kbuild: use getopt_long(), not its _only() variant
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blob2bd6f6da38ea5d93332c4bb6cb5799fcd489cb9b
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <linux/compaction.h>
53 #include <trace/events/kmem.h>
54 #include <linux/ftrace_event.h>
56 #include <asm/tlbflush.h>
57 #include <asm/div64.h>
58 #include "internal.h"
60 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
61 DEFINE_PER_CPU(int, numa_node);
62 EXPORT_PER_CPU_SYMBOL(numa_node);
63 #endif
65 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
70 * defined in <linux/topology.h>.
72 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
73 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
74 #endif
77 * Array of node states.
79 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
80 [N_POSSIBLE] = NODE_MASK_ALL,
81 [N_ONLINE] = { { [0] = 1UL } },
82 #ifndef CONFIG_NUMA
83 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
84 #ifdef CONFIG_HIGHMEM
85 [N_HIGH_MEMORY] = { { [0] = 1UL } },
86 #endif
87 [N_CPU] = { { [0] = 1UL } },
88 #endif /* NUMA */
90 EXPORT_SYMBOL(node_states);
92 unsigned long totalram_pages __read_mostly;
93 unsigned long totalreserve_pages __read_mostly;
94 int percpu_pagelist_fraction;
95 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
97 #ifdef CONFIG_PM_SLEEP
99 * The following functions are used by the suspend/hibernate code to temporarily
100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
101 * while devices are suspended. To avoid races with the suspend/hibernate code,
102 * they should always be called with pm_mutex held (gfp_allowed_mask also should
103 * only be modified with pm_mutex held, unless the suspend/hibernate code is
104 * guaranteed not to run in parallel with that modification).
107 static gfp_t saved_gfp_mask;
109 void pm_restore_gfp_mask(void)
111 WARN_ON(!mutex_is_locked(&pm_mutex));
112 if (saved_gfp_mask) {
113 gfp_allowed_mask = saved_gfp_mask;
114 saved_gfp_mask = 0;
118 void pm_restrict_gfp_mask(void)
120 WARN_ON(!mutex_is_locked(&pm_mutex));
121 WARN_ON(saved_gfp_mask);
122 saved_gfp_mask = gfp_allowed_mask;
123 gfp_allowed_mask &= ~GFP_IOFS;
125 #endif /* CONFIG_PM_SLEEP */
127 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
128 int pageblock_order __read_mostly;
129 #endif
131 static void __free_pages_ok(struct page *page, unsigned int order);
134 * results with 256, 32 in the lowmem_reserve sysctl:
135 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
136 * 1G machine -> (16M dma, 784M normal, 224M high)
137 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
138 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
139 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
141 * TBD: should special case ZONE_DMA32 machines here - in those we normally
142 * don't need any ZONE_NORMAL reservation
144 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
145 #ifdef CONFIG_ZONE_DMA
146 256,
147 #endif
148 #ifdef CONFIG_ZONE_DMA32
149 256,
150 #endif
151 #ifdef CONFIG_HIGHMEM
153 #endif
157 EXPORT_SYMBOL(totalram_pages);
159 static char * const zone_names[MAX_NR_ZONES] = {
160 #ifdef CONFIG_ZONE_DMA
161 "DMA",
162 #endif
163 #ifdef CONFIG_ZONE_DMA32
164 "DMA32",
165 #endif
166 "Normal",
167 #ifdef CONFIG_HIGHMEM
168 "HighMem",
169 #endif
170 "Movable",
173 int min_free_kbytes = 1024;
175 static unsigned long __meminitdata nr_kernel_pages;
176 static unsigned long __meminitdata nr_all_pages;
177 static unsigned long __meminitdata dma_reserve;
179 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
182 * ranges of memory (RAM) that may be registered with add_active_range().
183 * Ranges passed to add_active_range() will be merged if possible
184 * so the number of times add_active_range() can be called is
185 * related to the number of nodes and the number of holes
187 #ifdef CONFIG_MAX_ACTIVE_REGIONS
188 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
189 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
190 #else
191 #if MAX_NUMNODES >= 32
192 /* If there can be many nodes, allow up to 50 holes per node */
193 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
194 #else
195 /* By default, allow up to 256 distinct regions */
196 #define MAX_ACTIVE_REGIONS 256
197 #endif
198 #endif
200 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
201 static int __meminitdata nr_nodemap_entries;
202 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __initdata required_kernelcore;
205 static unsigned long __initdata required_movablecore;
206 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
208 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
209 int movable_zone;
210 EXPORT_SYMBOL(movable_zone);
211 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213 #if MAX_NUMNODES > 1
214 int nr_node_ids __read_mostly = MAX_NUMNODES;
215 int nr_online_nodes __read_mostly = 1;
216 EXPORT_SYMBOL(nr_node_ids);
217 EXPORT_SYMBOL(nr_online_nodes);
218 #endif
220 int page_group_by_mobility_disabled __read_mostly;
222 static void set_pageblock_migratetype(struct page *page, int migratetype)
225 if (unlikely(page_group_by_mobility_disabled))
226 migratetype = MIGRATE_UNMOVABLE;
228 set_pageblock_flags_group(page, (unsigned long)migratetype,
229 PB_migrate, PB_migrate_end);
232 bool oom_killer_disabled __read_mostly;
234 #ifdef CONFIG_DEBUG_VM
235 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
237 int ret = 0;
238 unsigned seq;
239 unsigned long pfn = page_to_pfn(page);
241 do {
242 seq = zone_span_seqbegin(zone);
243 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
244 ret = 1;
245 else if (pfn < zone->zone_start_pfn)
246 ret = 1;
247 } while (zone_span_seqretry(zone, seq));
249 return ret;
252 static int page_is_consistent(struct zone *zone, struct page *page)
254 if (!pfn_valid_within(page_to_pfn(page)))
255 return 0;
256 if (zone != page_zone(page))
257 return 0;
259 return 1;
262 * Temporary debugging check for pages not lying within a given zone.
264 static int bad_range(struct zone *zone, struct page *page)
266 if (page_outside_zone_boundaries(zone, page))
267 return 1;
268 if (!page_is_consistent(zone, page))
269 return 1;
271 return 0;
273 #else
274 static inline int bad_range(struct zone *zone, struct page *page)
276 return 0;
278 #endif
280 static void bad_page(struct page *page)
282 static unsigned long resume;
283 static unsigned long nr_shown;
284 static unsigned long nr_unshown;
286 /* Don't complain about poisoned pages */
287 if (PageHWPoison(page)) {
288 __ClearPageBuddy(page);
289 return;
293 * Allow a burst of 60 reports, then keep quiet for that minute;
294 * or allow a steady drip of one report per second.
296 if (nr_shown == 60) {
297 if (time_before(jiffies, resume)) {
298 nr_unshown++;
299 goto out;
301 if (nr_unshown) {
302 printk(KERN_ALERT
303 "BUG: Bad page state: %lu messages suppressed\n",
304 nr_unshown);
305 nr_unshown = 0;
307 nr_shown = 0;
309 if (nr_shown++ == 0)
310 resume = jiffies + 60 * HZ;
312 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
313 current->comm, page_to_pfn(page));
314 dump_page(page);
316 dump_stack();
317 out:
318 /* Leave bad fields for debug, except PageBuddy could make trouble */
319 __ClearPageBuddy(page);
320 add_taint(TAINT_BAD_PAGE);
324 * Higher-order pages are called "compound pages". They are structured thusly:
326 * The first PAGE_SIZE page is called the "head page".
328 * The remaining PAGE_SIZE pages are called "tail pages".
330 * All pages have PG_compound set. All pages have their ->private pointing at
331 * the head page (even the head page has this).
333 * The first tail page's ->lru.next holds the address of the compound page's
334 * put_page() function. Its ->lru.prev holds the order of allocation.
335 * This usage means that zero-order pages may not be compound.
338 static void free_compound_page(struct page *page)
340 __free_pages_ok(page, compound_order(page));
343 void prep_compound_page(struct page *page, unsigned long order)
345 int i;
346 int nr_pages = 1 << order;
348 set_compound_page_dtor(page, free_compound_page);
349 set_compound_order(page, order);
350 __SetPageHead(page);
351 for (i = 1; i < nr_pages; i++) {
352 struct page *p = page + i;
354 __SetPageTail(p);
355 p->first_page = page;
359 static int destroy_compound_page(struct page *page, unsigned long order)
361 int i;
362 int nr_pages = 1 << order;
363 int bad = 0;
365 if (unlikely(compound_order(page) != order) ||
366 unlikely(!PageHead(page))) {
367 bad_page(page);
368 bad++;
371 __ClearPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
376 if (unlikely(!PageTail(p) || (p->first_page != page))) {
377 bad_page(page);
378 bad++;
380 __ClearPageTail(p);
383 return bad;
386 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388 int i;
391 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
392 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
395 for (i = 0; i < (1 << order); i++)
396 clear_highpage(page + i);
399 static inline void set_page_order(struct page *page, int order)
401 set_page_private(page, order);
402 __SetPageBuddy(page);
405 static inline void rmv_page_order(struct page *page)
407 __ClearPageBuddy(page);
408 set_page_private(page, 0);
412 * Locate the struct page for both the matching buddy in our
413 * pair (buddy1) and the combined O(n+1) page they form (page).
415 * 1) Any buddy B1 will have an order O twin B2 which satisfies
416 * the following equation:
417 * B2 = B1 ^ (1 << O)
418 * For example, if the starting buddy (buddy2) is #8 its order
419 * 1 buddy is #10:
420 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
422 * 2) Any buddy B will have an order O+1 parent P which
423 * satisfies the following equation:
424 * P = B & ~(1 << O)
426 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
428 static inline struct page *
429 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
431 unsigned long buddy_idx = page_idx ^ (1 << order);
433 return page + (buddy_idx - page_idx);
436 static inline unsigned long
437 __find_combined_index(unsigned long page_idx, unsigned int order)
439 return (page_idx & ~(1 << order));
443 * This function checks whether a page is free && is the buddy
444 * we can do coalesce a page and its buddy if
445 * (a) the buddy is not in a hole &&
446 * (b) the buddy is in the buddy system &&
447 * (c) a page and its buddy have the same order &&
448 * (d) a page and its buddy are in the same zone.
450 * For recording whether a page is in the buddy system, we use PG_buddy.
451 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
453 * For recording page's order, we use page_private(page).
455 static inline int page_is_buddy(struct page *page, struct page *buddy,
456 int order)
458 if (!pfn_valid_within(page_to_pfn(buddy)))
459 return 0;
461 if (page_zone_id(page) != page_zone_id(buddy))
462 return 0;
464 if (PageBuddy(buddy) && page_order(buddy) == order) {
465 VM_BUG_ON(page_count(buddy) != 0);
466 return 1;
468 return 0;
472 * Freeing function for a buddy system allocator.
474 * The concept of a buddy system is to maintain direct-mapped table
475 * (containing bit values) for memory blocks of various "orders".
476 * The bottom level table contains the map for the smallest allocatable
477 * units of memory (here, pages), and each level above it describes
478 * pairs of units from the levels below, hence, "buddies".
479 * At a high level, all that happens here is marking the table entry
480 * at the bottom level available, and propagating the changes upward
481 * as necessary, plus some accounting needed to play nicely with other
482 * parts of the VM system.
483 * At each level, we keep a list of pages, which are heads of continuous
484 * free pages of length of (1 << order) and marked with PG_buddy. Page's
485 * order is recorded in page_private(page) field.
486 * So when we are allocating or freeing one, we can derive the state of the
487 * other. That is, if we allocate a small block, and both were
488 * free, the remainder of the region must be split into blocks.
489 * If a block is freed, and its buddy is also free, then this
490 * triggers coalescing into a block of larger size.
492 * -- wli
495 static inline void __free_one_page(struct page *page,
496 struct zone *zone, unsigned int order,
497 int migratetype)
499 unsigned long page_idx;
500 unsigned long combined_idx;
501 struct page *buddy;
503 if (unlikely(PageCompound(page)))
504 if (unlikely(destroy_compound_page(page, order)))
505 return;
507 VM_BUG_ON(migratetype == -1);
509 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
511 VM_BUG_ON(page_idx & ((1 << order) - 1));
512 VM_BUG_ON(bad_range(zone, page));
514 while (order < MAX_ORDER-1) {
515 buddy = __page_find_buddy(page, page_idx, order);
516 if (!page_is_buddy(page, buddy, order))
517 break;
519 /* Our buddy is free, merge with it and move up one order. */
520 list_del(&buddy->lru);
521 zone->free_area[order].nr_free--;
522 rmv_page_order(buddy);
523 combined_idx = __find_combined_index(page_idx, order);
524 page = page + (combined_idx - page_idx);
525 page_idx = combined_idx;
526 order++;
528 set_page_order(page, order);
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
538 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
539 struct page *higher_page, *higher_buddy;
540 combined_idx = __find_combined_index(page_idx, order);
541 higher_page = page + combined_idx - page_idx;
542 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
543 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
544 list_add_tail(&page->lru,
545 &zone->free_area[order].free_list[migratetype]);
546 goto out;
550 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
551 out:
552 zone->free_area[order].nr_free++;
556 * free_page_mlock() -- clean up attempts to free and mlocked() page.
557 * Page should not be on lru, so no need to fix that up.
558 * free_pages_check() will verify...
560 static inline void free_page_mlock(struct page *page)
562 __dec_zone_page_state(page, NR_MLOCK);
563 __count_vm_event(UNEVICTABLE_MLOCKFREED);
566 static inline int free_pages_check(struct page *page)
568 if (unlikely(page_mapcount(page) |
569 (page->mapping != NULL) |
570 (atomic_read(&page->_count) != 0) |
571 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
572 bad_page(page);
573 return 1;
575 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
576 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
577 return 0;
581 * Frees a number of pages from the PCP lists
582 * Assumes all pages on list are in same zone, and of same order.
583 * count is the number of pages to free.
585 * If the zone was previously in an "all pages pinned" state then look to
586 * see if this freeing clears that state.
588 * And clear the zone's pages_scanned counter, to hold off the "all pages are
589 * pinned" detection logic.
591 static void free_pcppages_bulk(struct zone *zone, int count,
592 struct per_cpu_pages *pcp)
594 int migratetype = 0;
595 int batch_free = 0;
596 int to_free = count;
598 spin_lock(&zone->lock);
599 zone->all_unreclaimable = 0;
600 zone->pages_scanned = 0;
602 while (to_free) {
603 struct page *page;
604 struct list_head *list;
607 * Remove pages from lists in a round-robin fashion. A
608 * batch_free count is maintained that is incremented when an
609 * empty list is encountered. This is so more pages are freed
610 * off fuller lists instead of spinning excessively around empty
611 * lists
613 do {
614 batch_free++;
615 if (++migratetype == MIGRATE_PCPTYPES)
616 migratetype = 0;
617 list = &pcp->lists[migratetype];
618 } while (list_empty(list));
620 do {
621 page = list_entry(list->prev, struct page, lru);
622 /* must delete as __free_one_page list manipulates */
623 list_del(&page->lru);
624 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
625 __free_one_page(page, zone, 0, page_private(page));
626 trace_mm_page_pcpu_drain(page, 0, page_private(page));
627 } while (--to_free && --batch_free && !list_empty(list));
629 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
630 spin_unlock(&zone->lock);
633 static void free_one_page(struct zone *zone, struct page *page, int order,
634 int migratetype)
636 spin_lock(&zone->lock);
637 zone->all_unreclaimable = 0;
638 zone->pages_scanned = 0;
640 __free_one_page(page, zone, order, migratetype);
641 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
642 spin_unlock(&zone->lock);
645 static bool free_pages_prepare(struct page *page, unsigned int order)
647 int i;
648 int bad = 0;
650 trace_mm_page_free_direct(page, order);
651 kmemcheck_free_shadow(page, order);
653 for (i = 0; i < (1 << order); i++) {
654 struct page *pg = page + i;
656 if (PageAnon(pg))
657 pg->mapping = NULL;
658 bad += free_pages_check(pg);
660 if (bad)
661 return false;
663 if (!PageHighMem(page)) {
664 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
665 debug_check_no_obj_freed(page_address(page),
666 PAGE_SIZE << order);
668 arch_free_page(page, order);
669 kernel_map_pages(page, 1 << order, 0);
671 return true;
674 static void __free_pages_ok(struct page *page, unsigned int order)
676 unsigned long flags;
677 int wasMlocked = __TestClearPageMlocked(page);
679 if (!free_pages_prepare(page, order))
680 return;
682 local_irq_save(flags);
683 if (unlikely(wasMlocked))
684 free_page_mlock(page);
685 __count_vm_events(PGFREE, 1 << order);
686 free_one_page(page_zone(page), page, order,
687 get_pageblock_migratetype(page));
688 local_irq_restore(flags);
692 * permit the bootmem allocator to evade page validation on high-order frees
694 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
696 if (order == 0) {
697 __ClearPageReserved(page);
698 set_page_count(page, 0);
699 set_page_refcounted(page);
700 __free_page(page);
701 } else {
702 int loop;
704 prefetchw(page);
705 for (loop = 0; loop < BITS_PER_LONG; loop++) {
706 struct page *p = &page[loop];
708 if (loop + 1 < BITS_PER_LONG)
709 prefetchw(p + 1);
710 __ClearPageReserved(p);
711 set_page_count(p, 0);
714 set_page_refcounted(page);
715 __free_pages(page, order);
721 * The order of subdivision here is critical for the IO subsystem.
722 * Please do not alter this order without good reasons and regression
723 * testing. Specifically, as large blocks of memory are subdivided,
724 * the order in which smaller blocks are delivered depends on the order
725 * they're subdivided in this function. This is the primary factor
726 * influencing the order in which pages are delivered to the IO
727 * subsystem according to empirical testing, and this is also justified
728 * by considering the behavior of a buddy system containing a single
729 * large block of memory acted on by a series of small allocations.
730 * This behavior is a critical factor in sglist merging's success.
732 * -- wli
734 static inline void expand(struct zone *zone, struct page *page,
735 int low, int high, struct free_area *area,
736 int migratetype)
738 unsigned long size = 1 << high;
740 while (high > low) {
741 area--;
742 high--;
743 size >>= 1;
744 VM_BUG_ON(bad_range(zone, &page[size]));
745 list_add(&page[size].lru, &area->free_list[migratetype]);
746 area->nr_free++;
747 set_page_order(&page[size], high);
752 * This page is about to be returned from the page allocator
754 static inline int check_new_page(struct page *page)
756 if (unlikely(page_mapcount(page) |
757 (page->mapping != NULL) |
758 (atomic_read(&page->_count) != 0) |
759 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
760 bad_page(page);
761 return 1;
763 return 0;
766 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
768 int i;
770 for (i = 0; i < (1 << order); i++) {
771 struct page *p = page + i;
772 if (unlikely(check_new_page(p)))
773 return 1;
776 set_page_private(page, 0);
777 set_page_refcounted(page);
779 arch_alloc_page(page, order);
780 kernel_map_pages(page, 1 << order, 1);
782 if (gfp_flags & __GFP_ZERO)
783 prep_zero_page(page, order, gfp_flags);
785 if (order && (gfp_flags & __GFP_COMP))
786 prep_compound_page(page, order);
788 return 0;
792 * Go through the free lists for the given migratetype and remove
793 * the smallest available page from the freelists
795 static inline
796 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
797 int migratetype)
799 unsigned int current_order;
800 struct free_area * area;
801 struct page *page;
803 /* Find a page of the appropriate size in the preferred list */
804 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
805 area = &(zone->free_area[current_order]);
806 if (list_empty(&area->free_list[migratetype]))
807 continue;
809 page = list_entry(area->free_list[migratetype].next,
810 struct page, lru);
811 list_del(&page->lru);
812 rmv_page_order(page);
813 area->nr_free--;
814 expand(zone, page, order, current_order, area, migratetype);
815 return page;
818 return NULL;
823 * This array describes the order lists are fallen back to when
824 * the free lists for the desirable migrate type are depleted
826 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
827 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
828 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
829 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
830 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
834 * Move the free pages in a range to the free lists of the requested type.
835 * Note that start_page and end_pages are not aligned on a pageblock
836 * boundary. If alignment is required, use move_freepages_block()
838 static int move_freepages(struct zone *zone,
839 struct page *start_page, struct page *end_page,
840 int migratetype)
842 struct page *page;
843 unsigned long order;
844 int pages_moved = 0;
846 #ifndef CONFIG_HOLES_IN_ZONE
848 * page_zone is not safe to call in this context when
849 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
850 * anyway as we check zone boundaries in move_freepages_block().
851 * Remove at a later date when no bug reports exist related to
852 * grouping pages by mobility
854 BUG_ON(page_zone(start_page) != page_zone(end_page));
855 #endif
857 for (page = start_page; page <= end_page;) {
858 /* Make sure we are not inadvertently changing nodes */
859 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
861 if (!pfn_valid_within(page_to_pfn(page))) {
862 page++;
863 continue;
866 if (!PageBuddy(page)) {
867 page++;
868 continue;
871 order = page_order(page);
872 list_del(&page->lru);
873 list_add(&page->lru,
874 &zone->free_area[order].free_list[migratetype]);
875 page += 1 << order;
876 pages_moved += 1 << order;
879 return pages_moved;
882 static int move_freepages_block(struct zone *zone, struct page *page,
883 int migratetype)
885 unsigned long start_pfn, end_pfn;
886 struct page *start_page, *end_page;
888 start_pfn = page_to_pfn(page);
889 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
890 start_page = pfn_to_page(start_pfn);
891 end_page = start_page + pageblock_nr_pages - 1;
892 end_pfn = start_pfn + pageblock_nr_pages - 1;
894 /* Do not cross zone boundaries */
895 if (start_pfn < zone->zone_start_pfn)
896 start_page = page;
897 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
898 return 0;
900 return move_freepages(zone, start_page, end_page, migratetype);
903 static void change_pageblock_range(struct page *pageblock_page,
904 int start_order, int migratetype)
906 int nr_pageblocks = 1 << (start_order - pageblock_order);
908 while (nr_pageblocks--) {
909 set_pageblock_migratetype(pageblock_page, migratetype);
910 pageblock_page += pageblock_nr_pages;
914 /* Remove an element from the buddy allocator from the fallback list */
915 static inline struct page *
916 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
918 struct free_area * area;
919 int current_order;
920 struct page *page;
921 int migratetype, i;
923 /* Find the largest possible block of pages in the other list */
924 for (current_order = MAX_ORDER-1; current_order >= order;
925 --current_order) {
926 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
927 migratetype = fallbacks[start_migratetype][i];
929 /* MIGRATE_RESERVE handled later if necessary */
930 if (migratetype == MIGRATE_RESERVE)
931 continue;
933 area = &(zone->free_area[current_order]);
934 if (list_empty(&area->free_list[migratetype]))
935 continue;
937 page = list_entry(area->free_list[migratetype].next,
938 struct page, lru);
939 area->nr_free--;
942 * If breaking a large block of pages, move all free
943 * pages to the preferred allocation list. If falling
944 * back for a reclaimable kernel allocation, be more
945 * agressive about taking ownership of free pages
947 if (unlikely(current_order >= (pageblock_order >> 1)) ||
948 start_migratetype == MIGRATE_RECLAIMABLE ||
949 page_group_by_mobility_disabled) {
950 unsigned long pages;
951 pages = move_freepages_block(zone, page,
952 start_migratetype);
954 /* Claim the whole block if over half of it is free */
955 if (pages >= (1 << (pageblock_order-1)) ||
956 page_group_by_mobility_disabled)
957 set_pageblock_migratetype(page,
958 start_migratetype);
960 migratetype = start_migratetype;
963 /* Remove the page from the freelists */
964 list_del(&page->lru);
965 rmv_page_order(page);
967 /* Take ownership for orders >= pageblock_order */
968 if (current_order >= pageblock_order)
969 change_pageblock_range(page, current_order,
970 start_migratetype);
972 expand(zone, page, order, current_order, area, migratetype);
974 trace_mm_page_alloc_extfrag(page, order, current_order,
975 start_migratetype, migratetype);
977 return page;
981 return NULL;
985 * Do the hard work of removing an element from the buddy allocator.
986 * Call me with the zone->lock already held.
988 static struct page *__rmqueue(struct zone *zone, unsigned int order,
989 int migratetype)
991 struct page *page;
993 retry_reserve:
994 page = __rmqueue_smallest(zone, order, migratetype);
996 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
997 page = __rmqueue_fallback(zone, order, migratetype);
1000 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1001 * is used because __rmqueue_smallest is an inline function
1002 * and we want just one call site
1004 if (!page) {
1005 migratetype = MIGRATE_RESERVE;
1006 goto retry_reserve;
1010 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1011 return page;
1015 * Obtain a specified number of elements from the buddy allocator, all under
1016 * a single hold of the lock, for efficiency. Add them to the supplied list.
1017 * Returns the number of new pages which were placed at *list.
1019 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1020 unsigned long count, struct list_head *list,
1021 int migratetype, int cold)
1023 int i;
1025 spin_lock(&zone->lock);
1026 for (i = 0; i < count; ++i) {
1027 struct page *page = __rmqueue(zone, order, migratetype);
1028 if (unlikely(page == NULL))
1029 break;
1032 * Split buddy pages returned by expand() are received here
1033 * in physical page order. The page is added to the callers and
1034 * list and the list head then moves forward. From the callers
1035 * perspective, the linked list is ordered by page number in
1036 * some conditions. This is useful for IO devices that can
1037 * merge IO requests if the physical pages are ordered
1038 * properly.
1040 if (likely(cold == 0))
1041 list_add(&page->lru, list);
1042 else
1043 list_add_tail(&page->lru, list);
1044 set_page_private(page, migratetype);
1045 list = &page->lru;
1047 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1048 spin_unlock(&zone->lock);
1049 return i;
1052 #ifdef CONFIG_NUMA
1054 * Called from the vmstat counter updater to drain pagesets of this
1055 * currently executing processor on remote nodes after they have
1056 * expired.
1058 * Note that this function must be called with the thread pinned to
1059 * a single processor.
1061 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1063 unsigned long flags;
1064 int to_drain;
1066 local_irq_save(flags);
1067 if (pcp->count >= pcp->batch)
1068 to_drain = pcp->batch;
1069 else
1070 to_drain = pcp->count;
1071 free_pcppages_bulk(zone, to_drain, pcp);
1072 pcp->count -= to_drain;
1073 local_irq_restore(flags);
1075 #endif
1078 * Drain pages of the indicated processor.
1080 * The processor must either be the current processor and the
1081 * thread pinned to the current processor or a processor that
1082 * is not online.
1084 static void drain_pages(unsigned int cpu)
1086 unsigned long flags;
1087 struct zone *zone;
1089 for_each_populated_zone(zone) {
1090 struct per_cpu_pageset *pset;
1091 struct per_cpu_pages *pcp;
1093 local_irq_save(flags);
1094 pset = per_cpu_ptr(zone->pageset, cpu);
1096 pcp = &pset->pcp;
1097 free_pcppages_bulk(zone, pcp->count, pcp);
1098 pcp->count = 0;
1099 local_irq_restore(flags);
1104 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1106 void drain_local_pages(void *arg)
1108 drain_pages(smp_processor_id());
1112 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1114 void drain_all_pages(void)
1116 on_each_cpu(drain_local_pages, NULL, 1);
1119 #ifdef CONFIG_HIBERNATION
1121 void mark_free_pages(struct zone *zone)
1123 unsigned long pfn, max_zone_pfn;
1124 unsigned long flags;
1125 int order, t;
1126 struct list_head *curr;
1128 if (!zone->spanned_pages)
1129 return;
1131 spin_lock_irqsave(&zone->lock, flags);
1133 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1134 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1135 if (pfn_valid(pfn)) {
1136 struct page *page = pfn_to_page(pfn);
1138 if (!swsusp_page_is_forbidden(page))
1139 swsusp_unset_page_free(page);
1142 for_each_migratetype_order(order, t) {
1143 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1144 unsigned long i;
1146 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1147 for (i = 0; i < (1UL << order); i++)
1148 swsusp_set_page_free(pfn_to_page(pfn + i));
1151 spin_unlock_irqrestore(&zone->lock, flags);
1153 #endif /* CONFIG_PM */
1156 * Free a 0-order page
1157 * cold == 1 ? free a cold page : free a hot page
1159 void free_hot_cold_page(struct page *page, int cold)
1161 struct zone *zone = page_zone(page);
1162 struct per_cpu_pages *pcp;
1163 unsigned long flags;
1164 int migratetype;
1165 int wasMlocked = __TestClearPageMlocked(page);
1167 if (!free_pages_prepare(page, 0))
1168 return;
1170 migratetype = get_pageblock_migratetype(page);
1171 set_page_private(page, migratetype);
1172 local_irq_save(flags);
1173 if (unlikely(wasMlocked))
1174 free_page_mlock(page);
1175 __count_vm_event(PGFREE);
1178 * We only track unmovable, reclaimable and movable on pcp lists.
1179 * Free ISOLATE pages back to the allocator because they are being
1180 * offlined but treat RESERVE as movable pages so we can get those
1181 * areas back if necessary. Otherwise, we may have to free
1182 * excessively into the page allocator
1184 if (migratetype >= MIGRATE_PCPTYPES) {
1185 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1186 free_one_page(zone, page, 0, migratetype);
1187 goto out;
1189 migratetype = MIGRATE_MOVABLE;
1192 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1193 if (cold)
1194 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1195 else
1196 list_add(&page->lru, &pcp->lists[migratetype]);
1197 pcp->count++;
1198 if (pcp->count >= pcp->high) {
1199 free_pcppages_bulk(zone, pcp->batch, pcp);
1200 pcp->count -= pcp->batch;
1203 out:
1204 local_irq_restore(flags);
1208 * split_page takes a non-compound higher-order page, and splits it into
1209 * n (1<<order) sub-pages: page[0..n]
1210 * Each sub-page must be freed individually.
1212 * Note: this is probably too low level an operation for use in drivers.
1213 * Please consult with lkml before using this in your driver.
1215 void split_page(struct page *page, unsigned int order)
1217 int i;
1219 VM_BUG_ON(PageCompound(page));
1220 VM_BUG_ON(!page_count(page));
1222 #ifdef CONFIG_KMEMCHECK
1224 * Split shadow pages too, because free(page[0]) would
1225 * otherwise free the whole shadow.
1227 if (kmemcheck_page_is_tracked(page))
1228 split_page(virt_to_page(page[0].shadow), order);
1229 #endif
1231 for (i = 1; i < (1 << order); i++)
1232 set_page_refcounted(page + i);
1236 * Similar to split_page except the page is already free. As this is only
1237 * being used for migration, the migratetype of the block also changes.
1238 * As this is called with interrupts disabled, the caller is responsible
1239 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1240 * are enabled.
1242 * Note: this is probably too low level an operation for use in drivers.
1243 * Please consult with lkml before using this in your driver.
1245 int split_free_page(struct page *page)
1247 unsigned int order;
1248 unsigned long watermark;
1249 struct zone *zone;
1251 BUG_ON(!PageBuddy(page));
1253 zone = page_zone(page);
1254 order = page_order(page);
1256 /* Obey watermarks as if the page was being allocated */
1257 watermark = low_wmark_pages(zone) + (1 << order);
1258 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1259 return 0;
1261 /* Remove page from free list */
1262 list_del(&page->lru);
1263 zone->free_area[order].nr_free--;
1264 rmv_page_order(page);
1265 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1267 /* Split into individual pages */
1268 set_page_refcounted(page);
1269 split_page(page, order);
1271 if (order >= pageblock_order - 1) {
1272 struct page *endpage = page + (1 << order) - 1;
1273 for (; page < endpage; page += pageblock_nr_pages)
1274 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1277 return 1 << order;
1281 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1282 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1283 * or two.
1285 static inline
1286 struct page *buffered_rmqueue(struct zone *preferred_zone,
1287 struct zone *zone, int order, gfp_t gfp_flags,
1288 int migratetype)
1290 unsigned long flags;
1291 struct page *page;
1292 int cold = !!(gfp_flags & __GFP_COLD);
1294 again:
1295 if (likely(order == 0)) {
1296 struct per_cpu_pages *pcp;
1297 struct list_head *list;
1299 local_irq_save(flags);
1300 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1301 list = &pcp->lists[migratetype];
1302 if (list_empty(list)) {
1303 pcp->count += rmqueue_bulk(zone, 0,
1304 pcp->batch, list,
1305 migratetype, cold);
1306 if (unlikely(list_empty(list)))
1307 goto failed;
1310 if (cold)
1311 page = list_entry(list->prev, struct page, lru);
1312 else
1313 page = list_entry(list->next, struct page, lru);
1315 list_del(&page->lru);
1316 pcp->count--;
1317 } else {
1318 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1320 * __GFP_NOFAIL is not to be used in new code.
1322 * All __GFP_NOFAIL callers should be fixed so that they
1323 * properly detect and handle allocation failures.
1325 * We most definitely don't want callers attempting to
1326 * allocate greater than order-1 page units with
1327 * __GFP_NOFAIL.
1329 WARN_ON_ONCE(order > 1);
1331 spin_lock_irqsave(&zone->lock, flags);
1332 page = __rmqueue(zone, order, migratetype);
1333 spin_unlock(&zone->lock);
1334 if (!page)
1335 goto failed;
1336 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1339 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1340 zone_statistics(preferred_zone, zone);
1341 local_irq_restore(flags);
1343 VM_BUG_ON(bad_range(zone, page));
1344 if (prep_new_page(page, order, gfp_flags))
1345 goto again;
1346 return page;
1348 failed:
1349 local_irq_restore(flags);
1350 return NULL;
1353 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1354 #define ALLOC_WMARK_MIN WMARK_MIN
1355 #define ALLOC_WMARK_LOW WMARK_LOW
1356 #define ALLOC_WMARK_HIGH WMARK_HIGH
1357 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1359 /* Mask to get the watermark bits */
1360 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1362 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1363 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1364 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1366 #ifdef CONFIG_FAIL_PAGE_ALLOC
1368 static struct fail_page_alloc_attr {
1369 struct fault_attr attr;
1371 u32 ignore_gfp_highmem;
1372 u32 ignore_gfp_wait;
1373 u32 min_order;
1375 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1377 struct dentry *ignore_gfp_highmem_file;
1378 struct dentry *ignore_gfp_wait_file;
1379 struct dentry *min_order_file;
1381 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1383 } fail_page_alloc = {
1384 .attr = FAULT_ATTR_INITIALIZER,
1385 .ignore_gfp_wait = 1,
1386 .ignore_gfp_highmem = 1,
1387 .min_order = 1,
1390 static int __init setup_fail_page_alloc(char *str)
1392 return setup_fault_attr(&fail_page_alloc.attr, str);
1394 __setup("fail_page_alloc=", setup_fail_page_alloc);
1396 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1398 if (order < fail_page_alloc.min_order)
1399 return 0;
1400 if (gfp_mask & __GFP_NOFAIL)
1401 return 0;
1402 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1403 return 0;
1404 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1405 return 0;
1407 return should_fail(&fail_page_alloc.attr, 1 << order);
1410 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1412 static int __init fail_page_alloc_debugfs(void)
1414 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1415 struct dentry *dir;
1416 int err;
1418 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1419 "fail_page_alloc");
1420 if (err)
1421 return err;
1422 dir = fail_page_alloc.attr.dentries.dir;
1424 fail_page_alloc.ignore_gfp_wait_file =
1425 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1426 &fail_page_alloc.ignore_gfp_wait);
1428 fail_page_alloc.ignore_gfp_highmem_file =
1429 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1430 &fail_page_alloc.ignore_gfp_highmem);
1431 fail_page_alloc.min_order_file =
1432 debugfs_create_u32("min-order", mode, dir,
1433 &fail_page_alloc.min_order);
1435 if (!fail_page_alloc.ignore_gfp_wait_file ||
1436 !fail_page_alloc.ignore_gfp_highmem_file ||
1437 !fail_page_alloc.min_order_file) {
1438 err = -ENOMEM;
1439 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1440 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1441 debugfs_remove(fail_page_alloc.min_order_file);
1442 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1445 return err;
1448 late_initcall(fail_page_alloc_debugfs);
1450 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1452 #else /* CONFIG_FAIL_PAGE_ALLOC */
1454 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1456 return 0;
1459 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1462 * Return 1 if free pages are above 'mark'. This takes into account the order
1463 * of the allocation.
1465 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1466 int classzone_idx, int alloc_flags)
1468 /* free_pages my go negative - that's OK */
1469 long min = mark;
1470 long free_pages = zone_nr_free_pages(z) - (1 << order) + 1;
1471 int o;
1473 if (alloc_flags & ALLOC_HIGH)
1474 min -= min / 2;
1475 if (alloc_flags & ALLOC_HARDER)
1476 min -= min / 4;
1478 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1479 return 0;
1480 for (o = 0; o < order; o++) {
1481 /* At the next order, this order's pages become unavailable */
1482 free_pages -= z->free_area[o].nr_free << o;
1484 /* Require fewer higher order pages to be free */
1485 min >>= 1;
1487 if (free_pages <= min)
1488 return 0;
1490 return 1;
1493 #ifdef CONFIG_NUMA
1495 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1496 * skip over zones that are not allowed by the cpuset, or that have
1497 * been recently (in last second) found to be nearly full. See further
1498 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1499 * that have to skip over a lot of full or unallowed zones.
1501 * If the zonelist cache is present in the passed in zonelist, then
1502 * returns a pointer to the allowed node mask (either the current
1503 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1505 * If the zonelist cache is not available for this zonelist, does
1506 * nothing and returns NULL.
1508 * If the fullzones BITMAP in the zonelist cache is stale (more than
1509 * a second since last zap'd) then we zap it out (clear its bits.)
1511 * We hold off even calling zlc_setup, until after we've checked the
1512 * first zone in the zonelist, on the theory that most allocations will
1513 * be satisfied from that first zone, so best to examine that zone as
1514 * quickly as we can.
1516 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1518 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1519 nodemask_t *allowednodes; /* zonelist_cache approximation */
1521 zlc = zonelist->zlcache_ptr;
1522 if (!zlc)
1523 return NULL;
1525 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1526 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1527 zlc->last_full_zap = jiffies;
1530 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1531 &cpuset_current_mems_allowed :
1532 &node_states[N_HIGH_MEMORY];
1533 return allowednodes;
1537 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1538 * if it is worth looking at further for free memory:
1539 * 1) Check that the zone isn't thought to be full (doesn't have its
1540 * bit set in the zonelist_cache fullzones BITMAP).
1541 * 2) Check that the zones node (obtained from the zonelist_cache
1542 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1543 * Return true (non-zero) if zone is worth looking at further, or
1544 * else return false (zero) if it is not.
1546 * This check -ignores- the distinction between various watermarks,
1547 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1548 * found to be full for any variation of these watermarks, it will
1549 * be considered full for up to one second by all requests, unless
1550 * we are so low on memory on all allowed nodes that we are forced
1551 * into the second scan of the zonelist.
1553 * In the second scan we ignore this zonelist cache and exactly
1554 * apply the watermarks to all zones, even it is slower to do so.
1555 * We are low on memory in the second scan, and should leave no stone
1556 * unturned looking for a free page.
1558 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1559 nodemask_t *allowednodes)
1561 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1562 int i; /* index of *z in zonelist zones */
1563 int n; /* node that zone *z is on */
1565 zlc = zonelist->zlcache_ptr;
1566 if (!zlc)
1567 return 1;
1569 i = z - zonelist->_zonerefs;
1570 n = zlc->z_to_n[i];
1572 /* This zone is worth trying if it is allowed but not full */
1573 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1577 * Given 'z' scanning a zonelist, set the corresponding bit in
1578 * zlc->fullzones, so that subsequent attempts to allocate a page
1579 * from that zone don't waste time re-examining it.
1581 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1583 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1584 int i; /* index of *z in zonelist zones */
1586 zlc = zonelist->zlcache_ptr;
1587 if (!zlc)
1588 return;
1590 i = z - zonelist->_zonerefs;
1592 set_bit(i, zlc->fullzones);
1595 #else /* CONFIG_NUMA */
1597 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1599 return NULL;
1602 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1603 nodemask_t *allowednodes)
1605 return 1;
1608 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1611 #endif /* CONFIG_NUMA */
1614 * get_page_from_freelist goes through the zonelist trying to allocate
1615 * a page.
1617 static struct page *
1618 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1619 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1620 struct zone *preferred_zone, int migratetype)
1622 struct zoneref *z;
1623 struct page *page = NULL;
1624 int classzone_idx;
1625 struct zone *zone;
1626 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1627 int zlc_active = 0; /* set if using zonelist_cache */
1628 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1630 classzone_idx = zone_idx(preferred_zone);
1631 zonelist_scan:
1633 * Scan zonelist, looking for a zone with enough free.
1634 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1636 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1637 high_zoneidx, nodemask) {
1638 if (NUMA_BUILD && zlc_active &&
1639 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1640 continue;
1641 if ((alloc_flags & ALLOC_CPUSET) &&
1642 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1643 goto try_next_zone;
1645 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1646 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1647 unsigned long mark;
1648 int ret;
1650 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1651 if (zone_watermark_ok(zone, order, mark,
1652 classzone_idx, alloc_flags))
1653 goto try_this_zone;
1655 if (zone_reclaim_mode == 0)
1656 goto this_zone_full;
1658 ret = zone_reclaim(zone, gfp_mask, order);
1659 switch (ret) {
1660 case ZONE_RECLAIM_NOSCAN:
1661 /* did not scan */
1662 goto try_next_zone;
1663 case ZONE_RECLAIM_FULL:
1664 /* scanned but unreclaimable */
1665 goto this_zone_full;
1666 default:
1667 /* did we reclaim enough */
1668 if (!zone_watermark_ok(zone, order, mark,
1669 classzone_idx, alloc_flags))
1670 goto this_zone_full;
1674 try_this_zone:
1675 page = buffered_rmqueue(preferred_zone, zone, order,
1676 gfp_mask, migratetype);
1677 if (page)
1678 break;
1679 this_zone_full:
1680 if (NUMA_BUILD)
1681 zlc_mark_zone_full(zonelist, z);
1682 try_next_zone:
1683 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1685 * we do zlc_setup after the first zone is tried but only
1686 * if there are multiple nodes make it worthwhile
1688 allowednodes = zlc_setup(zonelist, alloc_flags);
1689 zlc_active = 1;
1690 did_zlc_setup = 1;
1694 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1695 /* Disable zlc cache for second zonelist scan */
1696 zlc_active = 0;
1697 goto zonelist_scan;
1699 return page;
1702 static inline int
1703 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1704 unsigned long pages_reclaimed)
1706 /* Do not loop if specifically requested */
1707 if (gfp_mask & __GFP_NORETRY)
1708 return 0;
1711 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1712 * means __GFP_NOFAIL, but that may not be true in other
1713 * implementations.
1715 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1716 return 1;
1719 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1720 * specified, then we retry until we no longer reclaim any pages
1721 * (above), or we've reclaimed an order of pages at least as
1722 * large as the allocation's order. In both cases, if the
1723 * allocation still fails, we stop retrying.
1725 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1726 return 1;
1729 * Don't let big-order allocations loop unless the caller
1730 * explicitly requests that.
1732 if (gfp_mask & __GFP_NOFAIL)
1733 return 1;
1735 return 0;
1738 static inline struct page *
1739 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1740 struct zonelist *zonelist, enum zone_type high_zoneidx,
1741 nodemask_t *nodemask, struct zone *preferred_zone,
1742 int migratetype)
1744 struct page *page;
1746 /* Acquire the OOM killer lock for the zones in zonelist */
1747 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1748 schedule_timeout_uninterruptible(1);
1749 return NULL;
1753 * Go through the zonelist yet one more time, keep very high watermark
1754 * here, this is only to catch a parallel oom killing, we must fail if
1755 * we're still under heavy pressure.
1757 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1758 order, zonelist, high_zoneidx,
1759 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1760 preferred_zone, migratetype);
1761 if (page)
1762 goto out;
1764 if (!(gfp_mask & __GFP_NOFAIL)) {
1765 /* The OOM killer will not help higher order allocs */
1766 if (order > PAGE_ALLOC_COSTLY_ORDER)
1767 goto out;
1768 /* The OOM killer does not needlessly kill tasks for lowmem */
1769 if (high_zoneidx < ZONE_NORMAL)
1770 goto out;
1772 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1773 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1774 * The caller should handle page allocation failure by itself if
1775 * it specifies __GFP_THISNODE.
1776 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1778 if (gfp_mask & __GFP_THISNODE)
1779 goto out;
1781 /* Exhausted what can be done so it's blamo time */
1782 out_of_memory(zonelist, gfp_mask, order, nodemask);
1784 out:
1785 clear_zonelist_oom(zonelist, gfp_mask);
1786 return page;
1789 #ifdef CONFIG_COMPACTION
1790 /* Try memory compaction for high-order allocations before reclaim */
1791 static struct page *
1792 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1793 struct zonelist *zonelist, enum zone_type high_zoneidx,
1794 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1795 int migratetype, unsigned long *did_some_progress)
1797 struct page *page;
1799 if (!order || compaction_deferred(preferred_zone))
1800 return NULL;
1802 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1803 nodemask);
1804 if (*did_some_progress != COMPACT_SKIPPED) {
1806 /* Page migration frees to the PCP lists but we want merging */
1807 drain_pages(get_cpu());
1808 put_cpu();
1810 page = get_page_from_freelist(gfp_mask, nodemask,
1811 order, zonelist, high_zoneidx,
1812 alloc_flags, preferred_zone,
1813 migratetype);
1814 if (page) {
1815 preferred_zone->compact_considered = 0;
1816 preferred_zone->compact_defer_shift = 0;
1817 count_vm_event(COMPACTSUCCESS);
1818 return page;
1822 * It's bad if compaction run occurs and fails.
1823 * The most likely reason is that pages exist,
1824 * but not enough to satisfy watermarks.
1826 count_vm_event(COMPACTFAIL);
1827 defer_compaction(preferred_zone);
1829 cond_resched();
1832 return NULL;
1834 #else
1835 static inline struct page *
1836 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1837 struct zonelist *zonelist, enum zone_type high_zoneidx,
1838 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1839 int migratetype, unsigned long *did_some_progress)
1841 return NULL;
1843 #endif /* CONFIG_COMPACTION */
1845 /* The really slow allocator path where we enter direct reclaim */
1846 static inline struct page *
1847 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1848 struct zonelist *zonelist, enum zone_type high_zoneidx,
1849 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1850 int migratetype, unsigned long *did_some_progress)
1852 struct page *page = NULL;
1853 struct reclaim_state reclaim_state;
1854 struct task_struct *p = current;
1855 bool drained = false;
1857 cond_resched();
1859 /* We now go into synchronous reclaim */
1860 cpuset_memory_pressure_bump();
1861 p->flags |= PF_MEMALLOC;
1862 lockdep_set_current_reclaim_state(gfp_mask);
1863 reclaim_state.reclaimed_slab = 0;
1864 p->reclaim_state = &reclaim_state;
1866 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1868 p->reclaim_state = NULL;
1869 lockdep_clear_current_reclaim_state();
1870 p->flags &= ~PF_MEMALLOC;
1872 cond_resched();
1874 if (unlikely(!(*did_some_progress)))
1875 return NULL;
1877 retry:
1878 page = get_page_from_freelist(gfp_mask, nodemask, order,
1879 zonelist, high_zoneidx,
1880 alloc_flags, preferred_zone,
1881 migratetype);
1884 * If an allocation failed after direct reclaim, it could be because
1885 * pages are pinned on the per-cpu lists. Drain them and try again
1887 if (!page && !drained) {
1888 drain_all_pages();
1889 drained = true;
1890 goto retry;
1893 return page;
1897 * This is called in the allocator slow-path if the allocation request is of
1898 * sufficient urgency to ignore watermarks and take other desperate measures
1900 static inline struct page *
1901 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1902 struct zonelist *zonelist, enum zone_type high_zoneidx,
1903 nodemask_t *nodemask, struct zone *preferred_zone,
1904 int migratetype)
1906 struct page *page;
1908 do {
1909 page = get_page_from_freelist(gfp_mask, nodemask, order,
1910 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1911 preferred_zone, migratetype);
1913 if (!page && gfp_mask & __GFP_NOFAIL)
1914 congestion_wait(BLK_RW_ASYNC, HZ/50);
1915 } while (!page && (gfp_mask & __GFP_NOFAIL));
1917 return page;
1920 static inline
1921 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1922 enum zone_type high_zoneidx)
1924 struct zoneref *z;
1925 struct zone *zone;
1927 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1928 wakeup_kswapd(zone, order);
1931 static inline int
1932 gfp_to_alloc_flags(gfp_t gfp_mask)
1934 struct task_struct *p = current;
1935 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1936 const gfp_t wait = gfp_mask & __GFP_WAIT;
1938 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1939 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1942 * The caller may dip into page reserves a bit more if the caller
1943 * cannot run direct reclaim, or if the caller has realtime scheduling
1944 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1945 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1947 alloc_flags |= (gfp_mask & __GFP_HIGH);
1949 if (!wait) {
1950 alloc_flags |= ALLOC_HARDER;
1952 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1953 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1955 alloc_flags &= ~ALLOC_CPUSET;
1956 } else if (unlikely(rt_task(p)) && !in_interrupt())
1957 alloc_flags |= ALLOC_HARDER;
1959 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1960 if (!in_interrupt() &&
1961 ((p->flags & PF_MEMALLOC) ||
1962 unlikely(test_thread_flag(TIF_MEMDIE))))
1963 alloc_flags |= ALLOC_NO_WATERMARKS;
1966 return alloc_flags;
1969 static inline struct page *
1970 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1971 struct zonelist *zonelist, enum zone_type high_zoneidx,
1972 nodemask_t *nodemask, struct zone *preferred_zone,
1973 int migratetype)
1975 const gfp_t wait = gfp_mask & __GFP_WAIT;
1976 struct page *page = NULL;
1977 int alloc_flags;
1978 unsigned long pages_reclaimed = 0;
1979 unsigned long did_some_progress;
1980 struct task_struct *p = current;
1983 * In the slowpath, we sanity check order to avoid ever trying to
1984 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1985 * be using allocators in order of preference for an area that is
1986 * too large.
1988 if (order >= MAX_ORDER) {
1989 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1990 return NULL;
1994 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1995 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1996 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1997 * using a larger set of nodes after it has established that the
1998 * allowed per node queues are empty and that nodes are
1999 * over allocated.
2001 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2002 goto nopage;
2004 restart:
2005 wake_all_kswapd(order, zonelist, high_zoneidx);
2008 * OK, we're below the kswapd watermark and have kicked background
2009 * reclaim. Now things get more complex, so set up alloc_flags according
2010 * to how we want to proceed.
2012 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2014 /* This is the last chance, in general, before the goto nopage. */
2015 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2016 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2017 preferred_zone, migratetype);
2018 if (page)
2019 goto got_pg;
2021 rebalance:
2022 /* Allocate without watermarks if the context allows */
2023 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2024 page = __alloc_pages_high_priority(gfp_mask, order,
2025 zonelist, high_zoneidx, nodemask,
2026 preferred_zone, migratetype);
2027 if (page)
2028 goto got_pg;
2031 /* Atomic allocations - we can't balance anything */
2032 if (!wait)
2033 goto nopage;
2035 /* Avoid recursion of direct reclaim */
2036 if (p->flags & PF_MEMALLOC)
2037 goto nopage;
2039 /* Avoid allocations with no watermarks from looping endlessly */
2040 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2041 goto nopage;
2043 /* Try direct compaction */
2044 page = __alloc_pages_direct_compact(gfp_mask, order,
2045 zonelist, high_zoneidx,
2046 nodemask,
2047 alloc_flags, preferred_zone,
2048 migratetype, &did_some_progress);
2049 if (page)
2050 goto got_pg;
2052 /* Try direct reclaim and then allocating */
2053 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2054 zonelist, high_zoneidx,
2055 nodemask,
2056 alloc_flags, preferred_zone,
2057 migratetype, &did_some_progress);
2058 if (page)
2059 goto got_pg;
2062 * If we failed to make any progress reclaiming, then we are
2063 * running out of options and have to consider going OOM
2065 if (!did_some_progress) {
2066 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2067 if (oom_killer_disabled)
2068 goto nopage;
2069 page = __alloc_pages_may_oom(gfp_mask, order,
2070 zonelist, high_zoneidx,
2071 nodemask, preferred_zone,
2072 migratetype);
2073 if (page)
2074 goto got_pg;
2076 if (!(gfp_mask & __GFP_NOFAIL)) {
2078 * The oom killer is not called for high-order
2079 * allocations that may fail, so if no progress
2080 * is being made, there are no other options and
2081 * retrying is unlikely to help.
2083 if (order > PAGE_ALLOC_COSTLY_ORDER)
2084 goto nopage;
2086 * The oom killer is not called for lowmem
2087 * allocations to prevent needlessly killing
2088 * innocent tasks.
2090 if (high_zoneidx < ZONE_NORMAL)
2091 goto nopage;
2094 goto restart;
2098 /* Check if we should retry the allocation */
2099 pages_reclaimed += did_some_progress;
2100 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2101 /* Wait for some write requests to complete then retry */
2102 congestion_wait(BLK_RW_ASYNC, HZ/50);
2103 goto rebalance;
2106 nopage:
2107 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2108 printk(KERN_WARNING "%s: page allocation failure."
2109 " order:%d, mode:0x%x\n",
2110 p->comm, order, gfp_mask);
2111 dump_stack();
2112 show_mem();
2114 return page;
2115 got_pg:
2116 if (kmemcheck_enabled)
2117 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2118 return page;
2123 * This is the 'heart' of the zoned buddy allocator.
2125 struct page *
2126 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2127 struct zonelist *zonelist, nodemask_t *nodemask)
2129 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2130 struct zone *preferred_zone;
2131 struct page *page;
2132 int migratetype = allocflags_to_migratetype(gfp_mask);
2134 gfp_mask &= gfp_allowed_mask;
2136 lockdep_trace_alloc(gfp_mask);
2138 might_sleep_if(gfp_mask & __GFP_WAIT);
2140 if (should_fail_alloc_page(gfp_mask, order))
2141 return NULL;
2144 * Check the zones suitable for the gfp_mask contain at least one
2145 * valid zone. It's possible to have an empty zonelist as a result
2146 * of GFP_THISNODE and a memoryless node
2148 if (unlikely(!zonelist->_zonerefs->zone))
2149 return NULL;
2151 get_mems_allowed();
2152 /* The preferred zone is used for statistics later */
2153 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2154 if (!preferred_zone) {
2155 put_mems_allowed();
2156 return NULL;
2159 /* First allocation attempt */
2160 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2161 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2162 preferred_zone, migratetype);
2163 if (unlikely(!page))
2164 page = __alloc_pages_slowpath(gfp_mask, order,
2165 zonelist, high_zoneidx, nodemask,
2166 preferred_zone, migratetype);
2167 put_mems_allowed();
2169 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2170 return page;
2172 EXPORT_SYMBOL(__alloc_pages_nodemask);
2175 * Common helper functions.
2177 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2179 struct page *page;
2182 * __get_free_pages() returns a 32-bit address, which cannot represent
2183 * a highmem page
2185 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2187 page = alloc_pages(gfp_mask, order);
2188 if (!page)
2189 return 0;
2190 return (unsigned long) page_address(page);
2192 EXPORT_SYMBOL(__get_free_pages);
2194 unsigned long get_zeroed_page(gfp_t gfp_mask)
2196 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2198 EXPORT_SYMBOL(get_zeroed_page);
2200 void __pagevec_free(struct pagevec *pvec)
2202 int i = pagevec_count(pvec);
2204 while (--i >= 0) {
2205 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2206 free_hot_cold_page(pvec->pages[i], pvec->cold);
2210 void __free_pages(struct page *page, unsigned int order)
2212 if (put_page_testzero(page)) {
2213 if (order == 0)
2214 free_hot_cold_page(page, 0);
2215 else
2216 __free_pages_ok(page, order);
2220 EXPORT_SYMBOL(__free_pages);
2222 void free_pages(unsigned long addr, unsigned int order)
2224 if (addr != 0) {
2225 VM_BUG_ON(!virt_addr_valid((void *)addr));
2226 __free_pages(virt_to_page((void *)addr), order);
2230 EXPORT_SYMBOL(free_pages);
2233 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2234 * @size: the number of bytes to allocate
2235 * @gfp_mask: GFP flags for the allocation
2237 * This function is similar to alloc_pages(), except that it allocates the
2238 * minimum number of pages to satisfy the request. alloc_pages() can only
2239 * allocate memory in power-of-two pages.
2241 * This function is also limited by MAX_ORDER.
2243 * Memory allocated by this function must be released by free_pages_exact().
2245 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2247 unsigned int order = get_order(size);
2248 unsigned long addr;
2250 addr = __get_free_pages(gfp_mask, order);
2251 if (addr) {
2252 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2253 unsigned long used = addr + PAGE_ALIGN(size);
2255 split_page(virt_to_page((void *)addr), order);
2256 while (used < alloc_end) {
2257 free_page(used);
2258 used += PAGE_SIZE;
2262 return (void *)addr;
2264 EXPORT_SYMBOL(alloc_pages_exact);
2267 * free_pages_exact - release memory allocated via alloc_pages_exact()
2268 * @virt: the value returned by alloc_pages_exact.
2269 * @size: size of allocation, same value as passed to alloc_pages_exact().
2271 * Release the memory allocated by a previous call to alloc_pages_exact.
2273 void free_pages_exact(void *virt, size_t size)
2275 unsigned long addr = (unsigned long)virt;
2276 unsigned long end = addr + PAGE_ALIGN(size);
2278 while (addr < end) {
2279 free_page(addr);
2280 addr += PAGE_SIZE;
2283 EXPORT_SYMBOL(free_pages_exact);
2285 static unsigned int nr_free_zone_pages(int offset)
2287 struct zoneref *z;
2288 struct zone *zone;
2290 /* Just pick one node, since fallback list is circular */
2291 unsigned int sum = 0;
2293 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2295 for_each_zone_zonelist(zone, z, zonelist, offset) {
2296 unsigned long size = zone->present_pages;
2297 unsigned long high = high_wmark_pages(zone);
2298 if (size > high)
2299 sum += size - high;
2302 return sum;
2306 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2308 unsigned int nr_free_buffer_pages(void)
2310 return nr_free_zone_pages(gfp_zone(GFP_USER));
2312 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2315 * Amount of free RAM allocatable within all zones
2317 unsigned int nr_free_pagecache_pages(void)
2319 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2322 static inline void show_node(struct zone *zone)
2324 if (NUMA_BUILD)
2325 printk("Node %d ", zone_to_nid(zone));
2328 void si_meminfo(struct sysinfo *val)
2330 val->totalram = totalram_pages;
2331 val->sharedram = 0;
2332 val->freeram = global_page_state(NR_FREE_PAGES);
2333 val->bufferram = nr_blockdev_pages();
2334 val->totalhigh = totalhigh_pages;
2335 val->freehigh = nr_free_highpages();
2336 val->mem_unit = PAGE_SIZE;
2339 EXPORT_SYMBOL(si_meminfo);
2341 #ifdef CONFIG_NUMA
2342 void si_meminfo_node(struct sysinfo *val, int nid)
2344 pg_data_t *pgdat = NODE_DATA(nid);
2346 val->totalram = pgdat->node_present_pages;
2347 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2348 #ifdef CONFIG_HIGHMEM
2349 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2350 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2351 NR_FREE_PAGES);
2352 #else
2353 val->totalhigh = 0;
2354 val->freehigh = 0;
2355 #endif
2356 val->mem_unit = PAGE_SIZE;
2358 #endif
2360 #define K(x) ((x) << (PAGE_SHIFT-10))
2363 * Show free area list (used inside shift_scroll-lock stuff)
2364 * We also calculate the percentage fragmentation. We do this by counting the
2365 * memory on each free list with the exception of the first item on the list.
2367 void show_free_areas(void)
2369 int cpu;
2370 struct zone *zone;
2372 for_each_populated_zone(zone) {
2373 show_node(zone);
2374 printk("%s per-cpu:\n", zone->name);
2376 for_each_online_cpu(cpu) {
2377 struct per_cpu_pageset *pageset;
2379 pageset = per_cpu_ptr(zone->pageset, cpu);
2381 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2382 cpu, pageset->pcp.high,
2383 pageset->pcp.batch, pageset->pcp.count);
2387 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2388 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2389 " unevictable:%lu"
2390 " dirty:%lu writeback:%lu unstable:%lu\n"
2391 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2392 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2393 global_page_state(NR_ACTIVE_ANON),
2394 global_page_state(NR_INACTIVE_ANON),
2395 global_page_state(NR_ISOLATED_ANON),
2396 global_page_state(NR_ACTIVE_FILE),
2397 global_page_state(NR_INACTIVE_FILE),
2398 global_page_state(NR_ISOLATED_FILE),
2399 global_page_state(NR_UNEVICTABLE),
2400 global_page_state(NR_FILE_DIRTY),
2401 global_page_state(NR_WRITEBACK),
2402 global_page_state(NR_UNSTABLE_NFS),
2403 global_page_state(NR_FREE_PAGES),
2404 global_page_state(NR_SLAB_RECLAIMABLE),
2405 global_page_state(NR_SLAB_UNRECLAIMABLE),
2406 global_page_state(NR_FILE_MAPPED),
2407 global_page_state(NR_SHMEM),
2408 global_page_state(NR_PAGETABLE),
2409 global_page_state(NR_BOUNCE));
2411 for_each_populated_zone(zone) {
2412 int i;
2414 show_node(zone);
2415 printk("%s"
2416 " free:%lukB"
2417 " min:%lukB"
2418 " low:%lukB"
2419 " high:%lukB"
2420 " active_anon:%lukB"
2421 " inactive_anon:%lukB"
2422 " active_file:%lukB"
2423 " inactive_file:%lukB"
2424 " unevictable:%lukB"
2425 " isolated(anon):%lukB"
2426 " isolated(file):%lukB"
2427 " present:%lukB"
2428 " mlocked:%lukB"
2429 " dirty:%lukB"
2430 " writeback:%lukB"
2431 " mapped:%lukB"
2432 " shmem:%lukB"
2433 " slab_reclaimable:%lukB"
2434 " slab_unreclaimable:%lukB"
2435 " kernel_stack:%lukB"
2436 " pagetables:%lukB"
2437 " unstable:%lukB"
2438 " bounce:%lukB"
2439 " writeback_tmp:%lukB"
2440 " pages_scanned:%lu"
2441 " all_unreclaimable? %s"
2442 "\n",
2443 zone->name,
2444 K(zone_nr_free_pages(zone)),
2445 K(min_wmark_pages(zone)),
2446 K(low_wmark_pages(zone)),
2447 K(high_wmark_pages(zone)),
2448 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2449 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2450 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2451 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2452 K(zone_page_state(zone, NR_UNEVICTABLE)),
2453 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2454 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2455 K(zone->present_pages),
2456 K(zone_page_state(zone, NR_MLOCK)),
2457 K(zone_page_state(zone, NR_FILE_DIRTY)),
2458 K(zone_page_state(zone, NR_WRITEBACK)),
2459 K(zone_page_state(zone, NR_FILE_MAPPED)),
2460 K(zone_page_state(zone, NR_SHMEM)),
2461 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2462 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2463 zone_page_state(zone, NR_KERNEL_STACK) *
2464 THREAD_SIZE / 1024,
2465 K(zone_page_state(zone, NR_PAGETABLE)),
2466 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2467 K(zone_page_state(zone, NR_BOUNCE)),
2468 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2469 zone->pages_scanned,
2470 (zone->all_unreclaimable ? "yes" : "no")
2472 printk("lowmem_reserve[]:");
2473 for (i = 0; i < MAX_NR_ZONES; i++)
2474 printk(" %lu", zone->lowmem_reserve[i]);
2475 printk("\n");
2478 for_each_populated_zone(zone) {
2479 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2481 show_node(zone);
2482 printk("%s: ", zone->name);
2484 spin_lock_irqsave(&zone->lock, flags);
2485 for (order = 0; order < MAX_ORDER; order++) {
2486 nr[order] = zone->free_area[order].nr_free;
2487 total += nr[order] << order;
2489 spin_unlock_irqrestore(&zone->lock, flags);
2490 for (order = 0; order < MAX_ORDER; order++)
2491 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2492 printk("= %lukB\n", K(total));
2495 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2497 show_swap_cache_info();
2500 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2502 zoneref->zone = zone;
2503 zoneref->zone_idx = zone_idx(zone);
2507 * Builds allocation fallback zone lists.
2509 * Add all populated zones of a node to the zonelist.
2511 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2512 int nr_zones, enum zone_type zone_type)
2514 struct zone *zone;
2516 BUG_ON(zone_type >= MAX_NR_ZONES);
2517 zone_type++;
2519 do {
2520 zone_type--;
2521 zone = pgdat->node_zones + zone_type;
2522 if (populated_zone(zone)) {
2523 zoneref_set_zone(zone,
2524 &zonelist->_zonerefs[nr_zones++]);
2525 check_highest_zone(zone_type);
2528 } while (zone_type);
2529 return nr_zones;
2534 * zonelist_order:
2535 * 0 = automatic detection of better ordering.
2536 * 1 = order by ([node] distance, -zonetype)
2537 * 2 = order by (-zonetype, [node] distance)
2539 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2540 * the same zonelist. So only NUMA can configure this param.
2542 #define ZONELIST_ORDER_DEFAULT 0
2543 #define ZONELIST_ORDER_NODE 1
2544 #define ZONELIST_ORDER_ZONE 2
2546 /* zonelist order in the kernel.
2547 * set_zonelist_order() will set this to NODE or ZONE.
2549 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2550 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2553 #ifdef CONFIG_NUMA
2554 /* The value user specified ....changed by config */
2555 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2556 /* string for sysctl */
2557 #define NUMA_ZONELIST_ORDER_LEN 16
2558 char numa_zonelist_order[16] = "default";
2561 * interface for configure zonelist ordering.
2562 * command line option "numa_zonelist_order"
2563 * = "[dD]efault - default, automatic configuration.
2564 * = "[nN]ode - order by node locality, then by zone within node
2565 * = "[zZ]one - order by zone, then by locality within zone
2568 static int __parse_numa_zonelist_order(char *s)
2570 if (*s == 'd' || *s == 'D') {
2571 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2572 } else if (*s == 'n' || *s == 'N') {
2573 user_zonelist_order = ZONELIST_ORDER_NODE;
2574 } else if (*s == 'z' || *s == 'Z') {
2575 user_zonelist_order = ZONELIST_ORDER_ZONE;
2576 } else {
2577 printk(KERN_WARNING
2578 "Ignoring invalid numa_zonelist_order value: "
2579 "%s\n", s);
2580 return -EINVAL;
2582 return 0;
2585 static __init int setup_numa_zonelist_order(char *s)
2587 if (s)
2588 return __parse_numa_zonelist_order(s);
2589 return 0;
2591 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2594 * sysctl handler for numa_zonelist_order
2596 int numa_zonelist_order_handler(ctl_table *table, int write,
2597 void __user *buffer, size_t *length,
2598 loff_t *ppos)
2600 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2601 int ret;
2602 static DEFINE_MUTEX(zl_order_mutex);
2604 mutex_lock(&zl_order_mutex);
2605 if (write)
2606 strcpy(saved_string, (char*)table->data);
2607 ret = proc_dostring(table, write, buffer, length, ppos);
2608 if (ret)
2609 goto out;
2610 if (write) {
2611 int oldval = user_zonelist_order;
2612 if (__parse_numa_zonelist_order((char*)table->data)) {
2614 * bogus value. restore saved string
2616 strncpy((char*)table->data, saved_string,
2617 NUMA_ZONELIST_ORDER_LEN);
2618 user_zonelist_order = oldval;
2619 } else if (oldval != user_zonelist_order) {
2620 mutex_lock(&zonelists_mutex);
2621 build_all_zonelists(NULL);
2622 mutex_unlock(&zonelists_mutex);
2625 out:
2626 mutex_unlock(&zl_order_mutex);
2627 return ret;
2631 #define MAX_NODE_LOAD (nr_online_nodes)
2632 static int node_load[MAX_NUMNODES];
2635 * find_next_best_node - find the next node that should appear in a given node's fallback list
2636 * @node: node whose fallback list we're appending
2637 * @used_node_mask: nodemask_t of already used nodes
2639 * We use a number of factors to determine which is the next node that should
2640 * appear on a given node's fallback list. The node should not have appeared
2641 * already in @node's fallback list, and it should be the next closest node
2642 * according to the distance array (which contains arbitrary distance values
2643 * from each node to each node in the system), and should also prefer nodes
2644 * with no CPUs, since presumably they'll have very little allocation pressure
2645 * on them otherwise.
2646 * It returns -1 if no node is found.
2648 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2650 int n, val;
2651 int min_val = INT_MAX;
2652 int best_node = -1;
2653 const struct cpumask *tmp = cpumask_of_node(0);
2655 /* Use the local node if we haven't already */
2656 if (!node_isset(node, *used_node_mask)) {
2657 node_set(node, *used_node_mask);
2658 return node;
2661 for_each_node_state(n, N_HIGH_MEMORY) {
2663 /* Don't want a node to appear more than once */
2664 if (node_isset(n, *used_node_mask))
2665 continue;
2667 /* Use the distance array to find the distance */
2668 val = node_distance(node, n);
2670 /* Penalize nodes under us ("prefer the next node") */
2671 val += (n < node);
2673 /* Give preference to headless and unused nodes */
2674 tmp = cpumask_of_node(n);
2675 if (!cpumask_empty(tmp))
2676 val += PENALTY_FOR_NODE_WITH_CPUS;
2678 /* Slight preference for less loaded node */
2679 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2680 val += node_load[n];
2682 if (val < min_val) {
2683 min_val = val;
2684 best_node = n;
2688 if (best_node >= 0)
2689 node_set(best_node, *used_node_mask);
2691 return best_node;
2696 * Build zonelists ordered by node and zones within node.
2697 * This results in maximum locality--normal zone overflows into local
2698 * DMA zone, if any--but risks exhausting DMA zone.
2700 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2702 int j;
2703 struct zonelist *zonelist;
2705 zonelist = &pgdat->node_zonelists[0];
2706 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2708 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2709 MAX_NR_ZONES - 1);
2710 zonelist->_zonerefs[j].zone = NULL;
2711 zonelist->_zonerefs[j].zone_idx = 0;
2715 * Build gfp_thisnode zonelists
2717 static void build_thisnode_zonelists(pg_data_t *pgdat)
2719 int j;
2720 struct zonelist *zonelist;
2722 zonelist = &pgdat->node_zonelists[1];
2723 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2724 zonelist->_zonerefs[j].zone = NULL;
2725 zonelist->_zonerefs[j].zone_idx = 0;
2729 * Build zonelists ordered by zone and nodes within zones.
2730 * This results in conserving DMA zone[s] until all Normal memory is
2731 * exhausted, but results in overflowing to remote node while memory
2732 * may still exist in local DMA zone.
2734 static int node_order[MAX_NUMNODES];
2736 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2738 int pos, j, node;
2739 int zone_type; /* needs to be signed */
2740 struct zone *z;
2741 struct zonelist *zonelist;
2743 zonelist = &pgdat->node_zonelists[0];
2744 pos = 0;
2745 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2746 for (j = 0; j < nr_nodes; j++) {
2747 node = node_order[j];
2748 z = &NODE_DATA(node)->node_zones[zone_type];
2749 if (populated_zone(z)) {
2750 zoneref_set_zone(z,
2751 &zonelist->_zonerefs[pos++]);
2752 check_highest_zone(zone_type);
2756 zonelist->_zonerefs[pos].zone = NULL;
2757 zonelist->_zonerefs[pos].zone_idx = 0;
2760 static int default_zonelist_order(void)
2762 int nid, zone_type;
2763 unsigned long low_kmem_size,total_size;
2764 struct zone *z;
2765 int average_size;
2767 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2768 * If they are really small and used heavily, the system can fall
2769 * into OOM very easily.
2770 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2772 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2773 low_kmem_size = 0;
2774 total_size = 0;
2775 for_each_online_node(nid) {
2776 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2777 z = &NODE_DATA(nid)->node_zones[zone_type];
2778 if (populated_zone(z)) {
2779 if (zone_type < ZONE_NORMAL)
2780 low_kmem_size += z->present_pages;
2781 total_size += z->present_pages;
2782 } else if (zone_type == ZONE_NORMAL) {
2784 * If any node has only lowmem, then node order
2785 * is preferred to allow kernel allocations
2786 * locally; otherwise, they can easily infringe
2787 * on other nodes when there is an abundance of
2788 * lowmem available to allocate from.
2790 return ZONELIST_ORDER_NODE;
2794 if (!low_kmem_size || /* there are no DMA area. */
2795 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2796 return ZONELIST_ORDER_NODE;
2798 * look into each node's config.
2799 * If there is a node whose DMA/DMA32 memory is very big area on
2800 * local memory, NODE_ORDER may be suitable.
2802 average_size = total_size /
2803 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2804 for_each_online_node(nid) {
2805 low_kmem_size = 0;
2806 total_size = 0;
2807 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2808 z = &NODE_DATA(nid)->node_zones[zone_type];
2809 if (populated_zone(z)) {
2810 if (zone_type < ZONE_NORMAL)
2811 low_kmem_size += z->present_pages;
2812 total_size += z->present_pages;
2815 if (low_kmem_size &&
2816 total_size > average_size && /* ignore small node */
2817 low_kmem_size > total_size * 70/100)
2818 return ZONELIST_ORDER_NODE;
2820 return ZONELIST_ORDER_ZONE;
2823 static void set_zonelist_order(void)
2825 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2826 current_zonelist_order = default_zonelist_order();
2827 else
2828 current_zonelist_order = user_zonelist_order;
2831 static void build_zonelists(pg_data_t *pgdat)
2833 int j, node, load;
2834 enum zone_type i;
2835 nodemask_t used_mask;
2836 int local_node, prev_node;
2837 struct zonelist *zonelist;
2838 int order = current_zonelist_order;
2840 /* initialize zonelists */
2841 for (i = 0; i < MAX_ZONELISTS; i++) {
2842 zonelist = pgdat->node_zonelists + i;
2843 zonelist->_zonerefs[0].zone = NULL;
2844 zonelist->_zonerefs[0].zone_idx = 0;
2847 /* NUMA-aware ordering of nodes */
2848 local_node = pgdat->node_id;
2849 load = nr_online_nodes;
2850 prev_node = local_node;
2851 nodes_clear(used_mask);
2853 memset(node_order, 0, sizeof(node_order));
2854 j = 0;
2856 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2857 int distance = node_distance(local_node, node);
2860 * If another node is sufficiently far away then it is better
2861 * to reclaim pages in a zone before going off node.
2863 if (distance > RECLAIM_DISTANCE)
2864 zone_reclaim_mode = 1;
2867 * We don't want to pressure a particular node.
2868 * So adding penalty to the first node in same
2869 * distance group to make it round-robin.
2871 if (distance != node_distance(local_node, prev_node))
2872 node_load[node] = load;
2874 prev_node = node;
2875 load--;
2876 if (order == ZONELIST_ORDER_NODE)
2877 build_zonelists_in_node_order(pgdat, node);
2878 else
2879 node_order[j++] = node; /* remember order */
2882 if (order == ZONELIST_ORDER_ZONE) {
2883 /* calculate node order -- i.e., DMA last! */
2884 build_zonelists_in_zone_order(pgdat, j);
2887 build_thisnode_zonelists(pgdat);
2890 /* Construct the zonelist performance cache - see further mmzone.h */
2891 static void build_zonelist_cache(pg_data_t *pgdat)
2893 struct zonelist *zonelist;
2894 struct zonelist_cache *zlc;
2895 struct zoneref *z;
2897 zonelist = &pgdat->node_zonelists[0];
2898 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2899 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2900 for (z = zonelist->_zonerefs; z->zone; z++)
2901 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2904 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2906 * Return node id of node used for "local" allocations.
2907 * I.e., first node id of first zone in arg node's generic zonelist.
2908 * Used for initializing percpu 'numa_mem', which is used primarily
2909 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2911 int local_memory_node(int node)
2913 struct zone *zone;
2915 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2916 gfp_zone(GFP_KERNEL),
2917 NULL,
2918 &zone);
2919 return zone->node;
2921 #endif
2923 #else /* CONFIG_NUMA */
2925 static void set_zonelist_order(void)
2927 current_zonelist_order = ZONELIST_ORDER_ZONE;
2930 static void build_zonelists(pg_data_t *pgdat)
2932 int node, local_node;
2933 enum zone_type j;
2934 struct zonelist *zonelist;
2936 local_node = pgdat->node_id;
2938 zonelist = &pgdat->node_zonelists[0];
2939 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2942 * Now we build the zonelist so that it contains the zones
2943 * of all the other nodes.
2944 * We don't want to pressure a particular node, so when
2945 * building the zones for node N, we make sure that the
2946 * zones coming right after the local ones are those from
2947 * node N+1 (modulo N)
2949 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2950 if (!node_online(node))
2951 continue;
2952 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2953 MAX_NR_ZONES - 1);
2955 for (node = 0; node < local_node; node++) {
2956 if (!node_online(node))
2957 continue;
2958 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2959 MAX_NR_ZONES - 1);
2962 zonelist->_zonerefs[j].zone = NULL;
2963 zonelist->_zonerefs[j].zone_idx = 0;
2966 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2967 static void build_zonelist_cache(pg_data_t *pgdat)
2969 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2972 #endif /* CONFIG_NUMA */
2975 * Boot pageset table. One per cpu which is going to be used for all
2976 * zones and all nodes. The parameters will be set in such a way
2977 * that an item put on a list will immediately be handed over to
2978 * the buddy list. This is safe since pageset manipulation is done
2979 * with interrupts disabled.
2981 * The boot_pagesets must be kept even after bootup is complete for
2982 * unused processors and/or zones. They do play a role for bootstrapping
2983 * hotplugged processors.
2985 * zoneinfo_show() and maybe other functions do
2986 * not check if the processor is online before following the pageset pointer.
2987 * Other parts of the kernel may not check if the zone is available.
2989 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2990 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2991 static void setup_zone_pageset(struct zone *zone);
2994 * Global mutex to protect against size modification of zonelists
2995 * as well as to serialize pageset setup for the new populated zone.
2997 DEFINE_MUTEX(zonelists_mutex);
2999 /* return values int ....just for stop_machine() */
3000 static __init_refok int __build_all_zonelists(void *data)
3002 int nid;
3003 int cpu;
3005 #ifdef CONFIG_NUMA
3006 memset(node_load, 0, sizeof(node_load));
3007 #endif
3008 for_each_online_node(nid) {
3009 pg_data_t *pgdat = NODE_DATA(nid);
3011 build_zonelists(pgdat);
3012 build_zonelist_cache(pgdat);
3015 #ifdef CONFIG_MEMORY_HOTPLUG
3016 /* Setup real pagesets for the new zone */
3017 if (data) {
3018 struct zone *zone = data;
3019 setup_zone_pageset(zone);
3021 #endif
3024 * Initialize the boot_pagesets that are going to be used
3025 * for bootstrapping processors. The real pagesets for
3026 * each zone will be allocated later when the per cpu
3027 * allocator is available.
3029 * boot_pagesets are used also for bootstrapping offline
3030 * cpus if the system is already booted because the pagesets
3031 * are needed to initialize allocators on a specific cpu too.
3032 * F.e. the percpu allocator needs the page allocator which
3033 * needs the percpu allocator in order to allocate its pagesets
3034 * (a chicken-egg dilemma).
3036 for_each_possible_cpu(cpu) {
3037 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3039 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3041 * We now know the "local memory node" for each node--
3042 * i.e., the node of the first zone in the generic zonelist.
3043 * Set up numa_mem percpu variable for on-line cpus. During
3044 * boot, only the boot cpu should be on-line; we'll init the
3045 * secondary cpus' numa_mem as they come on-line. During
3046 * node/memory hotplug, we'll fixup all on-line cpus.
3048 if (cpu_online(cpu))
3049 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3050 #endif
3053 return 0;
3057 * Called with zonelists_mutex held always
3058 * unless system_state == SYSTEM_BOOTING.
3060 void build_all_zonelists(void *data)
3062 set_zonelist_order();
3064 if (system_state == SYSTEM_BOOTING) {
3065 __build_all_zonelists(NULL);
3066 mminit_verify_zonelist();
3067 cpuset_init_current_mems_allowed();
3068 } else {
3069 /* we have to stop all cpus to guarantee there is no user
3070 of zonelist */
3071 stop_machine(__build_all_zonelists, data, NULL);
3072 /* cpuset refresh routine should be here */
3074 vm_total_pages = nr_free_pagecache_pages();
3076 * Disable grouping by mobility if the number of pages in the
3077 * system is too low to allow the mechanism to work. It would be
3078 * more accurate, but expensive to check per-zone. This check is
3079 * made on memory-hotadd so a system can start with mobility
3080 * disabled and enable it later
3082 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3083 page_group_by_mobility_disabled = 1;
3084 else
3085 page_group_by_mobility_disabled = 0;
3087 printk("Built %i zonelists in %s order, mobility grouping %s. "
3088 "Total pages: %ld\n",
3089 nr_online_nodes,
3090 zonelist_order_name[current_zonelist_order],
3091 page_group_by_mobility_disabled ? "off" : "on",
3092 vm_total_pages);
3093 #ifdef CONFIG_NUMA
3094 printk("Policy zone: %s\n", zone_names[policy_zone]);
3095 #endif
3099 * Helper functions to size the waitqueue hash table.
3100 * Essentially these want to choose hash table sizes sufficiently
3101 * large so that collisions trying to wait on pages are rare.
3102 * But in fact, the number of active page waitqueues on typical
3103 * systems is ridiculously low, less than 200. So this is even
3104 * conservative, even though it seems large.
3106 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3107 * waitqueues, i.e. the size of the waitq table given the number of pages.
3109 #define PAGES_PER_WAITQUEUE 256
3111 #ifndef CONFIG_MEMORY_HOTPLUG
3112 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3114 unsigned long size = 1;
3116 pages /= PAGES_PER_WAITQUEUE;
3118 while (size < pages)
3119 size <<= 1;
3122 * Once we have dozens or even hundreds of threads sleeping
3123 * on IO we've got bigger problems than wait queue collision.
3124 * Limit the size of the wait table to a reasonable size.
3126 size = min(size, 4096UL);
3128 return max(size, 4UL);
3130 #else
3132 * A zone's size might be changed by hot-add, so it is not possible to determine
3133 * a suitable size for its wait_table. So we use the maximum size now.
3135 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3137 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3138 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3139 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3141 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3142 * or more by the traditional way. (See above). It equals:
3144 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3145 * ia64(16K page size) : = ( 8G + 4M)byte.
3146 * powerpc (64K page size) : = (32G +16M)byte.
3148 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3150 return 4096UL;
3152 #endif
3155 * This is an integer logarithm so that shifts can be used later
3156 * to extract the more random high bits from the multiplicative
3157 * hash function before the remainder is taken.
3159 static inline unsigned long wait_table_bits(unsigned long size)
3161 return ffz(~size);
3164 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3167 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3168 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3169 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3170 * higher will lead to a bigger reserve which will get freed as contiguous
3171 * blocks as reclaim kicks in
3173 static void setup_zone_migrate_reserve(struct zone *zone)
3175 unsigned long start_pfn, pfn, end_pfn;
3176 struct page *page;
3177 unsigned long block_migratetype;
3178 int reserve;
3180 /* Get the start pfn, end pfn and the number of blocks to reserve */
3181 start_pfn = zone->zone_start_pfn;
3182 end_pfn = start_pfn + zone->spanned_pages;
3183 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3184 pageblock_order;
3187 * Reserve blocks are generally in place to help high-order atomic
3188 * allocations that are short-lived. A min_free_kbytes value that
3189 * would result in more than 2 reserve blocks for atomic allocations
3190 * is assumed to be in place to help anti-fragmentation for the
3191 * future allocation of hugepages at runtime.
3193 reserve = min(2, reserve);
3195 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3196 if (!pfn_valid(pfn))
3197 continue;
3198 page = pfn_to_page(pfn);
3200 /* Watch out for overlapping nodes */
3201 if (page_to_nid(page) != zone_to_nid(zone))
3202 continue;
3204 /* Blocks with reserved pages will never free, skip them. */
3205 if (PageReserved(page))
3206 continue;
3208 block_migratetype = get_pageblock_migratetype(page);
3210 /* If this block is reserved, account for it */
3211 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3212 reserve--;
3213 continue;
3216 /* Suitable for reserving if this block is movable */
3217 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3218 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3219 move_freepages_block(zone, page, MIGRATE_RESERVE);
3220 reserve--;
3221 continue;
3225 * If the reserve is met and this is a previous reserved block,
3226 * take it back
3228 if (block_migratetype == MIGRATE_RESERVE) {
3229 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3230 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3236 * Initially all pages are reserved - free ones are freed
3237 * up by free_all_bootmem() once the early boot process is
3238 * done. Non-atomic initialization, single-pass.
3240 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3241 unsigned long start_pfn, enum memmap_context context)
3243 struct page *page;
3244 unsigned long end_pfn = start_pfn + size;
3245 unsigned long pfn;
3246 struct zone *z;
3248 if (highest_memmap_pfn < end_pfn - 1)
3249 highest_memmap_pfn = end_pfn - 1;
3251 z = &NODE_DATA(nid)->node_zones[zone];
3252 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3254 * There can be holes in boot-time mem_map[]s
3255 * handed to this function. They do not
3256 * exist on hotplugged memory.
3258 if (context == MEMMAP_EARLY) {
3259 if (!early_pfn_valid(pfn))
3260 continue;
3261 if (!early_pfn_in_nid(pfn, nid))
3262 continue;
3264 page = pfn_to_page(pfn);
3265 set_page_links(page, zone, nid, pfn);
3266 mminit_verify_page_links(page, zone, nid, pfn);
3267 init_page_count(page);
3268 reset_page_mapcount(page);
3269 SetPageReserved(page);
3271 * Mark the block movable so that blocks are reserved for
3272 * movable at startup. This will force kernel allocations
3273 * to reserve their blocks rather than leaking throughout
3274 * the address space during boot when many long-lived
3275 * kernel allocations are made. Later some blocks near
3276 * the start are marked MIGRATE_RESERVE by
3277 * setup_zone_migrate_reserve()
3279 * bitmap is created for zone's valid pfn range. but memmap
3280 * can be created for invalid pages (for alignment)
3281 * check here not to call set_pageblock_migratetype() against
3282 * pfn out of zone.
3284 if ((z->zone_start_pfn <= pfn)
3285 && (pfn < z->zone_start_pfn + z->spanned_pages)
3286 && !(pfn & (pageblock_nr_pages - 1)))
3287 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3289 INIT_LIST_HEAD(&page->lru);
3290 #ifdef WANT_PAGE_VIRTUAL
3291 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3292 if (!is_highmem_idx(zone))
3293 set_page_address(page, __va(pfn << PAGE_SHIFT));
3294 #endif
3298 static void __meminit zone_init_free_lists(struct zone *zone)
3300 int order, t;
3301 for_each_migratetype_order(order, t) {
3302 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3303 zone->free_area[order].nr_free = 0;
3307 #ifndef __HAVE_ARCH_MEMMAP_INIT
3308 #define memmap_init(size, nid, zone, start_pfn) \
3309 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3310 #endif
3312 static int zone_batchsize(struct zone *zone)
3314 #ifdef CONFIG_MMU
3315 int batch;
3318 * The per-cpu-pages pools are set to around 1000th of the
3319 * size of the zone. But no more than 1/2 of a meg.
3321 * OK, so we don't know how big the cache is. So guess.
3323 batch = zone->present_pages / 1024;
3324 if (batch * PAGE_SIZE > 512 * 1024)
3325 batch = (512 * 1024) / PAGE_SIZE;
3326 batch /= 4; /* We effectively *= 4 below */
3327 if (batch < 1)
3328 batch = 1;
3331 * Clamp the batch to a 2^n - 1 value. Having a power
3332 * of 2 value was found to be more likely to have
3333 * suboptimal cache aliasing properties in some cases.
3335 * For example if 2 tasks are alternately allocating
3336 * batches of pages, one task can end up with a lot
3337 * of pages of one half of the possible page colors
3338 * and the other with pages of the other colors.
3340 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3342 return batch;
3344 #else
3345 /* The deferral and batching of frees should be suppressed under NOMMU
3346 * conditions.
3348 * The problem is that NOMMU needs to be able to allocate large chunks
3349 * of contiguous memory as there's no hardware page translation to
3350 * assemble apparent contiguous memory from discontiguous pages.
3352 * Queueing large contiguous runs of pages for batching, however,
3353 * causes the pages to actually be freed in smaller chunks. As there
3354 * can be a significant delay between the individual batches being
3355 * recycled, this leads to the once large chunks of space being
3356 * fragmented and becoming unavailable for high-order allocations.
3358 return 0;
3359 #endif
3362 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3364 struct per_cpu_pages *pcp;
3365 int migratetype;
3367 memset(p, 0, sizeof(*p));
3369 pcp = &p->pcp;
3370 pcp->count = 0;
3371 pcp->high = 6 * batch;
3372 pcp->batch = max(1UL, 1 * batch);
3373 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3374 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3378 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3379 * to the value high for the pageset p.
3382 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3383 unsigned long high)
3385 struct per_cpu_pages *pcp;
3387 pcp = &p->pcp;
3388 pcp->high = high;
3389 pcp->batch = max(1UL, high/4);
3390 if ((high/4) > (PAGE_SHIFT * 8))
3391 pcp->batch = PAGE_SHIFT * 8;
3394 static __meminit void setup_zone_pageset(struct zone *zone)
3396 int cpu;
3398 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3400 for_each_possible_cpu(cpu) {
3401 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3403 setup_pageset(pcp, zone_batchsize(zone));
3405 if (percpu_pagelist_fraction)
3406 setup_pagelist_highmark(pcp,
3407 (zone->present_pages /
3408 percpu_pagelist_fraction));
3413 * Allocate per cpu pagesets and initialize them.
3414 * Before this call only boot pagesets were available.
3416 void __init setup_per_cpu_pageset(void)
3418 struct zone *zone;
3420 for_each_populated_zone(zone)
3421 setup_zone_pageset(zone);
3424 static noinline __init_refok
3425 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3427 int i;
3428 struct pglist_data *pgdat = zone->zone_pgdat;
3429 size_t alloc_size;
3432 * The per-page waitqueue mechanism uses hashed waitqueues
3433 * per zone.
3435 zone->wait_table_hash_nr_entries =
3436 wait_table_hash_nr_entries(zone_size_pages);
3437 zone->wait_table_bits =
3438 wait_table_bits(zone->wait_table_hash_nr_entries);
3439 alloc_size = zone->wait_table_hash_nr_entries
3440 * sizeof(wait_queue_head_t);
3442 if (!slab_is_available()) {
3443 zone->wait_table = (wait_queue_head_t *)
3444 alloc_bootmem_node(pgdat, alloc_size);
3445 } else {
3447 * This case means that a zone whose size was 0 gets new memory
3448 * via memory hot-add.
3449 * But it may be the case that a new node was hot-added. In
3450 * this case vmalloc() will not be able to use this new node's
3451 * memory - this wait_table must be initialized to use this new
3452 * node itself as well.
3453 * To use this new node's memory, further consideration will be
3454 * necessary.
3456 zone->wait_table = vmalloc(alloc_size);
3458 if (!zone->wait_table)
3459 return -ENOMEM;
3461 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3462 init_waitqueue_head(zone->wait_table + i);
3464 return 0;
3467 static int __zone_pcp_update(void *data)
3469 struct zone *zone = data;
3470 int cpu;
3471 unsigned long batch = zone_batchsize(zone), flags;
3473 for_each_possible_cpu(cpu) {
3474 struct per_cpu_pageset *pset;
3475 struct per_cpu_pages *pcp;
3477 pset = per_cpu_ptr(zone->pageset, cpu);
3478 pcp = &pset->pcp;
3480 local_irq_save(flags);
3481 free_pcppages_bulk(zone, pcp->count, pcp);
3482 setup_pageset(pset, batch);
3483 local_irq_restore(flags);
3485 return 0;
3488 void zone_pcp_update(struct zone *zone)
3490 stop_machine(__zone_pcp_update, zone, NULL);
3493 static __meminit void zone_pcp_init(struct zone *zone)
3496 * per cpu subsystem is not up at this point. The following code
3497 * relies on the ability of the linker to provide the
3498 * offset of a (static) per cpu variable into the per cpu area.
3500 zone->pageset = &boot_pageset;
3502 if (zone->present_pages)
3503 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3504 zone->name, zone->present_pages,
3505 zone_batchsize(zone));
3508 __meminit int init_currently_empty_zone(struct zone *zone,
3509 unsigned long zone_start_pfn,
3510 unsigned long size,
3511 enum memmap_context context)
3513 struct pglist_data *pgdat = zone->zone_pgdat;
3514 int ret;
3515 ret = zone_wait_table_init(zone, size);
3516 if (ret)
3517 return ret;
3518 pgdat->nr_zones = zone_idx(zone) + 1;
3520 zone->zone_start_pfn = zone_start_pfn;
3522 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3523 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3524 pgdat->node_id,
3525 (unsigned long)zone_idx(zone),
3526 zone_start_pfn, (zone_start_pfn + size));
3528 zone_init_free_lists(zone);
3530 return 0;
3533 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3535 * Basic iterator support. Return the first range of PFNs for a node
3536 * Note: nid == MAX_NUMNODES returns first region regardless of node
3538 static int __meminit first_active_region_index_in_nid(int nid)
3540 int i;
3542 for (i = 0; i < nr_nodemap_entries; i++)
3543 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3544 return i;
3546 return -1;
3550 * Basic iterator support. Return the next active range of PFNs for a node
3551 * Note: nid == MAX_NUMNODES returns next region regardless of node
3553 static int __meminit next_active_region_index_in_nid(int index, int nid)
3555 for (index = index + 1; index < nr_nodemap_entries; index++)
3556 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3557 return index;
3559 return -1;
3562 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3564 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3565 * Architectures may implement their own version but if add_active_range()
3566 * was used and there are no special requirements, this is a convenient
3567 * alternative
3569 int __meminit __early_pfn_to_nid(unsigned long pfn)
3571 int i;
3573 for (i = 0; i < nr_nodemap_entries; i++) {
3574 unsigned long start_pfn = early_node_map[i].start_pfn;
3575 unsigned long end_pfn = early_node_map[i].end_pfn;
3577 if (start_pfn <= pfn && pfn < end_pfn)
3578 return early_node_map[i].nid;
3580 /* This is a memory hole */
3581 return -1;
3583 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3585 int __meminit early_pfn_to_nid(unsigned long pfn)
3587 int nid;
3589 nid = __early_pfn_to_nid(pfn);
3590 if (nid >= 0)
3591 return nid;
3592 /* just returns 0 */
3593 return 0;
3596 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3597 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3599 int nid;
3601 nid = __early_pfn_to_nid(pfn);
3602 if (nid >= 0 && nid != node)
3603 return false;
3604 return true;
3606 #endif
3608 /* Basic iterator support to walk early_node_map[] */
3609 #define for_each_active_range_index_in_nid(i, nid) \
3610 for (i = first_active_region_index_in_nid(nid); i != -1; \
3611 i = next_active_region_index_in_nid(i, nid))
3614 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3615 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3616 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3618 * If an architecture guarantees that all ranges registered with
3619 * add_active_ranges() contain no holes and may be freed, this
3620 * this function may be used instead of calling free_bootmem() manually.
3622 void __init free_bootmem_with_active_regions(int nid,
3623 unsigned long max_low_pfn)
3625 int i;
3627 for_each_active_range_index_in_nid(i, nid) {
3628 unsigned long size_pages = 0;
3629 unsigned long end_pfn = early_node_map[i].end_pfn;
3631 if (early_node_map[i].start_pfn >= max_low_pfn)
3632 continue;
3634 if (end_pfn > max_low_pfn)
3635 end_pfn = max_low_pfn;
3637 size_pages = end_pfn - early_node_map[i].start_pfn;
3638 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3639 PFN_PHYS(early_node_map[i].start_pfn),
3640 size_pages << PAGE_SHIFT);
3644 int __init add_from_early_node_map(struct range *range, int az,
3645 int nr_range, int nid)
3647 int i;
3648 u64 start, end;
3650 /* need to go over early_node_map to find out good range for node */
3651 for_each_active_range_index_in_nid(i, nid) {
3652 start = early_node_map[i].start_pfn;
3653 end = early_node_map[i].end_pfn;
3654 nr_range = add_range(range, az, nr_range, start, end);
3656 return nr_range;
3659 #ifdef CONFIG_NO_BOOTMEM
3660 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3661 u64 goal, u64 limit)
3663 int i;
3664 void *ptr;
3666 if (limit > get_max_mapped())
3667 limit = get_max_mapped();
3669 /* need to go over early_node_map to find out good range for node */
3670 for_each_active_range_index_in_nid(i, nid) {
3671 u64 addr;
3672 u64 ei_start, ei_last;
3674 ei_last = early_node_map[i].end_pfn;
3675 ei_last <<= PAGE_SHIFT;
3676 ei_start = early_node_map[i].start_pfn;
3677 ei_start <<= PAGE_SHIFT;
3678 addr = find_early_area(ei_start, ei_last,
3679 goal, limit, size, align);
3681 if (addr == -1ULL)
3682 continue;
3684 #if 0
3685 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3686 nid,
3687 ei_start, ei_last, goal, limit, size,
3688 align, addr);
3689 #endif
3691 ptr = phys_to_virt(addr);
3692 memset(ptr, 0, size);
3693 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3695 * The min_count is set to 0 so that bootmem allocated blocks
3696 * are never reported as leaks.
3698 kmemleak_alloc(ptr, size, 0, 0);
3699 return ptr;
3702 return NULL;
3704 #endif
3707 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3709 int i;
3710 int ret;
3712 for_each_active_range_index_in_nid(i, nid) {
3713 ret = work_fn(early_node_map[i].start_pfn,
3714 early_node_map[i].end_pfn, data);
3715 if (ret)
3716 break;
3720 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3721 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3723 * If an architecture guarantees that all ranges registered with
3724 * add_active_ranges() contain no holes and may be freed, this
3725 * function may be used instead of calling memory_present() manually.
3727 void __init sparse_memory_present_with_active_regions(int nid)
3729 int i;
3731 for_each_active_range_index_in_nid(i, nid)
3732 memory_present(early_node_map[i].nid,
3733 early_node_map[i].start_pfn,
3734 early_node_map[i].end_pfn);
3738 * get_pfn_range_for_nid - Return the start and end page frames for a node
3739 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3740 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3741 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3743 * It returns the start and end page frame of a node based on information
3744 * provided by an arch calling add_active_range(). If called for a node
3745 * with no available memory, a warning is printed and the start and end
3746 * PFNs will be 0.
3748 void __meminit get_pfn_range_for_nid(unsigned int nid,
3749 unsigned long *start_pfn, unsigned long *end_pfn)
3751 int i;
3752 *start_pfn = -1UL;
3753 *end_pfn = 0;
3755 for_each_active_range_index_in_nid(i, nid) {
3756 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3757 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3760 if (*start_pfn == -1UL)
3761 *start_pfn = 0;
3765 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3766 * assumption is made that zones within a node are ordered in monotonic
3767 * increasing memory addresses so that the "highest" populated zone is used
3769 static void __init find_usable_zone_for_movable(void)
3771 int zone_index;
3772 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3773 if (zone_index == ZONE_MOVABLE)
3774 continue;
3776 if (arch_zone_highest_possible_pfn[zone_index] >
3777 arch_zone_lowest_possible_pfn[zone_index])
3778 break;
3781 VM_BUG_ON(zone_index == -1);
3782 movable_zone = zone_index;
3786 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3787 * because it is sized independant of architecture. Unlike the other zones,
3788 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3789 * in each node depending on the size of each node and how evenly kernelcore
3790 * is distributed. This helper function adjusts the zone ranges
3791 * provided by the architecture for a given node by using the end of the
3792 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3793 * zones within a node are in order of monotonic increases memory addresses
3795 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3796 unsigned long zone_type,
3797 unsigned long node_start_pfn,
3798 unsigned long node_end_pfn,
3799 unsigned long *zone_start_pfn,
3800 unsigned long *zone_end_pfn)
3802 /* Only adjust if ZONE_MOVABLE is on this node */
3803 if (zone_movable_pfn[nid]) {
3804 /* Size ZONE_MOVABLE */
3805 if (zone_type == ZONE_MOVABLE) {
3806 *zone_start_pfn = zone_movable_pfn[nid];
3807 *zone_end_pfn = min(node_end_pfn,
3808 arch_zone_highest_possible_pfn[movable_zone]);
3810 /* Adjust for ZONE_MOVABLE starting within this range */
3811 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3812 *zone_end_pfn > zone_movable_pfn[nid]) {
3813 *zone_end_pfn = zone_movable_pfn[nid];
3815 /* Check if this whole range is within ZONE_MOVABLE */
3816 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3817 *zone_start_pfn = *zone_end_pfn;
3822 * Return the number of pages a zone spans in a node, including holes
3823 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3825 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3826 unsigned long zone_type,
3827 unsigned long *ignored)
3829 unsigned long node_start_pfn, node_end_pfn;
3830 unsigned long zone_start_pfn, zone_end_pfn;
3832 /* Get the start and end of the node and zone */
3833 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3834 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3835 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3836 adjust_zone_range_for_zone_movable(nid, zone_type,
3837 node_start_pfn, node_end_pfn,
3838 &zone_start_pfn, &zone_end_pfn);
3840 /* Check that this node has pages within the zone's required range */
3841 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3842 return 0;
3844 /* Move the zone boundaries inside the node if necessary */
3845 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3846 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3848 /* Return the spanned pages */
3849 return zone_end_pfn - zone_start_pfn;
3853 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3854 * then all holes in the requested range will be accounted for.
3856 unsigned long __meminit __absent_pages_in_range(int nid,
3857 unsigned long range_start_pfn,
3858 unsigned long range_end_pfn)
3860 int i = 0;
3861 unsigned long prev_end_pfn = 0, hole_pages = 0;
3862 unsigned long start_pfn;
3864 /* Find the end_pfn of the first active range of pfns in the node */
3865 i = first_active_region_index_in_nid(nid);
3866 if (i == -1)
3867 return 0;
3869 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3871 /* Account for ranges before physical memory on this node */
3872 if (early_node_map[i].start_pfn > range_start_pfn)
3873 hole_pages = prev_end_pfn - range_start_pfn;
3875 /* Find all holes for the zone within the node */
3876 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3878 /* No need to continue if prev_end_pfn is outside the zone */
3879 if (prev_end_pfn >= range_end_pfn)
3880 break;
3882 /* Make sure the end of the zone is not within the hole */
3883 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3884 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3886 /* Update the hole size cound and move on */
3887 if (start_pfn > range_start_pfn) {
3888 BUG_ON(prev_end_pfn > start_pfn);
3889 hole_pages += start_pfn - prev_end_pfn;
3891 prev_end_pfn = early_node_map[i].end_pfn;
3894 /* Account for ranges past physical memory on this node */
3895 if (range_end_pfn > prev_end_pfn)
3896 hole_pages += range_end_pfn -
3897 max(range_start_pfn, prev_end_pfn);
3899 return hole_pages;
3903 * absent_pages_in_range - Return number of page frames in holes within a range
3904 * @start_pfn: The start PFN to start searching for holes
3905 * @end_pfn: The end PFN to stop searching for holes
3907 * It returns the number of pages frames in memory holes within a range.
3909 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3910 unsigned long end_pfn)
3912 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3915 /* Return the number of page frames in holes in a zone on a node */
3916 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3917 unsigned long zone_type,
3918 unsigned long *ignored)
3920 unsigned long node_start_pfn, node_end_pfn;
3921 unsigned long zone_start_pfn, zone_end_pfn;
3923 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3924 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3925 node_start_pfn);
3926 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3927 node_end_pfn);
3929 adjust_zone_range_for_zone_movable(nid, zone_type,
3930 node_start_pfn, node_end_pfn,
3931 &zone_start_pfn, &zone_end_pfn);
3932 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3935 #else
3936 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3937 unsigned long zone_type,
3938 unsigned long *zones_size)
3940 return zones_size[zone_type];
3943 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3944 unsigned long zone_type,
3945 unsigned long *zholes_size)
3947 if (!zholes_size)
3948 return 0;
3950 return zholes_size[zone_type];
3953 #endif
3955 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3956 unsigned long *zones_size, unsigned long *zholes_size)
3958 unsigned long realtotalpages, totalpages = 0;
3959 enum zone_type i;
3961 for (i = 0; i < MAX_NR_ZONES; i++)
3962 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3963 zones_size);
3964 pgdat->node_spanned_pages = totalpages;
3966 realtotalpages = totalpages;
3967 for (i = 0; i < MAX_NR_ZONES; i++)
3968 realtotalpages -=
3969 zone_absent_pages_in_node(pgdat->node_id, i,
3970 zholes_size);
3971 pgdat->node_present_pages = realtotalpages;
3972 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3973 realtotalpages);
3976 #ifndef CONFIG_SPARSEMEM
3978 * Calculate the size of the zone->blockflags rounded to an unsigned long
3979 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3980 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3981 * round what is now in bits to nearest long in bits, then return it in
3982 * bytes.
3984 static unsigned long __init usemap_size(unsigned long zonesize)
3986 unsigned long usemapsize;
3988 usemapsize = roundup(zonesize, pageblock_nr_pages);
3989 usemapsize = usemapsize >> pageblock_order;
3990 usemapsize *= NR_PAGEBLOCK_BITS;
3991 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3993 return usemapsize / 8;
3996 static void __init setup_usemap(struct pglist_data *pgdat,
3997 struct zone *zone, unsigned long zonesize)
3999 unsigned long usemapsize = usemap_size(zonesize);
4000 zone->pageblock_flags = NULL;
4001 if (usemapsize)
4002 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4004 #else
4005 static void inline setup_usemap(struct pglist_data *pgdat,
4006 struct zone *zone, unsigned long zonesize) {}
4007 #endif /* CONFIG_SPARSEMEM */
4009 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4011 /* Return a sensible default order for the pageblock size. */
4012 static inline int pageblock_default_order(void)
4014 if (HPAGE_SHIFT > PAGE_SHIFT)
4015 return HUGETLB_PAGE_ORDER;
4017 return MAX_ORDER-1;
4020 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4021 static inline void __init set_pageblock_order(unsigned int order)
4023 /* Check that pageblock_nr_pages has not already been setup */
4024 if (pageblock_order)
4025 return;
4028 * Assume the largest contiguous order of interest is a huge page.
4029 * This value may be variable depending on boot parameters on IA64
4031 pageblock_order = order;
4033 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4036 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4037 * and pageblock_default_order() are unused as pageblock_order is set
4038 * at compile-time. See include/linux/pageblock-flags.h for the values of
4039 * pageblock_order based on the kernel config
4041 static inline int pageblock_default_order(unsigned int order)
4043 return MAX_ORDER-1;
4045 #define set_pageblock_order(x) do {} while (0)
4047 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4050 * Set up the zone data structures:
4051 * - mark all pages reserved
4052 * - mark all memory queues empty
4053 * - clear the memory bitmaps
4055 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4056 unsigned long *zones_size, unsigned long *zholes_size)
4058 enum zone_type j;
4059 int nid = pgdat->node_id;
4060 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4061 int ret;
4063 pgdat_resize_init(pgdat);
4064 pgdat->nr_zones = 0;
4065 init_waitqueue_head(&pgdat->kswapd_wait);
4066 pgdat->kswapd_max_order = 0;
4067 pgdat_page_cgroup_init(pgdat);
4069 for (j = 0; j < MAX_NR_ZONES; j++) {
4070 struct zone *zone = pgdat->node_zones + j;
4071 unsigned long size, realsize, memmap_pages;
4072 enum lru_list l;
4074 size = zone_spanned_pages_in_node(nid, j, zones_size);
4075 realsize = size - zone_absent_pages_in_node(nid, j,
4076 zholes_size);
4079 * Adjust realsize so that it accounts for how much memory
4080 * is used by this zone for memmap. This affects the watermark
4081 * and per-cpu initialisations
4083 memmap_pages =
4084 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4085 if (realsize >= memmap_pages) {
4086 realsize -= memmap_pages;
4087 if (memmap_pages)
4088 printk(KERN_DEBUG
4089 " %s zone: %lu pages used for memmap\n",
4090 zone_names[j], memmap_pages);
4091 } else
4092 printk(KERN_WARNING
4093 " %s zone: %lu pages exceeds realsize %lu\n",
4094 zone_names[j], memmap_pages, realsize);
4096 /* Account for reserved pages */
4097 if (j == 0 && realsize > dma_reserve) {
4098 realsize -= dma_reserve;
4099 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4100 zone_names[0], dma_reserve);
4103 if (!is_highmem_idx(j))
4104 nr_kernel_pages += realsize;
4105 nr_all_pages += realsize;
4107 zone->spanned_pages = size;
4108 zone->present_pages = realsize;
4109 #ifdef CONFIG_NUMA
4110 zone->node = nid;
4111 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4112 / 100;
4113 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4114 #endif
4115 zone->name = zone_names[j];
4116 spin_lock_init(&zone->lock);
4117 spin_lock_init(&zone->lru_lock);
4118 zone_seqlock_init(zone);
4119 zone->zone_pgdat = pgdat;
4121 zone_pcp_init(zone);
4122 for_each_lru(l) {
4123 INIT_LIST_HEAD(&zone->lru[l].list);
4124 zone->reclaim_stat.nr_saved_scan[l] = 0;
4126 zone->reclaim_stat.recent_rotated[0] = 0;
4127 zone->reclaim_stat.recent_rotated[1] = 0;
4128 zone->reclaim_stat.recent_scanned[0] = 0;
4129 zone->reclaim_stat.recent_scanned[1] = 0;
4130 zap_zone_vm_stats(zone);
4131 zone->flags = 0;
4132 if (!size)
4133 continue;
4135 set_pageblock_order(pageblock_default_order());
4136 setup_usemap(pgdat, zone, size);
4137 ret = init_currently_empty_zone(zone, zone_start_pfn,
4138 size, MEMMAP_EARLY);
4139 BUG_ON(ret);
4140 memmap_init(size, nid, j, zone_start_pfn);
4141 zone_start_pfn += size;
4145 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4147 /* Skip empty nodes */
4148 if (!pgdat->node_spanned_pages)
4149 return;
4151 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4152 /* ia64 gets its own node_mem_map, before this, without bootmem */
4153 if (!pgdat->node_mem_map) {
4154 unsigned long size, start, end;
4155 struct page *map;
4158 * The zone's endpoints aren't required to be MAX_ORDER
4159 * aligned but the node_mem_map endpoints must be in order
4160 * for the buddy allocator to function correctly.
4162 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4163 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4164 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4165 size = (end - start) * sizeof(struct page);
4166 map = alloc_remap(pgdat->node_id, size);
4167 if (!map)
4168 map = alloc_bootmem_node(pgdat, size);
4169 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4171 #ifndef CONFIG_NEED_MULTIPLE_NODES
4173 * With no DISCONTIG, the global mem_map is just set as node 0's
4175 if (pgdat == NODE_DATA(0)) {
4176 mem_map = NODE_DATA(0)->node_mem_map;
4177 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4178 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4179 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4180 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4182 #endif
4183 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4186 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4187 unsigned long node_start_pfn, unsigned long *zholes_size)
4189 pg_data_t *pgdat = NODE_DATA(nid);
4191 pgdat->node_id = nid;
4192 pgdat->node_start_pfn = node_start_pfn;
4193 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4195 alloc_node_mem_map(pgdat);
4196 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4197 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4198 nid, (unsigned long)pgdat,
4199 (unsigned long)pgdat->node_mem_map);
4200 #endif
4202 free_area_init_core(pgdat, zones_size, zholes_size);
4205 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4207 #if MAX_NUMNODES > 1
4209 * Figure out the number of possible node ids.
4211 static void __init setup_nr_node_ids(void)
4213 unsigned int node;
4214 unsigned int highest = 0;
4216 for_each_node_mask(node, node_possible_map)
4217 highest = node;
4218 nr_node_ids = highest + 1;
4220 #else
4221 static inline void setup_nr_node_ids(void)
4224 #endif
4227 * add_active_range - Register a range of PFNs backed by physical memory
4228 * @nid: The node ID the range resides on
4229 * @start_pfn: The start PFN of the available physical memory
4230 * @end_pfn: The end PFN of the available physical memory
4232 * These ranges are stored in an early_node_map[] and later used by
4233 * free_area_init_nodes() to calculate zone sizes and holes. If the
4234 * range spans a memory hole, it is up to the architecture to ensure
4235 * the memory is not freed by the bootmem allocator. If possible
4236 * the range being registered will be merged with existing ranges.
4238 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4239 unsigned long end_pfn)
4241 int i;
4243 mminit_dprintk(MMINIT_TRACE, "memory_register",
4244 "Entering add_active_range(%d, %#lx, %#lx) "
4245 "%d entries of %d used\n",
4246 nid, start_pfn, end_pfn,
4247 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4249 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4251 /* Merge with existing active regions if possible */
4252 for (i = 0; i < nr_nodemap_entries; i++) {
4253 if (early_node_map[i].nid != nid)
4254 continue;
4256 /* Skip if an existing region covers this new one */
4257 if (start_pfn >= early_node_map[i].start_pfn &&
4258 end_pfn <= early_node_map[i].end_pfn)
4259 return;
4261 /* Merge forward if suitable */
4262 if (start_pfn <= early_node_map[i].end_pfn &&
4263 end_pfn > early_node_map[i].end_pfn) {
4264 early_node_map[i].end_pfn = end_pfn;
4265 return;
4268 /* Merge backward if suitable */
4269 if (start_pfn < early_node_map[i].start_pfn &&
4270 end_pfn >= early_node_map[i].start_pfn) {
4271 early_node_map[i].start_pfn = start_pfn;
4272 return;
4276 /* Check that early_node_map is large enough */
4277 if (i >= MAX_ACTIVE_REGIONS) {
4278 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4279 MAX_ACTIVE_REGIONS);
4280 return;
4283 early_node_map[i].nid = nid;
4284 early_node_map[i].start_pfn = start_pfn;
4285 early_node_map[i].end_pfn = end_pfn;
4286 nr_nodemap_entries = i + 1;
4290 * remove_active_range - Shrink an existing registered range of PFNs
4291 * @nid: The node id the range is on that should be shrunk
4292 * @start_pfn: The new PFN of the range
4293 * @end_pfn: The new PFN of the range
4295 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4296 * The map is kept near the end physical page range that has already been
4297 * registered. This function allows an arch to shrink an existing registered
4298 * range.
4300 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4301 unsigned long end_pfn)
4303 int i, j;
4304 int removed = 0;
4306 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4307 nid, start_pfn, end_pfn);
4309 /* Find the old active region end and shrink */
4310 for_each_active_range_index_in_nid(i, nid) {
4311 if (early_node_map[i].start_pfn >= start_pfn &&
4312 early_node_map[i].end_pfn <= end_pfn) {
4313 /* clear it */
4314 early_node_map[i].start_pfn = 0;
4315 early_node_map[i].end_pfn = 0;
4316 removed = 1;
4317 continue;
4319 if (early_node_map[i].start_pfn < start_pfn &&
4320 early_node_map[i].end_pfn > start_pfn) {
4321 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4322 early_node_map[i].end_pfn = start_pfn;
4323 if (temp_end_pfn > end_pfn)
4324 add_active_range(nid, end_pfn, temp_end_pfn);
4325 continue;
4327 if (early_node_map[i].start_pfn >= start_pfn &&
4328 early_node_map[i].end_pfn > end_pfn &&
4329 early_node_map[i].start_pfn < end_pfn) {
4330 early_node_map[i].start_pfn = end_pfn;
4331 continue;
4335 if (!removed)
4336 return;
4338 /* remove the blank ones */
4339 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4340 if (early_node_map[i].nid != nid)
4341 continue;
4342 if (early_node_map[i].end_pfn)
4343 continue;
4344 /* we found it, get rid of it */
4345 for (j = i; j < nr_nodemap_entries - 1; j++)
4346 memcpy(&early_node_map[j], &early_node_map[j+1],
4347 sizeof(early_node_map[j]));
4348 j = nr_nodemap_entries - 1;
4349 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4350 nr_nodemap_entries--;
4355 * remove_all_active_ranges - Remove all currently registered regions
4357 * During discovery, it may be found that a table like SRAT is invalid
4358 * and an alternative discovery method must be used. This function removes
4359 * all currently registered regions.
4361 void __init remove_all_active_ranges(void)
4363 memset(early_node_map, 0, sizeof(early_node_map));
4364 nr_nodemap_entries = 0;
4367 /* Compare two active node_active_regions */
4368 static int __init cmp_node_active_region(const void *a, const void *b)
4370 struct node_active_region *arange = (struct node_active_region *)a;
4371 struct node_active_region *brange = (struct node_active_region *)b;
4373 /* Done this way to avoid overflows */
4374 if (arange->start_pfn > brange->start_pfn)
4375 return 1;
4376 if (arange->start_pfn < brange->start_pfn)
4377 return -1;
4379 return 0;
4382 /* sort the node_map by start_pfn */
4383 void __init sort_node_map(void)
4385 sort(early_node_map, (size_t)nr_nodemap_entries,
4386 sizeof(struct node_active_region),
4387 cmp_node_active_region, NULL);
4390 /* Find the lowest pfn for a node */
4391 static unsigned long __init find_min_pfn_for_node(int nid)
4393 int i;
4394 unsigned long min_pfn = ULONG_MAX;
4396 /* Assuming a sorted map, the first range found has the starting pfn */
4397 for_each_active_range_index_in_nid(i, nid)
4398 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4400 if (min_pfn == ULONG_MAX) {
4401 printk(KERN_WARNING
4402 "Could not find start_pfn for node %d\n", nid);
4403 return 0;
4406 return min_pfn;
4410 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4412 * It returns the minimum PFN based on information provided via
4413 * add_active_range().
4415 unsigned long __init find_min_pfn_with_active_regions(void)
4417 return find_min_pfn_for_node(MAX_NUMNODES);
4421 * early_calculate_totalpages()
4422 * Sum pages in active regions for movable zone.
4423 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4425 static unsigned long __init early_calculate_totalpages(void)
4427 int i;
4428 unsigned long totalpages = 0;
4430 for (i = 0; i < nr_nodemap_entries; i++) {
4431 unsigned long pages = early_node_map[i].end_pfn -
4432 early_node_map[i].start_pfn;
4433 totalpages += pages;
4434 if (pages)
4435 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4437 return totalpages;
4441 * Find the PFN the Movable zone begins in each node. Kernel memory
4442 * is spread evenly between nodes as long as the nodes have enough
4443 * memory. When they don't, some nodes will have more kernelcore than
4444 * others
4446 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4448 int i, nid;
4449 unsigned long usable_startpfn;
4450 unsigned long kernelcore_node, kernelcore_remaining;
4451 /* save the state before borrow the nodemask */
4452 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4453 unsigned long totalpages = early_calculate_totalpages();
4454 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4457 * If movablecore was specified, calculate what size of
4458 * kernelcore that corresponds so that memory usable for
4459 * any allocation type is evenly spread. If both kernelcore
4460 * and movablecore are specified, then the value of kernelcore
4461 * will be used for required_kernelcore if it's greater than
4462 * what movablecore would have allowed.
4464 if (required_movablecore) {
4465 unsigned long corepages;
4468 * Round-up so that ZONE_MOVABLE is at least as large as what
4469 * was requested by the user
4471 required_movablecore =
4472 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4473 corepages = totalpages - required_movablecore;
4475 required_kernelcore = max(required_kernelcore, corepages);
4478 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4479 if (!required_kernelcore)
4480 goto out;
4482 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4483 find_usable_zone_for_movable();
4484 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4486 restart:
4487 /* Spread kernelcore memory as evenly as possible throughout nodes */
4488 kernelcore_node = required_kernelcore / usable_nodes;
4489 for_each_node_state(nid, N_HIGH_MEMORY) {
4491 * Recalculate kernelcore_node if the division per node
4492 * now exceeds what is necessary to satisfy the requested
4493 * amount of memory for the kernel
4495 if (required_kernelcore < kernelcore_node)
4496 kernelcore_node = required_kernelcore / usable_nodes;
4499 * As the map is walked, we track how much memory is usable
4500 * by the kernel using kernelcore_remaining. When it is
4501 * 0, the rest of the node is usable by ZONE_MOVABLE
4503 kernelcore_remaining = kernelcore_node;
4505 /* Go through each range of PFNs within this node */
4506 for_each_active_range_index_in_nid(i, nid) {
4507 unsigned long start_pfn, end_pfn;
4508 unsigned long size_pages;
4510 start_pfn = max(early_node_map[i].start_pfn,
4511 zone_movable_pfn[nid]);
4512 end_pfn = early_node_map[i].end_pfn;
4513 if (start_pfn >= end_pfn)
4514 continue;
4516 /* Account for what is only usable for kernelcore */
4517 if (start_pfn < usable_startpfn) {
4518 unsigned long kernel_pages;
4519 kernel_pages = min(end_pfn, usable_startpfn)
4520 - start_pfn;
4522 kernelcore_remaining -= min(kernel_pages,
4523 kernelcore_remaining);
4524 required_kernelcore -= min(kernel_pages,
4525 required_kernelcore);
4527 /* Continue if range is now fully accounted */
4528 if (end_pfn <= usable_startpfn) {
4531 * Push zone_movable_pfn to the end so
4532 * that if we have to rebalance
4533 * kernelcore across nodes, we will
4534 * not double account here
4536 zone_movable_pfn[nid] = end_pfn;
4537 continue;
4539 start_pfn = usable_startpfn;
4543 * The usable PFN range for ZONE_MOVABLE is from
4544 * start_pfn->end_pfn. Calculate size_pages as the
4545 * number of pages used as kernelcore
4547 size_pages = end_pfn - start_pfn;
4548 if (size_pages > kernelcore_remaining)
4549 size_pages = kernelcore_remaining;
4550 zone_movable_pfn[nid] = start_pfn + size_pages;
4553 * Some kernelcore has been met, update counts and
4554 * break if the kernelcore for this node has been
4555 * satisified
4557 required_kernelcore -= min(required_kernelcore,
4558 size_pages);
4559 kernelcore_remaining -= size_pages;
4560 if (!kernelcore_remaining)
4561 break;
4566 * If there is still required_kernelcore, we do another pass with one
4567 * less node in the count. This will push zone_movable_pfn[nid] further
4568 * along on the nodes that still have memory until kernelcore is
4569 * satisified
4571 usable_nodes--;
4572 if (usable_nodes && required_kernelcore > usable_nodes)
4573 goto restart;
4575 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4576 for (nid = 0; nid < MAX_NUMNODES; nid++)
4577 zone_movable_pfn[nid] =
4578 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4580 out:
4581 /* restore the node_state */
4582 node_states[N_HIGH_MEMORY] = saved_node_state;
4585 /* Any regular memory on that node ? */
4586 static void check_for_regular_memory(pg_data_t *pgdat)
4588 #ifdef CONFIG_HIGHMEM
4589 enum zone_type zone_type;
4591 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4592 struct zone *zone = &pgdat->node_zones[zone_type];
4593 if (zone->present_pages)
4594 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4596 #endif
4600 * free_area_init_nodes - Initialise all pg_data_t and zone data
4601 * @max_zone_pfn: an array of max PFNs for each zone
4603 * This will call free_area_init_node() for each active node in the system.
4604 * Using the page ranges provided by add_active_range(), the size of each
4605 * zone in each node and their holes is calculated. If the maximum PFN
4606 * between two adjacent zones match, it is assumed that the zone is empty.
4607 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4608 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4609 * starts where the previous one ended. For example, ZONE_DMA32 starts
4610 * at arch_max_dma_pfn.
4612 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4614 unsigned long nid;
4615 int i;
4617 /* Sort early_node_map as initialisation assumes it is sorted */
4618 sort_node_map();
4620 /* Record where the zone boundaries are */
4621 memset(arch_zone_lowest_possible_pfn, 0,
4622 sizeof(arch_zone_lowest_possible_pfn));
4623 memset(arch_zone_highest_possible_pfn, 0,
4624 sizeof(arch_zone_highest_possible_pfn));
4625 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4626 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4627 for (i = 1; i < MAX_NR_ZONES; i++) {
4628 if (i == ZONE_MOVABLE)
4629 continue;
4630 arch_zone_lowest_possible_pfn[i] =
4631 arch_zone_highest_possible_pfn[i-1];
4632 arch_zone_highest_possible_pfn[i] =
4633 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4635 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4636 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4638 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4639 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4640 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4642 /* Print out the zone ranges */
4643 printk("Zone PFN ranges:\n");
4644 for (i = 0; i < MAX_NR_ZONES; i++) {
4645 if (i == ZONE_MOVABLE)
4646 continue;
4647 printk(" %-8s ", zone_names[i]);
4648 if (arch_zone_lowest_possible_pfn[i] ==
4649 arch_zone_highest_possible_pfn[i])
4650 printk("empty\n");
4651 else
4652 printk("%0#10lx -> %0#10lx\n",
4653 arch_zone_lowest_possible_pfn[i],
4654 arch_zone_highest_possible_pfn[i]);
4657 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4658 printk("Movable zone start PFN for each node\n");
4659 for (i = 0; i < MAX_NUMNODES; i++) {
4660 if (zone_movable_pfn[i])
4661 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4664 /* Print out the early_node_map[] */
4665 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4666 for (i = 0; i < nr_nodemap_entries; i++)
4667 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4668 early_node_map[i].start_pfn,
4669 early_node_map[i].end_pfn);
4671 /* Initialise every node */
4672 mminit_verify_pageflags_layout();
4673 setup_nr_node_ids();
4674 for_each_online_node(nid) {
4675 pg_data_t *pgdat = NODE_DATA(nid);
4676 free_area_init_node(nid, NULL,
4677 find_min_pfn_for_node(nid), NULL);
4679 /* Any memory on that node */
4680 if (pgdat->node_present_pages)
4681 node_set_state(nid, N_HIGH_MEMORY);
4682 check_for_regular_memory(pgdat);
4686 static int __init cmdline_parse_core(char *p, unsigned long *core)
4688 unsigned long long coremem;
4689 if (!p)
4690 return -EINVAL;
4692 coremem = memparse(p, &p);
4693 *core = coremem >> PAGE_SHIFT;
4695 /* Paranoid check that UL is enough for the coremem value */
4696 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4698 return 0;
4702 * kernelcore=size sets the amount of memory for use for allocations that
4703 * cannot be reclaimed or migrated.
4705 static int __init cmdline_parse_kernelcore(char *p)
4707 return cmdline_parse_core(p, &required_kernelcore);
4711 * movablecore=size sets the amount of memory for use for allocations that
4712 * can be reclaimed or migrated.
4714 static int __init cmdline_parse_movablecore(char *p)
4716 return cmdline_parse_core(p, &required_movablecore);
4719 early_param("kernelcore", cmdline_parse_kernelcore);
4720 early_param("movablecore", cmdline_parse_movablecore);
4722 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4725 * set_dma_reserve - set the specified number of pages reserved in the first zone
4726 * @new_dma_reserve: The number of pages to mark reserved
4728 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4729 * In the DMA zone, a significant percentage may be consumed by kernel image
4730 * and other unfreeable allocations which can skew the watermarks badly. This
4731 * function may optionally be used to account for unfreeable pages in the
4732 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4733 * smaller per-cpu batchsize.
4735 void __init set_dma_reserve(unsigned long new_dma_reserve)
4737 dma_reserve = new_dma_reserve;
4740 #ifndef CONFIG_NEED_MULTIPLE_NODES
4741 struct pglist_data __refdata contig_page_data = {
4742 #ifndef CONFIG_NO_BOOTMEM
4743 .bdata = &bootmem_node_data[0]
4744 #endif
4746 EXPORT_SYMBOL(contig_page_data);
4747 #endif
4749 void __init free_area_init(unsigned long *zones_size)
4751 free_area_init_node(0, zones_size,
4752 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4755 static int page_alloc_cpu_notify(struct notifier_block *self,
4756 unsigned long action, void *hcpu)
4758 int cpu = (unsigned long)hcpu;
4760 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4761 drain_pages(cpu);
4764 * Spill the event counters of the dead processor
4765 * into the current processors event counters.
4766 * This artificially elevates the count of the current
4767 * processor.
4769 vm_events_fold_cpu(cpu);
4772 * Zero the differential counters of the dead processor
4773 * so that the vm statistics are consistent.
4775 * This is only okay since the processor is dead and cannot
4776 * race with what we are doing.
4778 refresh_cpu_vm_stats(cpu);
4780 return NOTIFY_OK;
4783 void __init page_alloc_init(void)
4785 hotcpu_notifier(page_alloc_cpu_notify, 0);
4789 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4790 * or min_free_kbytes changes.
4792 static void calculate_totalreserve_pages(void)
4794 struct pglist_data *pgdat;
4795 unsigned long reserve_pages = 0;
4796 enum zone_type i, j;
4798 for_each_online_pgdat(pgdat) {
4799 for (i = 0; i < MAX_NR_ZONES; i++) {
4800 struct zone *zone = pgdat->node_zones + i;
4801 unsigned long max = 0;
4803 /* Find valid and maximum lowmem_reserve in the zone */
4804 for (j = i; j < MAX_NR_ZONES; j++) {
4805 if (zone->lowmem_reserve[j] > max)
4806 max = zone->lowmem_reserve[j];
4809 /* we treat the high watermark as reserved pages. */
4810 max += high_wmark_pages(zone);
4812 if (max > zone->present_pages)
4813 max = zone->present_pages;
4814 reserve_pages += max;
4817 totalreserve_pages = reserve_pages;
4821 * setup_per_zone_lowmem_reserve - called whenever
4822 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4823 * has a correct pages reserved value, so an adequate number of
4824 * pages are left in the zone after a successful __alloc_pages().
4826 static void setup_per_zone_lowmem_reserve(void)
4828 struct pglist_data *pgdat;
4829 enum zone_type j, idx;
4831 for_each_online_pgdat(pgdat) {
4832 for (j = 0; j < MAX_NR_ZONES; j++) {
4833 struct zone *zone = pgdat->node_zones + j;
4834 unsigned long present_pages = zone->present_pages;
4836 zone->lowmem_reserve[j] = 0;
4838 idx = j;
4839 while (idx) {
4840 struct zone *lower_zone;
4842 idx--;
4844 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4845 sysctl_lowmem_reserve_ratio[idx] = 1;
4847 lower_zone = pgdat->node_zones + idx;
4848 lower_zone->lowmem_reserve[j] = present_pages /
4849 sysctl_lowmem_reserve_ratio[idx];
4850 present_pages += lower_zone->present_pages;
4855 /* update totalreserve_pages */
4856 calculate_totalreserve_pages();
4860 * setup_per_zone_wmarks - called when min_free_kbytes changes
4861 * or when memory is hot-{added|removed}
4863 * Ensures that the watermark[min,low,high] values for each zone are set
4864 * correctly with respect to min_free_kbytes.
4866 void setup_per_zone_wmarks(void)
4868 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4869 unsigned long lowmem_pages = 0;
4870 struct zone *zone;
4871 unsigned long flags;
4873 /* Calculate total number of !ZONE_HIGHMEM pages */
4874 for_each_zone(zone) {
4875 if (!is_highmem(zone))
4876 lowmem_pages += zone->present_pages;
4879 for_each_zone(zone) {
4880 u64 tmp;
4882 spin_lock_irqsave(&zone->lock, flags);
4883 tmp = (u64)pages_min * zone->present_pages;
4884 do_div(tmp, lowmem_pages);
4885 if (is_highmem(zone)) {
4887 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4888 * need highmem pages, so cap pages_min to a small
4889 * value here.
4891 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4892 * deltas controls asynch page reclaim, and so should
4893 * not be capped for highmem.
4895 int min_pages;
4897 min_pages = zone->present_pages / 1024;
4898 if (min_pages < SWAP_CLUSTER_MAX)
4899 min_pages = SWAP_CLUSTER_MAX;
4900 if (min_pages > 128)
4901 min_pages = 128;
4902 zone->watermark[WMARK_MIN] = min_pages;
4903 } else {
4905 * If it's a lowmem zone, reserve a number of pages
4906 * proportionate to the zone's size.
4908 zone->watermark[WMARK_MIN] = tmp;
4911 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4912 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4913 setup_zone_migrate_reserve(zone);
4914 spin_unlock_irqrestore(&zone->lock, flags);
4917 /* update totalreserve_pages */
4918 calculate_totalreserve_pages();
4922 * The inactive anon list should be small enough that the VM never has to
4923 * do too much work, but large enough that each inactive page has a chance
4924 * to be referenced again before it is swapped out.
4926 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4927 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4928 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4929 * the anonymous pages are kept on the inactive list.
4931 * total target max
4932 * memory ratio inactive anon
4933 * -------------------------------------
4934 * 10MB 1 5MB
4935 * 100MB 1 50MB
4936 * 1GB 3 250MB
4937 * 10GB 10 0.9GB
4938 * 100GB 31 3GB
4939 * 1TB 101 10GB
4940 * 10TB 320 32GB
4942 void calculate_zone_inactive_ratio(struct zone *zone)
4944 unsigned int gb, ratio;
4946 /* Zone size in gigabytes */
4947 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4948 if (gb)
4949 ratio = int_sqrt(10 * gb);
4950 else
4951 ratio = 1;
4953 zone->inactive_ratio = ratio;
4956 static void __init setup_per_zone_inactive_ratio(void)
4958 struct zone *zone;
4960 for_each_zone(zone)
4961 calculate_zone_inactive_ratio(zone);
4965 * Initialise min_free_kbytes.
4967 * For small machines we want it small (128k min). For large machines
4968 * we want it large (64MB max). But it is not linear, because network
4969 * bandwidth does not increase linearly with machine size. We use
4971 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4972 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4974 * which yields
4976 * 16MB: 512k
4977 * 32MB: 724k
4978 * 64MB: 1024k
4979 * 128MB: 1448k
4980 * 256MB: 2048k
4981 * 512MB: 2896k
4982 * 1024MB: 4096k
4983 * 2048MB: 5792k
4984 * 4096MB: 8192k
4985 * 8192MB: 11584k
4986 * 16384MB: 16384k
4988 static int __init init_per_zone_wmark_min(void)
4990 unsigned long lowmem_kbytes;
4992 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4994 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4995 if (min_free_kbytes < 128)
4996 min_free_kbytes = 128;
4997 if (min_free_kbytes > 65536)
4998 min_free_kbytes = 65536;
4999 setup_per_zone_wmarks();
5000 setup_per_zone_lowmem_reserve();
5001 setup_per_zone_inactive_ratio();
5002 return 0;
5004 module_init(init_per_zone_wmark_min)
5007 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5008 * that we can call two helper functions whenever min_free_kbytes
5009 * changes.
5011 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5012 void __user *buffer, size_t *length, loff_t *ppos)
5014 proc_dointvec(table, write, buffer, length, ppos);
5015 if (write)
5016 setup_per_zone_wmarks();
5017 return 0;
5020 #ifdef CONFIG_NUMA
5021 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5022 void __user *buffer, size_t *length, loff_t *ppos)
5024 struct zone *zone;
5025 int rc;
5027 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5028 if (rc)
5029 return rc;
5031 for_each_zone(zone)
5032 zone->min_unmapped_pages = (zone->present_pages *
5033 sysctl_min_unmapped_ratio) / 100;
5034 return 0;
5037 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5038 void __user *buffer, size_t *length, loff_t *ppos)
5040 struct zone *zone;
5041 int rc;
5043 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5044 if (rc)
5045 return rc;
5047 for_each_zone(zone)
5048 zone->min_slab_pages = (zone->present_pages *
5049 sysctl_min_slab_ratio) / 100;
5050 return 0;
5052 #endif
5055 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5056 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5057 * whenever sysctl_lowmem_reserve_ratio changes.
5059 * The reserve ratio obviously has absolutely no relation with the
5060 * minimum watermarks. The lowmem reserve ratio can only make sense
5061 * if in function of the boot time zone sizes.
5063 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5064 void __user *buffer, size_t *length, loff_t *ppos)
5066 proc_dointvec_minmax(table, write, buffer, length, ppos);
5067 setup_per_zone_lowmem_reserve();
5068 return 0;
5072 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5073 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5074 * can have before it gets flushed back to buddy allocator.
5077 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5078 void __user *buffer, size_t *length, loff_t *ppos)
5080 struct zone *zone;
5081 unsigned int cpu;
5082 int ret;
5084 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5085 if (!write || (ret == -EINVAL))
5086 return ret;
5087 for_each_populated_zone(zone) {
5088 for_each_possible_cpu(cpu) {
5089 unsigned long high;
5090 high = zone->present_pages / percpu_pagelist_fraction;
5091 setup_pagelist_highmark(
5092 per_cpu_ptr(zone->pageset, cpu), high);
5095 return 0;
5098 int hashdist = HASHDIST_DEFAULT;
5100 #ifdef CONFIG_NUMA
5101 static int __init set_hashdist(char *str)
5103 if (!str)
5104 return 0;
5105 hashdist = simple_strtoul(str, &str, 0);
5106 return 1;
5108 __setup("hashdist=", set_hashdist);
5109 #endif
5112 * allocate a large system hash table from bootmem
5113 * - it is assumed that the hash table must contain an exact power-of-2
5114 * quantity of entries
5115 * - limit is the number of hash buckets, not the total allocation size
5117 void *__init alloc_large_system_hash(const char *tablename,
5118 unsigned long bucketsize,
5119 unsigned long numentries,
5120 int scale,
5121 int flags,
5122 unsigned int *_hash_shift,
5123 unsigned int *_hash_mask,
5124 unsigned long limit)
5126 unsigned long long max = limit;
5127 unsigned long log2qty, size;
5128 void *table = NULL;
5130 /* allow the kernel cmdline to have a say */
5131 if (!numentries) {
5132 /* round applicable memory size up to nearest megabyte */
5133 numentries = nr_kernel_pages;
5134 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5135 numentries >>= 20 - PAGE_SHIFT;
5136 numentries <<= 20 - PAGE_SHIFT;
5138 /* limit to 1 bucket per 2^scale bytes of low memory */
5139 if (scale > PAGE_SHIFT)
5140 numentries >>= (scale - PAGE_SHIFT);
5141 else
5142 numentries <<= (PAGE_SHIFT - scale);
5144 /* Make sure we've got at least a 0-order allocation.. */
5145 if (unlikely(flags & HASH_SMALL)) {
5146 /* Makes no sense without HASH_EARLY */
5147 WARN_ON(!(flags & HASH_EARLY));
5148 if (!(numentries >> *_hash_shift)) {
5149 numentries = 1UL << *_hash_shift;
5150 BUG_ON(!numentries);
5152 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5153 numentries = PAGE_SIZE / bucketsize;
5155 numentries = roundup_pow_of_two(numentries);
5157 /* limit allocation size to 1/16 total memory by default */
5158 if (max == 0) {
5159 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5160 do_div(max, bucketsize);
5163 if (numentries > max)
5164 numentries = max;
5166 log2qty = ilog2(numentries);
5168 do {
5169 size = bucketsize << log2qty;
5170 if (flags & HASH_EARLY)
5171 table = alloc_bootmem_nopanic(size);
5172 else if (hashdist)
5173 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5174 else {
5176 * If bucketsize is not a power-of-two, we may free
5177 * some pages at the end of hash table which
5178 * alloc_pages_exact() automatically does
5180 if (get_order(size) < MAX_ORDER) {
5181 table = alloc_pages_exact(size, GFP_ATOMIC);
5182 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5185 } while (!table && size > PAGE_SIZE && --log2qty);
5187 if (!table)
5188 panic("Failed to allocate %s hash table\n", tablename);
5190 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5191 tablename,
5192 (1UL << log2qty),
5193 ilog2(size) - PAGE_SHIFT,
5194 size);
5196 if (_hash_shift)
5197 *_hash_shift = log2qty;
5198 if (_hash_mask)
5199 *_hash_mask = (1 << log2qty) - 1;
5201 return table;
5204 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5205 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5206 unsigned long pfn)
5208 #ifdef CONFIG_SPARSEMEM
5209 return __pfn_to_section(pfn)->pageblock_flags;
5210 #else
5211 return zone->pageblock_flags;
5212 #endif /* CONFIG_SPARSEMEM */
5215 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5217 #ifdef CONFIG_SPARSEMEM
5218 pfn &= (PAGES_PER_SECTION-1);
5219 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5220 #else
5221 pfn = pfn - zone->zone_start_pfn;
5222 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5223 #endif /* CONFIG_SPARSEMEM */
5227 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5228 * @page: The page within the block of interest
5229 * @start_bitidx: The first bit of interest to retrieve
5230 * @end_bitidx: The last bit of interest
5231 * returns pageblock_bits flags
5233 unsigned long get_pageblock_flags_group(struct page *page,
5234 int start_bitidx, int end_bitidx)
5236 struct zone *zone;
5237 unsigned long *bitmap;
5238 unsigned long pfn, bitidx;
5239 unsigned long flags = 0;
5240 unsigned long value = 1;
5242 zone = page_zone(page);
5243 pfn = page_to_pfn(page);
5244 bitmap = get_pageblock_bitmap(zone, pfn);
5245 bitidx = pfn_to_bitidx(zone, pfn);
5247 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5248 if (test_bit(bitidx + start_bitidx, bitmap))
5249 flags |= value;
5251 return flags;
5255 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5256 * @page: The page within the block of interest
5257 * @start_bitidx: The first bit of interest
5258 * @end_bitidx: The last bit of interest
5259 * @flags: The flags to set
5261 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5262 int start_bitidx, int end_bitidx)
5264 struct zone *zone;
5265 unsigned long *bitmap;
5266 unsigned long pfn, bitidx;
5267 unsigned long value = 1;
5269 zone = page_zone(page);
5270 pfn = page_to_pfn(page);
5271 bitmap = get_pageblock_bitmap(zone, pfn);
5272 bitidx = pfn_to_bitidx(zone, pfn);
5273 VM_BUG_ON(pfn < zone->zone_start_pfn);
5274 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5276 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5277 if (flags & value)
5278 __set_bit(bitidx + start_bitidx, bitmap);
5279 else
5280 __clear_bit(bitidx + start_bitidx, bitmap);
5284 * This is designed as sub function...plz see page_isolation.c also.
5285 * set/clear page block's type to be ISOLATE.
5286 * page allocater never alloc memory from ISOLATE block.
5289 int set_migratetype_isolate(struct page *page)
5291 struct zone *zone;
5292 struct page *curr_page;
5293 unsigned long flags, pfn, iter;
5294 unsigned long immobile = 0;
5295 struct memory_isolate_notify arg;
5296 int notifier_ret;
5297 int ret = -EBUSY;
5298 int zone_idx;
5300 zone = page_zone(page);
5301 zone_idx = zone_idx(zone);
5303 spin_lock_irqsave(&zone->lock, flags);
5304 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5305 zone_idx == ZONE_MOVABLE) {
5306 ret = 0;
5307 goto out;
5310 pfn = page_to_pfn(page);
5311 arg.start_pfn = pfn;
5312 arg.nr_pages = pageblock_nr_pages;
5313 arg.pages_found = 0;
5316 * It may be possible to isolate a pageblock even if the
5317 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5318 * notifier chain is used by balloon drivers to return the
5319 * number of pages in a range that are held by the balloon
5320 * driver to shrink memory. If all the pages are accounted for
5321 * by balloons, are free, or on the LRU, isolation can continue.
5322 * Later, for example, when memory hotplug notifier runs, these
5323 * pages reported as "can be isolated" should be isolated(freed)
5324 * by the balloon driver through the memory notifier chain.
5326 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5327 notifier_ret = notifier_to_errno(notifier_ret);
5328 if (notifier_ret || !arg.pages_found)
5329 goto out;
5331 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5332 if (!pfn_valid_within(pfn))
5333 continue;
5335 curr_page = pfn_to_page(iter);
5336 if (!page_count(curr_page) || PageLRU(curr_page))
5337 continue;
5339 immobile++;
5342 if (arg.pages_found == immobile)
5343 ret = 0;
5345 out:
5346 if (!ret) {
5347 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5348 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5351 spin_unlock_irqrestore(&zone->lock, flags);
5352 if (!ret)
5353 drain_all_pages();
5354 return ret;
5357 void unset_migratetype_isolate(struct page *page)
5359 struct zone *zone;
5360 unsigned long flags;
5361 zone = page_zone(page);
5362 spin_lock_irqsave(&zone->lock, flags);
5363 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5364 goto out;
5365 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5366 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5367 out:
5368 spin_unlock_irqrestore(&zone->lock, flags);
5371 #ifdef CONFIG_MEMORY_HOTREMOVE
5373 * All pages in the range must be isolated before calling this.
5375 void
5376 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5378 struct page *page;
5379 struct zone *zone;
5380 int order, i;
5381 unsigned long pfn;
5382 unsigned long flags;
5383 /* find the first valid pfn */
5384 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5385 if (pfn_valid(pfn))
5386 break;
5387 if (pfn == end_pfn)
5388 return;
5389 zone = page_zone(pfn_to_page(pfn));
5390 spin_lock_irqsave(&zone->lock, flags);
5391 pfn = start_pfn;
5392 while (pfn < end_pfn) {
5393 if (!pfn_valid(pfn)) {
5394 pfn++;
5395 continue;
5397 page = pfn_to_page(pfn);
5398 BUG_ON(page_count(page));
5399 BUG_ON(!PageBuddy(page));
5400 order = page_order(page);
5401 #ifdef CONFIG_DEBUG_VM
5402 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5403 pfn, 1 << order, end_pfn);
5404 #endif
5405 list_del(&page->lru);
5406 rmv_page_order(page);
5407 zone->free_area[order].nr_free--;
5408 __mod_zone_page_state(zone, NR_FREE_PAGES,
5409 - (1UL << order));
5410 for (i = 0; i < (1 << order); i++)
5411 SetPageReserved((page+i));
5412 pfn += (1 << order);
5414 spin_unlock_irqrestore(&zone->lock, flags);
5416 #endif
5418 #ifdef CONFIG_MEMORY_FAILURE
5419 bool is_free_buddy_page(struct page *page)
5421 struct zone *zone = page_zone(page);
5422 unsigned long pfn = page_to_pfn(page);
5423 unsigned long flags;
5424 int order;
5426 spin_lock_irqsave(&zone->lock, flags);
5427 for (order = 0; order < MAX_ORDER; order++) {
5428 struct page *page_head = page - (pfn & ((1 << order) - 1));
5430 if (PageBuddy(page_head) && page_order(page_head) >= order)
5431 break;
5433 spin_unlock_irqrestore(&zone->lock, flags);
5435 return order < MAX_ORDER;
5437 #endif
5439 static struct trace_print_flags pageflag_names[] = {
5440 {1UL << PG_locked, "locked" },
5441 {1UL << PG_error, "error" },
5442 {1UL << PG_referenced, "referenced" },
5443 {1UL << PG_uptodate, "uptodate" },
5444 {1UL << PG_dirty, "dirty" },
5445 {1UL << PG_lru, "lru" },
5446 {1UL << PG_active, "active" },
5447 {1UL << PG_slab, "slab" },
5448 {1UL << PG_owner_priv_1, "owner_priv_1" },
5449 {1UL << PG_arch_1, "arch_1" },
5450 {1UL << PG_reserved, "reserved" },
5451 {1UL << PG_private, "private" },
5452 {1UL << PG_private_2, "private_2" },
5453 {1UL << PG_writeback, "writeback" },
5454 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5455 {1UL << PG_head, "head" },
5456 {1UL << PG_tail, "tail" },
5457 #else
5458 {1UL << PG_compound, "compound" },
5459 #endif
5460 {1UL << PG_swapcache, "swapcache" },
5461 {1UL << PG_mappedtodisk, "mappedtodisk" },
5462 {1UL << PG_reclaim, "reclaim" },
5463 {1UL << PG_buddy, "buddy" },
5464 {1UL << PG_swapbacked, "swapbacked" },
5465 {1UL << PG_unevictable, "unevictable" },
5466 #ifdef CONFIG_MMU
5467 {1UL << PG_mlocked, "mlocked" },
5468 #endif
5469 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5470 {1UL << PG_uncached, "uncached" },
5471 #endif
5472 #ifdef CONFIG_MEMORY_FAILURE
5473 {1UL << PG_hwpoison, "hwpoison" },
5474 #endif
5475 {-1UL, NULL },
5478 static void dump_page_flags(unsigned long flags)
5480 const char *delim = "";
5481 unsigned long mask;
5482 int i;
5484 printk(KERN_ALERT "page flags: %#lx(", flags);
5486 /* remove zone id */
5487 flags &= (1UL << NR_PAGEFLAGS) - 1;
5489 for (i = 0; pageflag_names[i].name && flags; i++) {
5491 mask = pageflag_names[i].mask;
5492 if ((flags & mask) != mask)
5493 continue;
5495 flags &= ~mask;
5496 printk("%s%s", delim, pageflag_names[i].name);
5497 delim = "|";
5500 /* check for left over flags */
5501 if (flags)
5502 printk("%s%#lx", delim, flags);
5504 printk(")\n");
5507 void dump_page(struct page *page)
5509 printk(KERN_ALERT
5510 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5511 page, page_count(page), page_mapcount(page),
5512 page->mapping, page->index);
5513 dump_page_flags(page->flags);