drm/i915: Quieten sparse warnings for missing prototypes.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blobe0b7ddc917c20f645d94860db7c2dd11c5bdfbe4
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
52 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
53 unsigned alignment);
54 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
55 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
56 struct drm_i915_gem_pwrite *args,
57 struct drm_file *file_priv);
58 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60 static LIST_HEAD(shrink_list);
61 static DEFINE_SPINLOCK(shrink_list_lock);
63 static inline bool
64 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
66 return obj_priv->gtt_space &&
67 !obj_priv->active &&
68 obj_priv->pin_count == 0;
71 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
72 unsigned long end)
74 drm_i915_private_t *dev_priv = dev->dev_private;
76 if (start >= end ||
77 (start & (PAGE_SIZE - 1)) != 0 ||
78 (end & (PAGE_SIZE - 1)) != 0) {
79 return -EINVAL;
82 drm_mm_init(&dev_priv->mm.gtt_space, start,
83 end - start);
85 dev->gtt_total = (uint32_t) (end - start);
87 return 0;
90 int
91 i915_gem_init_ioctl(struct drm_device *dev, void *data,
92 struct drm_file *file_priv)
94 struct drm_i915_gem_init *args = data;
95 int ret;
97 mutex_lock(&dev->struct_mutex);
98 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
99 mutex_unlock(&dev->struct_mutex);
101 return ret;
105 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
106 struct drm_file *file_priv)
108 struct drm_i915_gem_get_aperture *args = data;
110 if (!(dev->driver->driver_features & DRIVER_GEM))
111 return -ENODEV;
113 args->aper_size = dev->gtt_total;
114 args->aper_available_size = (args->aper_size -
115 atomic_read(&dev->pin_memory));
117 return 0;
122 * Creates a new mm object and returns a handle to it.
125 i915_gem_create_ioctl(struct drm_device *dev, void *data,
126 struct drm_file *file_priv)
128 struct drm_i915_gem_create *args = data;
129 struct drm_gem_object *obj;
130 int ret;
131 u32 handle;
133 args->size = roundup(args->size, PAGE_SIZE);
135 /* Allocate the new object */
136 obj = i915_gem_alloc_object(dev, args->size);
137 if (obj == NULL)
138 return -ENOMEM;
140 ret = drm_gem_handle_create(file_priv, obj, &handle);
141 if (ret) {
142 drm_gem_object_unreference_unlocked(obj);
143 return ret;
146 /* Sink the floating reference from kref_init(handlecount) */
147 drm_gem_object_handle_unreference_unlocked(obj);
149 args->handle = handle;
150 return 0;
153 static inline int
154 fast_shmem_read(struct page **pages,
155 loff_t page_base, int page_offset,
156 char __user *data,
157 int length)
159 char __iomem *vaddr;
160 int unwritten;
162 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
163 if (vaddr == NULL)
164 return -ENOMEM;
165 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
166 kunmap_atomic(vaddr, KM_USER0);
168 if (unwritten)
169 return -EFAULT;
171 return 0;
174 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
176 drm_i915_private_t *dev_priv = obj->dev->dev_private;
177 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
179 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
180 obj_priv->tiling_mode != I915_TILING_NONE;
183 static inline void
184 slow_shmem_copy(struct page *dst_page,
185 int dst_offset,
186 struct page *src_page,
187 int src_offset,
188 int length)
190 char *dst_vaddr, *src_vaddr;
192 dst_vaddr = kmap(dst_page);
193 src_vaddr = kmap(src_page);
195 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
197 kunmap(src_page);
198 kunmap(dst_page);
201 static inline void
202 slow_shmem_bit17_copy(struct page *gpu_page,
203 int gpu_offset,
204 struct page *cpu_page,
205 int cpu_offset,
206 int length,
207 int is_read)
209 char *gpu_vaddr, *cpu_vaddr;
211 /* Use the unswizzled path if this page isn't affected. */
212 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
213 if (is_read)
214 return slow_shmem_copy(cpu_page, cpu_offset,
215 gpu_page, gpu_offset, length);
216 else
217 return slow_shmem_copy(gpu_page, gpu_offset,
218 cpu_page, cpu_offset, length);
221 gpu_vaddr = kmap(gpu_page);
222 cpu_vaddr = kmap(cpu_page);
224 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225 * XORing with the other bits (A9 for Y, A9 and A10 for X)
227 while (length > 0) {
228 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229 int this_length = min(cacheline_end - gpu_offset, length);
230 int swizzled_gpu_offset = gpu_offset ^ 64;
232 if (is_read) {
233 memcpy(cpu_vaddr + cpu_offset,
234 gpu_vaddr + swizzled_gpu_offset,
235 this_length);
236 } else {
237 memcpy(gpu_vaddr + swizzled_gpu_offset,
238 cpu_vaddr + cpu_offset,
239 this_length);
241 cpu_offset += this_length;
242 gpu_offset += this_length;
243 length -= this_length;
246 kunmap(cpu_page);
247 kunmap(gpu_page);
251 * This is the fast shmem pread path, which attempts to copy_from_user directly
252 * from the backing pages of the object to the user's address space. On a
253 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255 static int
256 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
257 struct drm_i915_gem_pread *args,
258 struct drm_file *file_priv)
260 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
261 ssize_t remain;
262 loff_t offset, page_base;
263 char __user *user_data;
264 int page_offset, page_length;
265 int ret;
267 user_data = (char __user *) (uintptr_t) args->data_ptr;
268 remain = args->size;
270 mutex_lock(&dev->struct_mutex);
272 ret = i915_gem_object_get_pages(obj, 0);
273 if (ret != 0)
274 goto fail_unlock;
276 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
277 args->size);
278 if (ret != 0)
279 goto fail_put_pages;
281 obj_priv = to_intel_bo(obj);
282 offset = args->offset;
284 while (remain > 0) {
285 /* Operation in this page
287 * page_base = page offset within aperture
288 * page_offset = offset within page
289 * page_length = bytes to copy for this page
291 page_base = (offset & ~(PAGE_SIZE-1));
292 page_offset = offset & (PAGE_SIZE-1);
293 page_length = remain;
294 if ((page_offset + remain) > PAGE_SIZE)
295 page_length = PAGE_SIZE - page_offset;
297 ret = fast_shmem_read(obj_priv->pages,
298 page_base, page_offset,
299 user_data, page_length);
300 if (ret)
301 goto fail_put_pages;
303 remain -= page_length;
304 user_data += page_length;
305 offset += page_length;
308 fail_put_pages:
309 i915_gem_object_put_pages(obj);
310 fail_unlock:
311 mutex_unlock(&dev->struct_mutex);
313 return ret;
316 static int
317 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
319 int ret;
321 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
323 /* If we've insufficient memory to map in the pages, attempt
324 * to make some space by throwing out some old buffers.
326 if (ret == -ENOMEM) {
327 struct drm_device *dev = obj->dev;
329 ret = i915_gem_evict_something(dev, obj->size,
330 i915_gem_get_gtt_alignment(obj));
331 if (ret)
332 return ret;
334 ret = i915_gem_object_get_pages(obj, 0);
337 return ret;
341 * This is the fallback shmem pread path, which allocates temporary storage
342 * in kernel space to copy_to_user into outside of the struct_mutex, so we
343 * can copy out of the object's backing pages while holding the struct mutex
344 * and not take page faults.
346 static int
347 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
348 struct drm_i915_gem_pread *args,
349 struct drm_file *file_priv)
351 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
352 struct mm_struct *mm = current->mm;
353 struct page **user_pages;
354 ssize_t remain;
355 loff_t offset, pinned_pages, i;
356 loff_t first_data_page, last_data_page, num_pages;
357 int shmem_page_index, shmem_page_offset;
358 int data_page_index, data_page_offset;
359 int page_length;
360 int ret;
361 uint64_t data_ptr = args->data_ptr;
362 int do_bit17_swizzling;
364 remain = args->size;
366 /* Pin the user pages containing the data. We can't fault while
367 * holding the struct mutex, yet we want to hold it while
368 * dereferencing the user data.
370 first_data_page = data_ptr / PAGE_SIZE;
371 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
372 num_pages = last_data_page - first_data_page + 1;
374 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
375 if (user_pages == NULL)
376 return -ENOMEM;
378 down_read(&mm->mmap_sem);
379 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
380 num_pages, 1, 0, user_pages, NULL);
381 up_read(&mm->mmap_sem);
382 if (pinned_pages < num_pages) {
383 ret = -EFAULT;
384 goto fail_put_user_pages;
387 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
389 mutex_lock(&dev->struct_mutex);
391 ret = i915_gem_object_get_pages_or_evict(obj);
392 if (ret)
393 goto fail_unlock;
395 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
396 args->size);
397 if (ret != 0)
398 goto fail_put_pages;
400 obj_priv = to_intel_bo(obj);
401 offset = args->offset;
403 while (remain > 0) {
404 /* Operation in this page
406 * shmem_page_index = page number within shmem file
407 * shmem_page_offset = offset within page in shmem file
408 * data_page_index = page number in get_user_pages return
409 * data_page_offset = offset with data_page_index page.
410 * page_length = bytes to copy for this page
412 shmem_page_index = offset / PAGE_SIZE;
413 shmem_page_offset = offset & ~PAGE_MASK;
414 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
415 data_page_offset = data_ptr & ~PAGE_MASK;
417 page_length = remain;
418 if ((shmem_page_offset + page_length) > PAGE_SIZE)
419 page_length = PAGE_SIZE - shmem_page_offset;
420 if ((data_page_offset + page_length) > PAGE_SIZE)
421 page_length = PAGE_SIZE - data_page_offset;
423 if (do_bit17_swizzling) {
424 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
425 shmem_page_offset,
426 user_pages[data_page_index],
427 data_page_offset,
428 page_length,
430 } else {
431 slow_shmem_copy(user_pages[data_page_index],
432 data_page_offset,
433 obj_priv->pages[shmem_page_index],
434 shmem_page_offset,
435 page_length);
438 remain -= page_length;
439 data_ptr += page_length;
440 offset += page_length;
443 fail_put_pages:
444 i915_gem_object_put_pages(obj);
445 fail_unlock:
446 mutex_unlock(&dev->struct_mutex);
447 fail_put_user_pages:
448 for (i = 0; i < pinned_pages; i++) {
449 SetPageDirty(user_pages[i]);
450 page_cache_release(user_pages[i]);
452 drm_free_large(user_pages);
454 return ret;
458 * Reads data from the object referenced by handle.
460 * On error, the contents of *data are undefined.
463 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
464 struct drm_file *file_priv)
466 struct drm_i915_gem_pread *args = data;
467 struct drm_gem_object *obj;
468 struct drm_i915_gem_object *obj_priv;
469 int ret;
471 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
472 if (obj == NULL)
473 return -ENOENT;
474 obj_priv = to_intel_bo(obj);
476 /* Bounds check source.
478 * XXX: This could use review for overflow issues...
480 if (args->offset > obj->size || args->size > obj->size ||
481 args->offset + args->size > obj->size) {
482 drm_gem_object_unreference_unlocked(obj);
483 return -EINVAL;
486 if (i915_gem_object_needs_bit17_swizzle(obj)) {
487 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
488 } else {
489 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
490 if (ret != 0)
491 ret = i915_gem_shmem_pread_slow(dev, obj, args,
492 file_priv);
495 drm_gem_object_unreference_unlocked(obj);
497 return ret;
500 /* This is the fast write path which cannot handle
501 * page faults in the source data
504 static inline int
505 fast_user_write(struct io_mapping *mapping,
506 loff_t page_base, int page_offset,
507 char __user *user_data,
508 int length)
510 char *vaddr_atomic;
511 unsigned long unwritten;
513 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
514 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
515 user_data, length);
516 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
517 if (unwritten)
518 return -EFAULT;
519 return 0;
522 /* Here's the write path which can sleep for
523 * page faults
526 static inline void
527 slow_kernel_write(struct io_mapping *mapping,
528 loff_t gtt_base, int gtt_offset,
529 struct page *user_page, int user_offset,
530 int length)
532 char __iomem *dst_vaddr;
533 char *src_vaddr;
535 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
536 src_vaddr = kmap(user_page);
538 memcpy_toio(dst_vaddr + gtt_offset,
539 src_vaddr + user_offset,
540 length);
542 kunmap(user_page);
543 io_mapping_unmap(dst_vaddr);
546 static inline int
547 fast_shmem_write(struct page **pages,
548 loff_t page_base, int page_offset,
549 char __user *data,
550 int length)
552 char __iomem *vaddr;
553 unsigned long unwritten;
555 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
556 if (vaddr == NULL)
557 return -ENOMEM;
558 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
559 kunmap_atomic(vaddr, KM_USER0);
561 if (unwritten)
562 return -EFAULT;
563 return 0;
567 * This is the fast pwrite path, where we copy the data directly from the
568 * user into the GTT, uncached.
570 static int
571 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
572 struct drm_i915_gem_pwrite *args,
573 struct drm_file *file_priv)
575 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
576 drm_i915_private_t *dev_priv = dev->dev_private;
577 ssize_t remain;
578 loff_t offset, page_base;
579 char __user *user_data;
580 int page_offset, page_length;
581 int ret;
583 user_data = (char __user *) (uintptr_t) args->data_ptr;
584 remain = args->size;
585 if (!access_ok(VERIFY_READ, user_data, remain))
586 return -EFAULT;
589 mutex_lock(&dev->struct_mutex);
590 ret = i915_gem_object_pin(obj, 0);
591 if (ret) {
592 mutex_unlock(&dev->struct_mutex);
593 return ret;
595 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
596 if (ret)
597 goto fail;
599 obj_priv = to_intel_bo(obj);
600 offset = obj_priv->gtt_offset + args->offset;
602 while (remain > 0) {
603 /* Operation in this page
605 * page_base = page offset within aperture
606 * page_offset = offset within page
607 * page_length = bytes to copy for this page
609 page_base = (offset & ~(PAGE_SIZE-1));
610 page_offset = offset & (PAGE_SIZE-1);
611 page_length = remain;
612 if ((page_offset + remain) > PAGE_SIZE)
613 page_length = PAGE_SIZE - page_offset;
615 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
616 page_offset, user_data, page_length);
618 /* If we get a fault while copying data, then (presumably) our
619 * source page isn't available. Return the error and we'll
620 * retry in the slow path.
622 if (ret)
623 goto fail;
625 remain -= page_length;
626 user_data += page_length;
627 offset += page_length;
630 fail:
631 i915_gem_object_unpin(obj);
632 mutex_unlock(&dev->struct_mutex);
634 return ret;
638 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
639 * the memory and maps it using kmap_atomic for copying.
641 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
642 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
644 static int
645 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
646 struct drm_i915_gem_pwrite *args,
647 struct drm_file *file_priv)
649 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
650 drm_i915_private_t *dev_priv = dev->dev_private;
651 ssize_t remain;
652 loff_t gtt_page_base, offset;
653 loff_t first_data_page, last_data_page, num_pages;
654 loff_t pinned_pages, i;
655 struct page **user_pages;
656 struct mm_struct *mm = current->mm;
657 int gtt_page_offset, data_page_offset, data_page_index, page_length;
658 int ret;
659 uint64_t data_ptr = args->data_ptr;
661 remain = args->size;
663 /* Pin the user pages containing the data. We can't fault while
664 * holding the struct mutex, and all of the pwrite implementations
665 * want to hold it while dereferencing the user data.
667 first_data_page = data_ptr / PAGE_SIZE;
668 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
669 num_pages = last_data_page - first_data_page + 1;
671 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
672 if (user_pages == NULL)
673 return -ENOMEM;
675 down_read(&mm->mmap_sem);
676 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
677 num_pages, 0, 0, user_pages, NULL);
678 up_read(&mm->mmap_sem);
679 if (pinned_pages < num_pages) {
680 ret = -EFAULT;
681 goto out_unpin_pages;
684 mutex_lock(&dev->struct_mutex);
685 ret = i915_gem_object_pin(obj, 0);
686 if (ret)
687 goto out_unlock;
689 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
690 if (ret)
691 goto out_unpin_object;
693 obj_priv = to_intel_bo(obj);
694 offset = obj_priv->gtt_offset + args->offset;
696 while (remain > 0) {
697 /* Operation in this page
699 * gtt_page_base = page offset within aperture
700 * gtt_page_offset = offset within page in aperture
701 * data_page_index = page number in get_user_pages return
702 * data_page_offset = offset with data_page_index page.
703 * page_length = bytes to copy for this page
705 gtt_page_base = offset & PAGE_MASK;
706 gtt_page_offset = offset & ~PAGE_MASK;
707 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
708 data_page_offset = data_ptr & ~PAGE_MASK;
710 page_length = remain;
711 if ((gtt_page_offset + page_length) > PAGE_SIZE)
712 page_length = PAGE_SIZE - gtt_page_offset;
713 if ((data_page_offset + page_length) > PAGE_SIZE)
714 page_length = PAGE_SIZE - data_page_offset;
716 slow_kernel_write(dev_priv->mm.gtt_mapping,
717 gtt_page_base, gtt_page_offset,
718 user_pages[data_page_index],
719 data_page_offset,
720 page_length);
722 remain -= page_length;
723 offset += page_length;
724 data_ptr += page_length;
727 out_unpin_object:
728 i915_gem_object_unpin(obj);
729 out_unlock:
730 mutex_unlock(&dev->struct_mutex);
731 out_unpin_pages:
732 for (i = 0; i < pinned_pages; i++)
733 page_cache_release(user_pages[i]);
734 drm_free_large(user_pages);
736 return ret;
740 * This is the fast shmem pwrite path, which attempts to directly
741 * copy_from_user into the kmapped pages backing the object.
743 static int
744 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
745 struct drm_i915_gem_pwrite *args,
746 struct drm_file *file_priv)
748 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
749 ssize_t remain;
750 loff_t offset, page_base;
751 char __user *user_data;
752 int page_offset, page_length;
753 int ret;
755 user_data = (char __user *) (uintptr_t) args->data_ptr;
756 remain = args->size;
758 mutex_lock(&dev->struct_mutex);
760 ret = i915_gem_object_get_pages(obj, 0);
761 if (ret != 0)
762 goto fail_unlock;
764 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
765 if (ret != 0)
766 goto fail_put_pages;
768 obj_priv = to_intel_bo(obj);
769 offset = args->offset;
770 obj_priv->dirty = 1;
772 while (remain > 0) {
773 /* Operation in this page
775 * page_base = page offset within aperture
776 * page_offset = offset within page
777 * page_length = bytes to copy for this page
779 page_base = (offset & ~(PAGE_SIZE-1));
780 page_offset = offset & (PAGE_SIZE-1);
781 page_length = remain;
782 if ((page_offset + remain) > PAGE_SIZE)
783 page_length = PAGE_SIZE - page_offset;
785 ret = fast_shmem_write(obj_priv->pages,
786 page_base, page_offset,
787 user_data, page_length);
788 if (ret)
789 goto fail_put_pages;
791 remain -= page_length;
792 user_data += page_length;
793 offset += page_length;
796 fail_put_pages:
797 i915_gem_object_put_pages(obj);
798 fail_unlock:
799 mutex_unlock(&dev->struct_mutex);
801 return ret;
805 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
806 * the memory and maps it using kmap_atomic for copying.
808 * This avoids taking mmap_sem for faulting on the user's address while the
809 * struct_mutex is held.
811 static int
812 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
813 struct drm_i915_gem_pwrite *args,
814 struct drm_file *file_priv)
816 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
817 struct mm_struct *mm = current->mm;
818 struct page **user_pages;
819 ssize_t remain;
820 loff_t offset, pinned_pages, i;
821 loff_t first_data_page, last_data_page, num_pages;
822 int shmem_page_index, shmem_page_offset;
823 int data_page_index, data_page_offset;
824 int page_length;
825 int ret;
826 uint64_t data_ptr = args->data_ptr;
827 int do_bit17_swizzling;
829 remain = args->size;
831 /* Pin the user pages containing the data. We can't fault while
832 * holding the struct mutex, and all of the pwrite implementations
833 * want to hold it while dereferencing the user data.
835 first_data_page = data_ptr / PAGE_SIZE;
836 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
837 num_pages = last_data_page - first_data_page + 1;
839 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
840 if (user_pages == NULL)
841 return -ENOMEM;
843 down_read(&mm->mmap_sem);
844 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
845 num_pages, 0, 0, user_pages, NULL);
846 up_read(&mm->mmap_sem);
847 if (pinned_pages < num_pages) {
848 ret = -EFAULT;
849 goto fail_put_user_pages;
852 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
854 mutex_lock(&dev->struct_mutex);
856 ret = i915_gem_object_get_pages_or_evict(obj);
857 if (ret)
858 goto fail_unlock;
860 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
861 if (ret != 0)
862 goto fail_put_pages;
864 obj_priv = to_intel_bo(obj);
865 offset = args->offset;
866 obj_priv->dirty = 1;
868 while (remain > 0) {
869 /* Operation in this page
871 * shmem_page_index = page number within shmem file
872 * shmem_page_offset = offset within page in shmem file
873 * data_page_index = page number in get_user_pages return
874 * data_page_offset = offset with data_page_index page.
875 * page_length = bytes to copy for this page
877 shmem_page_index = offset / PAGE_SIZE;
878 shmem_page_offset = offset & ~PAGE_MASK;
879 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
880 data_page_offset = data_ptr & ~PAGE_MASK;
882 page_length = remain;
883 if ((shmem_page_offset + page_length) > PAGE_SIZE)
884 page_length = PAGE_SIZE - shmem_page_offset;
885 if ((data_page_offset + page_length) > PAGE_SIZE)
886 page_length = PAGE_SIZE - data_page_offset;
888 if (do_bit17_swizzling) {
889 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
890 shmem_page_offset,
891 user_pages[data_page_index],
892 data_page_offset,
893 page_length,
895 } else {
896 slow_shmem_copy(obj_priv->pages[shmem_page_index],
897 shmem_page_offset,
898 user_pages[data_page_index],
899 data_page_offset,
900 page_length);
903 remain -= page_length;
904 data_ptr += page_length;
905 offset += page_length;
908 fail_put_pages:
909 i915_gem_object_put_pages(obj);
910 fail_unlock:
911 mutex_unlock(&dev->struct_mutex);
912 fail_put_user_pages:
913 for (i = 0; i < pinned_pages; i++)
914 page_cache_release(user_pages[i]);
915 drm_free_large(user_pages);
917 return ret;
921 * Writes data to the object referenced by handle.
923 * On error, the contents of the buffer that were to be modified are undefined.
926 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
927 struct drm_file *file_priv)
929 struct drm_i915_gem_pwrite *args = data;
930 struct drm_gem_object *obj;
931 struct drm_i915_gem_object *obj_priv;
932 int ret = 0;
934 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
935 if (obj == NULL)
936 return -ENOENT;
937 obj_priv = to_intel_bo(obj);
939 /* Bounds check destination.
941 * XXX: This could use review for overflow issues...
943 if (args->offset > obj->size || args->size > obj->size ||
944 args->offset + args->size > obj->size) {
945 drm_gem_object_unreference_unlocked(obj);
946 return -EINVAL;
949 /* We can only do the GTT pwrite on untiled buffers, as otherwise
950 * it would end up going through the fenced access, and we'll get
951 * different detiling behavior between reading and writing.
952 * pread/pwrite currently are reading and writing from the CPU
953 * perspective, requiring manual detiling by the client.
955 if (obj_priv->phys_obj)
956 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
957 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
958 dev->gtt_total != 0 &&
959 obj->write_domain != I915_GEM_DOMAIN_CPU) {
960 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
961 if (ret == -EFAULT) {
962 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
963 file_priv);
965 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
966 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
967 } else {
968 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
969 if (ret == -EFAULT) {
970 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
971 file_priv);
975 #if WATCH_PWRITE
976 if (ret)
977 DRM_INFO("pwrite failed %d\n", ret);
978 #endif
980 drm_gem_object_unreference_unlocked(obj);
982 return ret;
986 * Called when user space prepares to use an object with the CPU, either
987 * through the mmap ioctl's mapping or a GTT mapping.
990 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
991 struct drm_file *file_priv)
993 struct drm_i915_private *dev_priv = dev->dev_private;
994 struct drm_i915_gem_set_domain *args = data;
995 struct drm_gem_object *obj;
996 struct drm_i915_gem_object *obj_priv;
997 uint32_t read_domains = args->read_domains;
998 uint32_t write_domain = args->write_domain;
999 int ret;
1001 if (!(dev->driver->driver_features & DRIVER_GEM))
1002 return -ENODEV;
1004 /* Only handle setting domains to types used by the CPU. */
1005 if (write_domain & I915_GEM_GPU_DOMAINS)
1006 return -EINVAL;
1008 if (read_domains & I915_GEM_GPU_DOMAINS)
1009 return -EINVAL;
1011 /* Having something in the write domain implies it's in the read
1012 * domain, and only that read domain. Enforce that in the request.
1014 if (write_domain != 0 && read_domains != write_domain)
1015 return -EINVAL;
1017 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1018 if (obj == NULL)
1019 return -ENOENT;
1020 obj_priv = to_intel_bo(obj);
1022 mutex_lock(&dev->struct_mutex);
1024 intel_mark_busy(dev, obj);
1026 #if WATCH_BUF
1027 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1028 obj, obj->size, read_domains, write_domain);
1029 #endif
1030 if (read_domains & I915_GEM_DOMAIN_GTT) {
1031 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1033 /* Update the LRU on the fence for the CPU access that's
1034 * about to occur.
1036 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1037 struct drm_i915_fence_reg *reg =
1038 &dev_priv->fence_regs[obj_priv->fence_reg];
1039 list_move_tail(&reg->lru_list,
1040 &dev_priv->mm.fence_list);
1043 /* Silently promote "you're not bound, there was nothing to do"
1044 * to success, since the client was just asking us to
1045 * make sure everything was done.
1047 if (ret == -EINVAL)
1048 ret = 0;
1049 } else {
1050 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1054 /* Maintain LRU order of "inactive" objects */
1055 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1056 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1058 drm_gem_object_unreference(obj);
1059 mutex_unlock(&dev->struct_mutex);
1060 return ret;
1064 * Called when user space has done writes to this buffer
1067 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1068 struct drm_file *file_priv)
1070 struct drm_i915_gem_sw_finish *args = data;
1071 struct drm_gem_object *obj;
1072 struct drm_i915_gem_object *obj_priv;
1073 int ret = 0;
1075 if (!(dev->driver->driver_features & DRIVER_GEM))
1076 return -ENODEV;
1078 mutex_lock(&dev->struct_mutex);
1079 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1080 if (obj == NULL) {
1081 mutex_unlock(&dev->struct_mutex);
1082 return -ENOENT;
1085 #if WATCH_BUF
1086 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1087 __func__, args->handle, obj, obj->size);
1088 #endif
1089 obj_priv = to_intel_bo(obj);
1091 /* Pinned buffers may be scanout, so flush the cache */
1092 if (obj_priv->pin_count)
1093 i915_gem_object_flush_cpu_write_domain(obj);
1095 drm_gem_object_unreference(obj);
1096 mutex_unlock(&dev->struct_mutex);
1097 return ret;
1101 * Maps the contents of an object, returning the address it is mapped
1102 * into.
1104 * While the mapping holds a reference on the contents of the object, it doesn't
1105 * imply a ref on the object itself.
1108 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1109 struct drm_file *file_priv)
1111 struct drm_i915_gem_mmap *args = data;
1112 struct drm_gem_object *obj;
1113 loff_t offset;
1114 unsigned long addr;
1116 if (!(dev->driver->driver_features & DRIVER_GEM))
1117 return -ENODEV;
1119 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1120 if (obj == NULL)
1121 return -ENOENT;
1123 offset = args->offset;
1125 down_write(&current->mm->mmap_sem);
1126 addr = do_mmap(obj->filp, 0, args->size,
1127 PROT_READ | PROT_WRITE, MAP_SHARED,
1128 args->offset);
1129 up_write(&current->mm->mmap_sem);
1130 drm_gem_object_unreference_unlocked(obj);
1131 if (IS_ERR((void *)addr))
1132 return addr;
1134 args->addr_ptr = (uint64_t) addr;
1136 return 0;
1140 * i915_gem_fault - fault a page into the GTT
1141 * vma: VMA in question
1142 * vmf: fault info
1144 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1145 * from userspace. The fault handler takes care of binding the object to
1146 * the GTT (if needed), allocating and programming a fence register (again,
1147 * only if needed based on whether the old reg is still valid or the object
1148 * is tiled) and inserting a new PTE into the faulting process.
1150 * Note that the faulting process may involve evicting existing objects
1151 * from the GTT and/or fence registers to make room. So performance may
1152 * suffer if the GTT working set is large or there are few fence registers
1153 * left.
1155 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1157 struct drm_gem_object *obj = vma->vm_private_data;
1158 struct drm_device *dev = obj->dev;
1159 drm_i915_private_t *dev_priv = dev->dev_private;
1160 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1161 pgoff_t page_offset;
1162 unsigned long pfn;
1163 int ret = 0;
1164 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1166 /* We don't use vmf->pgoff since that has the fake offset */
1167 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1168 PAGE_SHIFT;
1170 /* Now bind it into the GTT if needed */
1171 mutex_lock(&dev->struct_mutex);
1172 if (!obj_priv->gtt_space) {
1173 ret = i915_gem_object_bind_to_gtt(obj, 0);
1174 if (ret)
1175 goto unlock;
1177 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1178 if (ret)
1179 goto unlock;
1182 /* Need a new fence register? */
1183 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1184 ret = i915_gem_object_get_fence_reg(obj);
1185 if (ret)
1186 goto unlock;
1189 if (i915_gem_object_is_inactive(obj_priv))
1190 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1192 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1193 page_offset;
1195 /* Finally, remap it using the new GTT offset */
1196 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1197 unlock:
1198 mutex_unlock(&dev->struct_mutex);
1200 switch (ret) {
1201 case 0:
1202 case -ERESTARTSYS:
1203 return VM_FAULT_NOPAGE;
1204 case -ENOMEM:
1205 case -EAGAIN:
1206 return VM_FAULT_OOM;
1207 default:
1208 return VM_FAULT_SIGBUS;
1213 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1214 * @obj: obj in question
1216 * GEM memory mapping works by handing back to userspace a fake mmap offset
1217 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1218 * up the object based on the offset and sets up the various memory mapping
1219 * structures.
1221 * This routine allocates and attaches a fake offset for @obj.
1223 static int
1224 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1226 struct drm_device *dev = obj->dev;
1227 struct drm_gem_mm *mm = dev->mm_private;
1228 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1229 struct drm_map_list *list;
1230 struct drm_local_map *map;
1231 int ret = 0;
1233 /* Set the object up for mmap'ing */
1234 list = &obj->map_list;
1235 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1236 if (!list->map)
1237 return -ENOMEM;
1239 map = list->map;
1240 map->type = _DRM_GEM;
1241 map->size = obj->size;
1242 map->handle = obj;
1244 /* Get a DRM GEM mmap offset allocated... */
1245 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1246 obj->size / PAGE_SIZE, 0, 0);
1247 if (!list->file_offset_node) {
1248 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1249 ret = -ENOMEM;
1250 goto out_free_list;
1253 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1254 obj->size / PAGE_SIZE, 0);
1255 if (!list->file_offset_node) {
1256 ret = -ENOMEM;
1257 goto out_free_list;
1260 list->hash.key = list->file_offset_node->start;
1261 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1262 DRM_ERROR("failed to add to map hash\n");
1263 ret = -ENOMEM;
1264 goto out_free_mm;
1267 /* By now we should be all set, any drm_mmap request on the offset
1268 * below will get to our mmap & fault handler */
1269 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1271 return 0;
1273 out_free_mm:
1274 drm_mm_put_block(list->file_offset_node);
1275 out_free_list:
1276 kfree(list->map);
1278 return ret;
1282 * i915_gem_release_mmap - remove physical page mappings
1283 * @obj: obj in question
1285 * Preserve the reservation of the mmapping with the DRM core code, but
1286 * relinquish ownership of the pages back to the system.
1288 * It is vital that we remove the page mapping if we have mapped a tiled
1289 * object through the GTT and then lose the fence register due to
1290 * resource pressure. Similarly if the object has been moved out of the
1291 * aperture, than pages mapped into userspace must be revoked. Removing the
1292 * mapping will then trigger a page fault on the next user access, allowing
1293 * fixup by i915_gem_fault().
1295 void
1296 i915_gem_release_mmap(struct drm_gem_object *obj)
1298 struct drm_device *dev = obj->dev;
1299 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1301 if (dev->dev_mapping)
1302 unmap_mapping_range(dev->dev_mapping,
1303 obj_priv->mmap_offset, obj->size, 1);
1306 static void
1307 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1309 struct drm_device *dev = obj->dev;
1310 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1311 struct drm_gem_mm *mm = dev->mm_private;
1312 struct drm_map_list *list;
1314 list = &obj->map_list;
1315 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1317 if (list->file_offset_node) {
1318 drm_mm_put_block(list->file_offset_node);
1319 list->file_offset_node = NULL;
1322 if (list->map) {
1323 kfree(list->map);
1324 list->map = NULL;
1327 obj_priv->mmap_offset = 0;
1331 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1332 * @obj: object to check
1334 * Return the required GTT alignment for an object, taking into account
1335 * potential fence register mapping if needed.
1337 static uint32_t
1338 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1340 struct drm_device *dev = obj->dev;
1341 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1342 int start, i;
1345 * Minimum alignment is 4k (GTT page size), but might be greater
1346 * if a fence register is needed for the object.
1348 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1349 return 4096;
1352 * Previous chips need to be aligned to the size of the smallest
1353 * fence register that can contain the object.
1355 if (IS_I9XX(dev))
1356 start = 1024*1024;
1357 else
1358 start = 512*1024;
1360 for (i = start; i < obj->size; i <<= 1)
1363 return i;
1367 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1368 * @dev: DRM device
1369 * @data: GTT mapping ioctl data
1370 * @file_priv: GEM object info
1372 * Simply returns the fake offset to userspace so it can mmap it.
1373 * The mmap call will end up in drm_gem_mmap(), which will set things
1374 * up so we can get faults in the handler above.
1376 * The fault handler will take care of binding the object into the GTT
1377 * (since it may have been evicted to make room for something), allocating
1378 * a fence register, and mapping the appropriate aperture address into
1379 * userspace.
1382 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1383 struct drm_file *file_priv)
1385 struct drm_i915_gem_mmap_gtt *args = data;
1386 struct drm_gem_object *obj;
1387 struct drm_i915_gem_object *obj_priv;
1388 int ret;
1390 if (!(dev->driver->driver_features & DRIVER_GEM))
1391 return -ENODEV;
1393 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1394 if (obj == NULL)
1395 return -ENOENT;
1397 mutex_lock(&dev->struct_mutex);
1399 obj_priv = to_intel_bo(obj);
1401 if (obj_priv->madv != I915_MADV_WILLNEED) {
1402 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1403 drm_gem_object_unreference(obj);
1404 mutex_unlock(&dev->struct_mutex);
1405 return -EINVAL;
1409 if (!obj_priv->mmap_offset) {
1410 ret = i915_gem_create_mmap_offset(obj);
1411 if (ret) {
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
1414 return ret;
1418 args->offset = obj_priv->mmap_offset;
1421 * Pull it into the GTT so that we have a page list (makes the
1422 * initial fault faster and any subsequent flushing possible).
1424 if (!obj_priv->agp_mem) {
1425 ret = i915_gem_object_bind_to_gtt(obj, 0);
1426 if (ret) {
1427 drm_gem_object_unreference(obj);
1428 mutex_unlock(&dev->struct_mutex);
1429 return ret;
1433 drm_gem_object_unreference(obj);
1434 mutex_unlock(&dev->struct_mutex);
1436 return 0;
1439 void
1440 i915_gem_object_put_pages(struct drm_gem_object *obj)
1442 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1443 int page_count = obj->size / PAGE_SIZE;
1444 int i;
1446 BUG_ON(obj_priv->pages_refcount == 0);
1447 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1449 if (--obj_priv->pages_refcount != 0)
1450 return;
1452 if (obj_priv->tiling_mode != I915_TILING_NONE)
1453 i915_gem_object_save_bit_17_swizzle(obj);
1455 if (obj_priv->madv == I915_MADV_DONTNEED)
1456 obj_priv->dirty = 0;
1458 for (i = 0; i < page_count; i++) {
1459 if (obj_priv->dirty)
1460 set_page_dirty(obj_priv->pages[i]);
1462 if (obj_priv->madv == I915_MADV_WILLNEED)
1463 mark_page_accessed(obj_priv->pages[i]);
1465 page_cache_release(obj_priv->pages[i]);
1467 obj_priv->dirty = 0;
1469 drm_free_large(obj_priv->pages);
1470 obj_priv->pages = NULL;
1473 static uint32_t
1474 i915_gem_next_request_seqno(struct drm_device *dev,
1475 struct intel_ring_buffer *ring)
1477 drm_i915_private_t *dev_priv = dev->dev_private;
1479 ring->outstanding_lazy_request = true;
1481 return dev_priv->next_seqno;
1484 static void
1485 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1486 struct intel_ring_buffer *ring)
1488 struct drm_device *dev = obj->dev;
1489 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1490 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1492 BUG_ON(ring == NULL);
1493 obj_priv->ring = ring;
1495 /* Add a reference if we're newly entering the active list. */
1496 if (!obj_priv->active) {
1497 drm_gem_object_reference(obj);
1498 obj_priv->active = 1;
1501 /* Move from whatever list we were on to the tail of execution. */
1502 list_move_tail(&obj_priv->list, &ring->active_list);
1503 obj_priv->last_rendering_seqno = seqno;
1506 static void
1507 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
1511 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1513 BUG_ON(!obj_priv->active);
1514 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1515 obj_priv->last_rendering_seqno = 0;
1518 /* Immediately discard the backing storage */
1519 static void
1520 i915_gem_object_truncate(struct drm_gem_object *obj)
1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1523 struct inode *inode;
1525 /* Our goal here is to return as much of the memory as
1526 * is possible back to the system as we are called from OOM.
1527 * To do this we must instruct the shmfs to drop all of its
1528 * backing pages, *now*. Here we mirror the actions taken
1529 * when by shmem_delete_inode() to release the backing store.
1531 inode = obj->filp->f_path.dentry->d_inode;
1532 truncate_inode_pages(inode->i_mapping, 0);
1533 if (inode->i_op->truncate_range)
1534 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1536 obj_priv->madv = __I915_MADV_PURGED;
1539 static inline int
1540 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1542 return obj_priv->madv == I915_MADV_DONTNEED;
1545 static void
1546 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1548 struct drm_device *dev = obj->dev;
1549 drm_i915_private_t *dev_priv = dev->dev_private;
1550 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1552 i915_verify_inactive(dev, __FILE__, __LINE__);
1553 if (obj_priv->pin_count != 0)
1554 list_del_init(&obj_priv->list);
1555 else
1556 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1558 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1560 obj_priv->last_rendering_seqno = 0;
1561 obj_priv->ring = NULL;
1562 if (obj_priv->active) {
1563 obj_priv->active = 0;
1564 drm_gem_object_unreference(obj);
1566 i915_verify_inactive(dev, __FILE__, __LINE__);
1569 void
1570 i915_gem_process_flushing_list(struct drm_device *dev,
1571 uint32_t flush_domains,
1572 struct intel_ring_buffer *ring)
1574 drm_i915_private_t *dev_priv = dev->dev_private;
1575 struct drm_i915_gem_object *obj_priv, *next;
1577 list_for_each_entry_safe(obj_priv, next,
1578 &dev_priv->mm.gpu_write_list,
1579 gpu_write_list) {
1580 struct drm_gem_object *obj = &obj_priv->base;
1582 if ((obj->write_domain & flush_domains) ==
1583 obj->write_domain &&
1584 obj_priv->ring->ring_flag == ring->ring_flag) {
1585 uint32_t old_write_domain = obj->write_domain;
1587 obj->write_domain = 0;
1588 list_del_init(&obj_priv->gpu_write_list);
1589 i915_gem_object_move_to_active(obj, ring);
1591 /* update the fence lru list */
1592 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1593 struct drm_i915_fence_reg *reg =
1594 &dev_priv->fence_regs[obj_priv->fence_reg];
1595 list_move_tail(&reg->lru_list,
1596 &dev_priv->mm.fence_list);
1599 trace_i915_gem_object_change_domain(obj,
1600 obj->read_domains,
1601 old_write_domain);
1606 uint32_t
1607 i915_add_request(struct drm_device *dev,
1608 struct drm_file *file_priv,
1609 struct drm_i915_gem_request *request,
1610 struct intel_ring_buffer *ring)
1612 drm_i915_private_t *dev_priv = dev->dev_private;
1613 struct drm_i915_file_private *i915_file_priv = NULL;
1614 uint32_t seqno;
1615 int was_empty;
1617 if (file_priv != NULL)
1618 i915_file_priv = file_priv->driver_priv;
1620 if (request == NULL) {
1621 request = kzalloc(sizeof(*request), GFP_KERNEL);
1622 if (request == NULL)
1623 return 0;
1626 seqno = ring->add_request(dev, ring, file_priv, 0);
1628 request->seqno = seqno;
1629 request->ring = ring;
1630 request->emitted_jiffies = jiffies;
1631 was_empty = list_empty(&ring->request_list);
1632 list_add_tail(&request->list, &ring->request_list);
1634 if (i915_file_priv) {
1635 list_add_tail(&request->client_list,
1636 &i915_file_priv->mm.request_list);
1637 } else {
1638 INIT_LIST_HEAD(&request->client_list);
1641 if (!dev_priv->mm.suspended) {
1642 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1643 if (was_empty)
1644 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1646 return seqno;
1650 * Command execution barrier
1652 * Ensures that all commands in the ring are finished
1653 * before signalling the CPU
1655 static void
1656 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1658 uint32_t flush_domains = 0;
1660 /* The sampler always gets flushed on i965 (sigh) */
1661 if (IS_I965G(dev))
1662 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1664 ring->flush(dev, ring,
1665 I915_GEM_DOMAIN_COMMAND, flush_domains);
1669 * Moves buffers associated only with the given active seqno from the active
1670 * to inactive list, potentially freeing them.
1672 static void
1673 i915_gem_retire_request(struct drm_device *dev,
1674 struct drm_i915_gem_request *request)
1676 trace_i915_gem_request_retire(dev, request->seqno);
1678 /* Move any buffers on the active list that are no longer referenced
1679 * by the ringbuffer to the flushing/inactive lists as appropriate.
1681 while (!list_empty(&request->ring->active_list)) {
1682 struct drm_gem_object *obj;
1683 struct drm_i915_gem_object *obj_priv;
1685 obj_priv = list_first_entry(&request->ring->active_list,
1686 struct drm_i915_gem_object,
1687 list);
1688 obj = &obj_priv->base;
1690 /* If the seqno being retired doesn't match the oldest in the
1691 * list, then the oldest in the list must still be newer than
1692 * this seqno.
1694 if (obj_priv->last_rendering_seqno != request->seqno)
1695 return;
1697 #if WATCH_LRU
1698 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1699 __func__, request->seqno, obj);
1700 #endif
1702 if (obj->write_domain != 0)
1703 i915_gem_object_move_to_flushing(obj);
1704 else
1705 i915_gem_object_move_to_inactive(obj);
1710 * Returns true if seq1 is later than seq2.
1712 bool
1713 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1715 return (int32_t)(seq1 - seq2) >= 0;
1718 uint32_t
1719 i915_get_gem_seqno(struct drm_device *dev,
1720 struct intel_ring_buffer *ring)
1722 return ring->get_gem_seqno(dev, ring);
1726 * This function clears the request list as sequence numbers are passed.
1728 static void
1729 i915_gem_retire_requests_ring(struct drm_device *dev,
1730 struct intel_ring_buffer *ring)
1732 drm_i915_private_t *dev_priv = dev->dev_private;
1733 uint32_t seqno;
1735 if (!ring->status_page.page_addr
1736 || list_empty(&ring->request_list))
1737 return;
1739 seqno = i915_get_gem_seqno(dev, ring);
1741 while (!list_empty(&ring->request_list)) {
1742 struct drm_i915_gem_request *request;
1743 uint32_t retiring_seqno;
1745 request = list_first_entry(&ring->request_list,
1746 struct drm_i915_gem_request,
1747 list);
1748 retiring_seqno = request->seqno;
1750 if (i915_seqno_passed(seqno, retiring_seqno) ||
1751 atomic_read(&dev_priv->mm.wedged)) {
1752 i915_gem_retire_request(dev, request);
1754 list_del(&request->list);
1755 list_del(&request->client_list);
1756 kfree(request);
1757 } else
1758 break;
1761 if (unlikely (dev_priv->trace_irq_seqno &&
1762 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1764 ring->user_irq_put(dev, ring);
1765 dev_priv->trace_irq_seqno = 0;
1769 void
1770 i915_gem_retire_requests(struct drm_device *dev)
1772 drm_i915_private_t *dev_priv = dev->dev_private;
1774 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1775 struct drm_i915_gem_object *obj_priv, *tmp;
1777 /* We must be careful that during unbind() we do not
1778 * accidentally infinitely recurse into retire requests.
1779 * Currently:
1780 * retire -> free -> unbind -> wait -> retire_ring
1782 list_for_each_entry_safe(obj_priv, tmp,
1783 &dev_priv->mm.deferred_free_list,
1784 list)
1785 i915_gem_free_object_tail(&obj_priv->base);
1788 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1789 if (HAS_BSD(dev))
1790 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1793 static void
1794 i915_gem_retire_work_handler(struct work_struct *work)
1796 drm_i915_private_t *dev_priv;
1797 struct drm_device *dev;
1799 dev_priv = container_of(work, drm_i915_private_t,
1800 mm.retire_work.work);
1801 dev = dev_priv->dev;
1803 mutex_lock(&dev->struct_mutex);
1804 i915_gem_retire_requests(dev);
1806 if (!dev_priv->mm.suspended &&
1807 (!list_empty(&dev_priv->render_ring.request_list) ||
1808 (HAS_BSD(dev) &&
1809 !list_empty(&dev_priv->bsd_ring.request_list))))
1810 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1811 mutex_unlock(&dev->struct_mutex);
1815 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1816 bool interruptible, struct intel_ring_buffer *ring)
1818 drm_i915_private_t *dev_priv = dev->dev_private;
1819 u32 ier;
1820 int ret = 0;
1822 BUG_ON(seqno == 0);
1824 if (seqno == dev_priv->next_seqno) {
1825 seqno = i915_add_request(dev, NULL, NULL, ring);
1826 if (seqno == 0)
1827 return -ENOMEM;
1830 if (atomic_read(&dev_priv->mm.wedged))
1831 return -EIO;
1833 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1834 if (HAS_PCH_SPLIT(dev))
1835 ier = I915_READ(DEIER) | I915_READ(GTIER);
1836 else
1837 ier = I915_READ(IER);
1838 if (!ier) {
1839 DRM_ERROR("something (likely vbetool) disabled "
1840 "interrupts, re-enabling\n");
1841 i915_driver_irq_preinstall(dev);
1842 i915_driver_irq_postinstall(dev);
1845 trace_i915_gem_request_wait_begin(dev, seqno);
1847 ring->waiting_gem_seqno = seqno;
1848 ring->user_irq_get(dev, ring);
1849 if (interruptible)
1850 ret = wait_event_interruptible(ring->irq_queue,
1851 i915_seqno_passed(
1852 ring->get_gem_seqno(dev, ring), seqno)
1853 || atomic_read(&dev_priv->mm.wedged));
1854 else
1855 wait_event(ring->irq_queue,
1856 i915_seqno_passed(
1857 ring->get_gem_seqno(dev, ring), seqno)
1858 || atomic_read(&dev_priv->mm.wedged));
1860 ring->user_irq_put(dev, ring);
1861 ring->waiting_gem_seqno = 0;
1863 trace_i915_gem_request_wait_end(dev, seqno);
1865 if (atomic_read(&dev_priv->mm.wedged))
1866 ret = -EIO;
1868 if (ret && ret != -ERESTARTSYS)
1869 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1870 __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
1871 dev_priv->next_seqno);
1873 /* Directly dispatch request retiring. While we have the work queue
1874 * to handle this, the waiter on a request often wants an associated
1875 * buffer to have made it to the inactive list, and we would need
1876 * a separate wait queue to handle that.
1878 if (ret == 0)
1879 i915_gem_retire_requests_ring(dev, ring);
1881 return ret;
1885 * Waits for a sequence number to be signaled, and cleans up the
1886 * request and object lists appropriately for that event.
1888 static int
1889 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1890 struct intel_ring_buffer *ring)
1892 return i915_do_wait_request(dev, seqno, 1, ring);
1895 static void
1896 i915_gem_flush(struct drm_device *dev,
1897 uint32_t invalidate_domains,
1898 uint32_t flush_domains)
1900 drm_i915_private_t *dev_priv = dev->dev_private;
1902 if (flush_domains & I915_GEM_DOMAIN_CPU)
1903 drm_agp_chipset_flush(dev);
1905 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1906 invalidate_domains,
1907 flush_domains);
1909 if (HAS_BSD(dev))
1910 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1911 invalidate_domains,
1912 flush_domains);
1916 * Ensures that all rendering to the object has completed and the object is
1917 * safe to unbind from the GTT or access from the CPU.
1919 static int
1920 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1922 struct drm_device *dev = obj->dev;
1923 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1924 int ret;
1926 /* This function only exists to support waiting for existing rendering,
1927 * not for emitting required flushes.
1929 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1931 /* If there is rendering queued on the buffer being evicted, wait for
1932 * it.
1934 if (obj_priv->active) {
1935 #if WATCH_BUF
1936 DRM_INFO("%s: object %p wait for seqno %08x\n",
1937 __func__, obj, obj_priv->last_rendering_seqno);
1938 #endif
1939 ret = i915_wait_request(dev,
1940 obj_priv->last_rendering_seqno,
1941 obj_priv->ring);
1942 if (ret != 0)
1943 return ret;
1946 return 0;
1950 * Unbinds an object from the GTT aperture.
1953 i915_gem_object_unbind(struct drm_gem_object *obj)
1955 struct drm_device *dev = obj->dev;
1956 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1957 int ret = 0;
1959 #if WATCH_BUF
1960 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1961 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1962 #endif
1963 if (obj_priv->gtt_space == NULL)
1964 return 0;
1966 if (obj_priv->pin_count != 0) {
1967 DRM_ERROR("Attempting to unbind pinned buffer\n");
1968 return -EINVAL;
1971 /* blow away mappings if mapped through GTT */
1972 i915_gem_release_mmap(obj);
1974 /* Move the object to the CPU domain to ensure that
1975 * any possible CPU writes while it's not in the GTT
1976 * are flushed when we go to remap it. This will
1977 * also ensure that all pending GPU writes are finished
1978 * before we unbind.
1980 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1981 if (ret == -ERESTARTSYS)
1982 return ret;
1983 /* Continue on if we fail due to EIO, the GPU is hung so we
1984 * should be safe and we need to cleanup or else we might
1985 * cause memory corruption through use-after-free.
1988 /* release the fence reg _after_ flushing */
1989 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1990 i915_gem_clear_fence_reg(obj);
1992 if (obj_priv->agp_mem != NULL) {
1993 drm_unbind_agp(obj_priv->agp_mem);
1994 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1995 obj_priv->agp_mem = NULL;
1998 i915_gem_object_put_pages(obj);
1999 BUG_ON(obj_priv->pages_refcount);
2001 if (obj_priv->gtt_space) {
2002 atomic_dec(&dev->gtt_count);
2003 atomic_sub(obj->size, &dev->gtt_memory);
2005 drm_mm_put_block(obj_priv->gtt_space);
2006 obj_priv->gtt_space = NULL;
2009 /* Remove ourselves from the LRU list if present. */
2010 if (!list_empty(&obj_priv->list))
2011 list_del_init(&obj_priv->list);
2013 if (i915_gem_object_is_purgeable(obj_priv))
2014 i915_gem_object_truncate(obj);
2016 trace_i915_gem_object_unbind(obj);
2018 return ret;
2022 i915_gpu_idle(struct drm_device *dev)
2024 drm_i915_private_t *dev_priv = dev->dev_private;
2025 bool lists_empty;
2026 int ret;
2028 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2029 list_empty(&dev_priv->render_ring.active_list) &&
2030 (!HAS_BSD(dev) ||
2031 list_empty(&dev_priv->bsd_ring.active_list)));
2032 if (lists_empty)
2033 return 0;
2035 /* Flush everything onto the inactive list. */
2036 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2038 ret = i915_wait_request(dev,
2039 i915_gem_next_request_seqno(dev, &dev_priv->render_ring),
2040 &dev_priv->render_ring);
2041 if (ret)
2042 return ret;
2044 if (HAS_BSD(dev)) {
2045 ret = i915_wait_request(dev,
2046 i915_gem_next_request_seqno(dev, &dev_priv->bsd_ring),
2047 &dev_priv->bsd_ring);
2048 if (ret)
2049 return ret;
2052 return 0;
2056 i915_gem_object_get_pages(struct drm_gem_object *obj,
2057 gfp_t gfpmask)
2059 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2060 int page_count, i;
2061 struct address_space *mapping;
2062 struct inode *inode;
2063 struct page *page;
2065 BUG_ON(obj_priv->pages_refcount
2066 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2068 if (obj_priv->pages_refcount++ != 0)
2069 return 0;
2071 /* Get the list of pages out of our struct file. They'll be pinned
2072 * at this point until we release them.
2074 page_count = obj->size / PAGE_SIZE;
2075 BUG_ON(obj_priv->pages != NULL);
2076 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2077 if (obj_priv->pages == NULL) {
2078 obj_priv->pages_refcount--;
2079 return -ENOMEM;
2082 inode = obj->filp->f_path.dentry->d_inode;
2083 mapping = inode->i_mapping;
2084 for (i = 0; i < page_count; i++) {
2085 page = read_cache_page_gfp(mapping, i,
2086 GFP_HIGHUSER |
2087 __GFP_COLD |
2088 __GFP_RECLAIMABLE |
2089 gfpmask);
2090 if (IS_ERR(page))
2091 goto err_pages;
2093 obj_priv->pages[i] = page;
2096 if (obj_priv->tiling_mode != I915_TILING_NONE)
2097 i915_gem_object_do_bit_17_swizzle(obj);
2099 return 0;
2101 err_pages:
2102 while (i--)
2103 page_cache_release(obj_priv->pages[i]);
2105 drm_free_large(obj_priv->pages);
2106 obj_priv->pages = NULL;
2107 obj_priv->pages_refcount--;
2108 return PTR_ERR(page);
2111 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2113 struct drm_gem_object *obj = reg->obj;
2114 struct drm_device *dev = obj->dev;
2115 drm_i915_private_t *dev_priv = dev->dev_private;
2116 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2117 int regnum = obj_priv->fence_reg;
2118 uint64_t val;
2120 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2121 0xfffff000) << 32;
2122 val |= obj_priv->gtt_offset & 0xfffff000;
2123 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2124 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2126 if (obj_priv->tiling_mode == I915_TILING_Y)
2127 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2128 val |= I965_FENCE_REG_VALID;
2130 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2133 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2135 struct drm_gem_object *obj = reg->obj;
2136 struct drm_device *dev = obj->dev;
2137 drm_i915_private_t *dev_priv = dev->dev_private;
2138 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2139 int regnum = obj_priv->fence_reg;
2140 uint64_t val;
2142 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2143 0xfffff000) << 32;
2144 val |= obj_priv->gtt_offset & 0xfffff000;
2145 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2146 if (obj_priv->tiling_mode == I915_TILING_Y)
2147 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2148 val |= I965_FENCE_REG_VALID;
2150 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2153 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2155 struct drm_gem_object *obj = reg->obj;
2156 struct drm_device *dev = obj->dev;
2157 drm_i915_private_t *dev_priv = dev->dev_private;
2158 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2159 int regnum = obj_priv->fence_reg;
2160 int tile_width;
2161 uint32_t fence_reg, val;
2162 uint32_t pitch_val;
2164 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2165 (obj_priv->gtt_offset & (obj->size - 1))) {
2166 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2167 __func__, obj_priv->gtt_offset, obj->size);
2168 return;
2171 if (obj_priv->tiling_mode == I915_TILING_Y &&
2172 HAS_128_BYTE_Y_TILING(dev))
2173 tile_width = 128;
2174 else
2175 tile_width = 512;
2177 /* Note: pitch better be a power of two tile widths */
2178 pitch_val = obj_priv->stride / tile_width;
2179 pitch_val = ffs(pitch_val) - 1;
2181 if (obj_priv->tiling_mode == I915_TILING_Y &&
2182 HAS_128_BYTE_Y_TILING(dev))
2183 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2184 else
2185 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2187 val = obj_priv->gtt_offset;
2188 if (obj_priv->tiling_mode == I915_TILING_Y)
2189 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2190 val |= I915_FENCE_SIZE_BITS(obj->size);
2191 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2192 val |= I830_FENCE_REG_VALID;
2194 if (regnum < 8)
2195 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2196 else
2197 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2198 I915_WRITE(fence_reg, val);
2201 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2203 struct drm_gem_object *obj = reg->obj;
2204 struct drm_device *dev = obj->dev;
2205 drm_i915_private_t *dev_priv = dev->dev_private;
2206 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2207 int regnum = obj_priv->fence_reg;
2208 uint32_t val;
2209 uint32_t pitch_val;
2210 uint32_t fence_size_bits;
2212 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2213 (obj_priv->gtt_offset & (obj->size - 1))) {
2214 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2215 __func__, obj_priv->gtt_offset);
2216 return;
2219 pitch_val = obj_priv->stride / 128;
2220 pitch_val = ffs(pitch_val) - 1;
2221 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2223 val = obj_priv->gtt_offset;
2224 if (obj_priv->tiling_mode == I915_TILING_Y)
2225 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2226 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2227 WARN_ON(fence_size_bits & ~0x00000f00);
2228 val |= fence_size_bits;
2229 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2230 val |= I830_FENCE_REG_VALID;
2232 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2235 static int i915_find_fence_reg(struct drm_device *dev)
2237 struct drm_i915_fence_reg *reg = NULL;
2238 struct drm_i915_gem_object *obj_priv = NULL;
2239 struct drm_i915_private *dev_priv = dev->dev_private;
2240 struct drm_gem_object *obj = NULL;
2241 int i, avail, ret;
2243 /* First try to find a free reg */
2244 avail = 0;
2245 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2246 reg = &dev_priv->fence_regs[i];
2247 if (!reg->obj)
2248 return i;
2250 obj_priv = to_intel_bo(reg->obj);
2251 if (!obj_priv->pin_count)
2252 avail++;
2255 if (avail == 0)
2256 return -ENOSPC;
2258 /* None available, try to steal one or wait for a user to finish */
2259 i = I915_FENCE_REG_NONE;
2260 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2261 lru_list) {
2262 obj = reg->obj;
2263 obj_priv = to_intel_bo(obj);
2265 if (obj_priv->pin_count)
2266 continue;
2268 /* found one! */
2269 i = obj_priv->fence_reg;
2270 break;
2273 BUG_ON(i == I915_FENCE_REG_NONE);
2275 /* We only have a reference on obj from the active list. put_fence_reg
2276 * might drop that one, causing a use-after-free in it. So hold a
2277 * private reference to obj like the other callers of put_fence_reg
2278 * (set_tiling ioctl) do. */
2279 drm_gem_object_reference(obj);
2280 ret = i915_gem_object_put_fence_reg(obj);
2281 drm_gem_object_unreference(obj);
2282 if (ret != 0)
2283 return ret;
2285 return i;
2289 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2290 * @obj: object to map through a fence reg
2292 * When mapping objects through the GTT, userspace wants to be able to write
2293 * to them without having to worry about swizzling if the object is tiled.
2295 * This function walks the fence regs looking for a free one for @obj,
2296 * stealing one if it can't find any.
2298 * It then sets up the reg based on the object's properties: address, pitch
2299 * and tiling format.
2302 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2304 struct drm_device *dev = obj->dev;
2305 struct drm_i915_private *dev_priv = dev->dev_private;
2306 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2307 struct drm_i915_fence_reg *reg = NULL;
2308 int ret;
2310 /* Just update our place in the LRU if our fence is getting used. */
2311 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2312 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2313 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2314 return 0;
2317 switch (obj_priv->tiling_mode) {
2318 case I915_TILING_NONE:
2319 WARN(1, "allocating a fence for non-tiled object?\n");
2320 break;
2321 case I915_TILING_X:
2322 if (!obj_priv->stride)
2323 return -EINVAL;
2324 WARN((obj_priv->stride & (512 - 1)),
2325 "object 0x%08x is X tiled but has non-512B pitch\n",
2326 obj_priv->gtt_offset);
2327 break;
2328 case I915_TILING_Y:
2329 if (!obj_priv->stride)
2330 return -EINVAL;
2331 WARN((obj_priv->stride & (128 - 1)),
2332 "object 0x%08x is Y tiled but has non-128B pitch\n",
2333 obj_priv->gtt_offset);
2334 break;
2337 ret = i915_find_fence_reg(dev);
2338 if (ret < 0)
2339 return ret;
2341 obj_priv->fence_reg = ret;
2342 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2343 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2345 reg->obj = obj;
2347 if (IS_GEN6(dev))
2348 sandybridge_write_fence_reg(reg);
2349 else if (IS_I965G(dev))
2350 i965_write_fence_reg(reg);
2351 else if (IS_I9XX(dev))
2352 i915_write_fence_reg(reg);
2353 else
2354 i830_write_fence_reg(reg);
2356 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2357 obj_priv->tiling_mode);
2359 return 0;
2363 * i915_gem_clear_fence_reg - clear out fence register info
2364 * @obj: object to clear
2366 * Zeroes out the fence register itself and clears out the associated
2367 * data structures in dev_priv and obj_priv.
2369 static void
2370 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2372 struct drm_device *dev = obj->dev;
2373 drm_i915_private_t *dev_priv = dev->dev_private;
2374 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2375 struct drm_i915_fence_reg *reg =
2376 &dev_priv->fence_regs[obj_priv->fence_reg];
2378 if (IS_GEN6(dev)) {
2379 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2380 (obj_priv->fence_reg * 8), 0);
2381 } else if (IS_I965G(dev)) {
2382 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2383 } else {
2384 uint32_t fence_reg;
2386 if (obj_priv->fence_reg < 8)
2387 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2388 else
2389 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2390 8) * 4;
2392 I915_WRITE(fence_reg, 0);
2395 reg->obj = NULL;
2396 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2397 list_del_init(&reg->lru_list);
2401 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2402 * to the buffer to finish, and then resets the fence register.
2403 * @obj: tiled object holding a fence register.
2405 * Zeroes out the fence register itself and clears out the associated
2406 * data structures in dev_priv and obj_priv.
2409 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2411 struct drm_device *dev = obj->dev;
2412 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2414 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2415 return 0;
2417 /* If we've changed tiling, GTT-mappings of the object
2418 * need to re-fault to ensure that the correct fence register
2419 * setup is in place.
2421 i915_gem_release_mmap(obj);
2423 /* On the i915, GPU access to tiled buffers is via a fence,
2424 * therefore we must wait for any outstanding access to complete
2425 * before clearing the fence.
2427 if (!IS_I965G(dev)) {
2428 int ret;
2430 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2431 if (ret != 0)
2432 return ret;
2435 i915_gem_object_flush_gtt_write_domain(obj);
2436 i915_gem_clear_fence_reg (obj);
2438 return 0;
2442 * Finds free space in the GTT aperture and binds the object there.
2444 static int
2445 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2447 struct drm_device *dev = obj->dev;
2448 drm_i915_private_t *dev_priv = dev->dev_private;
2449 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2450 struct drm_mm_node *free_space;
2451 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2452 int ret;
2454 if (obj_priv->madv != I915_MADV_WILLNEED) {
2455 DRM_ERROR("Attempting to bind a purgeable object\n");
2456 return -EINVAL;
2459 if (alignment == 0)
2460 alignment = i915_gem_get_gtt_alignment(obj);
2461 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2462 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2463 return -EINVAL;
2466 /* If the object is bigger than the entire aperture, reject it early
2467 * before evicting everything in a vain attempt to find space.
2469 if (obj->size > dev->gtt_total) {
2470 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2471 return -E2BIG;
2474 search_free:
2475 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2476 obj->size, alignment, 0);
2477 if (free_space != NULL) {
2478 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2479 alignment);
2480 if (obj_priv->gtt_space != NULL)
2481 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2483 if (obj_priv->gtt_space == NULL) {
2484 /* If the gtt is empty and we're still having trouble
2485 * fitting our object in, we're out of memory.
2487 #if WATCH_LRU
2488 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2489 #endif
2490 ret = i915_gem_evict_something(dev, obj->size, alignment);
2491 if (ret)
2492 return ret;
2494 goto search_free;
2497 #if WATCH_BUF
2498 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2499 obj->size, obj_priv->gtt_offset);
2500 #endif
2501 ret = i915_gem_object_get_pages(obj, gfpmask);
2502 if (ret) {
2503 drm_mm_put_block(obj_priv->gtt_space);
2504 obj_priv->gtt_space = NULL;
2506 if (ret == -ENOMEM) {
2507 /* first try to clear up some space from the GTT */
2508 ret = i915_gem_evict_something(dev, obj->size,
2509 alignment);
2510 if (ret) {
2511 /* now try to shrink everyone else */
2512 if (gfpmask) {
2513 gfpmask = 0;
2514 goto search_free;
2517 return ret;
2520 goto search_free;
2523 return ret;
2526 /* Create an AGP memory structure pointing at our pages, and bind it
2527 * into the GTT.
2529 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2530 obj_priv->pages,
2531 obj->size >> PAGE_SHIFT,
2532 obj_priv->gtt_offset,
2533 obj_priv->agp_type);
2534 if (obj_priv->agp_mem == NULL) {
2535 i915_gem_object_put_pages(obj);
2536 drm_mm_put_block(obj_priv->gtt_space);
2537 obj_priv->gtt_space = NULL;
2539 ret = i915_gem_evict_something(dev, obj->size, alignment);
2540 if (ret)
2541 return ret;
2543 goto search_free;
2545 atomic_inc(&dev->gtt_count);
2546 atomic_add(obj->size, &dev->gtt_memory);
2548 /* keep track of bounds object by adding it to the inactive list */
2549 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2551 /* Assert that the object is not currently in any GPU domain. As it
2552 * wasn't in the GTT, there shouldn't be any way it could have been in
2553 * a GPU cache
2555 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2556 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2558 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2560 return 0;
2563 void
2564 i915_gem_clflush_object(struct drm_gem_object *obj)
2566 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2568 /* If we don't have a page list set up, then we're not pinned
2569 * to GPU, and we can ignore the cache flush because it'll happen
2570 * again at bind time.
2572 if (obj_priv->pages == NULL)
2573 return;
2575 trace_i915_gem_object_clflush(obj);
2577 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2580 /** Flushes any GPU write domain for the object if it's dirty. */
2581 static int
2582 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2583 bool pipelined)
2585 struct drm_device *dev = obj->dev;
2586 uint32_t old_write_domain;
2588 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2589 return 0;
2591 /* Queue the GPU write cache flushing we need. */
2592 old_write_domain = obj->write_domain;
2593 i915_gem_flush(dev, 0, obj->write_domain);
2595 trace_i915_gem_object_change_domain(obj,
2596 obj->read_domains,
2597 old_write_domain);
2599 if (pipelined)
2600 return 0;
2602 return i915_gem_object_wait_rendering(obj);
2605 /** Flushes the GTT write domain for the object if it's dirty. */
2606 static void
2607 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2609 uint32_t old_write_domain;
2611 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2612 return;
2614 /* No actual flushing is required for the GTT write domain. Writes
2615 * to it immediately go to main memory as far as we know, so there's
2616 * no chipset flush. It also doesn't land in render cache.
2618 old_write_domain = obj->write_domain;
2619 obj->write_domain = 0;
2621 trace_i915_gem_object_change_domain(obj,
2622 obj->read_domains,
2623 old_write_domain);
2626 /** Flushes the CPU write domain for the object if it's dirty. */
2627 static void
2628 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2630 struct drm_device *dev = obj->dev;
2631 uint32_t old_write_domain;
2633 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2634 return;
2636 i915_gem_clflush_object(obj);
2637 drm_agp_chipset_flush(dev);
2638 old_write_domain = obj->write_domain;
2639 obj->write_domain = 0;
2641 trace_i915_gem_object_change_domain(obj,
2642 obj->read_domains,
2643 old_write_domain);
2647 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2649 int ret = 0;
2651 switch (obj->write_domain) {
2652 case I915_GEM_DOMAIN_GTT:
2653 i915_gem_object_flush_gtt_write_domain(obj);
2654 break;
2655 case I915_GEM_DOMAIN_CPU:
2656 i915_gem_object_flush_cpu_write_domain(obj);
2657 break;
2658 default:
2659 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2660 break;
2663 return ret;
2667 * Moves a single object to the GTT read, and possibly write domain.
2669 * This function returns when the move is complete, including waiting on
2670 * flushes to occur.
2673 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2675 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2676 uint32_t old_write_domain, old_read_domains;
2677 int ret;
2679 /* Not valid to be called on unbound objects. */
2680 if (obj_priv->gtt_space == NULL)
2681 return -EINVAL;
2683 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2684 if (ret != 0)
2685 return ret;
2687 old_write_domain = obj->write_domain;
2688 old_read_domains = obj->read_domains;
2690 /* If we're writing through the GTT domain, then CPU and GPU caches
2691 * will need to be invalidated at next use.
2693 if (write) {
2694 ret = i915_gem_object_wait_rendering(obj);
2695 if (ret)
2696 return ret;
2698 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2701 i915_gem_object_flush_cpu_write_domain(obj);
2703 /* It should now be out of any other write domains, and we can update
2704 * the domain values for our changes.
2706 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2707 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2708 if (write) {
2709 obj->write_domain = I915_GEM_DOMAIN_GTT;
2710 obj_priv->dirty = 1;
2713 trace_i915_gem_object_change_domain(obj,
2714 old_read_domains,
2715 old_write_domain);
2717 return 0;
2721 * Prepare buffer for display plane. Use uninterruptible for possible flush
2722 * wait, as in modesetting process we're not supposed to be interrupted.
2725 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2727 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2728 uint32_t old_read_domains;
2729 int ret;
2731 /* Not valid to be called on unbound objects. */
2732 if (obj_priv->gtt_space == NULL)
2733 return -EINVAL;
2735 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2736 if (ret != 0)
2737 return ret;
2739 i915_gem_object_flush_cpu_write_domain(obj);
2741 old_read_domains = obj->read_domains;
2742 obj->read_domains = I915_GEM_DOMAIN_GTT;
2744 trace_i915_gem_object_change_domain(obj,
2745 old_read_domains,
2746 obj->write_domain);
2748 return 0;
2752 * Moves a single object to the CPU read, and possibly write domain.
2754 * This function returns when the move is complete, including waiting on
2755 * flushes to occur.
2757 static int
2758 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2760 uint32_t old_write_domain, old_read_domains;
2761 int ret;
2763 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2764 if (ret != 0)
2765 return ret;
2767 i915_gem_object_flush_gtt_write_domain(obj);
2769 /* If we have a partially-valid cache of the object in the CPU,
2770 * finish invalidating it and free the per-page flags.
2772 i915_gem_object_set_to_full_cpu_read_domain(obj);
2774 old_write_domain = obj->write_domain;
2775 old_read_domains = obj->read_domains;
2777 /* Flush the CPU cache if it's still invalid. */
2778 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2779 i915_gem_clflush_object(obj);
2781 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2784 /* It should now be out of any other write domains, and we can update
2785 * the domain values for our changes.
2787 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2789 /* If we're writing through the CPU, then the GPU read domains will
2790 * need to be invalidated at next use.
2792 if (write) {
2793 ret = i915_gem_object_wait_rendering(obj);
2794 if (ret)
2795 return ret;
2797 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2798 obj->write_domain = I915_GEM_DOMAIN_CPU;
2801 trace_i915_gem_object_change_domain(obj,
2802 old_read_domains,
2803 old_write_domain);
2805 return 0;
2809 * Set the next domain for the specified object. This
2810 * may not actually perform the necessary flushing/invaliding though,
2811 * as that may want to be batched with other set_domain operations
2813 * This is (we hope) the only really tricky part of gem. The goal
2814 * is fairly simple -- track which caches hold bits of the object
2815 * and make sure they remain coherent. A few concrete examples may
2816 * help to explain how it works. For shorthand, we use the notation
2817 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2818 * a pair of read and write domain masks.
2820 * Case 1: the batch buffer
2822 * 1. Allocated
2823 * 2. Written by CPU
2824 * 3. Mapped to GTT
2825 * 4. Read by GPU
2826 * 5. Unmapped from GTT
2827 * 6. Freed
2829 * Let's take these a step at a time
2831 * 1. Allocated
2832 * Pages allocated from the kernel may still have
2833 * cache contents, so we set them to (CPU, CPU) always.
2834 * 2. Written by CPU (using pwrite)
2835 * The pwrite function calls set_domain (CPU, CPU) and
2836 * this function does nothing (as nothing changes)
2837 * 3. Mapped by GTT
2838 * This function asserts that the object is not
2839 * currently in any GPU-based read or write domains
2840 * 4. Read by GPU
2841 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2842 * As write_domain is zero, this function adds in the
2843 * current read domains (CPU+COMMAND, 0).
2844 * flush_domains is set to CPU.
2845 * invalidate_domains is set to COMMAND
2846 * clflush is run to get data out of the CPU caches
2847 * then i915_dev_set_domain calls i915_gem_flush to
2848 * emit an MI_FLUSH and drm_agp_chipset_flush
2849 * 5. Unmapped from GTT
2850 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2851 * flush_domains and invalidate_domains end up both zero
2852 * so no flushing/invalidating happens
2853 * 6. Freed
2854 * yay, done
2856 * Case 2: The shared render buffer
2858 * 1. Allocated
2859 * 2. Mapped to GTT
2860 * 3. Read/written by GPU
2861 * 4. set_domain to (CPU,CPU)
2862 * 5. Read/written by CPU
2863 * 6. Read/written by GPU
2865 * 1. Allocated
2866 * Same as last example, (CPU, CPU)
2867 * 2. Mapped to GTT
2868 * Nothing changes (assertions find that it is not in the GPU)
2869 * 3. Read/written by GPU
2870 * execbuffer calls set_domain (RENDER, RENDER)
2871 * flush_domains gets CPU
2872 * invalidate_domains gets GPU
2873 * clflush (obj)
2874 * MI_FLUSH and drm_agp_chipset_flush
2875 * 4. set_domain (CPU, CPU)
2876 * flush_domains gets GPU
2877 * invalidate_domains gets CPU
2878 * wait_rendering (obj) to make sure all drawing is complete.
2879 * This will include an MI_FLUSH to get the data from GPU
2880 * to memory
2881 * clflush (obj) to invalidate the CPU cache
2882 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2883 * 5. Read/written by CPU
2884 * cache lines are loaded and dirtied
2885 * 6. Read written by GPU
2886 * Same as last GPU access
2888 * Case 3: The constant buffer
2890 * 1. Allocated
2891 * 2. Written by CPU
2892 * 3. Read by GPU
2893 * 4. Updated (written) by CPU again
2894 * 5. Read by GPU
2896 * 1. Allocated
2897 * (CPU, CPU)
2898 * 2. Written by CPU
2899 * (CPU, CPU)
2900 * 3. Read by GPU
2901 * (CPU+RENDER, 0)
2902 * flush_domains = CPU
2903 * invalidate_domains = RENDER
2904 * clflush (obj)
2905 * MI_FLUSH
2906 * drm_agp_chipset_flush
2907 * 4. Updated (written) by CPU again
2908 * (CPU, CPU)
2909 * flush_domains = 0 (no previous write domain)
2910 * invalidate_domains = 0 (no new read domains)
2911 * 5. Read by GPU
2912 * (CPU+RENDER, 0)
2913 * flush_domains = CPU
2914 * invalidate_domains = RENDER
2915 * clflush (obj)
2916 * MI_FLUSH
2917 * drm_agp_chipset_flush
2919 static void
2920 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2922 struct drm_device *dev = obj->dev;
2923 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2924 uint32_t invalidate_domains = 0;
2925 uint32_t flush_domains = 0;
2926 uint32_t old_read_domains;
2928 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2929 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2931 intel_mark_busy(dev, obj);
2933 #if WATCH_BUF
2934 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2935 __func__, obj,
2936 obj->read_domains, obj->pending_read_domains,
2937 obj->write_domain, obj->pending_write_domain);
2938 #endif
2940 * If the object isn't moving to a new write domain,
2941 * let the object stay in multiple read domains
2943 if (obj->pending_write_domain == 0)
2944 obj->pending_read_domains |= obj->read_domains;
2945 else
2946 obj_priv->dirty = 1;
2949 * Flush the current write domain if
2950 * the new read domains don't match. Invalidate
2951 * any read domains which differ from the old
2952 * write domain
2954 if (obj->write_domain &&
2955 obj->write_domain != obj->pending_read_domains) {
2956 flush_domains |= obj->write_domain;
2957 invalidate_domains |=
2958 obj->pending_read_domains & ~obj->write_domain;
2961 * Invalidate any read caches which may have
2962 * stale data. That is, any new read domains.
2964 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2965 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2966 #if WATCH_BUF
2967 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2968 __func__, flush_domains, invalidate_domains);
2969 #endif
2970 i915_gem_clflush_object(obj);
2973 old_read_domains = obj->read_domains;
2975 /* The actual obj->write_domain will be updated with
2976 * pending_write_domain after we emit the accumulated flush for all
2977 * of our domain changes in execbuffers (which clears objects'
2978 * write_domains). So if we have a current write domain that we
2979 * aren't changing, set pending_write_domain to that.
2981 if (flush_domains == 0 && obj->pending_write_domain == 0)
2982 obj->pending_write_domain = obj->write_domain;
2983 obj->read_domains = obj->pending_read_domains;
2985 dev->invalidate_domains |= invalidate_domains;
2986 dev->flush_domains |= flush_domains;
2987 #if WATCH_BUF
2988 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2989 __func__,
2990 obj->read_domains, obj->write_domain,
2991 dev->invalidate_domains, dev->flush_domains);
2992 #endif
2994 trace_i915_gem_object_change_domain(obj,
2995 old_read_domains,
2996 obj->write_domain);
3000 * Moves the object from a partially CPU read to a full one.
3002 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3003 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3005 static void
3006 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3008 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3010 if (!obj_priv->page_cpu_valid)
3011 return;
3013 /* If we're partially in the CPU read domain, finish moving it in.
3015 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3016 int i;
3018 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3019 if (obj_priv->page_cpu_valid[i])
3020 continue;
3021 drm_clflush_pages(obj_priv->pages + i, 1);
3025 /* Free the page_cpu_valid mappings which are now stale, whether
3026 * or not we've got I915_GEM_DOMAIN_CPU.
3028 kfree(obj_priv->page_cpu_valid);
3029 obj_priv->page_cpu_valid = NULL;
3033 * Set the CPU read domain on a range of the object.
3035 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3036 * not entirely valid. The page_cpu_valid member of the object flags which
3037 * pages have been flushed, and will be respected by
3038 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3039 * of the whole object.
3041 * This function returns when the move is complete, including waiting on
3042 * flushes to occur.
3044 static int
3045 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3046 uint64_t offset, uint64_t size)
3048 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3049 uint32_t old_read_domains;
3050 int i, ret;
3052 if (offset == 0 && size == obj->size)
3053 return i915_gem_object_set_to_cpu_domain(obj, 0);
3055 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3056 if (ret != 0)
3057 return ret;
3058 i915_gem_object_flush_gtt_write_domain(obj);
3060 /* If we're already fully in the CPU read domain, we're done. */
3061 if (obj_priv->page_cpu_valid == NULL &&
3062 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3063 return 0;
3065 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3066 * newly adding I915_GEM_DOMAIN_CPU
3068 if (obj_priv->page_cpu_valid == NULL) {
3069 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3070 GFP_KERNEL);
3071 if (obj_priv->page_cpu_valid == NULL)
3072 return -ENOMEM;
3073 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3074 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3076 /* Flush the cache on any pages that are still invalid from the CPU's
3077 * perspective.
3079 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3080 i++) {
3081 if (obj_priv->page_cpu_valid[i])
3082 continue;
3084 drm_clflush_pages(obj_priv->pages + i, 1);
3086 obj_priv->page_cpu_valid[i] = 1;
3089 /* It should now be out of any other write domains, and we can update
3090 * the domain values for our changes.
3092 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3094 old_read_domains = obj->read_domains;
3095 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3097 trace_i915_gem_object_change_domain(obj,
3098 old_read_domains,
3099 obj->write_domain);
3101 return 0;
3105 * Pin an object to the GTT and evaluate the relocations landing in it.
3107 static int
3108 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3109 struct drm_file *file_priv,
3110 struct drm_i915_gem_exec_object2 *entry,
3111 struct drm_i915_gem_relocation_entry *relocs)
3113 struct drm_device *dev = obj->dev;
3114 drm_i915_private_t *dev_priv = dev->dev_private;
3115 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3116 int i, ret;
3117 void __iomem *reloc_page;
3118 bool need_fence;
3120 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3121 obj_priv->tiling_mode != I915_TILING_NONE;
3123 /* Check fence reg constraints and rebind if necessary */
3124 if (need_fence &&
3125 !i915_gem_object_fence_offset_ok(obj,
3126 obj_priv->tiling_mode)) {
3127 ret = i915_gem_object_unbind(obj);
3128 if (ret)
3129 return ret;
3132 /* Choose the GTT offset for our buffer and put it there. */
3133 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3134 if (ret)
3135 return ret;
3138 * Pre-965 chips need a fence register set up in order to
3139 * properly handle blits to/from tiled surfaces.
3141 if (need_fence) {
3142 ret = i915_gem_object_get_fence_reg(obj);
3143 if (ret != 0) {
3144 i915_gem_object_unpin(obj);
3145 return ret;
3149 entry->offset = obj_priv->gtt_offset;
3151 /* Apply the relocations, using the GTT aperture to avoid cache
3152 * flushing requirements.
3154 for (i = 0; i < entry->relocation_count; i++) {
3155 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3156 struct drm_gem_object *target_obj;
3157 struct drm_i915_gem_object *target_obj_priv;
3158 uint32_t reloc_val, reloc_offset;
3159 uint32_t __iomem *reloc_entry;
3161 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3162 reloc->target_handle);
3163 if (target_obj == NULL) {
3164 i915_gem_object_unpin(obj);
3165 return -ENOENT;
3167 target_obj_priv = to_intel_bo(target_obj);
3169 #if WATCH_RELOC
3170 DRM_INFO("%s: obj %p offset %08x target %d "
3171 "read %08x write %08x gtt %08x "
3172 "presumed %08x delta %08x\n",
3173 __func__,
3174 obj,
3175 (int) reloc->offset,
3176 (int) reloc->target_handle,
3177 (int) reloc->read_domains,
3178 (int) reloc->write_domain,
3179 (int) target_obj_priv->gtt_offset,
3180 (int) reloc->presumed_offset,
3181 reloc->delta);
3182 #endif
3184 /* The target buffer should have appeared before us in the
3185 * exec_object list, so it should have a GTT space bound by now.
3187 if (target_obj_priv->gtt_space == NULL) {
3188 DRM_ERROR("No GTT space found for object %d\n",
3189 reloc->target_handle);
3190 drm_gem_object_unreference(target_obj);
3191 i915_gem_object_unpin(obj);
3192 return -EINVAL;
3195 /* Validate that the target is in a valid r/w GPU domain */
3196 if (reloc->write_domain & (reloc->write_domain - 1)) {
3197 DRM_ERROR("reloc with multiple write domains: "
3198 "obj %p target %d offset %d "
3199 "read %08x write %08x",
3200 obj, reloc->target_handle,
3201 (int) reloc->offset,
3202 reloc->read_domains,
3203 reloc->write_domain);
3204 return -EINVAL;
3206 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3207 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3208 DRM_ERROR("reloc with read/write CPU domains: "
3209 "obj %p target %d offset %d "
3210 "read %08x write %08x",
3211 obj, reloc->target_handle,
3212 (int) reloc->offset,
3213 reloc->read_domains,
3214 reloc->write_domain);
3215 drm_gem_object_unreference(target_obj);
3216 i915_gem_object_unpin(obj);
3217 return -EINVAL;
3219 if (reloc->write_domain && target_obj->pending_write_domain &&
3220 reloc->write_domain != target_obj->pending_write_domain) {
3221 DRM_ERROR("Write domain conflict: "
3222 "obj %p target %d offset %d "
3223 "new %08x old %08x\n",
3224 obj, reloc->target_handle,
3225 (int) reloc->offset,
3226 reloc->write_domain,
3227 target_obj->pending_write_domain);
3228 drm_gem_object_unreference(target_obj);
3229 i915_gem_object_unpin(obj);
3230 return -EINVAL;
3233 target_obj->pending_read_domains |= reloc->read_domains;
3234 target_obj->pending_write_domain |= reloc->write_domain;
3236 /* If the relocation already has the right value in it, no
3237 * more work needs to be done.
3239 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3240 drm_gem_object_unreference(target_obj);
3241 continue;
3244 /* Check that the relocation address is valid... */
3245 if (reloc->offset > obj->size - 4) {
3246 DRM_ERROR("Relocation beyond object bounds: "
3247 "obj %p target %d offset %d size %d.\n",
3248 obj, reloc->target_handle,
3249 (int) reloc->offset, (int) obj->size);
3250 drm_gem_object_unreference(target_obj);
3251 i915_gem_object_unpin(obj);
3252 return -EINVAL;
3254 if (reloc->offset & 3) {
3255 DRM_ERROR("Relocation not 4-byte aligned: "
3256 "obj %p target %d offset %d.\n",
3257 obj, reloc->target_handle,
3258 (int) reloc->offset);
3259 drm_gem_object_unreference(target_obj);
3260 i915_gem_object_unpin(obj);
3261 return -EINVAL;
3264 /* and points to somewhere within the target object. */
3265 if (reloc->delta >= target_obj->size) {
3266 DRM_ERROR("Relocation beyond target object bounds: "
3267 "obj %p target %d delta %d size %d.\n",
3268 obj, reloc->target_handle,
3269 (int) reloc->delta, (int) target_obj->size);
3270 drm_gem_object_unreference(target_obj);
3271 i915_gem_object_unpin(obj);
3272 return -EINVAL;
3275 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3276 if (ret != 0) {
3277 drm_gem_object_unreference(target_obj);
3278 i915_gem_object_unpin(obj);
3279 return -EINVAL;
3282 /* Map the page containing the relocation we're going to
3283 * perform.
3285 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3286 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3287 (reloc_offset &
3288 ~(PAGE_SIZE - 1)),
3289 KM_USER0);
3290 reloc_entry = (uint32_t __iomem *)(reloc_page +
3291 (reloc_offset & (PAGE_SIZE - 1)));
3292 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3294 #if WATCH_BUF
3295 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3296 obj, (unsigned int) reloc->offset,
3297 readl(reloc_entry), reloc_val);
3298 #endif
3299 writel(reloc_val, reloc_entry);
3300 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3302 /* The updated presumed offset for this entry will be
3303 * copied back out to the user.
3305 reloc->presumed_offset = target_obj_priv->gtt_offset;
3307 drm_gem_object_unreference(target_obj);
3310 #if WATCH_BUF
3311 if (0)
3312 i915_gem_dump_object(obj, 128, __func__, ~0);
3313 #endif
3314 return 0;
3317 /* Throttle our rendering by waiting until the ring has completed our requests
3318 * emitted over 20 msec ago.
3320 * Note that if we were to use the current jiffies each time around the loop,
3321 * we wouldn't escape the function with any frames outstanding if the time to
3322 * render a frame was over 20ms.
3324 * This should get us reasonable parallelism between CPU and GPU but also
3325 * relatively low latency when blocking on a particular request to finish.
3327 static int
3328 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3330 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3331 int ret = 0;
3332 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3334 mutex_lock(&dev->struct_mutex);
3335 while (!list_empty(&i915_file_priv->mm.request_list)) {
3336 struct drm_i915_gem_request *request;
3338 request = list_first_entry(&i915_file_priv->mm.request_list,
3339 struct drm_i915_gem_request,
3340 client_list);
3342 if (time_after_eq(request->emitted_jiffies, recent_enough))
3343 break;
3345 ret = i915_wait_request(dev, request->seqno, request->ring);
3346 if (ret != 0)
3347 break;
3349 mutex_unlock(&dev->struct_mutex);
3351 return ret;
3354 static int
3355 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3356 uint32_t buffer_count,
3357 struct drm_i915_gem_relocation_entry **relocs)
3359 uint32_t reloc_count = 0, reloc_index = 0, i;
3360 int ret;
3362 *relocs = NULL;
3363 for (i = 0; i < buffer_count; i++) {
3364 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3365 return -EINVAL;
3366 reloc_count += exec_list[i].relocation_count;
3369 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3370 if (*relocs == NULL) {
3371 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3372 return -ENOMEM;
3375 for (i = 0; i < buffer_count; i++) {
3376 struct drm_i915_gem_relocation_entry __user *user_relocs;
3378 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3380 ret = copy_from_user(&(*relocs)[reloc_index],
3381 user_relocs,
3382 exec_list[i].relocation_count *
3383 sizeof(**relocs));
3384 if (ret != 0) {
3385 drm_free_large(*relocs);
3386 *relocs = NULL;
3387 return -EFAULT;
3390 reloc_index += exec_list[i].relocation_count;
3393 return 0;
3396 static int
3397 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3398 uint32_t buffer_count,
3399 struct drm_i915_gem_relocation_entry *relocs)
3401 uint32_t reloc_count = 0, i;
3402 int ret = 0;
3404 if (relocs == NULL)
3405 return 0;
3407 for (i = 0; i < buffer_count; i++) {
3408 struct drm_i915_gem_relocation_entry __user *user_relocs;
3409 int unwritten;
3411 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3413 unwritten = copy_to_user(user_relocs,
3414 &relocs[reloc_count],
3415 exec_list[i].relocation_count *
3416 sizeof(*relocs));
3418 if (unwritten) {
3419 ret = -EFAULT;
3420 goto err;
3423 reloc_count += exec_list[i].relocation_count;
3426 err:
3427 drm_free_large(relocs);
3429 return ret;
3432 static int
3433 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3434 uint64_t exec_offset)
3436 uint32_t exec_start, exec_len;
3438 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3439 exec_len = (uint32_t) exec->batch_len;
3441 if ((exec_start | exec_len) & 0x7)
3442 return -EINVAL;
3444 if (!exec_start)
3445 return -EINVAL;
3447 return 0;
3450 static int
3451 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3452 struct drm_gem_object **object_list,
3453 int count)
3455 drm_i915_private_t *dev_priv = dev->dev_private;
3456 struct drm_i915_gem_object *obj_priv;
3457 DEFINE_WAIT(wait);
3458 int i, ret = 0;
3460 for (;;) {
3461 prepare_to_wait(&dev_priv->pending_flip_queue,
3462 &wait, TASK_INTERRUPTIBLE);
3463 for (i = 0; i < count; i++) {
3464 obj_priv = to_intel_bo(object_list[i]);
3465 if (atomic_read(&obj_priv->pending_flip) > 0)
3466 break;
3468 if (i == count)
3469 break;
3471 if (!signal_pending(current)) {
3472 mutex_unlock(&dev->struct_mutex);
3473 schedule();
3474 mutex_lock(&dev->struct_mutex);
3475 continue;
3477 ret = -ERESTARTSYS;
3478 break;
3480 finish_wait(&dev_priv->pending_flip_queue, &wait);
3482 return ret;
3485 static int
3486 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3487 struct drm_file *file_priv,
3488 struct drm_i915_gem_execbuffer2 *args,
3489 struct drm_i915_gem_exec_object2 *exec_list)
3491 drm_i915_private_t *dev_priv = dev->dev_private;
3492 struct drm_gem_object **object_list = NULL;
3493 struct drm_gem_object *batch_obj;
3494 struct drm_i915_gem_object *obj_priv;
3495 struct drm_clip_rect *cliprects = NULL;
3496 struct drm_i915_gem_relocation_entry *relocs = NULL;
3497 struct drm_i915_gem_request *request = NULL;
3498 int ret = 0, ret2, i, pinned = 0;
3499 uint64_t exec_offset;
3500 uint32_t seqno, reloc_index;
3501 int pin_tries, flips;
3503 struct intel_ring_buffer *ring = NULL;
3505 #if WATCH_EXEC
3506 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3507 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3508 #endif
3509 if (args->flags & I915_EXEC_BSD) {
3510 if (!HAS_BSD(dev)) {
3511 DRM_ERROR("execbuf with wrong flag\n");
3512 return -EINVAL;
3514 ring = &dev_priv->bsd_ring;
3515 } else {
3516 ring = &dev_priv->render_ring;
3519 if (args->buffer_count < 1) {
3520 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3521 return -EINVAL;
3523 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3524 if (object_list == NULL) {
3525 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3526 args->buffer_count);
3527 ret = -ENOMEM;
3528 goto pre_mutex_err;
3531 if (args->num_cliprects != 0) {
3532 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3533 GFP_KERNEL);
3534 if (cliprects == NULL) {
3535 ret = -ENOMEM;
3536 goto pre_mutex_err;
3539 ret = copy_from_user(cliprects,
3540 (struct drm_clip_rect __user *)
3541 (uintptr_t) args->cliprects_ptr,
3542 sizeof(*cliprects) * args->num_cliprects);
3543 if (ret != 0) {
3544 DRM_ERROR("copy %d cliprects failed: %d\n",
3545 args->num_cliprects, ret);
3546 ret = -EFAULT;
3547 goto pre_mutex_err;
3551 request = kzalloc(sizeof(*request), GFP_KERNEL);
3552 if (request == NULL) {
3553 ret = -ENOMEM;
3554 goto pre_mutex_err;
3557 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3558 &relocs);
3559 if (ret != 0)
3560 goto pre_mutex_err;
3562 mutex_lock(&dev->struct_mutex);
3564 i915_verify_inactive(dev, __FILE__, __LINE__);
3566 if (atomic_read(&dev_priv->mm.wedged)) {
3567 mutex_unlock(&dev->struct_mutex);
3568 ret = -EIO;
3569 goto pre_mutex_err;
3572 if (dev_priv->mm.suspended) {
3573 mutex_unlock(&dev->struct_mutex);
3574 ret = -EBUSY;
3575 goto pre_mutex_err;
3578 /* Look up object handles */
3579 flips = 0;
3580 for (i = 0; i < args->buffer_count; i++) {
3581 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3582 exec_list[i].handle);
3583 if (object_list[i] == NULL) {
3584 DRM_ERROR("Invalid object handle %d at index %d\n",
3585 exec_list[i].handle, i);
3586 /* prevent error path from reading uninitialized data */
3587 args->buffer_count = i + 1;
3588 ret = -ENOENT;
3589 goto err;
3592 obj_priv = to_intel_bo(object_list[i]);
3593 if (obj_priv->in_execbuffer) {
3594 DRM_ERROR("Object %p appears more than once in object list\n",
3595 object_list[i]);
3596 /* prevent error path from reading uninitialized data */
3597 args->buffer_count = i + 1;
3598 ret = -EINVAL;
3599 goto err;
3601 obj_priv->in_execbuffer = true;
3602 flips += atomic_read(&obj_priv->pending_flip);
3605 if (flips > 0) {
3606 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3607 args->buffer_count);
3608 if (ret)
3609 goto err;
3612 /* Pin and relocate */
3613 for (pin_tries = 0; ; pin_tries++) {
3614 ret = 0;
3615 reloc_index = 0;
3617 for (i = 0; i < args->buffer_count; i++) {
3618 object_list[i]->pending_read_domains = 0;
3619 object_list[i]->pending_write_domain = 0;
3620 ret = i915_gem_object_pin_and_relocate(object_list[i],
3621 file_priv,
3622 &exec_list[i],
3623 &relocs[reloc_index]);
3624 if (ret)
3625 break;
3626 pinned = i + 1;
3627 reloc_index += exec_list[i].relocation_count;
3629 /* success */
3630 if (ret == 0)
3631 break;
3633 /* error other than GTT full, or we've already tried again */
3634 if (ret != -ENOSPC || pin_tries >= 1) {
3635 if (ret != -ERESTARTSYS) {
3636 unsigned long long total_size = 0;
3637 int num_fences = 0;
3638 for (i = 0; i < args->buffer_count; i++) {
3639 obj_priv = to_intel_bo(object_list[i]);
3641 total_size += object_list[i]->size;
3642 num_fences +=
3643 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3644 obj_priv->tiling_mode != I915_TILING_NONE;
3646 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3647 pinned+1, args->buffer_count,
3648 total_size, num_fences,
3649 ret);
3650 DRM_ERROR("%d objects [%d pinned], "
3651 "%d object bytes [%d pinned], "
3652 "%d/%d gtt bytes\n",
3653 atomic_read(&dev->object_count),
3654 atomic_read(&dev->pin_count),
3655 atomic_read(&dev->object_memory),
3656 atomic_read(&dev->pin_memory),
3657 atomic_read(&dev->gtt_memory),
3658 dev->gtt_total);
3660 goto err;
3663 /* unpin all of our buffers */
3664 for (i = 0; i < pinned; i++)
3665 i915_gem_object_unpin(object_list[i]);
3666 pinned = 0;
3668 /* evict everyone we can from the aperture */
3669 ret = i915_gem_evict_everything(dev);
3670 if (ret && ret != -ENOSPC)
3671 goto err;
3674 /* Set the pending read domains for the batch buffer to COMMAND */
3675 batch_obj = object_list[args->buffer_count-1];
3676 if (batch_obj->pending_write_domain) {
3677 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3678 ret = -EINVAL;
3679 goto err;
3681 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3683 /* Sanity check the batch buffer, prior to moving objects */
3684 exec_offset = exec_list[args->buffer_count - 1].offset;
3685 ret = i915_gem_check_execbuffer (args, exec_offset);
3686 if (ret != 0) {
3687 DRM_ERROR("execbuf with invalid offset/length\n");
3688 goto err;
3691 i915_verify_inactive(dev, __FILE__, __LINE__);
3693 /* Zero the global flush/invalidate flags. These
3694 * will be modified as new domains are computed
3695 * for each object
3697 dev->invalidate_domains = 0;
3698 dev->flush_domains = 0;
3700 for (i = 0; i < args->buffer_count; i++) {
3701 struct drm_gem_object *obj = object_list[i];
3703 /* Compute new gpu domains and update invalidate/flush */
3704 i915_gem_object_set_to_gpu_domain(obj);
3707 i915_verify_inactive(dev, __FILE__, __LINE__);
3709 if (dev->invalidate_domains | dev->flush_domains) {
3710 #if WATCH_EXEC
3711 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3712 __func__,
3713 dev->invalidate_domains,
3714 dev->flush_domains);
3715 #endif
3716 i915_gem_flush(dev,
3717 dev->invalidate_domains,
3718 dev->flush_domains);
3721 if (dev_priv->render_ring.outstanding_lazy_request) {
3722 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->render_ring);
3723 dev_priv->render_ring.outstanding_lazy_request = false;
3725 if (dev_priv->bsd_ring.outstanding_lazy_request) {
3726 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->bsd_ring);
3727 dev_priv->bsd_ring.outstanding_lazy_request = false;
3730 for (i = 0; i < args->buffer_count; i++) {
3731 struct drm_gem_object *obj = object_list[i];
3732 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3733 uint32_t old_write_domain = obj->write_domain;
3735 obj->write_domain = obj->pending_write_domain;
3736 if (obj->write_domain)
3737 list_move_tail(&obj_priv->gpu_write_list,
3738 &dev_priv->mm.gpu_write_list);
3739 else
3740 list_del_init(&obj_priv->gpu_write_list);
3742 trace_i915_gem_object_change_domain(obj,
3743 obj->read_domains,
3744 old_write_domain);
3747 i915_verify_inactive(dev, __FILE__, __LINE__);
3749 #if WATCH_COHERENCY
3750 for (i = 0; i < args->buffer_count; i++) {
3751 i915_gem_object_check_coherency(object_list[i],
3752 exec_list[i].handle);
3754 #endif
3756 #if WATCH_EXEC
3757 i915_gem_dump_object(batch_obj,
3758 args->batch_len,
3759 __func__,
3760 ~0);
3761 #endif
3763 /* Exec the batchbuffer */
3764 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3765 cliprects, exec_offset);
3766 if (ret) {
3767 DRM_ERROR("dispatch failed %d\n", ret);
3768 goto err;
3772 * Ensure that the commands in the batch buffer are
3773 * finished before the interrupt fires
3775 i915_retire_commands(dev, ring);
3777 i915_verify_inactive(dev, __FILE__, __LINE__);
3779 for (i = 0; i < args->buffer_count; i++) {
3780 struct drm_gem_object *obj = object_list[i];
3781 obj_priv = to_intel_bo(obj);
3783 i915_gem_object_move_to_active(obj, ring);
3784 #if WATCH_LRU
3785 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3786 #endif
3790 * Get a seqno representing the execution of the current buffer,
3791 * which we can wait on. We would like to mitigate these interrupts,
3792 * likely by only creating seqnos occasionally (so that we have
3793 * *some* interrupts representing completion of buffers that we can
3794 * wait on when trying to clear up gtt space).
3796 seqno = i915_add_request(dev, file_priv, request, ring);
3797 request = NULL;
3799 #if WATCH_LRU
3800 i915_dump_lru(dev, __func__);
3801 #endif
3803 i915_verify_inactive(dev, __FILE__, __LINE__);
3805 err:
3806 for (i = 0; i < pinned; i++)
3807 i915_gem_object_unpin(object_list[i]);
3809 for (i = 0; i < args->buffer_count; i++) {
3810 if (object_list[i]) {
3811 obj_priv = to_intel_bo(object_list[i]);
3812 obj_priv->in_execbuffer = false;
3814 drm_gem_object_unreference(object_list[i]);
3817 mutex_unlock(&dev->struct_mutex);
3819 pre_mutex_err:
3820 /* Copy the updated relocations out regardless of current error
3821 * state. Failure to update the relocs would mean that the next
3822 * time userland calls execbuf, it would do so with presumed offset
3823 * state that didn't match the actual object state.
3825 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3826 relocs);
3827 if (ret2 != 0) {
3828 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3830 if (ret == 0)
3831 ret = ret2;
3834 drm_free_large(object_list);
3835 kfree(cliprects);
3836 kfree(request);
3838 return ret;
3842 * Legacy execbuffer just creates an exec2 list from the original exec object
3843 * list array and passes it to the real function.
3846 i915_gem_execbuffer(struct drm_device *dev, void *data,
3847 struct drm_file *file_priv)
3849 struct drm_i915_gem_execbuffer *args = data;
3850 struct drm_i915_gem_execbuffer2 exec2;
3851 struct drm_i915_gem_exec_object *exec_list = NULL;
3852 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3853 int ret, i;
3855 #if WATCH_EXEC
3856 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3857 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3858 #endif
3860 if (args->buffer_count < 1) {
3861 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3862 return -EINVAL;
3865 /* Copy in the exec list from userland */
3866 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3867 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3868 if (exec_list == NULL || exec2_list == NULL) {
3869 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3870 args->buffer_count);
3871 drm_free_large(exec_list);
3872 drm_free_large(exec2_list);
3873 return -ENOMEM;
3875 ret = copy_from_user(exec_list,
3876 (struct drm_i915_relocation_entry __user *)
3877 (uintptr_t) args->buffers_ptr,
3878 sizeof(*exec_list) * args->buffer_count);
3879 if (ret != 0) {
3880 DRM_ERROR("copy %d exec entries failed %d\n",
3881 args->buffer_count, ret);
3882 drm_free_large(exec_list);
3883 drm_free_large(exec2_list);
3884 return -EFAULT;
3887 for (i = 0; i < args->buffer_count; i++) {
3888 exec2_list[i].handle = exec_list[i].handle;
3889 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3890 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3891 exec2_list[i].alignment = exec_list[i].alignment;
3892 exec2_list[i].offset = exec_list[i].offset;
3893 if (!IS_I965G(dev))
3894 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3895 else
3896 exec2_list[i].flags = 0;
3899 exec2.buffers_ptr = args->buffers_ptr;
3900 exec2.buffer_count = args->buffer_count;
3901 exec2.batch_start_offset = args->batch_start_offset;
3902 exec2.batch_len = args->batch_len;
3903 exec2.DR1 = args->DR1;
3904 exec2.DR4 = args->DR4;
3905 exec2.num_cliprects = args->num_cliprects;
3906 exec2.cliprects_ptr = args->cliprects_ptr;
3907 exec2.flags = I915_EXEC_RENDER;
3909 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3910 if (!ret) {
3911 /* Copy the new buffer offsets back to the user's exec list. */
3912 for (i = 0; i < args->buffer_count; i++)
3913 exec_list[i].offset = exec2_list[i].offset;
3914 /* ... and back out to userspace */
3915 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3916 (uintptr_t) args->buffers_ptr,
3917 exec_list,
3918 sizeof(*exec_list) * args->buffer_count);
3919 if (ret) {
3920 ret = -EFAULT;
3921 DRM_ERROR("failed to copy %d exec entries "
3922 "back to user (%d)\n",
3923 args->buffer_count, ret);
3927 drm_free_large(exec_list);
3928 drm_free_large(exec2_list);
3929 return ret;
3933 i915_gem_execbuffer2(struct drm_device *dev, void *data,
3934 struct drm_file *file_priv)
3936 struct drm_i915_gem_execbuffer2 *args = data;
3937 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3938 int ret;
3940 #if WATCH_EXEC
3941 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3942 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3943 #endif
3945 if (args->buffer_count < 1) {
3946 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3947 return -EINVAL;
3950 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3951 if (exec2_list == NULL) {
3952 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3953 args->buffer_count);
3954 return -ENOMEM;
3956 ret = copy_from_user(exec2_list,
3957 (struct drm_i915_relocation_entry __user *)
3958 (uintptr_t) args->buffers_ptr,
3959 sizeof(*exec2_list) * args->buffer_count);
3960 if (ret != 0) {
3961 DRM_ERROR("copy %d exec entries failed %d\n",
3962 args->buffer_count, ret);
3963 drm_free_large(exec2_list);
3964 return -EFAULT;
3967 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
3968 if (!ret) {
3969 /* Copy the new buffer offsets back to the user's exec list. */
3970 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3971 (uintptr_t) args->buffers_ptr,
3972 exec2_list,
3973 sizeof(*exec2_list) * args->buffer_count);
3974 if (ret) {
3975 ret = -EFAULT;
3976 DRM_ERROR("failed to copy %d exec entries "
3977 "back to user (%d)\n",
3978 args->buffer_count, ret);
3982 drm_free_large(exec2_list);
3983 return ret;
3987 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3989 struct drm_device *dev = obj->dev;
3990 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3991 int ret;
3993 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3995 i915_verify_inactive(dev, __FILE__, __LINE__);
3997 if (obj_priv->gtt_space != NULL) {
3998 if (alignment == 0)
3999 alignment = i915_gem_get_gtt_alignment(obj);
4000 if (obj_priv->gtt_offset & (alignment - 1)) {
4001 WARN(obj_priv->pin_count,
4002 "bo is already pinned with incorrect alignment:"
4003 " offset=%x, req.alignment=%x\n",
4004 obj_priv->gtt_offset, alignment);
4005 ret = i915_gem_object_unbind(obj);
4006 if (ret)
4007 return ret;
4011 if (obj_priv->gtt_space == NULL) {
4012 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4013 if (ret)
4014 return ret;
4017 obj_priv->pin_count++;
4019 /* If the object is not active and not pending a flush,
4020 * remove it from the inactive list
4022 if (obj_priv->pin_count == 1) {
4023 atomic_inc(&dev->pin_count);
4024 atomic_add(obj->size, &dev->pin_memory);
4025 if (!obj_priv->active &&
4026 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4027 list_del_init(&obj_priv->list);
4029 i915_verify_inactive(dev, __FILE__, __LINE__);
4031 return 0;
4034 void
4035 i915_gem_object_unpin(struct drm_gem_object *obj)
4037 struct drm_device *dev = obj->dev;
4038 drm_i915_private_t *dev_priv = dev->dev_private;
4039 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4041 i915_verify_inactive(dev, __FILE__, __LINE__);
4042 obj_priv->pin_count--;
4043 BUG_ON(obj_priv->pin_count < 0);
4044 BUG_ON(obj_priv->gtt_space == NULL);
4046 /* If the object is no longer pinned, and is
4047 * neither active nor being flushed, then stick it on
4048 * the inactive list
4050 if (obj_priv->pin_count == 0) {
4051 if (!obj_priv->active &&
4052 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4053 list_move_tail(&obj_priv->list,
4054 &dev_priv->mm.inactive_list);
4055 atomic_dec(&dev->pin_count);
4056 atomic_sub(obj->size, &dev->pin_memory);
4058 i915_verify_inactive(dev, __FILE__, __LINE__);
4062 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4063 struct drm_file *file_priv)
4065 struct drm_i915_gem_pin *args = data;
4066 struct drm_gem_object *obj;
4067 struct drm_i915_gem_object *obj_priv;
4068 int ret;
4070 mutex_lock(&dev->struct_mutex);
4072 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4073 if (obj == NULL) {
4074 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4075 args->handle);
4076 mutex_unlock(&dev->struct_mutex);
4077 return -ENOENT;
4079 obj_priv = to_intel_bo(obj);
4081 if (obj_priv->madv != I915_MADV_WILLNEED) {
4082 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4083 drm_gem_object_unreference(obj);
4084 mutex_unlock(&dev->struct_mutex);
4085 return -EINVAL;
4088 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4089 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4090 args->handle);
4091 drm_gem_object_unreference(obj);
4092 mutex_unlock(&dev->struct_mutex);
4093 return -EINVAL;
4096 obj_priv->user_pin_count++;
4097 obj_priv->pin_filp = file_priv;
4098 if (obj_priv->user_pin_count == 1) {
4099 ret = i915_gem_object_pin(obj, args->alignment);
4100 if (ret != 0) {
4101 drm_gem_object_unreference(obj);
4102 mutex_unlock(&dev->struct_mutex);
4103 return ret;
4107 /* XXX - flush the CPU caches for pinned objects
4108 * as the X server doesn't manage domains yet
4110 i915_gem_object_flush_cpu_write_domain(obj);
4111 args->offset = obj_priv->gtt_offset;
4112 drm_gem_object_unreference(obj);
4113 mutex_unlock(&dev->struct_mutex);
4115 return 0;
4119 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4120 struct drm_file *file_priv)
4122 struct drm_i915_gem_pin *args = data;
4123 struct drm_gem_object *obj;
4124 struct drm_i915_gem_object *obj_priv;
4126 mutex_lock(&dev->struct_mutex);
4128 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4129 if (obj == NULL) {
4130 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4131 args->handle);
4132 mutex_unlock(&dev->struct_mutex);
4133 return -ENOENT;
4136 obj_priv = to_intel_bo(obj);
4137 if (obj_priv->pin_filp != file_priv) {
4138 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4139 args->handle);
4140 drm_gem_object_unreference(obj);
4141 mutex_unlock(&dev->struct_mutex);
4142 return -EINVAL;
4144 obj_priv->user_pin_count--;
4145 if (obj_priv->user_pin_count == 0) {
4146 obj_priv->pin_filp = NULL;
4147 i915_gem_object_unpin(obj);
4150 drm_gem_object_unreference(obj);
4151 mutex_unlock(&dev->struct_mutex);
4152 return 0;
4156 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4157 struct drm_file *file_priv)
4159 struct drm_i915_gem_busy *args = data;
4160 struct drm_gem_object *obj;
4161 struct drm_i915_gem_object *obj_priv;
4163 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4164 if (obj == NULL) {
4165 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4166 args->handle);
4167 return -ENOENT;
4170 mutex_lock(&dev->struct_mutex);
4172 /* Count all active objects as busy, even if they are currently not used
4173 * by the gpu. Users of this interface expect objects to eventually
4174 * become non-busy without any further actions, therefore emit any
4175 * necessary flushes here.
4177 obj_priv = to_intel_bo(obj);
4178 args->busy = obj_priv->active;
4179 if (args->busy) {
4180 /* Unconditionally flush objects, even when the gpu still uses this
4181 * object. Userspace calling this function indicates that it wants to
4182 * use this buffer rather sooner than later, so issuing the required
4183 * flush earlier is beneficial.
4185 if (obj->write_domain) {
4186 i915_gem_flush(dev, 0, obj->write_domain);
4187 (void)i915_add_request(dev, file_priv, NULL, obj_priv->ring);
4190 /* Update the active list for the hardware's current position.
4191 * Otherwise this only updates on a delayed timer or when irqs
4192 * are actually unmasked, and our working set ends up being
4193 * larger than required.
4195 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4197 args->busy = obj_priv->active;
4200 drm_gem_object_unreference(obj);
4201 mutex_unlock(&dev->struct_mutex);
4202 return 0;
4206 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4207 struct drm_file *file_priv)
4209 return i915_gem_ring_throttle(dev, file_priv);
4213 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4214 struct drm_file *file_priv)
4216 struct drm_i915_gem_madvise *args = data;
4217 struct drm_gem_object *obj;
4218 struct drm_i915_gem_object *obj_priv;
4220 switch (args->madv) {
4221 case I915_MADV_DONTNEED:
4222 case I915_MADV_WILLNEED:
4223 break;
4224 default:
4225 return -EINVAL;
4228 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4229 if (obj == NULL) {
4230 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4231 args->handle);
4232 return -ENOENT;
4235 mutex_lock(&dev->struct_mutex);
4236 obj_priv = to_intel_bo(obj);
4238 if (obj_priv->pin_count) {
4239 drm_gem_object_unreference(obj);
4240 mutex_unlock(&dev->struct_mutex);
4242 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4243 return -EINVAL;
4246 if (obj_priv->madv != __I915_MADV_PURGED)
4247 obj_priv->madv = args->madv;
4249 /* if the object is no longer bound, discard its backing storage */
4250 if (i915_gem_object_is_purgeable(obj_priv) &&
4251 obj_priv->gtt_space == NULL)
4252 i915_gem_object_truncate(obj);
4254 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4256 drm_gem_object_unreference(obj);
4257 mutex_unlock(&dev->struct_mutex);
4259 return 0;
4262 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4263 size_t size)
4265 struct drm_i915_gem_object *obj;
4267 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4268 if (obj == NULL)
4269 return NULL;
4271 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4272 kfree(obj);
4273 return NULL;
4276 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4277 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4279 obj->agp_type = AGP_USER_MEMORY;
4280 obj->base.driver_private = NULL;
4281 obj->fence_reg = I915_FENCE_REG_NONE;
4282 INIT_LIST_HEAD(&obj->list);
4283 INIT_LIST_HEAD(&obj->gpu_write_list);
4284 obj->madv = I915_MADV_WILLNEED;
4286 trace_i915_gem_object_create(&obj->base);
4288 return &obj->base;
4291 int i915_gem_init_object(struct drm_gem_object *obj)
4293 BUG();
4295 return 0;
4298 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4300 struct drm_device *dev = obj->dev;
4301 drm_i915_private_t *dev_priv = dev->dev_private;
4302 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4303 int ret;
4305 ret = i915_gem_object_unbind(obj);
4306 if (ret == -ERESTARTSYS) {
4307 list_move(&obj_priv->list,
4308 &dev_priv->mm.deferred_free_list);
4309 return;
4312 if (obj_priv->mmap_offset)
4313 i915_gem_free_mmap_offset(obj);
4315 drm_gem_object_release(obj);
4317 kfree(obj_priv->page_cpu_valid);
4318 kfree(obj_priv->bit_17);
4319 kfree(obj_priv);
4322 void i915_gem_free_object(struct drm_gem_object *obj)
4324 struct drm_device *dev = obj->dev;
4325 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4327 trace_i915_gem_object_destroy(obj);
4329 while (obj_priv->pin_count > 0)
4330 i915_gem_object_unpin(obj);
4332 if (obj_priv->phys_obj)
4333 i915_gem_detach_phys_object(dev, obj);
4335 i915_gem_free_object_tail(obj);
4339 i915_gem_idle(struct drm_device *dev)
4341 drm_i915_private_t *dev_priv = dev->dev_private;
4342 int ret;
4344 mutex_lock(&dev->struct_mutex);
4346 if (dev_priv->mm.suspended ||
4347 (dev_priv->render_ring.gem_object == NULL) ||
4348 (HAS_BSD(dev) &&
4349 dev_priv->bsd_ring.gem_object == NULL)) {
4350 mutex_unlock(&dev->struct_mutex);
4351 return 0;
4354 ret = i915_gpu_idle(dev);
4355 if (ret) {
4356 mutex_unlock(&dev->struct_mutex);
4357 return ret;
4360 /* Under UMS, be paranoid and evict. */
4361 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4362 ret = i915_gem_evict_inactive(dev);
4363 if (ret) {
4364 mutex_unlock(&dev->struct_mutex);
4365 return ret;
4369 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4370 * We need to replace this with a semaphore, or something.
4371 * And not confound mm.suspended!
4373 dev_priv->mm.suspended = 1;
4374 del_timer_sync(&dev_priv->hangcheck_timer);
4376 i915_kernel_lost_context(dev);
4377 i915_gem_cleanup_ringbuffer(dev);
4379 mutex_unlock(&dev->struct_mutex);
4381 /* Cancel the retire work handler, which should be idle now. */
4382 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4384 return 0;
4388 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4389 * over cache flushing.
4391 static int
4392 i915_gem_init_pipe_control(struct drm_device *dev)
4394 drm_i915_private_t *dev_priv = dev->dev_private;
4395 struct drm_gem_object *obj;
4396 struct drm_i915_gem_object *obj_priv;
4397 int ret;
4399 obj = i915_gem_alloc_object(dev, 4096);
4400 if (obj == NULL) {
4401 DRM_ERROR("Failed to allocate seqno page\n");
4402 ret = -ENOMEM;
4403 goto err;
4405 obj_priv = to_intel_bo(obj);
4406 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4408 ret = i915_gem_object_pin(obj, 4096);
4409 if (ret)
4410 goto err_unref;
4412 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4413 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4414 if (dev_priv->seqno_page == NULL)
4415 goto err_unpin;
4417 dev_priv->seqno_obj = obj;
4418 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4420 return 0;
4422 err_unpin:
4423 i915_gem_object_unpin(obj);
4424 err_unref:
4425 drm_gem_object_unreference(obj);
4426 err:
4427 return ret;
4431 static void
4432 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4434 drm_i915_private_t *dev_priv = dev->dev_private;
4435 struct drm_gem_object *obj;
4436 struct drm_i915_gem_object *obj_priv;
4438 obj = dev_priv->seqno_obj;
4439 obj_priv = to_intel_bo(obj);
4440 kunmap(obj_priv->pages[0]);
4441 i915_gem_object_unpin(obj);
4442 drm_gem_object_unreference(obj);
4443 dev_priv->seqno_obj = NULL;
4445 dev_priv->seqno_page = NULL;
4449 i915_gem_init_ringbuffer(struct drm_device *dev)
4451 drm_i915_private_t *dev_priv = dev->dev_private;
4452 int ret;
4454 dev_priv->render_ring = render_ring;
4456 if (!I915_NEED_GFX_HWS(dev)) {
4457 dev_priv->render_ring.status_page.page_addr
4458 = dev_priv->status_page_dmah->vaddr;
4459 memset(dev_priv->render_ring.status_page.page_addr,
4460 0, PAGE_SIZE);
4463 if (HAS_PIPE_CONTROL(dev)) {
4464 ret = i915_gem_init_pipe_control(dev);
4465 if (ret)
4466 return ret;
4469 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4470 if (ret)
4471 goto cleanup_pipe_control;
4473 if (HAS_BSD(dev)) {
4474 dev_priv->bsd_ring = bsd_ring;
4475 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4476 if (ret)
4477 goto cleanup_render_ring;
4480 dev_priv->next_seqno = 1;
4482 return 0;
4484 cleanup_render_ring:
4485 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4486 cleanup_pipe_control:
4487 if (HAS_PIPE_CONTROL(dev))
4488 i915_gem_cleanup_pipe_control(dev);
4489 return ret;
4492 void
4493 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4495 drm_i915_private_t *dev_priv = dev->dev_private;
4497 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4498 if (HAS_BSD(dev))
4499 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4500 if (HAS_PIPE_CONTROL(dev))
4501 i915_gem_cleanup_pipe_control(dev);
4505 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4506 struct drm_file *file_priv)
4508 drm_i915_private_t *dev_priv = dev->dev_private;
4509 int ret;
4511 if (drm_core_check_feature(dev, DRIVER_MODESET))
4512 return 0;
4514 if (atomic_read(&dev_priv->mm.wedged)) {
4515 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4516 atomic_set(&dev_priv->mm.wedged, 0);
4519 mutex_lock(&dev->struct_mutex);
4520 dev_priv->mm.suspended = 0;
4522 ret = i915_gem_init_ringbuffer(dev);
4523 if (ret != 0) {
4524 mutex_unlock(&dev->struct_mutex);
4525 return ret;
4528 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4529 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4530 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4531 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4532 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4533 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4534 mutex_unlock(&dev->struct_mutex);
4536 ret = drm_irq_install(dev);
4537 if (ret)
4538 goto cleanup_ringbuffer;
4540 return 0;
4542 cleanup_ringbuffer:
4543 mutex_lock(&dev->struct_mutex);
4544 i915_gem_cleanup_ringbuffer(dev);
4545 dev_priv->mm.suspended = 1;
4546 mutex_unlock(&dev->struct_mutex);
4548 return ret;
4552 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4553 struct drm_file *file_priv)
4555 if (drm_core_check_feature(dev, DRIVER_MODESET))
4556 return 0;
4558 drm_irq_uninstall(dev);
4559 return i915_gem_idle(dev);
4562 void
4563 i915_gem_lastclose(struct drm_device *dev)
4565 int ret;
4567 if (drm_core_check_feature(dev, DRIVER_MODESET))
4568 return;
4570 ret = i915_gem_idle(dev);
4571 if (ret)
4572 DRM_ERROR("failed to idle hardware: %d\n", ret);
4575 void
4576 i915_gem_load(struct drm_device *dev)
4578 int i;
4579 drm_i915_private_t *dev_priv = dev->dev_private;
4581 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4582 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4583 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4584 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4585 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4586 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4587 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4588 if (HAS_BSD(dev)) {
4589 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4590 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4592 for (i = 0; i < 16; i++)
4593 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4594 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4595 i915_gem_retire_work_handler);
4596 spin_lock(&shrink_list_lock);
4597 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4598 spin_unlock(&shrink_list_lock);
4600 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4601 if (IS_GEN3(dev)) {
4602 u32 tmp = I915_READ(MI_ARB_STATE);
4603 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4604 /* arb state is a masked write, so set bit + bit in mask */
4605 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4606 I915_WRITE(MI_ARB_STATE, tmp);
4610 /* Old X drivers will take 0-2 for front, back, depth buffers */
4611 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4612 dev_priv->fence_reg_start = 3;
4614 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4615 dev_priv->num_fence_regs = 16;
4616 else
4617 dev_priv->num_fence_regs = 8;
4619 /* Initialize fence registers to zero */
4620 if (IS_I965G(dev)) {
4621 for (i = 0; i < 16; i++)
4622 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4623 } else {
4624 for (i = 0; i < 8; i++)
4625 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4626 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4627 for (i = 0; i < 8; i++)
4628 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4630 i915_gem_detect_bit_6_swizzle(dev);
4631 init_waitqueue_head(&dev_priv->pending_flip_queue);
4635 * Create a physically contiguous memory object for this object
4636 * e.g. for cursor + overlay regs
4638 static int i915_gem_init_phys_object(struct drm_device *dev,
4639 int id, int size, int align)
4641 drm_i915_private_t *dev_priv = dev->dev_private;
4642 struct drm_i915_gem_phys_object *phys_obj;
4643 int ret;
4645 if (dev_priv->mm.phys_objs[id - 1] || !size)
4646 return 0;
4648 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4649 if (!phys_obj)
4650 return -ENOMEM;
4652 phys_obj->id = id;
4654 phys_obj->handle = drm_pci_alloc(dev, size, align);
4655 if (!phys_obj->handle) {
4656 ret = -ENOMEM;
4657 goto kfree_obj;
4659 #ifdef CONFIG_X86
4660 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4661 #endif
4663 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4665 return 0;
4666 kfree_obj:
4667 kfree(phys_obj);
4668 return ret;
4671 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4673 drm_i915_private_t *dev_priv = dev->dev_private;
4674 struct drm_i915_gem_phys_object *phys_obj;
4676 if (!dev_priv->mm.phys_objs[id - 1])
4677 return;
4679 phys_obj = dev_priv->mm.phys_objs[id - 1];
4680 if (phys_obj->cur_obj) {
4681 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4684 #ifdef CONFIG_X86
4685 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4686 #endif
4687 drm_pci_free(dev, phys_obj->handle);
4688 kfree(phys_obj);
4689 dev_priv->mm.phys_objs[id - 1] = NULL;
4692 void i915_gem_free_all_phys_object(struct drm_device *dev)
4694 int i;
4696 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4697 i915_gem_free_phys_object(dev, i);
4700 void i915_gem_detach_phys_object(struct drm_device *dev,
4701 struct drm_gem_object *obj)
4703 struct drm_i915_gem_object *obj_priv;
4704 int i;
4705 int ret;
4706 int page_count;
4708 obj_priv = to_intel_bo(obj);
4709 if (!obj_priv->phys_obj)
4710 return;
4712 ret = i915_gem_object_get_pages(obj, 0);
4713 if (ret)
4714 goto out;
4716 page_count = obj->size / PAGE_SIZE;
4718 for (i = 0; i < page_count; i++) {
4719 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4720 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4722 memcpy(dst, src, PAGE_SIZE);
4723 kunmap_atomic(dst, KM_USER0);
4725 drm_clflush_pages(obj_priv->pages, page_count);
4726 drm_agp_chipset_flush(dev);
4728 i915_gem_object_put_pages(obj);
4729 out:
4730 obj_priv->phys_obj->cur_obj = NULL;
4731 obj_priv->phys_obj = NULL;
4735 i915_gem_attach_phys_object(struct drm_device *dev,
4736 struct drm_gem_object *obj,
4737 int id,
4738 int align)
4740 drm_i915_private_t *dev_priv = dev->dev_private;
4741 struct drm_i915_gem_object *obj_priv;
4742 int ret = 0;
4743 int page_count;
4744 int i;
4746 if (id > I915_MAX_PHYS_OBJECT)
4747 return -EINVAL;
4749 obj_priv = to_intel_bo(obj);
4751 if (obj_priv->phys_obj) {
4752 if (obj_priv->phys_obj->id == id)
4753 return 0;
4754 i915_gem_detach_phys_object(dev, obj);
4757 /* create a new object */
4758 if (!dev_priv->mm.phys_objs[id - 1]) {
4759 ret = i915_gem_init_phys_object(dev, id,
4760 obj->size, align);
4761 if (ret) {
4762 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4763 goto out;
4767 /* bind to the object */
4768 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4769 obj_priv->phys_obj->cur_obj = obj;
4771 ret = i915_gem_object_get_pages(obj, 0);
4772 if (ret) {
4773 DRM_ERROR("failed to get page list\n");
4774 goto out;
4777 page_count = obj->size / PAGE_SIZE;
4779 for (i = 0; i < page_count; i++) {
4780 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4781 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4783 memcpy(dst, src, PAGE_SIZE);
4784 kunmap_atomic(src, KM_USER0);
4787 i915_gem_object_put_pages(obj);
4789 return 0;
4790 out:
4791 return ret;
4794 static int
4795 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4796 struct drm_i915_gem_pwrite *args,
4797 struct drm_file *file_priv)
4799 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4800 void *obj_addr;
4801 int ret;
4802 char __user *user_data;
4804 user_data = (char __user *) (uintptr_t) args->data_ptr;
4805 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4807 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4808 ret = copy_from_user(obj_addr, user_data, args->size);
4809 if (ret)
4810 return -EFAULT;
4812 drm_agp_chipset_flush(dev);
4813 return 0;
4816 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4818 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4820 /* Clean up our request list when the client is going away, so that
4821 * later retire_requests won't dereference our soon-to-be-gone
4822 * file_priv.
4824 mutex_lock(&dev->struct_mutex);
4825 while (!list_empty(&i915_file_priv->mm.request_list))
4826 list_del_init(i915_file_priv->mm.request_list.next);
4827 mutex_unlock(&dev->struct_mutex);
4830 static int
4831 i915_gpu_is_active(struct drm_device *dev)
4833 drm_i915_private_t *dev_priv = dev->dev_private;
4834 int lists_empty;
4836 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4837 list_empty(&dev_priv->render_ring.active_list);
4838 if (HAS_BSD(dev))
4839 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4841 return !lists_empty;
4844 static int
4845 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4847 drm_i915_private_t *dev_priv, *next_dev;
4848 struct drm_i915_gem_object *obj_priv, *next_obj;
4849 int cnt = 0;
4850 int would_deadlock = 1;
4852 /* "fast-path" to count number of available objects */
4853 if (nr_to_scan == 0) {
4854 spin_lock(&shrink_list_lock);
4855 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4856 struct drm_device *dev = dev_priv->dev;
4858 if (mutex_trylock(&dev->struct_mutex)) {
4859 list_for_each_entry(obj_priv,
4860 &dev_priv->mm.inactive_list,
4861 list)
4862 cnt++;
4863 mutex_unlock(&dev->struct_mutex);
4866 spin_unlock(&shrink_list_lock);
4868 return (cnt / 100) * sysctl_vfs_cache_pressure;
4871 spin_lock(&shrink_list_lock);
4873 rescan:
4874 /* first scan for clean buffers */
4875 list_for_each_entry_safe(dev_priv, next_dev,
4876 &shrink_list, mm.shrink_list) {
4877 struct drm_device *dev = dev_priv->dev;
4879 if (! mutex_trylock(&dev->struct_mutex))
4880 continue;
4882 spin_unlock(&shrink_list_lock);
4883 i915_gem_retire_requests(dev);
4885 list_for_each_entry_safe(obj_priv, next_obj,
4886 &dev_priv->mm.inactive_list,
4887 list) {
4888 if (i915_gem_object_is_purgeable(obj_priv)) {
4889 i915_gem_object_unbind(&obj_priv->base);
4890 if (--nr_to_scan <= 0)
4891 break;
4895 spin_lock(&shrink_list_lock);
4896 mutex_unlock(&dev->struct_mutex);
4898 would_deadlock = 0;
4900 if (nr_to_scan <= 0)
4901 break;
4904 /* second pass, evict/count anything still on the inactive list */
4905 list_for_each_entry_safe(dev_priv, next_dev,
4906 &shrink_list, mm.shrink_list) {
4907 struct drm_device *dev = dev_priv->dev;
4909 if (! mutex_trylock(&dev->struct_mutex))
4910 continue;
4912 spin_unlock(&shrink_list_lock);
4914 list_for_each_entry_safe(obj_priv, next_obj,
4915 &dev_priv->mm.inactive_list,
4916 list) {
4917 if (nr_to_scan > 0) {
4918 i915_gem_object_unbind(&obj_priv->base);
4919 nr_to_scan--;
4920 } else
4921 cnt++;
4924 spin_lock(&shrink_list_lock);
4925 mutex_unlock(&dev->struct_mutex);
4927 would_deadlock = 0;
4930 if (nr_to_scan) {
4931 int active = 0;
4934 * We are desperate for pages, so as a last resort, wait
4935 * for the GPU to finish and discard whatever we can.
4936 * This has a dramatic impact to reduce the number of
4937 * OOM-killer events whilst running the GPU aggressively.
4939 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4940 struct drm_device *dev = dev_priv->dev;
4942 if (!mutex_trylock(&dev->struct_mutex))
4943 continue;
4945 spin_unlock(&shrink_list_lock);
4947 if (i915_gpu_is_active(dev)) {
4948 i915_gpu_idle(dev);
4949 active++;
4952 spin_lock(&shrink_list_lock);
4953 mutex_unlock(&dev->struct_mutex);
4956 if (active)
4957 goto rescan;
4960 spin_unlock(&shrink_list_lock);
4962 if (would_deadlock)
4963 return -1;
4964 else if (cnt > 0)
4965 return (cnt / 100) * sysctl_vfs_cache_pressure;
4966 else
4967 return 0;
4970 static struct shrinker shrinker = {
4971 .shrink = i915_gem_shrink,
4972 .seeks = DEFAULT_SEEKS,
4975 __init void
4976 i915_gem_shrinker_init(void)
4978 register_shrinker(&shrinker);
4981 __exit void
4982 i915_gem_shrinker_exit(void)
4984 unregister_shrinker(&shrinker);