return ohci_enable(&ohci->card, NULL, 0);
3122 #endif
3124 static const struct pci_device_id pci_table[] = {
3125 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3129 MODULE_DEVICE_TABLE(pci, pci_table);
3131 static struct pci_driver fw_ohci_pci_driver = {
3132 .name = ohci_driver_name,
3133 .id_table = pci_table,
3134 .probe = pci_probe,
3135 .remove = pci_remove,
3136 #ifdef CONFIG_PM
3137 .resume = pci_resume,
3138 .suspend = pci_suspend,
3139 #endif
3142 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3143 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3144 MODULE_LICENSE("GPL");
3146 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3147 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3148 MODULE_ALIAS("ohci1394");
3149 #endif
3151 static int __init fw_ohci_init(void)
3153 return pci_register_driver(&fw_ohci_pci_driver);
3156 static void __exit fw_ohci_cleanup(void)
3158 pci_unregister_driver(&fw_ohci_pci_driver);
3161 module_init(fw_ohci_init);
3162 module_exit(fw_ohci_cleanup);