4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
75 #include <asm/irq_regs.h>
78 * Scheduler clock - returns current time in nanosec units.
79 * This is default implementation.
80 * Architectures and sub-architectures can override this.
82 unsigned long long __attribute__((weak
)) sched_clock(void)
84 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
101 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106 * Helpers for converting nanosecond timing to jiffy resolution
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
110 #define NICE_0_LOAD SCHED_LOAD_SCALE
111 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
114 * These are the 'tuning knobs' of the scheduler:
116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
117 * Timeslices get refilled after they expire.
119 #define DEF_TIMESLICE (100 * HZ / 1000)
122 * single value that denotes runtime == period, ie unlimited time.
124 #define RUNTIME_INF ((u64)~0ULL)
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
133 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
140 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
142 sg
->__cpu_power
+= val
;
143 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
147 static inline int rt_policy(int policy
)
149 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
154 static inline int task_has_rt_policy(struct task_struct
*p
)
156 return rt_policy(p
->policy
);
160 * This is the priority-queue data structure of the RT scheduling class:
162 struct rt_prio_array
{
163 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
164 struct list_head queue
[MAX_RT_PRIO
];
167 struct rt_bandwidth
{
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock
;
172 struct hrtimer rt_period_timer
;
175 static struct rt_bandwidth def_rt_bandwidth
;
177 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
179 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
181 struct rt_bandwidth
*rt_b
=
182 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
188 now
= hrtimer_cb_get_time(timer
);
189 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
194 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
197 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
201 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
203 rt_b
->rt_period
= ns_to_ktime(period
);
204 rt_b
->rt_runtime
= runtime
;
206 spin_lock_init(&rt_b
->rt_runtime_lock
);
208 hrtimer_init(&rt_b
->rt_period_timer
,
209 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
210 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
211 rt_b
->rt_period_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
214 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
218 if (rt_b
->rt_runtime
== RUNTIME_INF
)
221 if (hrtimer_active(&rt_b
->rt_period_timer
))
224 spin_lock(&rt_b
->rt_runtime_lock
);
226 if (hrtimer_active(&rt_b
->rt_period_timer
))
229 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
230 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
231 hrtimer_start(&rt_b
->rt_period_timer
,
232 rt_b
->rt_period_timer
.expires
,
235 spin_unlock(&rt_b
->rt_runtime_lock
);
238 #ifdef CONFIG_RT_GROUP_SCHED
239 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
241 hrtimer_cancel(&rt_b
->rt_period_timer
);
245 #ifdef CONFIG_GROUP_SCHED
247 #include <linux/cgroup.h>
251 static LIST_HEAD(task_groups
);
253 /* task group related information */
255 #ifdef CONFIG_CGROUP_SCHED
256 struct cgroup_subsys_state css
;
259 #ifdef CONFIG_FAIR_GROUP_SCHED
260 /* schedulable entities of this group on each cpu */
261 struct sched_entity
**se
;
262 /* runqueue "owned" by this group on each cpu */
263 struct cfs_rq
**cfs_rq
;
264 unsigned long shares
;
267 #ifdef CONFIG_RT_GROUP_SCHED
268 struct sched_rt_entity
**rt_se
;
269 struct rt_rq
**rt_rq
;
271 struct rt_bandwidth rt_bandwidth
;
275 struct list_head list
;
277 struct task_group
*parent
;
278 struct list_head siblings
;
279 struct list_head children
;
282 #ifdef CONFIG_USER_SCHED
286 * Every UID task group (including init_task_group aka UID-0) will
287 * be a child to this group.
289 struct task_group root_task_group
;
291 #ifdef CONFIG_FAIR_GROUP_SCHED
292 /* Default task group's sched entity on each cpu */
293 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
294 /* Default task group's cfs_rq on each cpu */
295 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
298 #ifdef CONFIG_RT_GROUP_SCHED
299 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
300 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
303 #define root_task_group init_task_group
306 /* task_group_lock serializes add/remove of task groups and also changes to
307 * a task group's cpu shares.
309 static DEFINE_SPINLOCK(task_group_lock
);
311 /* doms_cur_mutex serializes access to doms_cur[] array */
312 static DEFINE_MUTEX(doms_cur_mutex
);
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 #ifdef CONFIG_USER_SCHED
316 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
318 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
323 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
326 /* Default task group.
327 * Every task in system belong to this group at bootup.
329 struct task_group init_task_group
;
331 /* return group to which a task belongs */
332 static inline struct task_group
*task_group(struct task_struct
*p
)
334 struct task_group
*tg
;
336 #ifdef CONFIG_USER_SCHED
338 #elif defined(CONFIG_CGROUP_SCHED)
339 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
340 struct task_group
, css
);
342 tg
= &init_task_group
;
347 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
348 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
350 #ifdef CONFIG_FAIR_GROUP_SCHED
351 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
352 p
->se
.parent
= task_group(p
)->se
[cpu
];
355 #ifdef CONFIG_RT_GROUP_SCHED
356 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
357 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
361 static inline void lock_doms_cur(void)
363 mutex_lock(&doms_cur_mutex
);
366 static inline void unlock_doms_cur(void)
368 mutex_unlock(&doms_cur_mutex
);
373 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
374 static inline void lock_doms_cur(void) { }
375 static inline void unlock_doms_cur(void) { }
377 #endif /* CONFIG_GROUP_SCHED */
379 /* CFS-related fields in a runqueue */
381 struct load_weight load
;
382 unsigned long nr_running
;
387 struct rb_root tasks_timeline
;
388 struct rb_node
*rb_leftmost
;
390 struct list_head tasks
;
391 struct list_head
*balance_iterator
;
394 * 'curr' points to currently running entity on this cfs_rq.
395 * It is set to NULL otherwise (i.e when none are currently running).
397 struct sched_entity
*curr
, *next
;
399 unsigned long nr_spread_over
;
401 #ifdef CONFIG_FAIR_GROUP_SCHED
402 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
405 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
406 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
407 * (like users, containers etc.)
409 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
410 * list is used during load balance.
412 struct list_head leaf_cfs_rq_list
;
413 struct task_group
*tg
; /* group that "owns" this runqueue */
416 unsigned long task_weight
;
417 unsigned long shares
;
419 * We need space to build a sched_domain wide view of the full task
420 * group tree, in order to avoid depending on dynamic memory allocation
421 * during the load balancing we place this in the per cpu task group
422 * hierarchy. This limits the load balancing to one instance per cpu,
423 * but more should not be needed anyway.
425 struct aggregate_struct
{
427 * load = weight(cpus) * f(tg)
429 * Where f(tg) is the recursive weight fraction assigned to
435 * part of the group weight distributed to this span.
437 unsigned long shares
;
440 * The sum of all runqueue weights within this span.
442 unsigned long rq_weight
;
445 * Weight contributed by tasks; this is the part we can
446 * influence by moving tasks around.
448 unsigned long task_weight
;
454 /* Real-Time classes' related field in a runqueue: */
456 struct rt_prio_array active
;
457 unsigned long rt_nr_running
;
458 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
459 int highest_prio
; /* highest queued rt task prio */
462 unsigned long rt_nr_migratory
;
468 /* Nests inside the rq lock: */
469 spinlock_t rt_runtime_lock
;
471 #ifdef CONFIG_RT_GROUP_SCHED
472 unsigned long rt_nr_boosted
;
475 struct list_head leaf_rt_rq_list
;
476 struct task_group
*tg
;
477 struct sched_rt_entity
*rt_se
;
484 * We add the notion of a root-domain which will be used to define per-domain
485 * variables. Each exclusive cpuset essentially defines an island domain by
486 * fully partitioning the member cpus from any other cpuset. Whenever a new
487 * exclusive cpuset is created, we also create and attach a new root-domain
497 * The "RT overload" flag: it gets set if a CPU has more than
498 * one runnable RT task.
505 * By default the system creates a single root-domain with all cpus as
506 * members (mimicking the global state we have today).
508 static struct root_domain def_root_domain
;
513 * This is the main, per-CPU runqueue data structure.
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
527 unsigned long nr_running
;
528 #define CPU_LOAD_IDX_MAX 5
529 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
530 unsigned char idle_at_tick
;
532 unsigned long last_tick_seen
;
533 unsigned char in_nohz_recently
;
535 /* capture load from *all* tasks on this cpu: */
536 struct load_weight load
;
537 unsigned long nr_load_updates
;
543 #ifdef CONFIG_FAIR_GROUP_SCHED
544 /* list of leaf cfs_rq on this cpu: */
545 struct list_head leaf_cfs_rq_list
;
547 #ifdef CONFIG_RT_GROUP_SCHED
548 struct list_head leaf_rt_rq_list
;
552 * This is part of a global counter where only the total sum
553 * over all CPUs matters. A task can increase this counter on
554 * one CPU and if it got migrated afterwards it may decrease
555 * it on another CPU. Always updated under the runqueue lock:
557 unsigned long nr_uninterruptible
;
559 struct task_struct
*curr
, *idle
;
560 unsigned long next_balance
;
561 struct mm_struct
*prev_mm
;
563 u64 clock
, prev_clock_raw
;
566 unsigned int clock_warps
, clock_overflows
, clock_underflows
;
568 unsigned int clock_deep_idle_events
;
574 struct root_domain
*rd
;
575 struct sched_domain
*sd
;
577 /* For active balancing */
580 /* cpu of this runqueue: */
583 struct task_struct
*migration_thread
;
584 struct list_head migration_queue
;
587 #ifdef CONFIG_SCHED_HRTICK
588 unsigned long hrtick_flags
;
589 ktime_t hrtick_expire
;
590 struct hrtimer hrtick_timer
;
593 #ifdef CONFIG_SCHEDSTATS
595 struct sched_info rq_sched_info
;
597 /* sys_sched_yield() stats */
598 unsigned int yld_exp_empty
;
599 unsigned int yld_act_empty
;
600 unsigned int yld_both_empty
;
601 unsigned int yld_count
;
603 /* schedule() stats */
604 unsigned int sched_switch
;
605 unsigned int sched_count
;
606 unsigned int sched_goidle
;
608 /* try_to_wake_up() stats */
609 unsigned int ttwu_count
;
610 unsigned int ttwu_local
;
613 unsigned int bkl_count
;
615 struct lock_class_key rq_lock_key
;
618 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
620 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
622 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
625 static inline int cpu_of(struct rq
*rq
)
635 static inline bool nohz_on(int cpu
)
637 return tick_get_tick_sched(cpu
)->nohz_mode
!= NOHZ_MODE_INACTIVE
;
640 static inline u64
max_skipped_ticks(struct rq
*rq
)
642 return nohz_on(cpu_of(rq
)) ? jiffies
- rq
->last_tick_seen
+ 2 : 1;
645 static inline void update_last_tick_seen(struct rq
*rq
)
647 rq
->last_tick_seen
= jiffies
;
650 static inline u64
max_skipped_ticks(struct rq
*rq
)
655 static inline void update_last_tick_seen(struct rq
*rq
)
661 * Update the per-runqueue clock, as finegrained as the platform can give
662 * us, but without assuming monotonicity, etc.:
664 static void __update_rq_clock(struct rq
*rq
)
666 u64 prev_raw
= rq
->prev_clock_raw
;
667 u64 now
= sched_clock();
668 s64 delta
= now
- prev_raw
;
669 u64 clock
= rq
->clock
;
671 #ifdef CONFIG_SCHED_DEBUG
672 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
675 * Protect against sched_clock() occasionally going backwards:
677 if (unlikely(delta
< 0)) {
682 * Catch too large forward jumps too:
684 u64 max_jump
= max_skipped_ticks(rq
) * TICK_NSEC
;
685 u64 max_time
= rq
->tick_timestamp
+ max_jump
;
687 if (unlikely(clock
+ delta
> max_time
)) {
688 if (clock
< max_time
)
692 rq
->clock_overflows
++;
694 if (unlikely(delta
> rq
->clock_max_delta
))
695 rq
->clock_max_delta
= delta
;
700 rq
->prev_clock_raw
= now
;
704 static void update_rq_clock(struct rq
*rq
)
706 if (likely(smp_processor_id() == cpu_of(rq
)))
707 __update_rq_clock(rq
);
711 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
712 * See detach_destroy_domains: synchronize_sched for details.
714 * The domain tree of any CPU may only be accessed from within
715 * preempt-disabled sections.
717 #define for_each_domain(cpu, __sd) \
718 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
720 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
721 #define this_rq() (&__get_cpu_var(runqueues))
722 #define task_rq(p) cpu_rq(task_cpu(p))
723 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
726 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
728 #ifdef CONFIG_SCHED_DEBUG
729 # define const_debug __read_mostly
731 # define const_debug static const
735 * Debugging: various feature bits
738 #define SCHED_FEAT(name, enabled) \
739 __SCHED_FEAT_##name ,
742 #include "sched_features.h"
747 #define SCHED_FEAT(name, enabled) \
748 (1UL << __SCHED_FEAT_##name) * enabled |
750 const_debug
unsigned int sysctl_sched_features
=
751 #include "sched_features.h"
756 #ifdef CONFIG_SCHED_DEBUG
757 #define SCHED_FEAT(name, enabled) \
760 __read_mostly
char *sched_feat_names
[] = {
761 #include "sched_features.h"
767 int sched_feat_open(struct inode
*inode
, struct file
*filp
)
769 filp
->private_data
= inode
->i_private
;
774 sched_feat_read(struct file
*filp
, char __user
*ubuf
,
775 size_t cnt
, loff_t
*ppos
)
782 for (i
= 0; sched_feat_names
[i
]; i
++) {
783 len
+= strlen(sched_feat_names
[i
]);
787 buf
= kmalloc(len
+ 2, GFP_KERNEL
);
791 for (i
= 0; sched_feat_names
[i
]; i
++) {
792 if (sysctl_sched_features
& (1UL << i
))
793 r
+= sprintf(buf
+ r
, "%s ", sched_feat_names
[i
]);
795 r
+= sprintf(buf
+ r
, "NO_%s ", sched_feat_names
[i
]);
798 r
+= sprintf(buf
+ r
, "\n");
799 WARN_ON(r
>= len
+ 2);
801 r
= simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
809 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
810 size_t cnt
, loff_t
*ppos
)
820 if (copy_from_user(&buf
, ubuf
, cnt
))
825 if (strncmp(buf
, "NO_", 3) == 0) {
830 for (i
= 0; sched_feat_names
[i
]; i
++) {
831 int len
= strlen(sched_feat_names
[i
]);
833 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
835 sysctl_sched_features
&= ~(1UL << i
);
837 sysctl_sched_features
|= (1UL << i
);
842 if (!sched_feat_names
[i
])
850 static struct file_operations sched_feat_fops
= {
851 .open
= sched_feat_open
,
852 .read
= sched_feat_read
,
853 .write
= sched_feat_write
,
856 static __init
int sched_init_debug(void)
858 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
863 late_initcall(sched_init_debug
);
867 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
870 * Number of tasks to iterate in a single balance run.
871 * Limited because this is done with IRQs disabled.
873 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
876 * period over which we measure -rt task cpu usage in us.
879 unsigned int sysctl_sched_rt_period
= 1000000;
881 static __read_mostly
int scheduler_running
;
884 * part of the period that we allow rt tasks to run in us.
887 int sysctl_sched_rt_runtime
= 950000;
889 static inline u64
global_rt_period(void)
891 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
894 static inline u64
global_rt_runtime(void)
896 if (sysctl_sched_rt_period
< 0)
899 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
902 static const unsigned long long time_sync_thresh
= 100000;
904 static DEFINE_PER_CPU(unsigned long long, time_offset
);
905 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time
);
908 * Global lock which we take every now and then to synchronize
909 * the CPUs time. This method is not warp-safe, but it's good
910 * enough to synchronize slowly diverging time sources and thus
911 * it's good enough for tracing:
913 static DEFINE_SPINLOCK(time_sync_lock
);
914 static unsigned long long prev_global_time
;
916 static unsigned long long __sync_cpu_clock(cycles_t time
, int cpu
)
920 spin_lock_irqsave(&time_sync_lock
, flags
);
922 if (time
< prev_global_time
) {
923 per_cpu(time_offset
, cpu
) += prev_global_time
- time
;
924 time
= prev_global_time
;
926 prev_global_time
= time
;
929 spin_unlock_irqrestore(&time_sync_lock
, flags
);
934 static unsigned long long __cpu_clock(int cpu
)
936 unsigned long long now
;
941 * Only call sched_clock() if the scheduler has already been
942 * initialized (some code might call cpu_clock() very early):
944 if (unlikely(!scheduler_running
))
947 local_irq_save(flags
);
951 local_irq_restore(flags
);
957 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
958 * clock constructed from sched_clock():
960 unsigned long long cpu_clock(int cpu
)
962 unsigned long long prev_cpu_time
, time
, delta_time
;
964 prev_cpu_time
= per_cpu(prev_cpu_time
, cpu
);
965 time
= __cpu_clock(cpu
) + per_cpu(time_offset
, cpu
);
966 delta_time
= time
-prev_cpu_time
;
968 if (unlikely(delta_time
> time_sync_thresh
))
969 time
= __sync_cpu_clock(time
, cpu
);
973 EXPORT_SYMBOL_GPL(cpu_clock
);
975 #ifndef prepare_arch_switch
976 # define prepare_arch_switch(next) do { } while (0)
978 #ifndef finish_arch_switch
979 # define finish_arch_switch(prev) do { } while (0)
982 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
984 return rq
->curr
== p
;
987 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
988 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
990 return task_current(rq
, p
);
993 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
997 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
999 #ifdef CONFIG_DEBUG_SPINLOCK
1000 /* this is a valid case when another task releases the spinlock */
1001 rq
->lock
.owner
= current
;
1004 * If we are tracking spinlock dependencies then we have to
1005 * fix up the runqueue lock - which gets 'carried over' from
1006 * prev into current:
1008 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
1010 spin_unlock_irq(&rq
->lock
);
1013 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1014 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
1019 return task_current(rq
, p
);
1023 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
1027 * We can optimise this out completely for !SMP, because the
1028 * SMP rebalancing from interrupt is the only thing that cares
1033 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1034 spin_unlock_irq(&rq
->lock
);
1036 spin_unlock(&rq
->lock
);
1040 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
1044 * After ->oncpu is cleared, the task can be moved to a different CPU.
1045 * We must ensure this doesn't happen until the switch is completely
1051 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1055 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1058 * __task_rq_lock - lock the runqueue a given task resides on.
1059 * Must be called interrupts disabled.
1061 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
1062 __acquires(rq
->lock
)
1065 struct rq
*rq
= task_rq(p
);
1066 spin_lock(&rq
->lock
);
1067 if (likely(rq
== task_rq(p
)))
1069 spin_unlock(&rq
->lock
);
1074 * task_rq_lock - lock the runqueue a given task resides on and disable
1075 * interrupts. Note the ordering: we can safely lookup the task_rq without
1076 * explicitly disabling preemption.
1078 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
1079 __acquires(rq
->lock
)
1084 local_irq_save(*flags
);
1086 spin_lock(&rq
->lock
);
1087 if (likely(rq
== task_rq(p
)))
1089 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1093 static void __task_rq_unlock(struct rq
*rq
)
1094 __releases(rq
->lock
)
1096 spin_unlock(&rq
->lock
);
1099 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
1100 __releases(rq
->lock
)
1102 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1106 * this_rq_lock - lock this runqueue and disable interrupts.
1108 static struct rq
*this_rq_lock(void)
1109 __acquires(rq
->lock
)
1113 local_irq_disable();
1115 spin_lock(&rq
->lock
);
1121 * We are going deep-idle (irqs are disabled):
1123 void sched_clock_idle_sleep_event(void)
1125 struct rq
*rq
= cpu_rq(smp_processor_id());
1127 spin_lock(&rq
->lock
);
1128 __update_rq_clock(rq
);
1129 spin_unlock(&rq
->lock
);
1130 rq
->clock_deep_idle_events
++;
1132 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
1135 * We just idled delta nanoseconds (called with irqs disabled):
1137 void sched_clock_idle_wakeup_event(u64 delta_ns
)
1139 struct rq
*rq
= cpu_rq(smp_processor_id());
1140 u64 now
= sched_clock();
1142 rq
->idle_clock
+= delta_ns
;
1144 * Override the previous timestamp and ignore all
1145 * sched_clock() deltas that occured while we idled,
1146 * and use the PM-provided delta_ns to advance the
1149 spin_lock(&rq
->lock
);
1150 rq
->prev_clock_raw
= now
;
1151 rq
->clock
+= delta_ns
;
1152 spin_unlock(&rq
->lock
);
1153 touch_softlockup_watchdog();
1155 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
1157 static void __resched_task(struct task_struct
*p
, int tif_bit
);
1159 static inline void resched_task(struct task_struct
*p
)
1161 __resched_task(p
, TIF_NEED_RESCHED
);
1164 #ifdef CONFIG_SCHED_HRTICK
1166 * Use HR-timers to deliver accurate preemption points.
1168 * Its all a bit involved since we cannot program an hrt while holding the
1169 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1172 * When we get rescheduled we reprogram the hrtick_timer outside of the
1175 static inline void resched_hrt(struct task_struct
*p
)
1177 __resched_task(p
, TIF_HRTICK_RESCHED
);
1180 static inline void resched_rq(struct rq
*rq
)
1182 unsigned long flags
;
1184 spin_lock_irqsave(&rq
->lock
, flags
);
1185 resched_task(rq
->curr
);
1186 spin_unlock_irqrestore(&rq
->lock
, flags
);
1190 HRTICK_SET
, /* re-programm hrtick_timer */
1191 HRTICK_RESET
, /* not a new slice */
1196 * - enabled by features
1197 * - hrtimer is actually high res
1199 static inline int hrtick_enabled(struct rq
*rq
)
1201 if (!sched_feat(HRTICK
))
1203 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1207 * Called to set the hrtick timer state.
1209 * called with rq->lock held and irqs disabled
1211 static void hrtick_start(struct rq
*rq
, u64 delay
, int reset
)
1213 assert_spin_locked(&rq
->lock
);
1216 * preempt at: now + delay
1219 ktime_add_ns(rq
->hrtick_timer
.base
->get_time(), delay
);
1221 * indicate we need to program the timer
1223 __set_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1225 __set_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1228 * New slices are called from the schedule path and don't need a
1229 * forced reschedule.
1232 resched_hrt(rq
->curr
);
1235 static void hrtick_clear(struct rq
*rq
)
1237 if (hrtimer_active(&rq
->hrtick_timer
))
1238 hrtimer_cancel(&rq
->hrtick_timer
);
1242 * Update the timer from the possible pending state.
1244 static void hrtick_set(struct rq
*rq
)
1248 unsigned long flags
;
1250 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1252 spin_lock_irqsave(&rq
->lock
, flags
);
1253 set
= __test_and_clear_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1254 reset
= __test_and_clear_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1255 time
= rq
->hrtick_expire
;
1256 clear_thread_flag(TIF_HRTICK_RESCHED
);
1257 spin_unlock_irqrestore(&rq
->lock
, flags
);
1260 hrtimer_start(&rq
->hrtick_timer
, time
, HRTIMER_MODE_ABS
);
1261 if (reset
&& !hrtimer_active(&rq
->hrtick_timer
))
1268 * High-resolution timer tick.
1269 * Runs from hardirq context with interrupts disabled.
1271 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1273 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1275 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1277 spin_lock(&rq
->lock
);
1278 __update_rq_clock(rq
);
1279 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1280 spin_unlock(&rq
->lock
);
1282 return HRTIMER_NORESTART
;
1285 static inline void init_rq_hrtick(struct rq
*rq
)
1287 rq
->hrtick_flags
= 0;
1288 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1289 rq
->hrtick_timer
.function
= hrtick
;
1290 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1293 void hrtick_resched(void)
1296 unsigned long flags
;
1298 if (!test_thread_flag(TIF_HRTICK_RESCHED
))
1301 local_irq_save(flags
);
1302 rq
= cpu_rq(smp_processor_id());
1304 local_irq_restore(flags
);
1307 static inline void hrtick_clear(struct rq
*rq
)
1311 static inline void hrtick_set(struct rq
*rq
)
1315 static inline void init_rq_hrtick(struct rq
*rq
)
1319 void hrtick_resched(void)
1325 * resched_task - mark a task 'to be rescheduled now'.
1327 * On UP this means the setting of the need_resched flag, on SMP it
1328 * might also involve a cross-CPU call to trigger the scheduler on
1333 #ifndef tsk_is_polling
1334 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1337 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1341 assert_spin_locked(&task_rq(p
)->lock
);
1343 if (unlikely(test_tsk_thread_flag(p
, tif_bit
)))
1346 set_tsk_thread_flag(p
, tif_bit
);
1349 if (cpu
== smp_processor_id())
1352 /* NEED_RESCHED must be visible before we test polling */
1354 if (!tsk_is_polling(p
))
1355 smp_send_reschedule(cpu
);
1358 static void resched_cpu(int cpu
)
1360 struct rq
*rq
= cpu_rq(cpu
);
1361 unsigned long flags
;
1363 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1365 resched_task(cpu_curr(cpu
));
1366 spin_unlock_irqrestore(&rq
->lock
, flags
);
1371 * When add_timer_on() enqueues a timer into the timer wheel of an
1372 * idle CPU then this timer might expire before the next timer event
1373 * which is scheduled to wake up that CPU. In case of a completely
1374 * idle system the next event might even be infinite time into the
1375 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1376 * leaves the inner idle loop so the newly added timer is taken into
1377 * account when the CPU goes back to idle and evaluates the timer
1378 * wheel for the next timer event.
1380 void wake_up_idle_cpu(int cpu
)
1382 struct rq
*rq
= cpu_rq(cpu
);
1384 if (cpu
== smp_processor_id())
1388 * This is safe, as this function is called with the timer
1389 * wheel base lock of (cpu) held. When the CPU is on the way
1390 * to idle and has not yet set rq->curr to idle then it will
1391 * be serialized on the timer wheel base lock and take the new
1392 * timer into account automatically.
1394 if (rq
->curr
!= rq
->idle
)
1398 * We can set TIF_RESCHED on the idle task of the other CPU
1399 * lockless. The worst case is that the other CPU runs the
1400 * idle task through an additional NOOP schedule()
1402 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1404 /* NEED_RESCHED must be visible before we test polling */
1406 if (!tsk_is_polling(rq
->idle
))
1407 smp_send_reschedule(cpu
);
1412 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1414 assert_spin_locked(&task_rq(p
)->lock
);
1415 set_tsk_thread_flag(p
, tif_bit
);
1419 #if BITS_PER_LONG == 32
1420 # define WMULT_CONST (~0UL)
1422 # define WMULT_CONST (1UL << 32)
1425 #define WMULT_SHIFT 32
1428 * Shift right and round:
1430 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1433 * delta *= weight / lw
1435 static unsigned long
1436 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1437 struct load_weight
*lw
)
1441 if (unlikely(!lw
->inv_weight
))
1442 lw
->inv_weight
= (WMULT_CONST
-lw
->weight
/2) / (lw
->weight
+1);
1444 tmp
= (u64
)delta_exec
* weight
;
1446 * Check whether we'd overflow the 64-bit multiplication:
1448 if (unlikely(tmp
> WMULT_CONST
))
1449 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1452 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1454 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1457 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1463 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1470 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1471 * of tasks with abnormal "nice" values across CPUs the contribution that
1472 * each task makes to its run queue's load is weighted according to its
1473 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1474 * scaled version of the new time slice allocation that they receive on time
1478 #define WEIGHT_IDLEPRIO 2
1479 #define WMULT_IDLEPRIO (1 << 31)
1482 * Nice levels are multiplicative, with a gentle 10% change for every
1483 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1484 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1485 * that remained on nice 0.
1487 * The "10% effect" is relative and cumulative: from _any_ nice level,
1488 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1489 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1490 * If a task goes up by ~10% and another task goes down by ~10% then
1491 * the relative distance between them is ~25%.)
1493 static const int prio_to_weight
[40] = {
1494 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1495 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1496 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1497 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1498 /* 0 */ 1024, 820, 655, 526, 423,
1499 /* 5 */ 335, 272, 215, 172, 137,
1500 /* 10 */ 110, 87, 70, 56, 45,
1501 /* 15 */ 36, 29, 23, 18, 15,
1505 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1507 * In cases where the weight does not change often, we can use the
1508 * precalculated inverse to speed up arithmetics by turning divisions
1509 * into multiplications:
1511 static const u32 prio_to_wmult
[40] = {
1512 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1513 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1514 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1515 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1516 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1517 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1518 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1519 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1522 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1525 * runqueue iterator, to support SMP load-balancing between different
1526 * scheduling classes, without having to expose their internal data
1527 * structures to the load-balancing proper:
1529 struct rq_iterator
{
1531 struct task_struct
*(*start
)(void *);
1532 struct task_struct
*(*next
)(void *);
1536 static unsigned long
1537 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1538 unsigned long max_load_move
, struct sched_domain
*sd
,
1539 enum cpu_idle_type idle
, int *all_pinned
,
1540 int *this_best_prio
, struct rq_iterator
*iterator
);
1543 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1544 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1545 struct rq_iterator
*iterator
);
1548 #ifdef CONFIG_CGROUP_CPUACCT
1549 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1551 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1554 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1556 update_load_add(&rq
->load
, load
);
1559 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1561 update_load_sub(&rq
->load
, load
);
1565 static unsigned long source_load(int cpu
, int type
);
1566 static unsigned long target_load(int cpu
, int type
);
1567 static unsigned long cpu_avg_load_per_task(int cpu
);
1568 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1570 #ifdef CONFIG_FAIR_GROUP_SCHED
1573 * Group load balancing.
1575 * We calculate a few balance domain wide aggregate numbers; load and weight.
1576 * Given the pictures below, and assuming each item has equal weight:
1587 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1588 * which equals 1/9-th of the total load.
1591 * The weight of this group on the selected cpus.
1594 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1598 * Part of the rq_weight contributed by tasks; all groups except B would
1602 static inline struct aggregate_struct
*
1603 aggregate(struct task_group
*tg
, struct sched_domain
*sd
)
1605 return &tg
->cfs_rq
[sd
->first_cpu
]->aggregate
;
1608 typedef void (*aggregate_func
)(struct task_group
*, struct sched_domain
*);
1611 * Iterate the full tree, calling @down when first entering a node and @up when
1612 * leaving it for the final time.
1615 void aggregate_walk_tree(aggregate_func down
, aggregate_func up
,
1616 struct sched_domain
*sd
)
1618 struct task_group
*parent
, *child
;
1621 parent
= &root_task_group
;
1623 (*down
)(parent
, sd
);
1624 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1634 parent
= parent
->parent
;
1641 * Calculate the aggregate runqueue weight.
1644 void aggregate_group_weight(struct task_group
*tg
, struct sched_domain
*sd
)
1646 unsigned long rq_weight
= 0;
1647 unsigned long task_weight
= 0;
1650 for_each_cpu_mask(i
, sd
->span
) {
1651 rq_weight
+= tg
->cfs_rq
[i
]->load
.weight
;
1652 task_weight
+= tg
->cfs_rq
[i
]->task_weight
;
1655 aggregate(tg
, sd
)->rq_weight
= rq_weight
;
1656 aggregate(tg
, sd
)->task_weight
= task_weight
;
1660 * Compute the weight of this group on the given cpus.
1663 void aggregate_group_shares(struct task_group
*tg
, struct sched_domain
*sd
)
1665 unsigned long shares
= 0;
1668 for_each_cpu_mask(i
, sd
->span
)
1669 shares
+= tg
->cfs_rq
[i
]->shares
;
1671 if ((!shares
&& aggregate(tg
, sd
)->rq_weight
) || shares
> tg
->shares
)
1672 shares
= tg
->shares
;
1674 aggregate(tg
, sd
)->shares
= shares
;
1678 * Compute the load fraction assigned to this group, relies on the aggregate
1679 * weight and this group's parent's load, i.e. top-down.
1682 void aggregate_group_load(struct task_group
*tg
, struct sched_domain
*sd
)
1690 for_each_cpu_mask(i
, sd
->span
)
1691 load
+= cpu_rq(i
)->load
.weight
;
1694 load
= aggregate(tg
->parent
, sd
)->load
;
1697 * shares is our weight in the parent's rq so
1698 * shares/parent->rq_weight gives our fraction of the load
1700 load
*= aggregate(tg
, sd
)->shares
;
1701 load
/= aggregate(tg
->parent
, sd
)->rq_weight
+ 1;
1704 aggregate(tg
, sd
)->load
= load
;
1707 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1710 * Calculate and set the cpu's group shares.
1713 __update_group_shares_cpu(struct task_group
*tg
, struct sched_domain
*sd
,
1717 unsigned long shares
;
1718 unsigned long rq_weight
;
1723 rq_weight
= tg
->cfs_rq
[tcpu
]->load
.weight
;
1726 * If there are currently no tasks on the cpu pretend there is one of
1727 * average load so that when a new task gets to run here it will not
1728 * get delayed by group starvation.
1732 rq_weight
= NICE_0_LOAD
;
1736 * \Sum shares * rq_weight
1737 * shares = -----------------------
1741 shares
= aggregate(tg
, sd
)->shares
* rq_weight
;
1742 shares
/= aggregate(tg
, sd
)->rq_weight
+ 1;
1745 * record the actual number of shares, not the boosted amount.
1747 tg
->cfs_rq
[tcpu
]->shares
= boost
? 0 : shares
;
1749 if (shares
< MIN_SHARES
)
1750 shares
= MIN_SHARES
;
1752 __set_se_shares(tg
->se
[tcpu
], shares
);
1756 * Re-adjust the weights on the cpu the task came from and on the cpu the
1760 __move_group_shares(struct task_group
*tg
, struct sched_domain
*sd
,
1763 unsigned long shares
;
1765 shares
= tg
->cfs_rq
[scpu
]->shares
+ tg
->cfs_rq
[dcpu
]->shares
;
1767 __update_group_shares_cpu(tg
, sd
, scpu
);
1768 __update_group_shares_cpu(tg
, sd
, dcpu
);
1771 * ensure we never loose shares due to rounding errors in the
1772 * above redistribution.
1774 shares
-= tg
->cfs_rq
[scpu
]->shares
+ tg
->cfs_rq
[dcpu
]->shares
;
1776 tg
->cfs_rq
[dcpu
]->shares
+= shares
;
1780 * Because changing a group's shares changes the weight of the super-group
1781 * we need to walk up the tree and change all shares until we hit the root.
1784 move_group_shares(struct task_group
*tg
, struct sched_domain
*sd
,
1788 __move_group_shares(tg
, sd
, scpu
, dcpu
);
1794 void aggregate_group_set_shares(struct task_group
*tg
, struct sched_domain
*sd
)
1796 unsigned long shares
= aggregate(tg
, sd
)->shares
;
1799 for_each_cpu_mask(i
, sd
->span
) {
1800 struct rq
*rq
= cpu_rq(i
);
1801 unsigned long flags
;
1803 spin_lock_irqsave(&rq
->lock
, flags
);
1804 __update_group_shares_cpu(tg
, sd
, i
);
1805 spin_unlock_irqrestore(&rq
->lock
, flags
);
1808 aggregate_group_shares(tg
, sd
);
1811 * ensure we never loose shares due to rounding errors in the
1812 * above redistribution.
1814 shares
-= aggregate(tg
, sd
)->shares
;
1816 tg
->cfs_rq
[sd
->first_cpu
]->shares
+= shares
;
1817 aggregate(tg
, sd
)->shares
+= shares
;
1822 * Calculate the accumulative weight and recursive load of each task group
1823 * while walking down the tree.
1826 void aggregate_get_down(struct task_group
*tg
, struct sched_domain
*sd
)
1828 aggregate_group_weight(tg
, sd
);
1829 aggregate_group_shares(tg
, sd
);
1830 aggregate_group_load(tg
, sd
);
1834 * Rebalance the cpu shares while walking back up the tree.
1837 void aggregate_get_up(struct task_group
*tg
, struct sched_domain
*sd
)
1839 aggregate_group_set_shares(tg
, sd
);
1842 static DEFINE_PER_CPU(spinlock_t
, aggregate_lock
);
1844 static void __init
init_aggregate(void)
1848 for_each_possible_cpu(i
)
1849 spin_lock_init(&per_cpu(aggregate_lock
, i
));
1852 static int get_aggregate(struct sched_domain
*sd
)
1854 if (!spin_trylock(&per_cpu(aggregate_lock
, sd
->first_cpu
)))
1857 aggregate_walk_tree(aggregate_get_down
, aggregate_get_up
, sd
);
1861 static void put_aggregate(struct sched_domain
*sd
)
1863 spin_unlock(&per_cpu(aggregate_lock
, sd
->first_cpu
));
1866 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1868 cfs_rq
->shares
= shares
;
1873 static inline void init_aggregate(void)
1877 static inline int get_aggregate(struct sched_domain
*sd
)
1882 static inline void put_aggregate(struct sched_domain
*sd
)
1887 #else /* CONFIG_SMP */
1889 #ifdef CONFIG_FAIR_GROUP_SCHED
1890 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1895 #endif /* CONFIG_SMP */
1897 #include "sched_stats.h"
1898 #include "sched_idletask.c"
1899 #include "sched_fair.c"
1900 #include "sched_rt.c"
1901 #ifdef CONFIG_SCHED_DEBUG
1902 # include "sched_debug.c"
1905 #define sched_class_highest (&rt_sched_class)
1907 static void inc_nr_running(struct rq
*rq
)
1912 static void dec_nr_running(struct rq
*rq
)
1917 static void set_load_weight(struct task_struct
*p
)
1919 if (task_has_rt_policy(p
)) {
1920 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1921 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1926 * SCHED_IDLE tasks get minimal weight:
1928 if (p
->policy
== SCHED_IDLE
) {
1929 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1930 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1934 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1935 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1938 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1940 sched_info_queued(p
);
1941 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1945 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1947 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1952 * __normal_prio - return the priority that is based on the static prio
1954 static inline int __normal_prio(struct task_struct
*p
)
1956 return p
->static_prio
;
1960 * Calculate the expected normal priority: i.e. priority
1961 * without taking RT-inheritance into account. Might be
1962 * boosted by interactivity modifiers. Changes upon fork,
1963 * setprio syscalls, and whenever the interactivity
1964 * estimator recalculates.
1966 static inline int normal_prio(struct task_struct
*p
)
1970 if (task_has_rt_policy(p
))
1971 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1973 prio
= __normal_prio(p
);
1978 * Calculate the current priority, i.e. the priority
1979 * taken into account by the scheduler. This value might
1980 * be boosted by RT tasks, or might be boosted by
1981 * interactivity modifiers. Will be RT if the task got
1982 * RT-boosted. If not then it returns p->normal_prio.
1984 static int effective_prio(struct task_struct
*p
)
1986 p
->normal_prio
= normal_prio(p
);
1988 * If we are RT tasks or we were boosted to RT priority,
1989 * keep the priority unchanged. Otherwise, update priority
1990 * to the normal priority:
1992 if (!rt_prio(p
->prio
))
1993 return p
->normal_prio
;
1998 * activate_task - move a task to the runqueue.
2000 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
2002 if (task_contributes_to_load(p
))
2003 rq
->nr_uninterruptible
--;
2005 enqueue_task(rq
, p
, wakeup
);
2010 * deactivate_task - remove a task from the runqueue.
2012 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
2014 if (task_contributes_to_load(p
))
2015 rq
->nr_uninterruptible
++;
2017 dequeue_task(rq
, p
, sleep
);
2022 * task_curr - is this task currently executing on a CPU?
2023 * @p: the task in question.
2025 inline int task_curr(const struct task_struct
*p
)
2027 return cpu_curr(task_cpu(p
)) == p
;
2030 /* Used instead of source_load when we know the type == 0 */
2031 unsigned long weighted_cpuload(const int cpu
)
2033 return cpu_rq(cpu
)->load
.weight
;
2036 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
2038 set_task_rq(p
, cpu
);
2041 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2042 * successfuly executed on another CPU. We must ensure that updates of
2043 * per-task data have been completed by this moment.
2046 task_thread_info(p
)->cpu
= cpu
;
2050 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2051 const struct sched_class
*prev_class
,
2052 int oldprio
, int running
)
2054 if (prev_class
!= p
->sched_class
) {
2055 if (prev_class
->switched_from
)
2056 prev_class
->switched_from(rq
, p
, running
);
2057 p
->sched_class
->switched_to(rq
, p
, running
);
2059 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2065 * Is this task likely cache-hot:
2068 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2073 * Buddy candidates are cache hot:
2075 if (sched_feat(CACHE_HOT_BUDDY
) && (&p
->se
== cfs_rq_of(&p
->se
)->next
))
2078 if (p
->sched_class
!= &fair_sched_class
)
2081 if (sysctl_sched_migration_cost
== -1)
2083 if (sysctl_sched_migration_cost
== 0)
2086 delta
= now
- p
->se
.exec_start
;
2088 return delta
< (s64
)sysctl_sched_migration_cost
;
2092 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2094 int old_cpu
= task_cpu(p
);
2095 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
2096 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
2097 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
2100 clock_offset
= old_rq
->clock
- new_rq
->clock
;
2102 #ifdef CONFIG_SCHEDSTATS
2103 if (p
->se
.wait_start
)
2104 p
->se
.wait_start
-= clock_offset
;
2105 if (p
->se
.sleep_start
)
2106 p
->se
.sleep_start
-= clock_offset
;
2107 if (p
->se
.block_start
)
2108 p
->se
.block_start
-= clock_offset
;
2109 if (old_cpu
!= new_cpu
) {
2110 schedstat_inc(p
, se
.nr_migrations
);
2111 if (task_hot(p
, old_rq
->clock
, NULL
))
2112 schedstat_inc(p
, se
.nr_forced2_migrations
);
2115 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
2116 new_cfsrq
->min_vruntime
;
2118 __set_task_cpu(p
, new_cpu
);
2121 struct migration_req
{
2122 struct list_head list
;
2124 struct task_struct
*task
;
2127 struct completion done
;
2131 * The task's runqueue lock must be held.
2132 * Returns true if you have to wait for migration thread.
2135 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2137 struct rq
*rq
= task_rq(p
);
2140 * If the task is not on a runqueue (and not running), then
2141 * it is sufficient to simply update the task's cpu field.
2143 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
2144 set_task_cpu(p
, dest_cpu
);
2148 init_completion(&req
->done
);
2150 req
->dest_cpu
= dest_cpu
;
2151 list_add(&req
->list
, &rq
->migration_queue
);
2157 * wait_task_inactive - wait for a thread to unschedule.
2159 * The caller must ensure that the task *will* unschedule sometime soon,
2160 * else this function might spin for a *long* time. This function can't
2161 * be called with interrupts off, or it may introduce deadlock with
2162 * smp_call_function() if an IPI is sent by the same process we are
2163 * waiting to become inactive.
2165 void wait_task_inactive(struct task_struct
*p
)
2167 unsigned long flags
;
2173 * We do the initial early heuristics without holding
2174 * any task-queue locks at all. We'll only try to get
2175 * the runqueue lock when things look like they will
2181 * If the task is actively running on another CPU
2182 * still, just relax and busy-wait without holding
2185 * NOTE! Since we don't hold any locks, it's not
2186 * even sure that "rq" stays as the right runqueue!
2187 * But we don't care, since "task_running()" will
2188 * return false if the runqueue has changed and p
2189 * is actually now running somewhere else!
2191 while (task_running(rq
, p
))
2195 * Ok, time to look more closely! We need the rq
2196 * lock now, to be *sure*. If we're wrong, we'll
2197 * just go back and repeat.
2199 rq
= task_rq_lock(p
, &flags
);
2200 running
= task_running(rq
, p
);
2201 on_rq
= p
->se
.on_rq
;
2202 task_rq_unlock(rq
, &flags
);
2205 * Was it really running after all now that we
2206 * checked with the proper locks actually held?
2208 * Oops. Go back and try again..
2210 if (unlikely(running
)) {
2216 * It's not enough that it's not actively running,
2217 * it must be off the runqueue _entirely_, and not
2220 * So if it wa still runnable (but just not actively
2221 * running right now), it's preempted, and we should
2222 * yield - it could be a while.
2224 if (unlikely(on_rq
)) {
2225 schedule_timeout_uninterruptible(1);
2230 * Ahh, all good. It wasn't running, and it wasn't
2231 * runnable, which means that it will never become
2232 * running in the future either. We're all done!
2239 * kick_process - kick a running thread to enter/exit the kernel
2240 * @p: the to-be-kicked thread
2242 * Cause a process which is running on another CPU to enter
2243 * kernel-mode, without any delay. (to get signals handled.)
2245 * NOTE: this function doesnt have to take the runqueue lock,
2246 * because all it wants to ensure is that the remote task enters
2247 * the kernel. If the IPI races and the task has been migrated
2248 * to another CPU then no harm is done and the purpose has been
2251 void kick_process(struct task_struct
*p
)
2257 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2258 smp_send_reschedule(cpu
);
2263 * Return a low guess at the load of a migration-source cpu weighted
2264 * according to the scheduling class and "nice" value.
2266 * We want to under-estimate the load of migration sources, to
2267 * balance conservatively.
2269 static unsigned long source_load(int cpu
, int type
)
2271 struct rq
*rq
= cpu_rq(cpu
);
2272 unsigned long total
= weighted_cpuload(cpu
);
2277 return min(rq
->cpu_load
[type
-1], total
);
2281 * Return a high guess at the load of a migration-target cpu weighted
2282 * according to the scheduling class and "nice" value.
2284 static unsigned long target_load(int cpu
, int type
)
2286 struct rq
*rq
= cpu_rq(cpu
);
2287 unsigned long total
= weighted_cpuload(cpu
);
2292 return max(rq
->cpu_load
[type
-1], total
);
2296 * Return the average load per task on the cpu's run queue
2298 static unsigned long cpu_avg_load_per_task(int cpu
)
2300 struct rq
*rq
= cpu_rq(cpu
);
2301 unsigned long total
= weighted_cpuload(cpu
);
2302 unsigned long n
= rq
->nr_running
;
2304 return n
? total
/ n
: SCHED_LOAD_SCALE
;
2308 * find_idlest_group finds and returns the least busy CPU group within the
2311 static struct sched_group
*
2312 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2314 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2315 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2316 int load_idx
= sd
->forkexec_idx
;
2317 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2320 unsigned long load
, avg_load
;
2324 /* Skip over this group if it has no CPUs allowed */
2325 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
2328 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2330 /* Tally up the load of all CPUs in the group */
2333 for_each_cpu_mask(i
, group
->cpumask
) {
2334 /* Bias balancing toward cpus of our domain */
2336 load
= source_load(i
, load_idx
);
2338 load
= target_load(i
, load_idx
);
2343 /* Adjust by relative CPU power of the group */
2344 avg_load
= sg_div_cpu_power(group
,
2345 avg_load
* SCHED_LOAD_SCALE
);
2348 this_load
= avg_load
;
2350 } else if (avg_load
< min_load
) {
2351 min_load
= avg_load
;
2354 } while (group
= group
->next
, group
!= sd
->groups
);
2356 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2362 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2365 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
,
2368 unsigned long load
, min_load
= ULONG_MAX
;
2372 /* Traverse only the allowed CPUs */
2373 cpus_and(*tmp
, group
->cpumask
, p
->cpus_allowed
);
2375 for_each_cpu_mask(i
, *tmp
) {
2376 load
= weighted_cpuload(i
);
2378 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2388 * sched_balance_self: balance the current task (running on cpu) in domains
2389 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2392 * Balance, ie. select the least loaded group.
2394 * Returns the target CPU number, or the same CPU if no balancing is needed.
2396 * preempt must be disabled.
2398 static int sched_balance_self(int cpu
, int flag
)
2400 struct task_struct
*t
= current
;
2401 struct sched_domain
*tmp
, *sd
= NULL
;
2403 for_each_domain(cpu
, tmp
) {
2405 * If power savings logic is enabled for a domain, stop there.
2407 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2409 if (tmp
->flags
& flag
)
2414 cpumask_t span
, tmpmask
;
2415 struct sched_group
*group
;
2416 int new_cpu
, weight
;
2418 if (!(sd
->flags
& flag
)) {
2424 group
= find_idlest_group(sd
, t
, cpu
);
2430 new_cpu
= find_idlest_cpu(group
, t
, cpu
, &tmpmask
);
2431 if (new_cpu
== -1 || new_cpu
== cpu
) {
2432 /* Now try balancing at a lower domain level of cpu */
2437 /* Now try balancing at a lower domain level of new_cpu */
2440 weight
= cpus_weight(span
);
2441 for_each_domain(cpu
, tmp
) {
2442 if (weight
<= cpus_weight(tmp
->span
))
2444 if (tmp
->flags
& flag
)
2447 /* while loop will break here if sd == NULL */
2453 #endif /* CONFIG_SMP */
2456 * try_to_wake_up - wake up a thread
2457 * @p: the to-be-woken-up thread
2458 * @state: the mask of task states that can be woken
2459 * @sync: do a synchronous wakeup?
2461 * Put it on the run-queue if it's not already there. The "current"
2462 * thread is always on the run-queue (except when the actual
2463 * re-schedule is in progress), and as such you're allowed to do
2464 * the simpler "current->state = TASK_RUNNING" to mark yourself
2465 * runnable without the overhead of this.
2467 * returns failure only if the task is already active.
2469 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2471 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2472 unsigned long flags
;
2476 if (!sched_feat(SYNC_WAKEUPS
))
2480 rq
= task_rq_lock(p
, &flags
);
2481 old_state
= p
->state
;
2482 if (!(old_state
& state
))
2490 this_cpu
= smp_processor_id();
2493 if (unlikely(task_running(rq
, p
)))
2496 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2497 if (cpu
!= orig_cpu
) {
2498 set_task_cpu(p
, cpu
);
2499 task_rq_unlock(rq
, &flags
);
2500 /* might preempt at this point */
2501 rq
= task_rq_lock(p
, &flags
);
2502 old_state
= p
->state
;
2503 if (!(old_state
& state
))
2508 this_cpu
= smp_processor_id();
2512 #ifdef CONFIG_SCHEDSTATS
2513 schedstat_inc(rq
, ttwu_count
);
2514 if (cpu
== this_cpu
)
2515 schedstat_inc(rq
, ttwu_local
);
2517 struct sched_domain
*sd
;
2518 for_each_domain(this_cpu
, sd
) {
2519 if (cpu_isset(cpu
, sd
->span
)) {
2520 schedstat_inc(sd
, ttwu_wake_remote
);
2528 #endif /* CONFIG_SMP */
2529 schedstat_inc(p
, se
.nr_wakeups
);
2531 schedstat_inc(p
, se
.nr_wakeups_sync
);
2532 if (orig_cpu
!= cpu
)
2533 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2534 if (cpu
== this_cpu
)
2535 schedstat_inc(p
, se
.nr_wakeups_local
);
2537 schedstat_inc(p
, se
.nr_wakeups_remote
);
2538 update_rq_clock(rq
);
2539 activate_task(rq
, p
, 1);
2543 check_preempt_curr(rq
, p
);
2545 p
->state
= TASK_RUNNING
;
2547 if (p
->sched_class
->task_wake_up
)
2548 p
->sched_class
->task_wake_up(rq
, p
);
2551 task_rq_unlock(rq
, &flags
);
2556 int wake_up_process(struct task_struct
*p
)
2558 return try_to_wake_up(p
, TASK_ALL
, 0);
2560 EXPORT_SYMBOL(wake_up_process
);
2562 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2564 return try_to_wake_up(p
, state
, 0);
2568 * Perform scheduler related setup for a newly forked process p.
2569 * p is forked by current.
2571 * __sched_fork() is basic setup used by init_idle() too:
2573 static void __sched_fork(struct task_struct
*p
)
2575 p
->se
.exec_start
= 0;
2576 p
->se
.sum_exec_runtime
= 0;
2577 p
->se
.prev_sum_exec_runtime
= 0;
2578 p
->se
.last_wakeup
= 0;
2579 p
->se
.avg_overlap
= 0;
2581 #ifdef CONFIG_SCHEDSTATS
2582 p
->se
.wait_start
= 0;
2583 p
->se
.sum_sleep_runtime
= 0;
2584 p
->se
.sleep_start
= 0;
2585 p
->se
.block_start
= 0;
2586 p
->se
.sleep_max
= 0;
2587 p
->se
.block_max
= 0;
2589 p
->se
.slice_max
= 0;
2593 INIT_LIST_HEAD(&p
->rt
.run_list
);
2595 INIT_LIST_HEAD(&p
->se
.group_node
);
2597 #ifdef CONFIG_PREEMPT_NOTIFIERS
2598 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2602 * We mark the process as running here, but have not actually
2603 * inserted it onto the runqueue yet. This guarantees that
2604 * nobody will actually run it, and a signal or other external
2605 * event cannot wake it up and insert it on the runqueue either.
2607 p
->state
= TASK_RUNNING
;
2611 * fork()/clone()-time setup:
2613 void sched_fork(struct task_struct
*p
, int clone_flags
)
2615 int cpu
= get_cpu();
2620 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2622 set_task_cpu(p
, cpu
);
2625 * Make sure we do not leak PI boosting priority to the child:
2627 p
->prio
= current
->normal_prio
;
2628 if (!rt_prio(p
->prio
))
2629 p
->sched_class
= &fair_sched_class
;
2631 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2632 if (likely(sched_info_on()))
2633 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2635 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2638 #ifdef CONFIG_PREEMPT
2639 /* Want to start with kernel preemption disabled. */
2640 task_thread_info(p
)->preempt_count
= 1;
2646 * wake_up_new_task - wake up a newly created task for the first time.
2648 * This function will do some initial scheduler statistics housekeeping
2649 * that must be done for every newly created context, then puts the task
2650 * on the runqueue and wakes it.
2652 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2654 unsigned long flags
;
2657 rq
= task_rq_lock(p
, &flags
);
2658 BUG_ON(p
->state
!= TASK_RUNNING
);
2659 update_rq_clock(rq
);
2661 p
->prio
= effective_prio(p
);
2663 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2664 activate_task(rq
, p
, 0);
2667 * Let the scheduling class do new task startup
2668 * management (if any):
2670 p
->sched_class
->task_new(rq
, p
);
2673 check_preempt_curr(rq
, p
);
2675 if (p
->sched_class
->task_wake_up
)
2676 p
->sched_class
->task_wake_up(rq
, p
);
2678 task_rq_unlock(rq
, &flags
);
2681 #ifdef CONFIG_PREEMPT_NOTIFIERS
2684 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2685 * @notifier: notifier struct to register
2687 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2689 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2691 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2694 * preempt_notifier_unregister - no longer interested in preemption notifications
2695 * @notifier: notifier struct to unregister
2697 * This is safe to call from within a preemption notifier.
2699 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2701 hlist_del(¬ifier
->link
);
2703 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2705 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2707 struct preempt_notifier
*notifier
;
2708 struct hlist_node
*node
;
2710 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2711 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2715 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2716 struct task_struct
*next
)
2718 struct preempt_notifier
*notifier
;
2719 struct hlist_node
*node
;
2721 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2722 notifier
->ops
->sched_out(notifier
, next
);
2727 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2732 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2733 struct task_struct
*next
)
2740 * prepare_task_switch - prepare to switch tasks
2741 * @rq: the runqueue preparing to switch
2742 * @prev: the current task that is being switched out
2743 * @next: the task we are going to switch to.
2745 * This is called with the rq lock held and interrupts off. It must
2746 * be paired with a subsequent finish_task_switch after the context
2749 * prepare_task_switch sets up locking and calls architecture specific
2753 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2754 struct task_struct
*next
)
2756 fire_sched_out_preempt_notifiers(prev
, next
);
2757 prepare_lock_switch(rq
, next
);
2758 prepare_arch_switch(next
);
2762 * finish_task_switch - clean up after a task-switch
2763 * @rq: runqueue associated with task-switch
2764 * @prev: the thread we just switched away from.
2766 * finish_task_switch must be called after the context switch, paired
2767 * with a prepare_task_switch call before the context switch.
2768 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2769 * and do any other architecture-specific cleanup actions.
2771 * Note that we may have delayed dropping an mm in context_switch(). If
2772 * so, we finish that here outside of the runqueue lock. (Doing it
2773 * with the lock held can cause deadlocks; see schedule() for
2776 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2777 __releases(rq
->lock
)
2779 struct mm_struct
*mm
= rq
->prev_mm
;
2785 * A task struct has one reference for the use as "current".
2786 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2787 * schedule one last time. The schedule call will never return, and
2788 * the scheduled task must drop that reference.
2789 * The test for TASK_DEAD must occur while the runqueue locks are
2790 * still held, otherwise prev could be scheduled on another cpu, die
2791 * there before we look at prev->state, and then the reference would
2793 * Manfred Spraul <manfred@colorfullife.com>
2795 prev_state
= prev
->state
;
2796 finish_arch_switch(prev
);
2797 finish_lock_switch(rq
, prev
);
2799 if (current
->sched_class
->post_schedule
)
2800 current
->sched_class
->post_schedule(rq
);
2803 fire_sched_in_preempt_notifiers(current
);
2806 if (unlikely(prev_state
== TASK_DEAD
)) {
2808 * Remove function-return probe instances associated with this
2809 * task and put them back on the free list.
2811 kprobe_flush_task(prev
);
2812 put_task_struct(prev
);
2817 * schedule_tail - first thing a freshly forked thread must call.
2818 * @prev: the thread we just switched away from.
2820 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2821 __releases(rq
->lock
)
2823 struct rq
*rq
= this_rq();
2825 finish_task_switch(rq
, prev
);
2826 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2827 /* In this case, finish_task_switch does not reenable preemption */
2830 if (current
->set_child_tid
)
2831 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2835 * context_switch - switch to the new MM and the new
2836 * thread's register state.
2839 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2840 struct task_struct
*next
)
2842 struct mm_struct
*mm
, *oldmm
;
2844 prepare_task_switch(rq
, prev
, next
);
2846 oldmm
= prev
->active_mm
;
2848 * For paravirt, this is coupled with an exit in switch_to to
2849 * combine the page table reload and the switch backend into
2852 arch_enter_lazy_cpu_mode();
2854 if (unlikely(!mm
)) {
2855 next
->active_mm
= oldmm
;
2856 atomic_inc(&oldmm
->mm_count
);
2857 enter_lazy_tlb(oldmm
, next
);
2859 switch_mm(oldmm
, mm
, next
);
2861 if (unlikely(!prev
->mm
)) {
2862 prev
->active_mm
= NULL
;
2863 rq
->prev_mm
= oldmm
;
2866 * Since the runqueue lock will be released by the next
2867 * task (which is an invalid locking op but in the case
2868 * of the scheduler it's an obvious special-case), so we
2869 * do an early lockdep release here:
2871 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2872 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2875 /* Here we just switch the register state and the stack. */
2876 switch_to(prev
, next
, prev
);
2880 * this_rq must be evaluated again because prev may have moved
2881 * CPUs since it called schedule(), thus the 'rq' on its stack
2882 * frame will be invalid.
2884 finish_task_switch(this_rq(), prev
);
2888 * nr_running, nr_uninterruptible and nr_context_switches:
2890 * externally visible scheduler statistics: current number of runnable
2891 * threads, current number of uninterruptible-sleeping threads, total
2892 * number of context switches performed since bootup.
2894 unsigned long nr_running(void)
2896 unsigned long i
, sum
= 0;
2898 for_each_online_cpu(i
)
2899 sum
+= cpu_rq(i
)->nr_running
;
2904 unsigned long nr_uninterruptible(void)
2906 unsigned long i
, sum
= 0;
2908 for_each_possible_cpu(i
)
2909 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2912 * Since we read the counters lockless, it might be slightly
2913 * inaccurate. Do not allow it to go below zero though:
2915 if (unlikely((long)sum
< 0))
2921 unsigned long long nr_context_switches(void)
2924 unsigned long long sum
= 0;
2926 for_each_possible_cpu(i
)
2927 sum
+= cpu_rq(i
)->nr_switches
;
2932 unsigned long nr_iowait(void)
2934 unsigned long i
, sum
= 0;
2936 for_each_possible_cpu(i
)
2937 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2942 unsigned long nr_active(void)
2944 unsigned long i
, running
= 0, uninterruptible
= 0;
2946 for_each_online_cpu(i
) {
2947 running
+= cpu_rq(i
)->nr_running
;
2948 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2951 if (unlikely((long)uninterruptible
< 0))
2952 uninterruptible
= 0;
2954 return running
+ uninterruptible
;
2958 * Update rq->cpu_load[] statistics. This function is usually called every
2959 * scheduler tick (TICK_NSEC).
2961 static void update_cpu_load(struct rq
*this_rq
)
2963 unsigned long this_load
= this_rq
->load
.weight
;
2966 this_rq
->nr_load_updates
++;
2968 /* Update our load: */
2969 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2970 unsigned long old_load
, new_load
;
2972 /* scale is effectively 1 << i now, and >> i divides by scale */
2974 old_load
= this_rq
->cpu_load
[i
];
2975 new_load
= this_load
;
2977 * Round up the averaging division if load is increasing. This
2978 * prevents us from getting stuck on 9 if the load is 10, for
2981 if (new_load
> old_load
)
2982 new_load
+= scale
-1;
2983 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2990 * double_rq_lock - safely lock two runqueues
2992 * Note this does not disable interrupts like task_rq_lock,
2993 * you need to do so manually before calling.
2995 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2996 __acquires(rq1
->lock
)
2997 __acquires(rq2
->lock
)
2999 BUG_ON(!irqs_disabled());
3001 spin_lock(&rq1
->lock
);
3002 __acquire(rq2
->lock
); /* Fake it out ;) */
3005 spin_lock(&rq1
->lock
);
3006 spin_lock(&rq2
->lock
);
3008 spin_lock(&rq2
->lock
);
3009 spin_lock(&rq1
->lock
);
3012 update_rq_clock(rq1
);
3013 update_rq_clock(rq2
);
3017 * double_rq_unlock - safely unlock two runqueues
3019 * Note this does not restore interrupts like task_rq_unlock,
3020 * you need to do so manually after calling.
3022 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
3023 __releases(rq1
->lock
)
3024 __releases(rq2
->lock
)
3026 spin_unlock(&rq1
->lock
);
3028 spin_unlock(&rq2
->lock
);
3030 __release(rq2
->lock
);
3034 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3036 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
3037 __releases(this_rq
->lock
)
3038 __acquires(busiest
->lock
)
3039 __acquires(this_rq
->lock
)
3043 if (unlikely(!irqs_disabled())) {
3044 /* printk() doesn't work good under rq->lock */
3045 spin_unlock(&this_rq
->lock
);
3048 if (unlikely(!spin_trylock(&busiest
->lock
))) {
3049 if (busiest
< this_rq
) {
3050 spin_unlock(&this_rq
->lock
);
3051 spin_lock(&busiest
->lock
);
3052 spin_lock(&this_rq
->lock
);
3055 spin_lock(&busiest
->lock
);
3061 * If dest_cpu is allowed for this process, migrate the task to it.
3062 * This is accomplished by forcing the cpu_allowed mask to only
3063 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3064 * the cpu_allowed mask is restored.
3066 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
3068 struct migration_req req
;
3069 unsigned long flags
;
3072 rq
= task_rq_lock(p
, &flags
);
3073 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
3074 || unlikely(cpu_is_offline(dest_cpu
)))
3077 /* force the process onto the specified CPU */
3078 if (migrate_task(p
, dest_cpu
, &req
)) {
3079 /* Need to wait for migration thread (might exit: take ref). */
3080 struct task_struct
*mt
= rq
->migration_thread
;
3082 get_task_struct(mt
);
3083 task_rq_unlock(rq
, &flags
);
3084 wake_up_process(mt
);
3085 put_task_struct(mt
);
3086 wait_for_completion(&req
.done
);
3091 task_rq_unlock(rq
, &flags
);
3095 * sched_exec - execve() is a valuable balancing opportunity, because at
3096 * this point the task has the smallest effective memory and cache footprint.
3098 void sched_exec(void)
3100 int new_cpu
, this_cpu
= get_cpu();
3101 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
3103 if (new_cpu
!= this_cpu
)
3104 sched_migrate_task(current
, new_cpu
);
3108 * pull_task - move a task from a remote runqueue to the local runqueue.
3109 * Both runqueues must be locked.
3111 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3112 struct rq
*this_rq
, int this_cpu
)
3114 deactivate_task(src_rq
, p
, 0);
3115 set_task_cpu(p
, this_cpu
);
3116 activate_task(this_rq
, p
, 0);
3118 * Note that idle threads have a prio of MAX_PRIO, for this test
3119 * to be always true for them.
3121 check_preempt_curr(this_rq
, p
);
3125 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3128 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3129 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3133 * We do not migrate tasks that are:
3134 * 1) running (obviously), or
3135 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3136 * 3) are cache-hot on their current CPU.
3138 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
3139 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3144 if (task_running(rq
, p
)) {
3145 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3150 * Aggressive migration if:
3151 * 1) task is cache cold, or
3152 * 2) too many balance attempts have failed.
3155 if (!task_hot(p
, rq
->clock
, sd
) ||
3156 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3157 #ifdef CONFIG_SCHEDSTATS
3158 if (task_hot(p
, rq
->clock
, sd
)) {
3159 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3160 schedstat_inc(p
, se
.nr_forced_migrations
);
3166 if (task_hot(p
, rq
->clock
, sd
)) {
3167 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3173 static unsigned long
3174 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3175 unsigned long max_load_move
, struct sched_domain
*sd
,
3176 enum cpu_idle_type idle
, int *all_pinned
,
3177 int *this_best_prio
, struct rq_iterator
*iterator
)
3179 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
3180 struct task_struct
*p
;
3181 long rem_load_move
= max_load_move
;
3183 if (max_load_move
== 0)
3189 * Start the load-balancing iterator:
3191 p
= iterator
->start(iterator
->arg
);
3193 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3196 * To help distribute high priority tasks across CPUs we don't
3197 * skip a task if it will be the highest priority task (i.e. smallest
3198 * prio value) on its new queue regardless of its load weight
3200 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
3201 SCHED_LOAD_SCALE_FUZZ
;
3202 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
3203 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3204 p
= iterator
->next(iterator
->arg
);
3208 pull_task(busiest
, p
, this_rq
, this_cpu
);
3210 rem_load_move
-= p
->se
.load
.weight
;
3213 * We only want to steal up to the prescribed amount of weighted load.
3215 if (rem_load_move
> 0) {
3216 if (p
->prio
< *this_best_prio
)
3217 *this_best_prio
= p
->prio
;
3218 p
= iterator
->next(iterator
->arg
);
3223 * Right now, this is one of only two places pull_task() is called,
3224 * so we can safely collect pull_task() stats here rather than
3225 * inside pull_task().
3227 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3230 *all_pinned
= pinned
;
3232 return max_load_move
- rem_load_move
;
3236 * move_tasks tries to move up to max_load_move weighted load from busiest to
3237 * this_rq, as part of a balancing operation within domain "sd".
3238 * Returns 1 if successful and 0 otherwise.
3240 * Called with both runqueues locked.
3242 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3243 unsigned long max_load_move
,
3244 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3247 const struct sched_class
*class = sched_class_highest
;
3248 unsigned long total_load_moved
= 0;
3249 int this_best_prio
= this_rq
->curr
->prio
;
3253 class->load_balance(this_rq
, this_cpu
, busiest
,
3254 max_load_move
- total_load_moved
,
3255 sd
, idle
, all_pinned
, &this_best_prio
);
3256 class = class->next
;
3257 } while (class && max_load_move
> total_load_moved
);
3259 return total_load_moved
> 0;
3263 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3264 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3265 struct rq_iterator
*iterator
)
3267 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3271 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3272 pull_task(busiest
, p
, this_rq
, this_cpu
);
3274 * Right now, this is only the second place pull_task()
3275 * is called, so we can safely collect pull_task()
3276 * stats here rather than inside pull_task().
3278 schedstat_inc(sd
, lb_gained
[idle
]);
3282 p
= iterator
->next(iterator
->arg
);
3289 * move_one_task tries to move exactly one task from busiest to this_rq, as
3290 * part of active balancing operations within "domain".
3291 * Returns 1 if successful and 0 otherwise.
3293 * Called with both runqueues locked.
3295 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3296 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3298 const struct sched_class
*class;
3300 for (class = sched_class_highest
; class; class = class->next
)
3301 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3308 * find_busiest_group finds and returns the busiest CPU group within the
3309 * domain. It calculates and returns the amount of weighted load which
3310 * should be moved to restore balance via the imbalance parameter.
3312 static struct sched_group
*
3313 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3314 unsigned long *imbalance
, enum cpu_idle_type idle
,
3315 int *sd_idle
, const cpumask_t
*cpus
, int *balance
)
3317 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3318 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3319 unsigned long max_pull
;
3320 unsigned long busiest_load_per_task
, busiest_nr_running
;
3321 unsigned long this_load_per_task
, this_nr_running
;
3322 int load_idx
, group_imb
= 0;
3323 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3324 int power_savings_balance
= 1;
3325 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3326 unsigned long min_nr_running
= ULONG_MAX
;
3327 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3330 max_load
= this_load
= total_load
= total_pwr
= 0;
3331 busiest_load_per_task
= busiest_nr_running
= 0;
3332 this_load_per_task
= this_nr_running
= 0;
3333 if (idle
== CPU_NOT_IDLE
)
3334 load_idx
= sd
->busy_idx
;
3335 else if (idle
== CPU_NEWLY_IDLE
)
3336 load_idx
= sd
->newidle_idx
;
3338 load_idx
= sd
->idle_idx
;
3341 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3344 int __group_imb
= 0;
3345 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3346 unsigned long sum_nr_running
, sum_weighted_load
;
3348 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
3351 balance_cpu
= first_cpu(group
->cpumask
);
3353 /* Tally up the load of all CPUs in the group */
3354 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3356 min_cpu_load
= ~0UL;
3358 for_each_cpu_mask(i
, group
->cpumask
) {
3361 if (!cpu_isset(i
, *cpus
))
3366 if (*sd_idle
&& rq
->nr_running
)
3369 /* Bias balancing toward cpus of our domain */
3371 if (idle_cpu(i
) && !first_idle_cpu
) {
3376 load
= target_load(i
, load_idx
);
3378 load
= source_load(i
, load_idx
);
3379 if (load
> max_cpu_load
)
3380 max_cpu_load
= load
;
3381 if (min_cpu_load
> load
)
3382 min_cpu_load
= load
;
3386 sum_nr_running
+= rq
->nr_running
;
3387 sum_weighted_load
+= weighted_cpuload(i
);
3391 * First idle cpu or the first cpu(busiest) in this sched group
3392 * is eligible for doing load balancing at this and above
3393 * domains. In the newly idle case, we will allow all the cpu's
3394 * to do the newly idle load balance.
3396 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3397 balance_cpu
!= this_cpu
&& balance
) {
3402 total_load
+= avg_load
;
3403 total_pwr
+= group
->__cpu_power
;
3405 /* Adjust by relative CPU power of the group */
3406 avg_load
= sg_div_cpu_power(group
,
3407 avg_load
* SCHED_LOAD_SCALE
);
3409 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
3412 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3415 this_load
= avg_load
;
3417 this_nr_running
= sum_nr_running
;
3418 this_load_per_task
= sum_weighted_load
;
3419 } else if (avg_load
> max_load
&&
3420 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3421 max_load
= avg_load
;
3423 busiest_nr_running
= sum_nr_running
;
3424 busiest_load_per_task
= sum_weighted_load
;
3425 group_imb
= __group_imb
;
3428 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3430 * Busy processors will not participate in power savings
3433 if (idle
== CPU_NOT_IDLE
||
3434 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3438 * If the local group is idle or completely loaded
3439 * no need to do power savings balance at this domain
3441 if (local_group
&& (this_nr_running
>= group_capacity
||
3443 power_savings_balance
= 0;
3446 * If a group is already running at full capacity or idle,
3447 * don't include that group in power savings calculations
3449 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3454 * Calculate the group which has the least non-idle load.
3455 * This is the group from where we need to pick up the load
3458 if ((sum_nr_running
< min_nr_running
) ||
3459 (sum_nr_running
== min_nr_running
&&
3460 first_cpu(group
->cpumask
) <
3461 first_cpu(group_min
->cpumask
))) {
3463 min_nr_running
= sum_nr_running
;
3464 min_load_per_task
= sum_weighted_load
/
3469 * Calculate the group which is almost near its
3470 * capacity but still has some space to pick up some load
3471 * from other group and save more power
3473 if (sum_nr_running
<= group_capacity
- 1) {
3474 if (sum_nr_running
> leader_nr_running
||
3475 (sum_nr_running
== leader_nr_running
&&
3476 first_cpu(group
->cpumask
) >
3477 first_cpu(group_leader
->cpumask
))) {
3478 group_leader
= group
;
3479 leader_nr_running
= sum_nr_running
;
3484 group
= group
->next
;
3485 } while (group
!= sd
->groups
);
3487 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3490 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3492 if (this_load
>= avg_load
||
3493 100*max_load
<= sd
->imbalance_pct
*this_load
)
3496 busiest_load_per_task
/= busiest_nr_running
;
3498 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3501 * We're trying to get all the cpus to the average_load, so we don't
3502 * want to push ourselves above the average load, nor do we wish to
3503 * reduce the max loaded cpu below the average load, as either of these
3504 * actions would just result in more rebalancing later, and ping-pong
3505 * tasks around. Thus we look for the minimum possible imbalance.
3506 * Negative imbalances (*we* are more loaded than anyone else) will
3507 * be counted as no imbalance for these purposes -- we can't fix that
3508 * by pulling tasks to us. Be careful of negative numbers as they'll
3509 * appear as very large values with unsigned longs.
3511 if (max_load
<= busiest_load_per_task
)
3515 * In the presence of smp nice balancing, certain scenarios can have
3516 * max load less than avg load(as we skip the groups at or below
3517 * its cpu_power, while calculating max_load..)
3519 if (max_load
< avg_load
) {
3521 goto small_imbalance
;
3524 /* Don't want to pull so many tasks that a group would go idle */
3525 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3527 /* How much load to actually move to equalise the imbalance */
3528 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3529 (avg_load
- this_load
) * this->__cpu_power
)
3533 * if *imbalance is less than the average load per runnable task
3534 * there is no gaurantee that any tasks will be moved so we'll have
3535 * a think about bumping its value to force at least one task to be
3538 if (*imbalance
< busiest_load_per_task
) {
3539 unsigned long tmp
, pwr_now
, pwr_move
;
3543 pwr_move
= pwr_now
= 0;
3545 if (this_nr_running
) {
3546 this_load_per_task
/= this_nr_running
;
3547 if (busiest_load_per_task
> this_load_per_task
)
3550 this_load_per_task
= SCHED_LOAD_SCALE
;
3552 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
3553 busiest_load_per_task
* imbn
) {
3554 *imbalance
= busiest_load_per_task
;
3559 * OK, we don't have enough imbalance to justify moving tasks,
3560 * however we may be able to increase total CPU power used by
3564 pwr_now
+= busiest
->__cpu_power
*
3565 min(busiest_load_per_task
, max_load
);
3566 pwr_now
+= this->__cpu_power
*
3567 min(this_load_per_task
, this_load
);
3568 pwr_now
/= SCHED_LOAD_SCALE
;
3570 /* Amount of load we'd subtract */
3571 tmp
= sg_div_cpu_power(busiest
,
3572 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3574 pwr_move
+= busiest
->__cpu_power
*
3575 min(busiest_load_per_task
, max_load
- tmp
);
3577 /* Amount of load we'd add */
3578 if (max_load
* busiest
->__cpu_power
<
3579 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3580 tmp
= sg_div_cpu_power(this,
3581 max_load
* busiest
->__cpu_power
);
3583 tmp
= sg_div_cpu_power(this,
3584 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3585 pwr_move
+= this->__cpu_power
*
3586 min(this_load_per_task
, this_load
+ tmp
);
3587 pwr_move
/= SCHED_LOAD_SCALE
;
3589 /* Move if we gain throughput */
3590 if (pwr_move
> pwr_now
)
3591 *imbalance
= busiest_load_per_task
;
3597 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3598 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3601 if (this == group_leader
&& group_leader
!= group_min
) {
3602 *imbalance
= min_load_per_task
;
3612 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3615 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3616 unsigned long imbalance
, const cpumask_t
*cpus
)
3618 struct rq
*busiest
= NULL
, *rq
;
3619 unsigned long max_load
= 0;
3622 for_each_cpu_mask(i
, group
->cpumask
) {
3625 if (!cpu_isset(i
, *cpus
))
3629 wl
= weighted_cpuload(i
);
3631 if (rq
->nr_running
== 1 && wl
> imbalance
)
3634 if (wl
> max_load
) {
3644 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3645 * so long as it is large enough.
3647 #define MAX_PINNED_INTERVAL 512
3650 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3651 * tasks if there is an imbalance.
3653 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3654 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3655 int *balance
, cpumask_t
*cpus
)
3657 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3658 struct sched_group
*group
;
3659 unsigned long imbalance
;
3661 unsigned long flags
;
3662 int unlock_aggregate
;
3666 unlock_aggregate
= get_aggregate(sd
);
3669 * When power savings policy is enabled for the parent domain, idle
3670 * sibling can pick up load irrespective of busy siblings. In this case,
3671 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3672 * portraying it as CPU_NOT_IDLE.
3674 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3675 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3678 schedstat_inc(sd
, lb_count
[idle
]);
3681 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3688 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3692 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3694 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3698 BUG_ON(busiest
== this_rq
);
3700 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3703 if (busiest
->nr_running
> 1) {
3705 * Attempt to move tasks. If find_busiest_group has found
3706 * an imbalance but busiest->nr_running <= 1, the group is
3707 * still unbalanced. ld_moved simply stays zero, so it is
3708 * correctly treated as an imbalance.
3710 local_irq_save(flags
);
3711 double_rq_lock(this_rq
, busiest
);
3712 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3713 imbalance
, sd
, idle
, &all_pinned
);
3714 double_rq_unlock(this_rq
, busiest
);
3715 local_irq_restore(flags
);
3718 * some other cpu did the load balance for us.
3720 if (ld_moved
&& this_cpu
!= smp_processor_id())
3721 resched_cpu(this_cpu
);
3723 /* All tasks on this runqueue were pinned by CPU affinity */
3724 if (unlikely(all_pinned
)) {
3725 cpu_clear(cpu_of(busiest
), *cpus
);
3726 if (!cpus_empty(*cpus
))
3733 schedstat_inc(sd
, lb_failed
[idle
]);
3734 sd
->nr_balance_failed
++;
3736 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3738 spin_lock_irqsave(&busiest
->lock
, flags
);
3740 /* don't kick the migration_thread, if the curr
3741 * task on busiest cpu can't be moved to this_cpu
3743 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3744 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3746 goto out_one_pinned
;
3749 if (!busiest
->active_balance
) {
3750 busiest
->active_balance
= 1;
3751 busiest
->push_cpu
= this_cpu
;
3754 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3756 wake_up_process(busiest
->migration_thread
);
3759 * We've kicked active balancing, reset the failure
3762 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3765 sd
->nr_balance_failed
= 0;
3767 if (likely(!active_balance
)) {
3768 /* We were unbalanced, so reset the balancing interval */
3769 sd
->balance_interval
= sd
->min_interval
;
3772 * If we've begun active balancing, start to back off. This
3773 * case may not be covered by the all_pinned logic if there
3774 * is only 1 task on the busy runqueue (because we don't call
3777 if (sd
->balance_interval
< sd
->max_interval
)
3778 sd
->balance_interval
*= 2;
3781 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3782 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3788 schedstat_inc(sd
, lb_balanced
[idle
]);
3790 sd
->nr_balance_failed
= 0;
3793 /* tune up the balancing interval */
3794 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3795 (sd
->balance_interval
< sd
->max_interval
))
3796 sd
->balance_interval
*= 2;
3798 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3799 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3804 if (unlock_aggregate
)
3810 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3811 * tasks if there is an imbalance.
3813 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3814 * this_rq is locked.
3817 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3820 struct sched_group
*group
;
3821 struct rq
*busiest
= NULL
;
3822 unsigned long imbalance
;
3830 * When power savings policy is enabled for the parent domain, idle
3831 * sibling can pick up load irrespective of busy siblings. In this case,
3832 * let the state of idle sibling percolate up as IDLE, instead of
3833 * portraying it as CPU_NOT_IDLE.
3835 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3836 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3839 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3841 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3842 &sd_idle
, cpus
, NULL
);
3844 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3848 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3850 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3854 BUG_ON(busiest
== this_rq
);
3856 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3859 if (busiest
->nr_running
> 1) {
3860 /* Attempt to move tasks */
3861 double_lock_balance(this_rq
, busiest
);
3862 /* this_rq->clock is already updated */
3863 update_rq_clock(busiest
);
3864 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3865 imbalance
, sd
, CPU_NEWLY_IDLE
,
3867 spin_unlock(&busiest
->lock
);
3869 if (unlikely(all_pinned
)) {
3870 cpu_clear(cpu_of(busiest
), *cpus
);
3871 if (!cpus_empty(*cpus
))
3877 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3878 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3879 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3882 sd
->nr_balance_failed
= 0;
3887 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3888 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3889 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3891 sd
->nr_balance_failed
= 0;
3897 * idle_balance is called by schedule() if this_cpu is about to become
3898 * idle. Attempts to pull tasks from other CPUs.
3900 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3902 struct sched_domain
*sd
;
3903 int pulled_task
= -1;
3904 unsigned long next_balance
= jiffies
+ HZ
;
3907 for_each_domain(this_cpu
, sd
) {
3908 unsigned long interval
;
3910 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3913 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3914 /* If we've pulled tasks over stop searching: */
3915 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3918 interval
= msecs_to_jiffies(sd
->balance_interval
);
3919 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3920 next_balance
= sd
->last_balance
+ interval
;
3924 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3926 * We are going idle. next_balance may be set based on
3927 * a busy processor. So reset next_balance.
3929 this_rq
->next_balance
= next_balance
;
3934 * active_load_balance is run by migration threads. It pushes running tasks
3935 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3936 * running on each physical CPU where possible, and avoids physical /
3937 * logical imbalances.
3939 * Called with busiest_rq locked.
3941 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3943 int target_cpu
= busiest_rq
->push_cpu
;
3944 struct sched_domain
*sd
;
3945 struct rq
*target_rq
;
3947 /* Is there any task to move? */
3948 if (busiest_rq
->nr_running
<= 1)
3951 target_rq
= cpu_rq(target_cpu
);
3954 * This condition is "impossible", if it occurs
3955 * we need to fix it. Originally reported by
3956 * Bjorn Helgaas on a 128-cpu setup.
3958 BUG_ON(busiest_rq
== target_rq
);
3960 /* move a task from busiest_rq to target_rq */
3961 double_lock_balance(busiest_rq
, target_rq
);
3962 update_rq_clock(busiest_rq
);
3963 update_rq_clock(target_rq
);
3965 /* Search for an sd spanning us and the target CPU. */
3966 for_each_domain(target_cpu
, sd
) {
3967 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3968 cpu_isset(busiest_cpu
, sd
->span
))
3973 schedstat_inc(sd
, alb_count
);
3975 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3977 schedstat_inc(sd
, alb_pushed
);
3979 schedstat_inc(sd
, alb_failed
);
3981 spin_unlock(&target_rq
->lock
);
3986 atomic_t load_balancer
;
3988 } nohz ____cacheline_aligned
= {
3989 .load_balancer
= ATOMIC_INIT(-1),
3990 .cpu_mask
= CPU_MASK_NONE
,
3994 * This routine will try to nominate the ilb (idle load balancing)
3995 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3996 * load balancing on behalf of all those cpus. If all the cpus in the system
3997 * go into this tickless mode, then there will be no ilb owner (as there is
3998 * no need for one) and all the cpus will sleep till the next wakeup event
4001 * For the ilb owner, tick is not stopped. And this tick will be used
4002 * for idle load balancing. ilb owner will still be part of
4005 * While stopping the tick, this cpu will become the ilb owner if there
4006 * is no other owner. And will be the owner till that cpu becomes busy
4007 * or if all cpus in the system stop their ticks at which point
4008 * there is no need for ilb owner.
4010 * When the ilb owner becomes busy, it nominates another owner, during the
4011 * next busy scheduler_tick()
4013 int select_nohz_load_balancer(int stop_tick
)
4015 int cpu
= smp_processor_id();
4018 cpu_set(cpu
, nohz
.cpu_mask
);
4019 cpu_rq(cpu
)->in_nohz_recently
= 1;
4022 * If we are going offline and still the leader, give up!
4024 if (cpu_is_offline(cpu
) &&
4025 atomic_read(&nohz
.load_balancer
) == cpu
) {
4026 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4031 /* time for ilb owner also to sleep */
4032 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4033 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4034 atomic_set(&nohz
.load_balancer
, -1);
4038 if (atomic_read(&nohz
.load_balancer
) == -1) {
4039 /* make me the ilb owner */
4040 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
4042 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
4045 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
4048 cpu_clear(cpu
, nohz
.cpu_mask
);
4050 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4051 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4058 static DEFINE_SPINLOCK(balancing
);
4061 * It checks each scheduling domain to see if it is due to be balanced,
4062 * and initiates a balancing operation if so.
4064 * Balancing parameters are set up in arch_init_sched_domains.
4066 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4069 struct rq
*rq
= cpu_rq(cpu
);
4070 unsigned long interval
;
4071 struct sched_domain
*sd
;
4072 /* Earliest time when we have to do rebalance again */
4073 unsigned long next_balance
= jiffies
+ 60*HZ
;
4074 int update_next_balance
= 0;
4077 for_each_domain(cpu
, sd
) {
4078 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4081 interval
= sd
->balance_interval
;
4082 if (idle
!= CPU_IDLE
)
4083 interval
*= sd
->busy_factor
;
4085 /* scale ms to jiffies */
4086 interval
= msecs_to_jiffies(interval
);
4087 if (unlikely(!interval
))
4089 if (interval
> HZ
*NR_CPUS
/10)
4090 interval
= HZ
*NR_CPUS
/10;
4093 if (sd
->flags
& SD_SERIALIZE
) {
4094 if (!spin_trylock(&balancing
))
4098 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4099 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, &tmp
)) {
4101 * We've pulled tasks over so either we're no
4102 * longer idle, or one of our SMT siblings is
4105 idle
= CPU_NOT_IDLE
;
4107 sd
->last_balance
= jiffies
;
4109 if (sd
->flags
& SD_SERIALIZE
)
4110 spin_unlock(&balancing
);
4112 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4113 next_balance
= sd
->last_balance
+ interval
;
4114 update_next_balance
= 1;
4118 * Stop the load balance at this level. There is another
4119 * CPU in our sched group which is doing load balancing more
4127 * next_balance will be updated only when there is a need.
4128 * When the cpu is attached to null domain for ex, it will not be
4131 if (likely(update_next_balance
))
4132 rq
->next_balance
= next_balance
;
4136 * run_rebalance_domains is triggered when needed from the scheduler tick.
4137 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4138 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4140 static void run_rebalance_domains(struct softirq_action
*h
)
4142 int this_cpu
= smp_processor_id();
4143 struct rq
*this_rq
= cpu_rq(this_cpu
);
4144 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4145 CPU_IDLE
: CPU_NOT_IDLE
;
4147 rebalance_domains(this_cpu
, idle
);
4151 * If this cpu is the owner for idle load balancing, then do the
4152 * balancing on behalf of the other idle cpus whose ticks are
4155 if (this_rq
->idle_at_tick
&&
4156 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4157 cpumask_t cpus
= nohz
.cpu_mask
;
4161 cpu_clear(this_cpu
, cpus
);
4162 for_each_cpu_mask(balance_cpu
, cpus
) {
4164 * If this cpu gets work to do, stop the load balancing
4165 * work being done for other cpus. Next load
4166 * balancing owner will pick it up.
4171 rebalance_domains(balance_cpu
, CPU_IDLE
);
4173 rq
= cpu_rq(balance_cpu
);
4174 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4175 this_rq
->next_balance
= rq
->next_balance
;
4182 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4184 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4185 * idle load balancing owner or decide to stop the periodic load balancing,
4186 * if the whole system is idle.
4188 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4192 * If we were in the nohz mode recently and busy at the current
4193 * scheduler tick, then check if we need to nominate new idle
4196 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4197 rq
->in_nohz_recently
= 0;
4199 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4200 cpu_clear(cpu
, nohz
.cpu_mask
);
4201 atomic_set(&nohz
.load_balancer
, -1);
4204 if (atomic_read(&nohz
.load_balancer
) == -1) {
4206 * simple selection for now: Nominate the
4207 * first cpu in the nohz list to be the next
4210 * TBD: Traverse the sched domains and nominate
4211 * the nearest cpu in the nohz.cpu_mask.
4213 int ilb
= first_cpu(nohz
.cpu_mask
);
4215 if (ilb
< nr_cpu_ids
)
4221 * If this cpu is idle and doing idle load balancing for all the
4222 * cpus with ticks stopped, is it time for that to stop?
4224 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4225 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4231 * If this cpu is idle and the idle load balancing is done by
4232 * someone else, then no need raise the SCHED_SOFTIRQ
4234 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4235 cpu_isset(cpu
, nohz
.cpu_mask
))
4238 if (time_after_eq(jiffies
, rq
->next_balance
))
4239 raise_softirq(SCHED_SOFTIRQ
);
4242 #else /* CONFIG_SMP */
4245 * on UP we do not need to balance between CPUs:
4247 static inline void idle_balance(int cpu
, struct rq
*rq
)
4253 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4255 EXPORT_PER_CPU_SYMBOL(kstat
);
4258 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4259 * that have not yet been banked in case the task is currently running.
4261 unsigned long long task_sched_runtime(struct task_struct
*p
)
4263 unsigned long flags
;
4267 rq
= task_rq_lock(p
, &flags
);
4268 ns
= p
->se
.sum_exec_runtime
;
4269 if (task_current(rq
, p
)) {
4270 update_rq_clock(rq
);
4271 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4272 if ((s64
)delta_exec
> 0)
4275 task_rq_unlock(rq
, &flags
);
4281 * Account user cpu time to a process.
4282 * @p: the process that the cpu time gets accounted to
4283 * @cputime: the cpu time spent in user space since the last update
4285 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
4287 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4290 p
->utime
= cputime_add(p
->utime
, cputime
);
4292 /* Add user time to cpustat. */
4293 tmp
= cputime_to_cputime64(cputime
);
4294 if (TASK_NICE(p
) > 0)
4295 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4297 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4301 * Account guest cpu time to a process.
4302 * @p: the process that the cpu time gets accounted to
4303 * @cputime: the cpu time spent in virtual machine since the last update
4305 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
4308 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4310 tmp
= cputime_to_cputime64(cputime
);
4312 p
->utime
= cputime_add(p
->utime
, cputime
);
4313 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4315 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4316 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4320 * Account scaled user cpu time to a process.
4321 * @p: the process that the cpu time gets accounted to
4322 * @cputime: the cpu time spent in user space since the last update
4324 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4326 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
4330 * Account system cpu time to a process.
4331 * @p: the process that the cpu time gets accounted to
4332 * @hardirq_offset: the offset to subtract from hardirq_count()
4333 * @cputime: the cpu time spent in kernel space since the last update
4335 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4338 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4339 struct rq
*rq
= this_rq();
4342 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
4343 return account_guest_time(p
, cputime
);
4345 p
->stime
= cputime_add(p
->stime
, cputime
);
4347 /* Add system time to cpustat. */
4348 tmp
= cputime_to_cputime64(cputime
);
4349 if (hardirq_count() - hardirq_offset
)
4350 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4351 else if (softirq_count())
4352 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4353 else if (p
!= rq
->idle
)
4354 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4355 else if (atomic_read(&rq
->nr_iowait
) > 0)
4356 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4358 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4359 /* Account for system time used */
4360 acct_update_integrals(p
);
4364 * Account scaled system cpu time to a process.
4365 * @p: the process that the cpu time gets accounted to
4366 * @hardirq_offset: the offset to subtract from hardirq_count()
4367 * @cputime: the cpu time spent in kernel space since the last update
4369 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4371 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
4375 * Account for involuntary wait time.
4376 * @p: the process from which the cpu time has been stolen
4377 * @steal: the cpu time spent in involuntary wait
4379 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
4381 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4382 cputime64_t tmp
= cputime_to_cputime64(steal
);
4383 struct rq
*rq
= this_rq();
4385 if (p
== rq
->idle
) {
4386 p
->stime
= cputime_add(p
->stime
, steal
);
4387 if (atomic_read(&rq
->nr_iowait
) > 0)
4388 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4390 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4392 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
4396 * This function gets called by the timer code, with HZ frequency.
4397 * We call it with interrupts disabled.
4399 * It also gets called by the fork code, when changing the parent's
4402 void scheduler_tick(void)
4404 int cpu
= smp_processor_id();
4405 struct rq
*rq
= cpu_rq(cpu
);
4406 struct task_struct
*curr
= rq
->curr
;
4407 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
4409 spin_lock(&rq
->lock
);
4410 __update_rq_clock(rq
);
4412 * Let rq->clock advance by at least TICK_NSEC:
4414 if (unlikely(rq
->clock
< next_tick
)) {
4415 rq
->clock
= next_tick
;
4416 rq
->clock_underflows
++;
4418 rq
->tick_timestamp
= rq
->clock
;
4419 update_last_tick_seen(rq
);
4420 update_cpu_load(rq
);
4421 curr
->sched_class
->task_tick(rq
, curr
, 0);
4422 spin_unlock(&rq
->lock
);
4425 rq
->idle_at_tick
= idle_cpu(cpu
);
4426 trigger_load_balance(rq
, cpu
);
4430 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4432 void __kprobes
add_preempt_count(int val
)
4437 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4439 preempt_count() += val
;
4441 * Spinlock count overflowing soon?
4443 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4446 EXPORT_SYMBOL(add_preempt_count
);
4448 void __kprobes
sub_preempt_count(int val
)
4453 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4456 * Is the spinlock portion underflowing?
4458 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4459 !(preempt_count() & PREEMPT_MASK
)))
4462 preempt_count() -= val
;
4464 EXPORT_SYMBOL(sub_preempt_count
);
4469 * Print scheduling while atomic bug:
4471 static noinline
void __schedule_bug(struct task_struct
*prev
)
4473 struct pt_regs
*regs
= get_irq_regs();
4475 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4476 prev
->comm
, prev
->pid
, preempt_count());
4478 debug_show_held_locks(prev
);
4479 if (irqs_disabled())
4480 print_irqtrace_events(prev
);
4489 * Various schedule()-time debugging checks and statistics:
4491 static inline void schedule_debug(struct task_struct
*prev
)
4494 * Test if we are atomic. Since do_exit() needs to call into
4495 * schedule() atomically, we ignore that path for now.
4496 * Otherwise, whine if we are scheduling when we should not be.
4498 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
4499 __schedule_bug(prev
);
4501 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4503 schedstat_inc(this_rq(), sched_count
);
4504 #ifdef CONFIG_SCHEDSTATS
4505 if (unlikely(prev
->lock_depth
>= 0)) {
4506 schedstat_inc(this_rq(), bkl_count
);
4507 schedstat_inc(prev
, sched_info
.bkl_count
);
4513 * Pick up the highest-prio task:
4515 static inline struct task_struct
*
4516 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4518 const struct sched_class
*class;
4519 struct task_struct
*p
;
4522 * Optimization: we know that if all tasks are in
4523 * the fair class we can call that function directly:
4525 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4526 p
= fair_sched_class
.pick_next_task(rq
);
4531 class = sched_class_highest
;
4533 p
= class->pick_next_task(rq
);
4537 * Will never be NULL as the idle class always
4538 * returns a non-NULL p:
4540 class = class->next
;
4545 * schedule() is the main scheduler function.
4547 asmlinkage
void __sched
schedule(void)
4549 struct task_struct
*prev
, *next
;
4550 unsigned long *switch_count
;
4556 cpu
= smp_processor_id();
4560 switch_count
= &prev
->nivcsw
;
4562 release_kernel_lock(prev
);
4563 need_resched_nonpreemptible
:
4565 schedule_debug(prev
);
4570 * Do the rq-clock update outside the rq lock:
4572 local_irq_disable();
4573 __update_rq_clock(rq
);
4574 spin_lock(&rq
->lock
);
4575 clear_tsk_need_resched(prev
);
4577 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4578 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
4579 signal_pending(prev
))) {
4580 prev
->state
= TASK_RUNNING
;
4582 deactivate_task(rq
, prev
, 1);
4584 switch_count
= &prev
->nvcsw
;
4588 if (prev
->sched_class
->pre_schedule
)
4589 prev
->sched_class
->pre_schedule(rq
, prev
);
4592 if (unlikely(!rq
->nr_running
))
4593 idle_balance(cpu
, rq
);
4595 prev
->sched_class
->put_prev_task(rq
, prev
);
4596 next
= pick_next_task(rq
, prev
);
4598 sched_info_switch(prev
, next
);
4600 if (likely(prev
!= next
)) {
4605 context_switch(rq
, prev
, next
); /* unlocks the rq */
4607 * the context switch might have flipped the stack from under
4608 * us, hence refresh the local variables.
4610 cpu
= smp_processor_id();
4613 spin_unlock_irq(&rq
->lock
);
4617 if (unlikely(reacquire_kernel_lock(current
) < 0))
4618 goto need_resched_nonpreemptible
;
4620 preempt_enable_no_resched();
4621 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4624 EXPORT_SYMBOL(schedule
);
4626 #ifdef CONFIG_PREEMPT
4628 * this is the entry point to schedule() from in-kernel preemption
4629 * off of preempt_enable. Kernel preemptions off return from interrupt
4630 * occur there and call schedule directly.
4632 asmlinkage
void __sched
preempt_schedule(void)
4634 struct thread_info
*ti
= current_thread_info();
4635 struct task_struct
*task
= current
;
4636 int saved_lock_depth
;
4639 * If there is a non-zero preempt_count or interrupts are disabled,
4640 * we do not want to preempt the current task. Just return..
4642 if (likely(ti
->preempt_count
|| irqs_disabled()))
4646 add_preempt_count(PREEMPT_ACTIVE
);
4649 * We keep the big kernel semaphore locked, but we
4650 * clear ->lock_depth so that schedule() doesnt
4651 * auto-release the semaphore:
4653 saved_lock_depth
= task
->lock_depth
;
4654 task
->lock_depth
= -1;
4656 task
->lock_depth
= saved_lock_depth
;
4657 sub_preempt_count(PREEMPT_ACTIVE
);
4660 * Check again in case we missed a preemption opportunity
4661 * between schedule and now.
4664 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4666 EXPORT_SYMBOL(preempt_schedule
);
4669 * this is the entry point to schedule() from kernel preemption
4670 * off of irq context.
4671 * Note, that this is called and return with irqs disabled. This will
4672 * protect us against recursive calling from irq.
4674 asmlinkage
void __sched
preempt_schedule_irq(void)
4676 struct thread_info
*ti
= current_thread_info();
4677 struct task_struct
*task
= current
;
4678 int saved_lock_depth
;
4680 /* Catch callers which need to be fixed */
4681 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4684 add_preempt_count(PREEMPT_ACTIVE
);
4687 * We keep the big kernel semaphore locked, but we
4688 * clear ->lock_depth so that schedule() doesnt
4689 * auto-release the semaphore:
4691 saved_lock_depth
= task
->lock_depth
;
4692 task
->lock_depth
= -1;
4695 local_irq_disable();
4696 task
->lock_depth
= saved_lock_depth
;
4697 sub_preempt_count(PREEMPT_ACTIVE
);
4700 * Check again in case we missed a preemption opportunity
4701 * between schedule and now.
4704 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4707 #endif /* CONFIG_PREEMPT */
4709 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4712 return try_to_wake_up(curr
->private, mode
, sync
);
4714 EXPORT_SYMBOL(default_wake_function
);
4717 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4718 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4719 * number) then we wake all the non-exclusive tasks and one exclusive task.
4721 * There are circumstances in which we can try to wake a task which has already
4722 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4723 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4725 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4726 int nr_exclusive
, int sync
, void *key
)
4728 wait_queue_t
*curr
, *next
;
4730 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4731 unsigned flags
= curr
->flags
;
4733 if (curr
->func(curr
, mode
, sync
, key
) &&
4734 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4740 * __wake_up - wake up threads blocked on a waitqueue.
4742 * @mode: which threads
4743 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4744 * @key: is directly passed to the wakeup function
4746 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4747 int nr_exclusive
, void *key
)
4749 unsigned long flags
;
4751 spin_lock_irqsave(&q
->lock
, flags
);
4752 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4753 spin_unlock_irqrestore(&q
->lock
, flags
);
4755 EXPORT_SYMBOL(__wake_up
);
4758 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4760 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4762 __wake_up_common(q
, mode
, 1, 0, NULL
);
4766 * __wake_up_sync - wake up threads blocked on a waitqueue.
4768 * @mode: which threads
4769 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4771 * The sync wakeup differs that the waker knows that it will schedule
4772 * away soon, so while the target thread will be woken up, it will not
4773 * be migrated to another CPU - ie. the two threads are 'synchronized'
4774 * with each other. This can prevent needless bouncing between CPUs.
4776 * On UP it can prevent extra preemption.
4779 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4781 unsigned long flags
;
4787 if (unlikely(!nr_exclusive
))
4790 spin_lock_irqsave(&q
->lock
, flags
);
4791 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4792 spin_unlock_irqrestore(&q
->lock
, flags
);
4794 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4796 void complete(struct completion
*x
)
4798 unsigned long flags
;
4800 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4802 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4803 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4805 EXPORT_SYMBOL(complete
);
4807 void complete_all(struct completion
*x
)
4809 unsigned long flags
;
4811 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4812 x
->done
+= UINT_MAX
/2;
4813 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4814 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4816 EXPORT_SYMBOL(complete_all
);
4818 static inline long __sched
4819 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4822 DECLARE_WAITQUEUE(wait
, current
);
4824 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4825 __add_wait_queue_tail(&x
->wait
, &wait
);
4827 if ((state
== TASK_INTERRUPTIBLE
&&
4828 signal_pending(current
)) ||
4829 (state
== TASK_KILLABLE
&&
4830 fatal_signal_pending(current
))) {
4831 __remove_wait_queue(&x
->wait
, &wait
);
4832 return -ERESTARTSYS
;
4834 __set_current_state(state
);
4835 spin_unlock_irq(&x
->wait
.lock
);
4836 timeout
= schedule_timeout(timeout
);
4837 spin_lock_irq(&x
->wait
.lock
);
4839 __remove_wait_queue(&x
->wait
, &wait
);
4843 __remove_wait_queue(&x
->wait
, &wait
);
4850 wait_for_common(struct completion
*x
, long timeout
, int state
)
4854 spin_lock_irq(&x
->wait
.lock
);
4855 timeout
= do_wait_for_common(x
, timeout
, state
);
4856 spin_unlock_irq(&x
->wait
.lock
);
4860 void __sched
wait_for_completion(struct completion
*x
)
4862 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4864 EXPORT_SYMBOL(wait_for_completion
);
4866 unsigned long __sched
4867 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4869 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4871 EXPORT_SYMBOL(wait_for_completion_timeout
);
4873 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4875 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4876 if (t
== -ERESTARTSYS
)
4880 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4882 unsigned long __sched
4883 wait_for_completion_interruptible_timeout(struct completion
*x
,
4884 unsigned long timeout
)
4886 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4888 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4890 int __sched
wait_for_completion_killable(struct completion
*x
)
4892 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4893 if (t
== -ERESTARTSYS
)
4897 EXPORT_SYMBOL(wait_for_completion_killable
);
4900 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4902 unsigned long flags
;
4905 init_waitqueue_entry(&wait
, current
);
4907 __set_current_state(state
);
4909 spin_lock_irqsave(&q
->lock
, flags
);
4910 __add_wait_queue(q
, &wait
);
4911 spin_unlock(&q
->lock
);
4912 timeout
= schedule_timeout(timeout
);
4913 spin_lock_irq(&q
->lock
);
4914 __remove_wait_queue(q
, &wait
);
4915 spin_unlock_irqrestore(&q
->lock
, flags
);
4920 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4922 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4924 EXPORT_SYMBOL(interruptible_sleep_on
);
4927 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4929 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4931 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4933 void __sched
sleep_on(wait_queue_head_t
*q
)
4935 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4937 EXPORT_SYMBOL(sleep_on
);
4939 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4941 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4943 EXPORT_SYMBOL(sleep_on_timeout
);
4945 #ifdef CONFIG_RT_MUTEXES
4948 * rt_mutex_setprio - set the current priority of a task
4950 * @prio: prio value (kernel-internal form)
4952 * This function changes the 'effective' priority of a task. It does
4953 * not touch ->normal_prio like __setscheduler().
4955 * Used by the rt_mutex code to implement priority inheritance logic.
4957 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4959 unsigned long flags
;
4960 int oldprio
, on_rq
, running
;
4962 const struct sched_class
*prev_class
= p
->sched_class
;
4964 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4966 rq
= task_rq_lock(p
, &flags
);
4967 update_rq_clock(rq
);
4970 on_rq
= p
->se
.on_rq
;
4971 running
= task_current(rq
, p
);
4973 dequeue_task(rq
, p
, 0);
4975 p
->sched_class
->put_prev_task(rq
, p
);
4978 p
->sched_class
= &rt_sched_class
;
4980 p
->sched_class
= &fair_sched_class
;
4985 p
->sched_class
->set_curr_task(rq
);
4987 enqueue_task(rq
, p
, 0);
4989 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4991 task_rq_unlock(rq
, &flags
);
4996 void set_user_nice(struct task_struct
*p
, long nice
)
4998 int old_prio
, delta
, on_rq
;
4999 unsigned long flags
;
5002 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5005 * We have to be careful, if called from sys_setpriority(),
5006 * the task might be in the middle of scheduling on another CPU.
5008 rq
= task_rq_lock(p
, &flags
);
5009 update_rq_clock(rq
);
5011 * The RT priorities are set via sched_setscheduler(), but we still
5012 * allow the 'normal' nice value to be set - but as expected
5013 * it wont have any effect on scheduling until the task is
5014 * SCHED_FIFO/SCHED_RR:
5016 if (task_has_rt_policy(p
)) {
5017 p
->static_prio
= NICE_TO_PRIO(nice
);
5020 on_rq
= p
->se
.on_rq
;
5022 dequeue_task(rq
, p
, 0);
5024 p
->static_prio
= NICE_TO_PRIO(nice
);
5027 p
->prio
= effective_prio(p
);
5028 delta
= p
->prio
- old_prio
;
5031 enqueue_task(rq
, p
, 0);
5033 * If the task increased its priority or is running and
5034 * lowered its priority, then reschedule its CPU:
5036 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5037 resched_task(rq
->curr
);
5040 task_rq_unlock(rq
, &flags
);
5042 EXPORT_SYMBOL(set_user_nice
);
5045 * can_nice - check if a task can reduce its nice value
5049 int can_nice(const struct task_struct
*p
, const int nice
)
5051 /* convert nice value [19,-20] to rlimit style value [1,40] */
5052 int nice_rlim
= 20 - nice
;
5054 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
5055 capable(CAP_SYS_NICE
));
5058 #ifdef __ARCH_WANT_SYS_NICE
5061 * sys_nice - change the priority of the current process.
5062 * @increment: priority increment
5064 * sys_setpriority is a more generic, but much slower function that
5065 * does similar things.
5067 asmlinkage
long sys_nice(int increment
)
5072 * Setpriority might change our priority at the same moment.
5073 * We don't have to worry. Conceptually one call occurs first
5074 * and we have a single winner.
5076 if (increment
< -40)
5081 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
5087 if (increment
< 0 && !can_nice(current
, nice
))
5090 retval
= security_task_setnice(current
, nice
);
5094 set_user_nice(current
, nice
);
5101 * task_prio - return the priority value of a given task.
5102 * @p: the task in question.
5104 * This is the priority value as seen by users in /proc.
5105 * RT tasks are offset by -200. Normal tasks are centered
5106 * around 0, value goes from -16 to +15.
5108 int task_prio(const struct task_struct
*p
)
5110 return p
->prio
- MAX_RT_PRIO
;
5114 * task_nice - return the nice value of a given task.
5115 * @p: the task in question.
5117 int task_nice(const struct task_struct
*p
)
5119 return TASK_NICE(p
);
5121 EXPORT_SYMBOL(task_nice
);
5124 * idle_cpu - is a given cpu idle currently?
5125 * @cpu: the processor in question.
5127 int idle_cpu(int cpu
)
5129 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5133 * idle_task - return the idle task for a given cpu.
5134 * @cpu: the processor in question.
5136 struct task_struct
*idle_task(int cpu
)
5138 return cpu_rq(cpu
)->idle
;
5142 * find_process_by_pid - find a process with a matching PID value.
5143 * @pid: the pid in question.
5145 static struct task_struct
*find_process_by_pid(pid_t pid
)
5147 return pid
? find_task_by_vpid(pid
) : current
;
5150 /* Actually do priority change: must hold rq lock. */
5152 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5154 BUG_ON(p
->se
.on_rq
);
5157 switch (p
->policy
) {
5161 p
->sched_class
= &fair_sched_class
;
5165 p
->sched_class
= &rt_sched_class
;
5169 p
->rt_priority
= prio
;
5170 p
->normal_prio
= normal_prio(p
);
5171 /* we are holding p->pi_lock already */
5172 p
->prio
= rt_mutex_getprio(p
);
5177 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5178 * @p: the task in question.
5179 * @policy: new policy.
5180 * @param: structure containing the new RT priority.
5182 * NOTE that the task may be already dead.
5184 int sched_setscheduler(struct task_struct
*p
, int policy
,
5185 struct sched_param
*param
)
5187 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5188 unsigned long flags
;
5189 const struct sched_class
*prev_class
= p
->sched_class
;
5192 /* may grab non-irq protected spin_locks */
5193 BUG_ON(in_interrupt());
5195 /* double check policy once rq lock held */
5197 policy
= oldpolicy
= p
->policy
;
5198 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5199 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5200 policy
!= SCHED_IDLE
)
5203 * Valid priorities for SCHED_FIFO and SCHED_RR are
5204 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5205 * SCHED_BATCH and SCHED_IDLE is 0.
5207 if (param
->sched_priority
< 0 ||
5208 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5209 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5211 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5215 * Allow unprivileged RT tasks to decrease priority:
5217 if (!capable(CAP_SYS_NICE
)) {
5218 if (rt_policy(policy
)) {
5219 unsigned long rlim_rtprio
;
5221 if (!lock_task_sighand(p
, &flags
))
5223 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5224 unlock_task_sighand(p
, &flags
);
5226 /* can't set/change the rt policy */
5227 if (policy
!= p
->policy
&& !rlim_rtprio
)
5230 /* can't increase priority */
5231 if (param
->sched_priority
> p
->rt_priority
&&
5232 param
->sched_priority
> rlim_rtprio
)
5236 * Like positive nice levels, dont allow tasks to
5237 * move out of SCHED_IDLE either:
5239 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5242 /* can't change other user's priorities */
5243 if ((current
->euid
!= p
->euid
) &&
5244 (current
->euid
!= p
->uid
))
5248 #ifdef CONFIG_RT_GROUP_SCHED
5250 * Do not allow realtime tasks into groups that have no runtime
5253 if (rt_policy(policy
) && task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5257 retval
= security_task_setscheduler(p
, policy
, param
);
5261 * make sure no PI-waiters arrive (or leave) while we are
5262 * changing the priority of the task:
5264 spin_lock_irqsave(&p
->pi_lock
, flags
);
5266 * To be able to change p->policy safely, the apropriate
5267 * runqueue lock must be held.
5269 rq
= __task_rq_lock(p
);
5270 /* recheck policy now with rq lock held */
5271 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5272 policy
= oldpolicy
= -1;
5273 __task_rq_unlock(rq
);
5274 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5277 update_rq_clock(rq
);
5278 on_rq
= p
->se
.on_rq
;
5279 running
= task_current(rq
, p
);
5281 deactivate_task(rq
, p
, 0);
5283 p
->sched_class
->put_prev_task(rq
, p
);
5286 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5289 p
->sched_class
->set_curr_task(rq
);
5291 activate_task(rq
, p
, 0);
5293 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5295 __task_rq_unlock(rq
);
5296 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5298 rt_mutex_adjust_pi(p
);
5302 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5305 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5307 struct sched_param lparam
;
5308 struct task_struct
*p
;
5311 if (!param
|| pid
< 0)
5313 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5318 p
= find_process_by_pid(pid
);
5320 retval
= sched_setscheduler(p
, policy
, &lparam
);
5327 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5328 * @pid: the pid in question.
5329 * @policy: new policy.
5330 * @param: structure containing the new RT priority.
5333 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5335 /* negative values for policy are not valid */
5339 return do_sched_setscheduler(pid
, policy
, param
);
5343 * sys_sched_setparam - set/change the RT priority of a thread
5344 * @pid: the pid in question.
5345 * @param: structure containing the new RT priority.
5347 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
5349 return do_sched_setscheduler(pid
, -1, param
);
5353 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5354 * @pid: the pid in question.
5356 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
5358 struct task_struct
*p
;
5365 read_lock(&tasklist_lock
);
5366 p
= find_process_by_pid(pid
);
5368 retval
= security_task_getscheduler(p
);
5372 read_unlock(&tasklist_lock
);
5377 * sys_sched_getscheduler - get the RT priority of a thread
5378 * @pid: the pid in question.
5379 * @param: structure containing the RT priority.
5381 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
5383 struct sched_param lp
;
5384 struct task_struct
*p
;
5387 if (!param
|| pid
< 0)
5390 read_lock(&tasklist_lock
);
5391 p
= find_process_by_pid(pid
);
5396 retval
= security_task_getscheduler(p
);
5400 lp
.sched_priority
= p
->rt_priority
;
5401 read_unlock(&tasklist_lock
);
5404 * This one might sleep, we cannot do it with a spinlock held ...
5406 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5411 read_unlock(&tasklist_lock
);
5415 long sched_setaffinity(pid_t pid
, const cpumask_t
*in_mask
)
5417 cpumask_t cpus_allowed
;
5418 cpumask_t new_mask
= *in_mask
;
5419 struct task_struct
*p
;
5423 read_lock(&tasklist_lock
);
5425 p
= find_process_by_pid(pid
);
5427 read_unlock(&tasklist_lock
);
5433 * It is not safe to call set_cpus_allowed with the
5434 * tasklist_lock held. We will bump the task_struct's
5435 * usage count and then drop tasklist_lock.
5438 read_unlock(&tasklist_lock
);
5441 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
5442 !capable(CAP_SYS_NICE
))
5445 retval
= security_task_setscheduler(p
, 0, NULL
);
5449 cpuset_cpus_allowed(p
, &cpus_allowed
);
5450 cpus_and(new_mask
, new_mask
, cpus_allowed
);
5452 retval
= set_cpus_allowed_ptr(p
, &new_mask
);
5455 cpuset_cpus_allowed(p
, &cpus_allowed
);
5456 if (!cpus_subset(new_mask
, cpus_allowed
)) {
5458 * We must have raced with a concurrent cpuset
5459 * update. Just reset the cpus_allowed to the
5460 * cpuset's cpus_allowed
5462 new_mask
= cpus_allowed
;
5472 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5473 cpumask_t
*new_mask
)
5475 if (len
< sizeof(cpumask_t
)) {
5476 memset(new_mask
, 0, sizeof(cpumask_t
));
5477 } else if (len
> sizeof(cpumask_t
)) {
5478 len
= sizeof(cpumask_t
);
5480 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5484 * sys_sched_setaffinity - set the cpu affinity of a process
5485 * @pid: pid of the process
5486 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5487 * @user_mask_ptr: user-space pointer to the new cpu mask
5489 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5490 unsigned long __user
*user_mask_ptr
)
5495 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
5499 return sched_setaffinity(pid
, &new_mask
);
5503 * Represents all cpu's present in the system
5504 * In systems capable of hotplug, this map could dynamically grow
5505 * as new cpu's are detected in the system via any platform specific
5506 * method, such as ACPI for e.g.
5509 cpumask_t cpu_present_map __read_mostly
;
5510 EXPORT_SYMBOL(cpu_present_map
);
5513 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
5514 EXPORT_SYMBOL(cpu_online_map
);
5516 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
5517 EXPORT_SYMBOL(cpu_possible_map
);
5520 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
5522 struct task_struct
*p
;
5526 read_lock(&tasklist_lock
);
5529 p
= find_process_by_pid(pid
);
5533 retval
= security_task_getscheduler(p
);
5537 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
5540 read_unlock(&tasklist_lock
);
5547 * sys_sched_getaffinity - get the cpu affinity of a process
5548 * @pid: pid of the process
5549 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5550 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5552 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5553 unsigned long __user
*user_mask_ptr
)
5558 if (len
< sizeof(cpumask_t
))
5561 ret
= sched_getaffinity(pid
, &mask
);
5565 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
5568 return sizeof(cpumask_t
);
5572 * sys_sched_yield - yield the current processor to other threads.
5574 * This function yields the current CPU to other tasks. If there are no
5575 * other threads running on this CPU then this function will return.
5577 asmlinkage
long sys_sched_yield(void)
5579 struct rq
*rq
= this_rq_lock();
5581 schedstat_inc(rq
, yld_count
);
5582 current
->sched_class
->yield_task(rq
);
5585 * Since we are going to call schedule() anyway, there's
5586 * no need to preempt or enable interrupts:
5588 __release(rq
->lock
);
5589 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5590 _raw_spin_unlock(&rq
->lock
);
5591 preempt_enable_no_resched();
5598 static void __cond_resched(void)
5600 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5601 __might_sleep(__FILE__
, __LINE__
);
5604 * The BKS might be reacquired before we have dropped
5605 * PREEMPT_ACTIVE, which could trigger a second
5606 * cond_resched() call.
5609 add_preempt_count(PREEMPT_ACTIVE
);
5611 sub_preempt_count(PREEMPT_ACTIVE
);
5612 } while (need_resched());
5615 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5616 int __sched
_cond_resched(void)
5618 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5619 system_state
== SYSTEM_RUNNING
) {
5625 EXPORT_SYMBOL(_cond_resched
);
5629 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5630 * call schedule, and on return reacquire the lock.
5632 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5633 * operations here to prevent schedule() from being called twice (once via
5634 * spin_unlock(), once by hand).
5636 int cond_resched_lock(spinlock_t
*lock
)
5638 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5641 if (spin_needbreak(lock
) || resched
) {
5643 if (resched
&& need_resched())
5652 EXPORT_SYMBOL(cond_resched_lock
);
5654 int __sched
cond_resched_softirq(void)
5656 BUG_ON(!in_softirq());
5658 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5666 EXPORT_SYMBOL(cond_resched_softirq
);
5669 * yield - yield the current processor to other threads.
5671 * This is a shortcut for kernel-space yielding - it marks the
5672 * thread runnable and calls sys_sched_yield().
5674 void __sched
yield(void)
5676 set_current_state(TASK_RUNNING
);
5679 EXPORT_SYMBOL(yield
);
5682 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5683 * that process accounting knows that this is a task in IO wait state.
5685 * But don't do that if it is a deliberate, throttling IO wait (this task
5686 * has set its backing_dev_info: the queue against which it should throttle)
5688 void __sched
io_schedule(void)
5690 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5692 delayacct_blkio_start();
5693 atomic_inc(&rq
->nr_iowait
);
5695 atomic_dec(&rq
->nr_iowait
);
5696 delayacct_blkio_end();
5698 EXPORT_SYMBOL(io_schedule
);
5700 long __sched
io_schedule_timeout(long timeout
)
5702 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5705 delayacct_blkio_start();
5706 atomic_inc(&rq
->nr_iowait
);
5707 ret
= schedule_timeout(timeout
);
5708 atomic_dec(&rq
->nr_iowait
);
5709 delayacct_blkio_end();
5714 * sys_sched_get_priority_max - return maximum RT priority.
5715 * @policy: scheduling class.
5717 * this syscall returns the maximum rt_priority that can be used
5718 * by a given scheduling class.
5720 asmlinkage
long sys_sched_get_priority_max(int policy
)
5727 ret
= MAX_USER_RT_PRIO
-1;
5739 * sys_sched_get_priority_min - return minimum RT priority.
5740 * @policy: scheduling class.
5742 * this syscall returns the minimum rt_priority that can be used
5743 * by a given scheduling class.
5745 asmlinkage
long sys_sched_get_priority_min(int policy
)
5763 * sys_sched_rr_get_interval - return the default timeslice of a process.
5764 * @pid: pid of the process.
5765 * @interval: userspace pointer to the timeslice value.
5767 * this syscall writes the default timeslice value of a given process
5768 * into the user-space timespec buffer. A value of '0' means infinity.
5771 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5773 struct task_struct
*p
;
5774 unsigned int time_slice
;
5782 read_lock(&tasklist_lock
);
5783 p
= find_process_by_pid(pid
);
5787 retval
= security_task_getscheduler(p
);
5792 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5793 * tasks that are on an otherwise idle runqueue:
5796 if (p
->policy
== SCHED_RR
) {
5797 time_slice
= DEF_TIMESLICE
;
5798 } else if (p
->policy
!= SCHED_FIFO
) {
5799 struct sched_entity
*se
= &p
->se
;
5800 unsigned long flags
;
5803 rq
= task_rq_lock(p
, &flags
);
5804 if (rq
->cfs
.load
.weight
)
5805 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5806 task_rq_unlock(rq
, &flags
);
5808 read_unlock(&tasklist_lock
);
5809 jiffies_to_timespec(time_slice
, &t
);
5810 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5814 read_unlock(&tasklist_lock
);
5818 static const char stat_nam
[] = "RSDTtZX";
5820 void sched_show_task(struct task_struct
*p
)
5822 unsigned long free
= 0;
5825 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5826 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5827 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5828 #if BITS_PER_LONG == 32
5829 if (state
== TASK_RUNNING
)
5830 printk(KERN_CONT
" running ");
5832 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5834 if (state
== TASK_RUNNING
)
5835 printk(KERN_CONT
" running task ");
5837 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5839 #ifdef CONFIG_DEBUG_STACK_USAGE
5841 unsigned long *n
= end_of_stack(p
);
5844 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5847 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5848 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5850 show_stack(p
, NULL
);
5853 void show_state_filter(unsigned long state_filter
)
5855 struct task_struct
*g
, *p
;
5857 #if BITS_PER_LONG == 32
5859 " task PC stack pid father\n");
5862 " task PC stack pid father\n");
5864 read_lock(&tasklist_lock
);
5865 do_each_thread(g
, p
) {
5867 * reset the NMI-timeout, listing all files on a slow
5868 * console might take alot of time:
5870 touch_nmi_watchdog();
5871 if (!state_filter
|| (p
->state
& state_filter
))
5873 } while_each_thread(g
, p
);
5875 touch_all_softlockup_watchdogs();
5877 #ifdef CONFIG_SCHED_DEBUG
5878 sysrq_sched_debug_show();
5880 read_unlock(&tasklist_lock
);
5882 * Only show locks if all tasks are dumped:
5884 if (state_filter
== -1)
5885 debug_show_all_locks();
5888 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5890 idle
->sched_class
= &idle_sched_class
;
5894 * init_idle - set up an idle thread for a given CPU
5895 * @idle: task in question
5896 * @cpu: cpu the idle task belongs to
5898 * NOTE: this function does not set the idle thread's NEED_RESCHED
5899 * flag, to make booting more robust.
5901 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5903 struct rq
*rq
= cpu_rq(cpu
);
5904 unsigned long flags
;
5907 idle
->se
.exec_start
= sched_clock();
5909 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5910 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5911 __set_task_cpu(idle
, cpu
);
5913 spin_lock_irqsave(&rq
->lock
, flags
);
5914 rq
->curr
= rq
->idle
= idle
;
5915 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5918 spin_unlock_irqrestore(&rq
->lock
, flags
);
5920 /* Set the preempt count _outside_ the spinlocks! */
5921 task_thread_info(idle
)->preempt_count
= 0;
5924 * The idle tasks have their own, simple scheduling class:
5926 idle
->sched_class
= &idle_sched_class
;
5930 * In a system that switches off the HZ timer nohz_cpu_mask
5931 * indicates which cpus entered this state. This is used
5932 * in the rcu update to wait only for active cpus. For system
5933 * which do not switch off the HZ timer nohz_cpu_mask should
5934 * always be CPU_MASK_NONE.
5936 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5939 * Increase the granularity value when there are more CPUs,
5940 * because with more CPUs the 'effective latency' as visible
5941 * to users decreases. But the relationship is not linear,
5942 * so pick a second-best guess by going with the log2 of the
5945 * This idea comes from the SD scheduler of Con Kolivas:
5947 static inline void sched_init_granularity(void)
5949 unsigned int factor
= 1 + ilog2(num_online_cpus());
5950 const unsigned long limit
= 200000000;
5952 sysctl_sched_min_granularity
*= factor
;
5953 if (sysctl_sched_min_granularity
> limit
)
5954 sysctl_sched_min_granularity
= limit
;
5956 sysctl_sched_latency
*= factor
;
5957 if (sysctl_sched_latency
> limit
)
5958 sysctl_sched_latency
= limit
;
5960 sysctl_sched_wakeup_granularity
*= factor
;
5965 * This is how migration works:
5967 * 1) we queue a struct migration_req structure in the source CPU's
5968 * runqueue and wake up that CPU's migration thread.
5969 * 2) we down() the locked semaphore => thread blocks.
5970 * 3) migration thread wakes up (implicitly it forces the migrated
5971 * thread off the CPU)
5972 * 4) it gets the migration request and checks whether the migrated
5973 * task is still in the wrong runqueue.
5974 * 5) if it's in the wrong runqueue then the migration thread removes
5975 * it and puts it into the right queue.
5976 * 6) migration thread up()s the semaphore.
5977 * 7) we wake up and the migration is done.
5981 * Change a given task's CPU affinity. Migrate the thread to a
5982 * proper CPU and schedule it away if the CPU it's executing on
5983 * is removed from the allowed bitmask.
5985 * NOTE: the caller must have a valid reference to the task, the
5986 * task must not exit() & deallocate itself prematurely. The
5987 * call is not atomic; no spinlocks may be held.
5989 int set_cpus_allowed_ptr(struct task_struct
*p
, const cpumask_t
*new_mask
)
5991 struct migration_req req
;
5992 unsigned long flags
;
5996 rq
= task_rq_lock(p
, &flags
);
5997 if (!cpus_intersects(*new_mask
, cpu_online_map
)) {
6002 if (p
->sched_class
->set_cpus_allowed
)
6003 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6005 p
->cpus_allowed
= *new_mask
;
6006 p
->rt
.nr_cpus_allowed
= cpus_weight(*new_mask
);
6009 /* Can the task run on the task's current CPU? If so, we're done */
6010 if (cpu_isset(task_cpu(p
), *new_mask
))
6013 if (migrate_task(p
, any_online_cpu(*new_mask
), &req
)) {
6014 /* Need help from migration thread: drop lock and wait. */
6015 task_rq_unlock(rq
, &flags
);
6016 wake_up_process(rq
->migration_thread
);
6017 wait_for_completion(&req
.done
);
6018 tlb_migrate_finish(p
->mm
);
6022 task_rq_unlock(rq
, &flags
);
6026 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6029 * Move (not current) task off this cpu, onto dest cpu. We're doing
6030 * this because either it can't run here any more (set_cpus_allowed()
6031 * away from this CPU, or CPU going down), or because we're
6032 * attempting to rebalance this task on exec (sched_exec).
6034 * So we race with normal scheduler movements, but that's OK, as long
6035 * as the task is no longer on this CPU.
6037 * Returns non-zero if task was successfully migrated.
6039 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6041 struct rq
*rq_dest
, *rq_src
;
6044 if (unlikely(cpu_is_offline(dest_cpu
)))
6047 rq_src
= cpu_rq(src_cpu
);
6048 rq_dest
= cpu_rq(dest_cpu
);
6050 double_rq_lock(rq_src
, rq_dest
);
6051 /* Already moved. */
6052 if (task_cpu(p
) != src_cpu
)
6054 /* Affinity changed (again). */
6055 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
6058 on_rq
= p
->se
.on_rq
;
6060 deactivate_task(rq_src
, p
, 0);
6062 set_task_cpu(p
, dest_cpu
);
6064 activate_task(rq_dest
, p
, 0);
6065 check_preempt_curr(rq_dest
, p
);
6069 double_rq_unlock(rq_src
, rq_dest
);
6074 * migration_thread - this is a highprio system thread that performs
6075 * thread migration by bumping thread off CPU then 'pushing' onto
6078 static int migration_thread(void *data
)
6080 int cpu
= (long)data
;
6084 BUG_ON(rq
->migration_thread
!= current
);
6086 set_current_state(TASK_INTERRUPTIBLE
);
6087 while (!kthread_should_stop()) {
6088 struct migration_req
*req
;
6089 struct list_head
*head
;
6091 spin_lock_irq(&rq
->lock
);
6093 if (cpu_is_offline(cpu
)) {
6094 spin_unlock_irq(&rq
->lock
);
6098 if (rq
->active_balance
) {
6099 active_load_balance(rq
, cpu
);
6100 rq
->active_balance
= 0;
6103 head
= &rq
->migration_queue
;
6105 if (list_empty(head
)) {
6106 spin_unlock_irq(&rq
->lock
);
6108 set_current_state(TASK_INTERRUPTIBLE
);
6111 req
= list_entry(head
->next
, struct migration_req
, list
);
6112 list_del_init(head
->next
);
6114 spin_unlock(&rq
->lock
);
6115 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
6118 complete(&req
->done
);
6120 __set_current_state(TASK_RUNNING
);
6124 /* Wait for kthread_stop */
6125 set_current_state(TASK_INTERRUPTIBLE
);
6126 while (!kthread_should_stop()) {
6128 set_current_state(TASK_INTERRUPTIBLE
);
6130 __set_current_state(TASK_RUNNING
);
6134 #ifdef CONFIG_HOTPLUG_CPU
6136 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6140 local_irq_disable();
6141 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
6147 * Figure out where task on dead CPU should go, use force if necessary.
6148 * NOTE: interrupts should be disabled by the caller
6150 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
6152 unsigned long flags
;
6159 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
6160 cpus_and(mask
, mask
, p
->cpus_allowed
);
6161 dest_cpu
= any_online_cpu(mask
);
6163 /* On any allowed CPU? */
6164 if (dest_cpu
>= nr_cpu_ids
)
6165 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6167 /* No more Mr. Nice Guy. */
6168 if (dest_cpu
>= nr_cpu_ids
) {
6169 cpumask_t cpus_allowed
;
6171 cpuset_cpus_allowed_locked(p
, &cpus_allowed
);
6173 * Try to stay on the same cpuset, where the
6174 * current cpuset may be a subset of all cpus.
6175 * The cpuset_cpus_allowed_locked() variant of
6176 * cpuset_cpus_allowed() will not block. It must be
6177 * called within calls to cpuset_lock/cpuset_unlock.
6179 rq
= task_rq_lock(p
, &flags
);
6180 p
->cpus_allowed
= cpus_allowed
;
6181 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6182 task_rq_unlock(rq
, &flags
);
6185 * Don't tell them about moving exiting tasks or
6186 * kernel threads (both mm NULL), since they never
6189 if (p
->mm
&& printk_ratelimit()) {
6190 printk(KERN_INFO
"process %d (%s) no "
6191 "longer affine to cpu%d\n",
6192 task_pid_nr(p
), p
->comm
, dead_cpu
);
6195 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
6199 * While a dead CPU has no uninterruptible tasks queued at this point,
6200 * it might still have a nonzero ->nr_uninterruptible counter, because
6201 * for performance reasons the counter is not stricly tracking tasks to
6202 * their home CPUs. So we just add the counter to another CPU's counter,
6203 * to keep the global sum constant after CPU-down:
6205 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6207 struct rq
*rq_dest
= cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR
));
6208 unsigned long flags
;
6210 local_irq_save(flags
);
6211 double_rq_lock(rq_src
, rq_dest
);
6212 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6213 rq_src
->nr_uninterruptible
= 0;
6214 double_rq_unlock(rq_src
, rq_dest
);
6215 local_irq_restore(flags
);
6218 /* Run through task list and migrate tasks from the dead cpu. */
6219 static void migrate_live_tasks(int src_cpu
)
6221 struct task_struct
*p
, *t
;
6223 read_lock(&tasklist_lock
);
6225 do_each_thread(t
, p
) {
6229 if (task_cpu(p
) == src_cpu
)
6230 move_task_off_dead_cpu(src_cpu
, p
);
6231 } while_each_thread(t
, p
);
6233 read_unlock(&tasklist_lock
);
6237 * Schedules idle task to be the next runnable task on current CPU.
6238 * It does so by boosting its priority to highest possible.
6239 * Used by CPU offline code.
6241 void sched_idle_next(void)
6243 int this_cpu
= smp_processor_id();
6244 struct rq
*rq
= cpu_rq(this_cpu
);
6245 struct task_struct
*p
= rq
->idle
;
6246 unsigned long flags
;
6248 /* cpu has to be offline */
6249 BUG_ON(cpu_online(this_cpu
));
6252 * Strictly not necessary since rest of the CPUs are stopped by now
6253 * and interrupts disabled on the current cpu.
6255 spin_lock_irqsave(&rq
->lock
, flags
);
6257 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6259 update_rq_clock(rq
);
6260 activate_task(rq
, p
, 0);
6262 spin_unlock_irqrestore(&rq
->lock
, flags
);
6266 * Ensures that the idle task is using init_mm right before its cpu goes
6269 void idle_task_exit(void)
6271 struct mm_struct
*mm
= current
->active_mm
;
6273 BUG_ON(cpu_online(smp_processor_id()));
6276 switch_mm(mm
, &init_mm
, current
);
6280 /* called under rq->lock with disabled interrupts */
6281 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6283 struct rq
*rq
= cpu_rq(dead_cpu
);
6285 /* Must be exiting, otherwise would be on tasklist. */
6286 BUG_ON(!p
->exit_state
);
6288 /* Cannot have done final schedule yet: would have vanished. */
6289 BUG_ON(p
->state
== TASK_DEAD
);
6294 * Drop lock around migration; if someone else moves it,
6295 * that's OK. No task can be added to this CPU, so iteration is
6298 spin_unlock_irq(&rq
->lock
);
6299 move_task_off_dead_cpu(dead_cpu
, p
);
6300 spin_lock_irq(&rq
->lock
);
6305 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6306 static void migrate_dead_tasks(unsigned int dead_cpu
)
6308 struct rq
*rq
= cpu_rq(dead_cpu
);
6309 struct task_struct
*next
;
6312 if (!rq
->nr_running
)
6314 update_rq_clock(rq
);
6315 next
= pick_next_task(rq
, rq
->curr
);
6318 migrate_dead(dead_cpu
, next
);
6322 #endif /* CONFIG_HOTPLUG_CPU */
6324 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6326 static struct ctl_table sd_ctl_dir
[] = {
6328 .procname
= "sched_domain",
6334 static struct ctl_table sd_ctl_root
[] = {
6336 .ctl_name
= CTL_KERN
,
6337 .procname
= "kernel",
6339 .child
= sd_ctl_dir
,
6344 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6346 struct ctl_table
*entry
=
6347 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6352 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6354 struct ctl_table
*entry
;
6357 * In the intermediate directories, both the child directory and
6358 * procname are dynamically allocated and could fail but the mode
6359 * will always be set. In the lowest directory the names are
6360 * static strings and all have proc handlers.
6362 for (entry
= *tablep
; entry
->mode
; entry
++) {
6364 sd_free_ctl_entry(&entry
->child
);
6365 if (entry
->proc_handler
== NULL
)
6366 kfree(entry
->procname
);
6374 set_table_entry(struct ctl_table
*entry
,
6375 const char *procname
, void *data
, int maxlen
,
6376 mode_t mode
, proc_handler
*proc_handler
)
6378 entry
->procname
= procname
;
6380 entry
->maxlen
= maxlen
;
6382 entry
->proc_handler
= proc_handler
;
6385 static struct ctl_table
*
6386 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6388 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
6393 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6394 sizeof(long), 0644, proc_doulongvec_minmax
);
6395 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6396 sizeof(long), 0644, proc_doulongvec_minmax
);
6397 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6398 sizeof(int), 0644, proc_dointvec_minmax
);
6399 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6400 sizeof(int), 0644, proc_dointvec_minmax
);
6401 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6402 sizeof(int), 0644, proc_dointvec_minmax
);
6403 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6404 sizeof(int), 0644, proc_dointvec_minmax
);
6405 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6406 sizeof(int), 0644, proc_dointvec_minmax
);
6407 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6408 sizeof(int), 0644, proc_dointvec_minmax
);
6409 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6410 sizeof(int), 0644, proc_dointvec_minmax
);
6411 set_table_entry(&table
[9], "cache_nice_tries",
6412 &sd
->cache_nice_tries
,
6413 sizeof(int), 0644, proc_dointvec_minmax
);
6414 set_table_entry(&table
[10], "flags", &sd
->flags
,
6415 sizeof(int), 0644, proc_dointvec_minmax
);
6416 /* &table[11] is terminator */
6421 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6423 struct ctl_table
*entry
, *table
;
6424 struct sched_domain
*sd
;
6425 int domain_num
= 0, i
;
6428 for_each_domain(cpu
, sd
)
6430 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6435 for_each_domain(cpu
, sd
) {
6436 snprintf(buf
, 32, "domain%d", i
);
6437 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6439 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6446 static struct ctl_table_header
*sd_sysctl_header
;
6447 static void register_sched_domain_sysctl(void)
6449 int i
, cpu_num
= num_online_cpus();
6450 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6453 WARN_ON(sd_ctl_dir
[0].child
);
6454 sd_ctl_dir
[0].child
= entry
;
6459 for_each_online_cpu(i
) {
6460 snprintf(buf
, 32, "cpu%d", i
);
6461 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6463 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6467 WARN_ON(sd_sysctl_header
);
6468 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6471 /* may be called multiple times per register */
6472 static void unregister_sched_domain_sysctl(void)
6474 if (sd_sysctl_header
)
6475 unregister_sysctl_table(sd_sysctl_header
);
6476 sd_sysctl_header
= NULL
;
6477 if (sd_ctl_dir
[0].child
)
6478 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6481 static void register_sched_domain_sysctl(void)
6484 static void unregister_sched_domain_sysctl(void)
6490 * migration_call - callback that gets triggered when a CPU is added.
6491 * Here we can start up the necessary migration thread for the new CPU.
6493 static int __cpuinit
6494 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6496 struct task_struct
*p
;
6497 int cpu
= (long)hcpu
;
6498 unsigned long flags
;
6503 case CPU_UP_PREPARE
:
6504 case CPU_UP_PREPARE_FROZEN
:
6505 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6508 kthread_bind(p
, cpu
);
6509 /* Must be high prio: stop_machine expects to yield to it. */
6510 rq
= task_rq_lock(p
, &flags
);
6511 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6512 task_rq_unlock(rq
, &flags
);
6513 cpu_rq(cpu
)->migration_thread
= p
;
6517 case CPU_ONLINE_FROZEN
:
6518 /* Strictly unnecessary, as first user will wake it. */
6519 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6521 /* Update our root-domain */
6523 spin_lock_irqsave(&rq
->lock
, flags
);
6525 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6526 cpu_set(cpu
, rq
->rd
->online
);
6528 spin_unlock_irqrestore(&rq
->lock
, flags
);
6531 #ifdef CONFIG_HOTPLUG_CPU
6532 case CPU_UP_CANCELED
:
6533 case CPU_UP_CANCELED_FROZEN
:
6534 if (!cpu_rq(cpu
)->migration_thread
)
6536 /* Unbind it from offline cpu so it can run. Fall thru. */
6537 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6538 any_online_cpu(cpu_online_map
));
6539 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6540 cpu_rq(cpu
)->migration_thread
= NULL
;
6544 case CPU_DEAD_FROZEN
:
6545 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6546 migrate_live_tasks(cpu
);
6548 kthread_stop(rq
->migration_thread
);
6549 rq
->migration_thread
= NULL
;
6550 /* Idle task back to normal (off runqueue, low prio) */
6551 spin_lock_irq(&rq
->lock
);
6552 update_rq_clock(rq
);
6553 deactivate_task(rq
, rq
->idle
, 0);
6554 rq
->idle
->static_prio
= MAX_PRIO
;
6555 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6556 rq
->idle
->sched_class
= &idle_sched_class
;
6557 migrate_dead_tasks(cpu
);
6558 spin_unlock_irq(&rq
->lock
);
6560 migrate_nr_uninterruptible(rq
);
6561 BUG_ON(rq
->nr_running
!= 0);
6564 * No need to migrate the tasks: it was best-effort if
6565 * they didn't take sched_hotcpu_mutex. Just wake up
6568 spin_lock_irq(&rq
->lock
);
6569 while (!list_empty(&rq
->migration_queue
)) {
6570 struct migration_req
*req
;
6572 req
= list_entry(rq
->migration_queue
.next
,
6573 struct migration_req
, list
);
6574 list_del_init(&req
->list
);
6575 complete(&req
->done
);
6577 spin_unlock_irq(&rq
->lock
);
6581 case CPU_DYING_FROZEN
:
6582 /* Update our root-domain */
6584 spin_lock_irqsave(&rq
->lock
, flags
);
6586 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6587 cpu_clear(cpu
, rq
->rd
->online
);
6589 spin_unlock_irqrestore(&rq
->lock
, flags
);
6596 /* Register at highest priority so that task migration (migrate_all_tasks)
6597 * happens before everything else.
6599 static struct notifier_block __cpuinitdata migration_notifier
= {
6600 .notifier_call
= migration_call
,
6604 void __init
migration_init(void)
6606 void *cpu
= (void *)(long)smp_processor_id();
6609 /* Start one for the boot CPU: */
6610 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6611 BUG_ON(err
== NOTIFY_BAD
);
6612 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6613 register_cpu_notifier(&migration_notifier
);
6619 #ifdef CONFIG_SCHED_DEBUG
6621 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6622 cpumask_t
*groupmask
)
6624 struct sched_group
*group
= sd
->groups
;
6627 cpulist_scnprintf(str
, sizeof(str
), sd
->span
);
6628 cpus_clear(*groupmask
);
6630 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6632 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6633 printk("does not load-balance\n");
6635 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6640 printk(KERN_CONT
"span %s\n", str
);
6642 if (!cpu_isset(cpu
, sd
->span
)) {
6643 printk(KERN_ERR
"ERROR: domain->span does not contain "
6646 if (!cpu_isset(cpu
, group
->cpumask
)) {
6647 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6651 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6655 printk(KERN_ERR
"ERROR: group is NULL\n");
6659 if (!group
->__cpu_power
) {
6660 printk(KERN_CONT
"\n");
6661 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6666 if (!cpus_weight(group
->cpumask
)) {
6667 printk(KERN_CONT
"\n");
6668 printk(KERN_ERR
"ERROR: empty group\n");
6672 if (cpus_intersects(*groupmask
, group
->cpumask
)) {
6673 printk(KERN_CONT
"\n");
6674 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6678 cpus_or(*groupmask
, *groupmask
, group
->cpumask
);
6680 cpulist_scnprintf(str
, sizeof(str
), group
->cpumask
);
6681 printk(KERN_CONT
" %s", str
);
6683 group
= group
->next
;
6684 } while (group
!= sd
->groups
);
6685 printk(KERN_CONT
"\n");
6687 if (!cpus_equal(sd
->span
, *groupmask
))
6688 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6690 if (sd
->parent
&& !cpus_subset(*groupmask
, sd
->parent
->span
))
6691 printk(KERN_ERR
"ERROR: parent span is not a superset "
6692 "of domain->span\n");
6696 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6698 cpumask_t
*groupmask
;
6702 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6706 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6708 groupmask
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6710 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6715 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6725 # define sched_domain_debug(sd, cpu) do { } while (0)
6728 static int sd_degenerate(struct sched_domain
*sd
)
6730 if (cpus_weight(sd
->span
) == 1)
6733 /* Following flags need at least 2 groups */
6734 if (sd
->flags
& (SD_LOAD_BALANCE
|
6735 SD_BALANCE_NEWIDLE
|
6739 SD_SHARE_PKG_RESOURCES
)) {
6740 if (sd
->groups
!= sd
->groups
->next
)
6744 /* Following flags don't use groups */
6745 if (sd
->flags
& (SD_WAKE_IDLE
|
6754 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6756 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6758 if (sd_degenerate(parent
))
6761 if (!cpus_equal(sd
->span
, parent
->span
))
6764 /* Does parent contain flags not in child? */
6765 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6766 if (cflags
& SD_WAKE_AFFINE
)
6767 pflags
&= ~SD_WAKE_BALANCE
;
6768 /* Flags needing groups don't count if only 1 group in parent */
6769 if (parent
->groups
== parent
->groups
->next
) {
6770 pflags
&= ~(SD_LOAD_BALANCE
|
6771 SD_BALANCE_NEWIDLE
|
6775 SD_SHARE_PKG_RESOURCES
);
6777 if (~cflags
& pflags
)
6783 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6785 unsigned long flags
;
6786 const struct sched_class
*class;
6788 spin_lock_irqsave(&rq
->lock
, flags
);
6791 struct root_domain
*old_rd
= rq
->rd
;
6793 for (class = sched_class_highest
; class; class = class->next
) {
6794 if (class->leave_domain
)
6795 class->leave_domain(rq
);
6798 cpu_clear(rq
->cpu
, old_rd
->span
);
6799 cpu_clear(rq
->cpu
, old_rd
->online
);
6801 if (atomic_dec_and_test(&old_rd
->refcount
))
6805 atomic_inc(&rd
->refcount
);
6808 cpu_set(rq
->cpu
, rd
->span
);
6809 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6810 cpu_set(rq
->cpu
, rd
->online
);
6812 for (class = sched_class_highest
; class; class = class->next
) {
6813 if (class->join_domain
)
6814 class->join_domain(rq
);
6817 spin_unlock_irqrestore(&rq
->lock
, flags
);
6820 static void init_rootdomain(struct root_domain
*rd
)
6822 memset(rd
, 0, sizeof(*rd
));
6824 cpus_clear(rd
->span
);
6825 cpus_clear(rd
->online
);
6828 static void init_defrootdomain(void)
6830 init_rootdomain(&def_root_domain
);
6831 atomic_set(&def_root_domain
.refcount
, 1);
6834 static struct root_domain
*alloc_rootdomain(void)
6836 struct root_domain
*rd
;
6838 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6842 init_rootdomain(rd
);
6848 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6849 * hold the hotplug lock.
6852 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6854 struct rq
*rq
= cpu_rq(cpu
);
6855 struct sched_domain
*tmp
;
6857 /* Remove the sched domains which do not contribute to scheduling. */
6858 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6859 struct sched_domain
*parent
= tmp
->parent
;
6862 if (sd_parent_degenerate(tmp
, parent
)) {
6863 tmp
->parent
= parent
->parent
;
6865 parent
->parent
->child
= tmp
;
6869 if (sd
&& sd_degenerate(sd
)) {
6875 sched_domain_debug(sd
, cpu
);
6877 rq_attach_root(rq
, rd
);
6878 rcu_assign_pointer(rq
->sd
, sd
);
6881 /* cpus with isolated domains */
6882 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6884 /* Setup the mask of cpus configured for isolated domains */
6885 static int __init
isolated_cpu_setup(char *str
)
6887 int ints
[NR_CPUS
], i
;
6889 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6890 cpus_clear(cpu_isolated_map
);
6891 for (i
= 1; i
<= ints
[0]; i
++)
6892 if (ints
[i
] < NR_CPUS
)
6893 cpu_set(ints
[i
], cpu_isolated_map
);
6897 __setup("isolcpus=", isolated_cpu_setup
);
6900 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6901 * to a function which identifies what group(along with sched group) a CPU
6902 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6903 * (due to the fact that we keep track of groups covered with a cpumask_t).
6905 * init_sched_build_groups will build a circular linked list of the groups
6906 * covered by the given span, and will set each group's ->cpumask correctly,
6907 * and ->cpu_power to 0.
6910 init_sched_build_groups(const cpumask_t
*span
, const cpumask_t
*cpu_map
,
6911 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6912 struct sched_group
**sg
,
6913 cpumask_t
*tmpmask
),
6914 cpumask_t
*covered
, cpumask_t
*tmpmask
)
6916 struct sched_group
*first
= NULL
, *last
= NULL
;
6919 cpus_clear(*covered
);
6921 for_each_cpu_mask(i
, *span
) {
6922 struct sched_group
*sg
;
6923 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6926 if (cpu_isset(i
, *covered
))
6929 cpus_clear(sg
->cpumask
);
6930 sg
->__cpu_power
= 0;
6932 for_each_cpu_mask(j
, *span
) {
6933 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6936 cpu_set(j
, *covered
);
6937 cpu_set(j
, sg
->cpumask
);
6948 #define SD_NODES_PER_DOMAIN 16
6953 * find_next_best_node - find the next node to include in a sched_domain
6954 * @node: node whose sched_domain we're building
6955 * @used_nodes: nodes already in the sched_domain
6957 * Find the next node to include in a given scheduling domain. Simply
6958 * finds the closest node not already in the @used_nodes map.
6960 * Should use nodemask_t.
6962 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6964 int i
, n
, val
, min_val
, best_node
= 0;
6968 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6969 /* Start at @node */
6970 n
= (node
+ i
) % MAX_NUMNODES
;
6972 if (!nr_cpus_node(n
))
6975 /* Skip already used nodes */
6976 if (node_isset(n
, *used_nodes
))
6979 /* Simple min distance search */
6980 val
= node_distance(node
, n
);
6982 if (val
< min_val
) {
6988 node_set(best_node
, *used_nodes
);
6993 * sched_domain_node_span - get a cpumask for a node's sched_domain
6994 * @node: node whose cpumask we're constructing
6995 * @span: resulting cpumask
6997 * Given a node, construct a good cpumask for its sched_domain to span. It
6998 * should be one that prevents unnecessary balancing, but also spreads tasks
7001 static void sched_domain_node_span(int node
, cpumask_t
*span
)
7003 nodemask_t used_nodes
;
7004 node_to_cpumask_ptr(nodemask
, node
);
7008 nodes_clear(used_nodes
);
7010 cpus_or(*span
, *span
, *nodemask
);
7011 node_set(node
, used_nodes
);
7013 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7014 int next_node
= find_next_best_node(node
, &used_nodes
);
7016 node_to_cpumask_ptr_next(nodemask
, next_node
);
7017 cpus_or(*span
, *span
, *nodemask
);
7022 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7025 * SMT sched-domains:
7027 #ifdef CONFIG_SCHED_SMT
7028 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
7029 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
7032 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7036 *sg
= &per_cpu(sched_group_cpus
, cpu
);
7042 * multi-core sched-domains:
7044 #ifdef CONFIG_SCHED_MC
7045 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
7046 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
7049 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7051 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7056 *mask
= per_cpu(cpu_sibling_map
, cpu
);
7057 cpus_and(*mask
, *mask
, *cpu_map
);
7058 group
= first_cpu(*mask
);
7060 *sg
= &per_cpu(sched_group_core
, group
);
7063 #elif defined(CONFIG_SCHED_MC)
7065 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7069 *sg
= &per_cpu(sched_group_core
, cpu
);
7074 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
7075 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
7078 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7082 #ifdef CONFIG_SCHED_MC
7083 *mask
= cpu_coregroup_map(cpu
);
7084 cpus_and(*mask
, *mask
, *cpu_map
);
7085 group
= first_cpu(*mask
);
7086 #elif defined(CONFIG_SCHED_SMT)
7087 *mask
= per_cpu(cpu_sibling_map
, cpu
);
7088 cpus_and(*mask
, *mask
, *cpu_map
);
7089 group
= first_cpu(*mask
);
7094 *sg
= &per_cpu(sched_group_phys
, group
);
7100 * The init_sched_build_groups can't handle what we want to do with node
7101 * groups, so roll our own. Now each node has its own list of groups which
7102 * gets dynamically allocated.
7104 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
7105 static struct sched_group
***sched_group_nodes_bycpu
;
7107 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
7108 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
7110 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
7111 struct sched_group
**sg
, cpumask_t
*nodemask
)
7115 *nodemask
= node_to_cpumask(cpu_to_node(cpu
));
7116 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7117 group
= first_cpu(*nodemask
);
7120 *sg
= &per_cpu(sched_group_allnodes
, group
);
7124 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7126 struct sched_group
*sg
= group_head
;
7132 for_each_cpu_mask(j
, sg
->cpumask
) {
7133 struct sched_domain
*sd
;
7135 sd
= &per_cpu(phys_domains
, j
);
7136 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
7138 * Only add "power" once for each
7144 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7147 } while (sg
!= group_head
);
7152 /* Free memory allocated for various sched_group structures */
7153 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7157 for_each_cpu_mask(cpu
, *cpu_map
) {
7158 struct sched_group
**sched_group_nodes
7159 = sched_group_nodes_bycpu
[cpu
];
7161 if (!sched_group_nodes
)
7164 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7165 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7167 *nodemask
= node_to_cpumask(i
);
7168 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7169 if (cpus_empty(*nodemask
))
7179 if (oldsg
!= sched_group_nodes
[i
])
7182 kfree(sched_group_nodes
);
7183 sched_group_nodes_bycpu
[cpu
] = NULL
;
7187 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7193 * Initialize sched groups cpu_power.
7195 * cpu_power indicates the capacity of sched group, which is used while
7196 * distributing the load between different sched groups in a sched domain.
7197 * Typically cpu_power for all the groups in a sched domain will be same unless
7198 * there are asymmetries in the topology. If there are asymmetries, group
7199 * having more cpu_power will pickup more load compared to the group having
7202 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7203 * the maximum number of tasks a group can handle in the presence of other idle
7204 * or lightly loaded groups in the same sched domain.
7206 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7208 struct sched_domain
*child
;
7209 struct sched_group
*group
;
7211 WARN_ON(!sd
|| !sd
->groups
);
7213 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
7218 sd
->groups
->__cpu_power
= 0;
7221 * For perf policy, if the groups in child domain share resources
7222 * (for example cores sharing some portions of the cache hierarchy
7223 * or SMT), then set this domain groups cpu_power such that each group
7224 * can handle only one task, when there are other idle groups in the
7225 * same sched domain.
7227 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7229 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7230 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7235 * add cpu_power of each child group to this groups cpu_power
7237 group
= child
->groups
;
7239 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7240 group
= group
->next
;
7241 } while (group
!= child
->groups
);
7245 * Initializers for schedule domains
7246 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7249 #define SD_INIT(sd, type) sd_init_##type(sd)
7250 #define SD_INIT_FUNC(type) \
7251 static noinline void sd_init_##type(struct sched_domain *sd) \
7253 memset(sd, 0, sizeof(*sd)); \
7254 *sd = SD_##type##_INIT; \
7255 sd->level = SD_LV_##type; \
7260 SD_INIT_FUNC(ALLNODES
)
7263 #ifdef CONFIG_SCHED_SMT
7264 SD_INIT_FUNC(SIBLING
)
7266 #ifdef CONFIG_SCHED_MC
7271 * To minimize stack usage kmalloc room for cpumasks and share the
7272 * space as the usage in build_sched_domains() dictates. Used only
7273 * if the amount of space is significant.
7276 cpumask_t tmpmask
; /* make this one first */
7279 cpumask_t this_sibling_map
;
7280 cpumask_t this_core_map
;
7282 cpumask_t send_covered
;
7285 cpumask_t domainspan
;
7287 cpumask_t notcovered
;
7292 #define SCHED_CPUMASK_ALLOC 1
7293 #define SCHED_CPUMASK_FREE(v) kfree(v)
7294 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7296 #define SCHED_CPUMASK_ALLOC 0
7297 #define SCHED_CPUMASK_FREE(v)
7298 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7301 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7302 ((unsigned long)(a) + offsetof(struct allmasks, v))
7304 static int default_relax_domain_level
= -1;
7306 static int __init
setup_relax_domain_level(char *str
)
7308 default_relax_domain_level
= simple_strtoul(str
, NULL
, 0);
7311 __setup("relax_domain_level=", setup_relax_domain_level
);
7313 static void set_domain_attribute(struct sched_domain
*sd
,
7314 struct sched_domain_attr
*attr
)
7318 if (!attr
|| attr
->relax_domain_level
< 0) {
7319 if (default_relax_domain_level
< 0)
7322 request
= default_relax_domain_level
;
7324 request
= attr
->relax_domain_level
;
7325 if (request
< sd
->level
) {
7326 /* turn off idle balance on this domain */
7327 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7329 /* turn on idle balance on this domain */
7330 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7335 * Build sched domains for a given set of cpus and attach the sched domains
7336 * to the individual cpus
7338 static int __build_sched_domains(const cpumask_t
*cpu_map
,
7339 struct sched_domain_attr
*attr
)
7342 struct root_domain
*rd
;
7343 SCHED_CPUMASK_DECLARE(allmasks
);
7346 struct sched_group
**sched_group_nodes
= NULL
;
7347 int sd_allnodes
= 0;
7350 * Allocate the per-node list of sched groups
7352 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
7354 if (!sched_group_nodes
) {
7355 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7360 rd
= alloc_rootdomain();
7362 printk(KERN_WARNING
"Cannot alloc root domain\n");
7364 kfree(sched_group_nodes
);
7369 #if SCHED_CPUMASK_ALLOC
7370 /* get space for all scratch cpumask variables */
7371 allmasks
= kmalloc(sizeof(*allmasks
), GFP_KERNEL
);
7373 printk(KERN_WARNING
"Cannot alloc cpumask array\n");
7376 kfree(sched_group_nodes
);
7381 tmpmask
= (cpumask_t
*)allmasks
;
7385 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
7389 * Set up domains for cpus specified by the cpu_map.
7391 for_each_cpu_mask(i
, *cpu_map
) {
7392 struct sched_domain
*sd
= NULL
, *p
;
7393 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7395 *nodemask
= node_to_cpumask(cpu_to_node(i
));
7396 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7399 if (cpus_weight(*cpu_map
) >
7400 SD_NODES_PER_DOMAIN
*cpus_weight(*nodemask
)) {
7401 sd
= &per_cpu(allnodes_domains
, i
);
7402 SD_INIT(sd
, ALLNODES
);
7403 set_domain_attribute(sd
, attr
);
7404 sd
->span
= *cpu_map
;
7405 sd
->first_cpu
= first_cpu(sd
->span
);
7406 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7412 sd
= &per_cpu(node_domains
, i
);
7414 set_domain_attribute(sd
, attr
);
7415 sched_domain_node_span(cpu_to_node(i
), &sd
->span
);
7416 sd
->first_cpu
= first_cpu(sd
->span
);
7420 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7424 sd
= &per_cpu(phys_domains
, i
);
7426 set_domain_attribute(sd
, attr
);
7427 sd
->span
= *nodemask
;
7428 sd
->first_cpu
= first_cpu(sd
->span
);
7432 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7434 #ifdef CONFIG_SCHED_MC
7436 sd
= &per_cpu(core_domains
, i
);
7438 set_domain_attribute(sd
, attr
);
7439 sd
->span
= cpu_coregroup_map(i
);
7440 sd
->first_cpu
= first_cpu(sd
->span
);
7441 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7444 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7447 #ifdef CONFIG_SCHED_SMT
7449 sd
= &per_cpu(cpu_domains
, i
);
7450 SD_INIT(sd
, SIBLING
);
7451 set_domain_attribute(sd
, attr
);
7452 sd
->span
= per_cpu(cpu_sibling_map
, i
);
7453 sd
->first_cpu
= first_cpu(sd
->span
);
7454 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7457 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7461 #ifdef CONFIG_SCHED_SMT
7462 /* Set up CPU (sibling) groups */
7463 for_each_cpu_mask(i
, *cpu_map
) {
7464 SCHED_CPUMASK_VAR(this_sibling_map
, allmasks
);
7465 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7467 *this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
7468 cpus_and(*this_sibling_map
, *this_sibling_map
, *cpu_map
);
7469 if (i
!= first_cpu(*this_sibling_map
))
7472 init_sched_build_groups(this_sibling_map
, cpu_map
,
7474 send_covered
, tmpmask
);
7478 #ifdef CONFIG_SCHED_MC
7479 /* Set up multi-core groups */
7480 for_each_cpu_mask(i
, *cpu_map
) {
7481 SCHED_CPUMASK_VAR(this_core_map
, allmasks
);
7482 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7484 *this_core_map
= cpu_coregroup_map(i
);
7485 cpus_and(*this_core_map
, *this_core_map
, *cpu_map
);
7486 if (i
!= first_cpu(*this_core_map
))
7489 init_sched_build_groups(this_core_map
, cpu_map
,
7491 send_covered
, tmpmask
);
7495 /* Set up physical groups */
7496 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7497 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7498 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7500 *nodemask
= node_to_cpumask(i
);
7501 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7502 if (cpus_empty(*nodemask
))
7505 init_sched_build_groups(nodemask
, cpu_map
,
7507 send_covered
, tmpmask
);
7511 /* Set up node groups */
7513 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7515 init_sched_build_groups(cpu_map
, cpu_map
,
7516 &cpu_to_allnodes_group
,
7517 send_covered
, tmpmask
);
7520 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7521 /* Set up node groups */
7522 struct sched_group
*sg
, *prev
;
7523 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7524 SCHED_CPUMASK_VAR(domainspan
, allmasks
);
7525 SCHED_CPUMASK_VAR(covered
, allmasks
);
7528 *nodemask
= node_to_cpumask(i
);
7529 cpus_clear(*covered
);
7531 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7532 if (cpus_empty(*nodemask
)) {
7533 sched_group_nodes
[i
] = NULL
;
7537 sched_domain_node_span(i
, domainspan
);
7538 cpus_and(*domainspan
, *domainspan
, *cpu_map
);
7540 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
7542 printk(KERN_WARNING
"Can not alloc domain group for "
7546 sched_group_nodes
[i
] = sg
;
7547 for_each_cpu_mask(j
, *nodemask
) {
7548 struct sched_domain
*sd
;
7550 sd
= &per_cpu(node_domains
, j
);
7553 sg
->__cpu_power
= 0;
7554 sg
->cpumask
= *nodemask
;
7556 cpus_or(*covered
, *covered
, *nodemask
);
7559 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
7560 SCHED_CPUMASK_VAR(notcovered
, allmasks
);
7561 int n
= (i
+ j
) % MAX_NUMNODES
;
7562 node_to_cpumask_ptr(pnodemask
, n
);
7564 cpus_complement(*notcovered
, *covered
);
7565 cpus_and(*tmpmask
, *notcovered
, *cpu_map
);
7566 cpus_and(*tmpmask
, *tmpmask
, *domainspan
);
7567 if (cpus_empty(*tmpmask
))
7570 cpus_and(*tmpmask
, *tmpmask
, *pnodemask
);
7571 if (cpus_empty(*tmpmask
))
7574 sg
= kmalloc_node(sizeof(struct sched_group
),
7578 "Can not alloc domain group for node %d\n", j
);
7581 sg
->__cpu_power
= 0;
7582 sg
->cpumask
= *tmpmask
;
7583 sg
->next
= prev
->next
;
7584 cpus_or(*covered
, *covered
, *tmpmask
);
7591 /* Calculate CPU power for physical packages and nodes */
7592 #ifdef CONFIG_SCHED_SMT
7593 for_each_cpu_mask(i
, *cpu_map
) {
7594 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
7596 init_sched_groups_power(i
, sd
);
7599 #ifdef CONFIG_SCHED_MC
7600 for_each_cpu_mask(i
, *cpu_map
) {
7601 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
7603 init_sched_groups_power(i
, sd
);
7607 for_each_cpu_mask(i
, *cpu_map
) {
7608 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
7610 init_sched_groups_power(i
, sd
);
7614 for (i
= 0; i
< MAX_NUMNODES
; i
++)
7615 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7618 struct sched_group
*sg
;
7620 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
,
7622 init_numa_sched_groups_power(sg
);
7626 /* Attach the domains */
7627 for_each_cpu_mask(i
, *cpu_map
) {
7628 struct sched_domain
*sd
;
7629 #ifdef CONFIG_SCHED_SMT
7630 sd
= &per_cpu(cpu_domains
, i
);
7631 #elif defined(CONFIG_SCHED_MC)
7632 sd
= &per_cpu(core_domains
, i
);
7634 sd
= &per_cpu(phys_domains
, i
);
7636 cpu_attach_domain(sd
, rd
, i
);
7639 SCHED_CPUMASK_FREE((void *)allmasks
);
7644 free_sched_groups(cpu_map
, tmpmask
);
7645 SCHED_CPUMASK_FREE((void *)allmasks
);
7650 static int build_sched_domains(const cpumask_t
*cpu_map
)
7652 return __build_sched_domains(cpu_map
, NULL
);
7655 static cpumask_t
*doms_cur
; /* current sched domains */
7656 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7657 static struct sched_domain_attr
*dattr_cur
; /* attribues of custom domains
7661 * Special case: If a kmalloc of a doms_cur partition (array of
7662 * cpumask_t) fails, then fallback to a single sched domain,
7663 * as determined by the single cpumask_t fallback_doms.
7665 static cpumask_t fallback_doms
;
7667 void __attribute__((weak
)) arch_update_cpu_topology(void)
7672 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7673 * For now this just excludes isolated cpus, but could be used to
7674 * exclude other special cases in the future.
7676 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
7680 arch_update_cpu_topology();
7682 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
7684 doms_cur
= &fallback_doms
;
7685 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
7687 err
= build_sched_domains(doms_cur
);
7688 register_sched_domain_sysctl();
7693 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
,
7696 free_sched_groups(cpu_map
, tmpmask
);
7700 * Detach sched domains from a group of cpus specified in cpu_map
7701 * These cpus will now be attached to the NULL domain
7703 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
7708 unregister_sched_domain_sysctl();
7710 for_each_cpu_mask(i
, *cpu_map
)
7711 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7712 synchronize_sched();
7713 arch_destroy_sched_domains(cpu_map
, &tmpmask
);
7716 /* handle null as "default" */
7717 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7718 struct sched_domain_attr
*new, int idx_new
)
7720 struct sched_domain_attr tmp
;
7727 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7728 new ? (new + idx_new
) : &tmp
,
7729 sizeof(struct sched_domain_attr
));
7733 * Partition sched domains as specified by the 'ndoms_new'
7734 * cpumasks in the array doms_new[] of cpumasks. This compares
7735 * doms_new[] to the current sched domain partitioning, doms_cur[].
7736 * It destroys each deleted domain and builds each new domain.
7738 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7739 * The masks don't intersect (don't overlap.) We should setup one
7740 * sched domain for each mask. CPUs not in any of the cpumasks will
7741 * not be load balanced. If the same cpumask appears both in the
7742 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7745 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7746 * ownership of it and will kfree it when done with it. If the caller
7747 * failed the kmalloc call, then it can pass in doms_new == NULL,
7748 * and partition_sched_domains() will fallback to the single partition
7751 * Call with hotplug lock held
7753 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
,
7754 struct sched_domain_attr
*dattr_new
)
7760 /* always unregister in case we don't destroy any domains */
7761 unregister_sched_domain_sysctl();
7763 if (doms_new
== NULL
) {
7765 doms_new
= &fallback_doms
;
7766 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
7770 /* Destroy deleted domains */
7771 for (i
= 0; i
< ndoms_cur
; i
++) {
7772 for (j
= 0; j
< ndoms_new
; j
++) {
7773 if (cpus_equal(doms_cur
[i
], doms_new
[j
])
7774 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7777 /* no match - a current sched domain not in new doms_new[] */
7778 detach_destroy_domains(doms_cur
+ i
);
7783 /* Build new domains */
7784 for (i
= 0; i
< ndoms_new
; i
++) {
7785 for (j
= 0; j
< ndoms_cur
; j
++) {
7786 if (cpus_equal(doms_new
[i
], doms_cur
[j
])
7787 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7790 /* no match - add a new doms_new */
7791 __build_sched_domains(doms_new
+ i
,
7792 dattr_new
? dattr_new
+ i
: NULL
);
7797 /* Remember the new sched domains */
7798 if (doms_cur
!= &fallback_doms
)
7800 kfree(dattr_cur
); /* kfree(NULL) is safe */
7801 doms_cur
= doms_new
;
7802 dattr_cur
= dattr_new
;
7803 ndoms_cur
= ndoms_new
;
7805 register_sched_domain_sysctl();
7810 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7811 int arch_reinit_sched_domains(void)
7816 detach_destroy_domains(&cpu_online_map
);
7817 err
= arch_init_sched_domains(&cpu_online_map
);
7823 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7827 if (buf
[0] != '0' && buf
[0] != '1')
7831 sched_smt_power_savings
= (buf
[0] == '1');
7833 sched_mc_power_savings
= (buf
[0] == '1');
7835 ret
= arch_reinit_sched_domains();
7837 return ret
? ret
: count
;
7840 #ifdef CONFIG_SCHED_MC
7841 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
7843 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7845 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
7846 const char *buf
, size_t count
)
7848 return sched_power_savings_store(buf
, count
, 0);
7850 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
7851 sched_mc_power_savings_store
);
7854 #ifdef CONFIG_SCHED_SMT
7855 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
7857 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7859 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
7860 const char *buf
, size_t count
)
7862 return sched_power_savings_store(buf
, count
, 1);
7864 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
7865 sched_smt_power_savings_store
);
7868 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7872 #ifdef CONFIG_SCHED_SMT
7874 err
= sysfs_create_file(&cls
->kset
.kobj
,
7875 &attr_sched_smt_power_savings
.attr
);
7877 #ifdef CONFIG_SCHED_MC
7878 if (!err
&& mc_capable())
7879 err
= sysfs_create_file(&cls
->kset
.kobj
,
7880 &attr_sched_mc_power_savings
.attr
);
7887 * Force a reinitialization of the sched domains hierarchy. The domains
7888 * and groups cannot be updated in place without racing with the balancing
7889 * code, so we temporarily attach all running cpus to the NULL domain
7890 * which will prevent rebalancing while the sched domains are recalculated.
7892 static int update_sched_domains(struct notifier_block
*nfb
,
7893 unsigned long action
, void *hcpu
)
7896 case CPU_UP_PREPARE
:
7897 case CPU_UP_PREPARE_FROZEN
:
7898 case CPU_DOWN_PREPARE
:
7899 case CPU_DOWN_PREPARE_FROZEN
:
7900 detach_destroy_domains(&cpu_online_map
);
7903 case CPU_UP_CANCELED
:
7904 case CPU_UP_CANCELED_FROZEN
:
7905 case CPU_DOWN_FAILED
:
7906 case CPU_DOWN_FAILED_FROZEN
:
7908 case CPU_ONLINE_FROZEN
:
7910 case CPU_DEAD_FROZEN
:
7912 * Fall through and re-initialise the domains.
7919 /* The hotplug lock is already held by cpu_up/cpu_down */
7920 arch_init_sched_domains(&cpu_online_map
);
7925 void __init
sched_init_smp(void)
7927 cpumask_t non_isolated_cpus
;
7929 #if defined(CONFIG_NUMA)
7930 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7932 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7935 arch_init_sched_domains(&cpu_online_map
);
7936 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7937 if (cpus_empty(non_isolated_cpus
))
7938 cpu_set(smp_processor_id(), non_isolated_cpus
);
7940 /* XXX: Theoretical race here - CPU may be hotplugged now */
7941 hotcpu_notifier(update_sched_domains
, 0);
7943 /* Move init over to a non-isolated CPU */
7944 if (set_cpus_allowed_ptr(current
, &non_isolated_cpus
) < 0)
7946 sched_init_granularity();
7949 void __init
sched_init_smp(void)
7951 sched_init_granularity();
7953 #endif /* CONFIG_SMP */
7955 int in_sched_functions(unsigned long addr
)
7957 return in_lock_functions(addr
) ||
7958 (addr
>= (unsigned long)__sched_text_start
7959 && addr
< (unsigned long)__sched_text_end
);
7962 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7964 cfs_rq
->tasks_timeline
= RB_ROOT
;
7965 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7966 #ifdef CONFIG_FAIR_GROUP_SCHED
7969 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7972 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7974 struct rt_prio_array
*array
;
7977 array
= &rt_rq
->active
;
7978 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7979 INIT_LIST_HEAD(array
->queue
+ i
);
7980 __clear_bit(i
, array
->bitmap
);
7982 /* delimiter for bitsearch: */
7983 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7985 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7986 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7989 rt_rq
->rt_nr_migratory
= 0;
7990 rt_rq
->overloaded
= 0;
7994 rt_rq
->rt_throttled
= 0;
7995 rt_rq
->rt_runtime
= 0;
7996 spin_lock_init(&rt_rq
->rt_runtime_lock
);
7998 #ifdef CONFIG_RT_GROUP_SCHED
7999 rt_rq
->rt_nr_boosted
= 0;
8004 #ifdef CONFIG_FAIR_GROUP_SCHED
8005 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8006 struct sched_entity
*se
, int cpu
, int add
,
8007 struct sched_entity
*parent
)
8009 struct rq
*rq
= cpu_rq(cpu
);
8010 tg
->cfs_rq
[cpu
] = cfs_rq
;
8011 init_cfs_rq(cfs_rq
, rq
);
8014 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
8017 /* se could be NULL for init_task_group */
8022 se
->cfs_rq
= &rq
->cfs
;
8024 se
->cfs_rq
= parent
->my_q
;
8027 se
->load
.weight
= tg
->shares
;
8028 se
->load
.inv_weight
= div64_64(1ULL<<32, se
->load
.weight
);
8029 se
->parent
= parent
;
8033 #ifdef CONFIG_RT_GROUP_SCHED
8034 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8035 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
8036 struct sched_rt_entity
*parent
)
8038 struct rq
*rq
= cpu_rq(cpu
);
8040 tg
->rt_rq
[cpu
] = rt_rq
;
8041 init_rt_rq(rt_rq
, rq
);
8043 rt_rq
->rt_se
= rt_se
;
8044 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8046 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
8048 tg
->rt_se
[cpu
] = rt_se
;
8053 rt_se
->rt_rq
= &rq
->rt
;
8055 rt_se
->rt_rq
= parent
->my_q
;
8057 rt_se
->rt_rq
= &rq
->rt
;
8058 rt_se
->my_q
= rt_rq
;
8059 rt_se
->parent
= parent
;
8060 INIT_LIST_HEAD(&rt_se
->run_list
);
8064 void __init
sched_init(void)
8067 unsigned long alloc_size
= 0, ptr
;
8069 #ifdef CONFIG_FAIR_GROUP_SCHED
8070 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8072 #ifdef CONFIG_RT_GROUP_SCHED
8073 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8075 #ifdef CONFIG_USER_SCHED
8079 * As sched_init() is called before page_alloc is setup,
8080 * we use alloc_bootmem().
8083 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
8085 #ifdef CONFIG_FAIR_GROUP_SCHED
8086 init_task_group
.se
= (struct sched_entity
**)ptr
;
8087 ptr
+= nr_cpu_ids
* sizeof(void **);
8089 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8090 ptr
+= nr_cpu_ids
* sizeof(void **);
8092 #ifdef CONFIG_USER_SCHED
8093 root_task_group
.se
= (struct sched_entity
**)ptr
;
8094 ptr
+= nr_cpu_ids
* sizeof(void **);
8096 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8097 ptr
+= nr_cpu_ids
* sizeof(void **);
8100 #ifdef CONFIG_RT_GROUP_SCHED
8101 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8102 ptr
+= nr_cpu_ids
* sizeof(void **);
8104 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8105 ptr
+= nr_cpu_ids
* sizeof(void **);
8107 #ifdef CONFIG_USER_SCHED
8108 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8109 ptr
+= nr_cpu_ids
* sizeof(void **);
8111 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8112 ptr
+= nr_cpu_ids
* sizeof(void **);
8119 init_defrootdomain();
8122 init_rt_bandwidth(&def_rt_bandwidth
,
8123 global_rt_period(), global_rt_runtime());
8125 #ifdef CONFIG_RT_GROUP_SCHED
8126 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8127 global_rt_period(), global_rt_runtime());
8128 #ifdef CONFIG_USER_SCHED
8129 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8130 global_rt_period(), RUNTIME_INF
);
8134 #ifdef CONFIG_GROUP_SCHED
8135 list_add(&init_task_group
.list
, &task_groups
);
8136 INIT_LIST_HEAD(&init_task_group
.children
);
8138 #ifdef CONFIG_USER_SCHED
8139 INIT_LIST_HEAD(&root_task_group
.children
);
8140 init_task_group
.parent
= &root_task_group
;
8141 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8145 for_each_possible_cpu(i
) {
8149 spin_lock_init(&rq
->lock
);
8150 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
8153 update_last_tick_seen(rq
);
8154 init_cfs_rq(&rq
->cfs
, rq
);
8155 init_rt_rq(&rq
->rt
, rq
);
8156 #ifdef CONFIG_FAIR_GROUP_SCHED
8157 init_task_group
.shares
= init_task_group_load
;
8158 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8159 #ifdef CONFIG_CGROUP_SCHED
8161 * How much cpu bandwidth does init_task_group get?
8163 * In case of task-groups formed thr' the cgroup filesystem, it
8164 * gets 100% of the cpu resources in the system. This overall
8165 * system cpu resource is divided among the tasks of
8166 * init_task_group and its child task-groups in a fair manner,
8167 * based on each entity's (task or task-group's) weight
8168 * (se->load.weight).
8170 * In other words, if init_task_group has 10 tasks of weight
8171 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8172 * then A0's share of the cpu resource is:
8174 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8176 * We achieve this by letting init_task_group's tasks sit
8177 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8179 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8180 #elif defined CONFIG_USER_SCHED
8181 root_task_group
.shares
= NICE_0_LOAD
;
8182 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8184 * In case of task-groups formed thr' the user id of tasks,
8185 * init_task_group represents tasks belonging to root user.
8186 * Hence it forms a sibling of all subsequent groups formed.
8187 * In this case, init_task_group gets only a fraction of overall
8188 * system cpu resource, based on the weight assigned to root
8189 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8190 * by letting tasks of init_task_group sit in a separate cfs_rq
8191 * (init_cfs_rq) and having one entity represent this group of
8192 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8194 init_tg_cfs_entry(&init_task_group
,
8195 &per_cpu(init_cfs_rq
, i
),
8196 &per_cpu(init_sched_entity
, i
), i
, 1,
8197 root_task_group
.se
[i
]);
8200 #endif /* CONFIG_FAIR_GROUP_SCHED */
8202 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8203 #ifdef CONFIG_RT_GROUP_SCHED
8204 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8205 #ifdef CONFIG_CGROUP_SCHED
8206 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8207 #elif defined CONFIG_USER_SCHED
8208 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8209 init_tg_rt_entry(&init_task_group
,
8210 &per_cpu(init_rt_rq
, i
),
8211 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8212 root_task_group
.rt_se
[i
]);
8216 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8217 rq
->cpu_load
[j
] = 0;
8221 rq
->active_balance
= 0;
8222 rq
->next_balance
= jiffies
;
8225 rq
->migration_thread
= NULL
;
8226 INIT_LIST_HEAD(&rq
->migration_queue
);
8227 rq_attach_root(rq
, &def_root_domain
);
8230 atomic_set(&rq
->nr_iowait
, 0);
8233 set_load_weight(&init_task
);
8235 #ifdef CONFIG_PREEMPT_NOTIFIERS
8236 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8240 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
8243 #ifdef CONFIG_RT_MUTEXES
8244 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8248 * The boot idle thread does lazy MMU switching as well:
8250 atomic_inc(&init_mm
.mm_count
);
8251 enter_lazy_tlb(&init_mm
, current
);
8254 * Make us the idle thread. Technically, schedule() should not be
8255 * called from this thread, however somewhere below it might be,
8256 * but because we are the idle thread, we just pick up running again
8257 * when this runqueue becomes "idle".
8259 init_idle(current
, smp_processor_id());
8261 * During early bootup we pretend to be a normal task:
8263 current
->sched_class
= &fair_sched_class
;
8265 scheduler_running
= 1;
8268 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8269 void __might_sleep(char *file
, int line
)
8272 static unsigned long prev_jiffy
; /* ratelimiting */
8274 if ((in_atomic() || irqs_disabled()) &&
8275 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
8276 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8278 prev_jiffy
= jiffies
;
8279 printk(KERN_ERR
"BUG: sleeping function called from invalid"
8280 " context at %s:%d\n", file
, line
);
8281 printk("in_atomic():%d, irqs_disabled():%d\n",
8282 in_atomic(), irqs_disabled());
8283 debug_show_held_locks(current
);
8284 if (irqs_disabled())
8285 print_irqtrace_events(current
);
8290 EXPORT_SYMBOL(__might_sleep
);
8293 #ifdef CONFIG_MAGIC_SYSRQ
8294 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8297 update_rq_clock(rq
);
8298 on_rq
= p
->se
.on_rq
;
8300 deactivate_task(rq
, p
, 0);
8301 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8303 activate_task(rq
, p
, 0);
8304 resched_task(rq
->curr
);
8308 void normalize_rt_tasks(void)
8310 struct task_struct
*g
, *p
;
8311 unsigned long flags
;
8314 read_lock_irqsave(&tasklist_lock
, flags
);
8315 do_each_thread(g
, p
) {
8317 * Only normalize user tasks:
8322 p
->se
.exec_start
= 0;
8323 #ifdef CONFIG_SCHEDSTATS
8324 p
->se
.wait_start
= 0;
8325 p
->se
.sleep_start
= 0;
8326 p
->se
.block_start
= 0;
8328 task_rq(p
)->clock
= 0;
8332 * Renice negative nice level userspace
8335 if (TASK_NICE(p
) < 0 && p
->mm
)
8336 set_user_nice(p
, 0);
8340 spin_lock(&p
->pi_lock
);
8341 rq
= __task_rq_lock(p
);
8343 normalize_task(rq
, p
);
8345 __task_rq_unlock(rq
);
8346 spin_unlock(&p
->pi_lock
);
8347 } while_each_thread(g
, p
);
8349 read_unlock_irqrestore(&tasklist_lock
, flags
);
8352 #endif /* CONFIG_MAGIC_SYSRQ */
8356 * These functions are only useful for the IA64 MCA handling.
8358 * They can only be called when the whole system has been
8359 * stopped - every CPU needs to be quiescent, and no scheduling
8360 * activity can take place. Using them for anything else would
8361 * be a serious bug, and as a result, they aren't even visible
8362 * under any other configuration.
8366 * curr_task - return the current task for a given cpu.
8367 * @cpu: the processor in question.
8369 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8371 struct task_struct
*curr_task(int cpu
)
8373 return cpu_curr(cpu
);
8377 * set_curr_task - set the current task for a given cpu.
8378 * @cpu: the processor in question.
8379 * @p: the task pointer to set.
8381 * Description: This function must only be used when non-maskable interrupts
8382 * are serviced on a separate stack. It allows the architecture to switch the
8383 * notion of the current task on a cpu in a non-blocking manner. This function
8384 * must be called with all CPU's synchronized, and interrupts disabled, the
8385 * and caller must save the original value of the current task (see
8386 * curr_task() above) and restore that value before reenabling interrupts and
8387 * re-starting the system.
8389 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8391 void set_curr_task(int cpu
, struct task_struct
*p
)
8398 #ifdef CONFIG_FAIR_GROUP_SCHED
8399 static void free_fair_sched_group(struct task_group
*tg
)
8403 for_each_possible_cpu(i
) {
8405 kfree(tg
->cfs_rq
[i
]);
8415 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8417 struct cfs_rq
*cfs_rq
;
8418 struct sched_entity
*se
, *parent_se
;
8422 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8425 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8429 tg
->shares
= NICE_0_LOAD
;
8431 for_each_possible_cpu(i
) {
8434 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
8435 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8439 se
= kmalloc_node(sizeof(struct sched_entity
),
8440 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8444 parent_se
= parent
? parent
->se
[i
] : NULL
;
8445 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent_se
);
8454 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8456 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8457 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8460 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8462 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8465 static inline void free_fair_sched_group(struct task_group
*tg
)
8470 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8475 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8479 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8484 #ifdef CONFIG_RT_GROUP_SCHED
8485 static void free_rt_sched_group(struct task_group
*tg
)
8489 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8491 for_each_possible_cpu(i
) {
8493 kfree(tg
->rt_rq
[i
]);
8495 kfree(tg
->rt_se
[i
]);
8503 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8505 struct rt_rq
*rt_rq
;
8506 struct sched_rt_entity
*rt_se
, *parent_se
;
8510 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8513 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8517 init_rt_bandwidth(&tg
->rt_bandwidth
,
8518 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8520 for_each_possible_cpu(i
) {
8523 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
8524 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8528 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
8529 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8533 parent_se
= parent
? parent
->rt_se
[i
] : NULL
;
8534 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent_se
);
8543 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8545 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8546 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8549 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8551 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8554 static inline void free_rt_sched_group(struct task_group
*tg
)
8559 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8564 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8568 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8573 #ifdef CONFIG_GROUP_SCHED
8574 static void free_sched_group(struct task_group
*tg
)
8576 free_fair_sched_group(tg
);
8577 free_rt_sched_group(tg
);
8581 /* allocate runqueue etc for a new task group */
8582 struct task_group
*sched_create_group(struct task_group
*parent
)
8584 struct task_group
*tg
;
8585 unsigned long flags
;
8588 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8590 return ERR_PTR(-ENOMEM
);
8592 if (!alloc_fair_sched_group(tg
, parent
))
8595 if (!alloc_rt_sched_group(tg
, parent
))
8598 spin_lock_irqsave(&task_group_lock
, flags
);
8599 for_each_possible_cpu(i
) {
8600 register_fair_sched_group(tg
, i
);
8601 register_rt_sched_group(tg
, i
);
8603 list_add_rcu(&tg
->list
, &task_groups
);
8605 WARN_ON(!parent
); /* root should already exist */
8607 tg
->parent
= parent
;
8608 list_add_rcu(&tg
->siblings
, &parent
->children
);
8609 INIT_LIST_HEAD(&tg
->children
);
8610 spin_unlock_irqrestore(&task_group_lock
, flags
);
8615 free_sched_group(tg
);
8616 return ERR_PTR(-ENOMEM
);
8619 /* rcu callback to free various structures associated with a task group */
8620 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8622 /* now it should be safe to free those cfs_rqs */
8623 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8626 /* Destroy runqueue etc associated with a task group */
8627 void sched_destroy_group(struct task_group
*tg
)
8629 unsigned long flags
;
8632 spin_lock_irqsave(&task_group_lock
, flags
);
8633 for_each_possible_cpu(i
) {
8634 unregister_fair_sched_group(tg
, i
);
8635 unregister_rt_sched_group(tg
, i
);
8637 list_del_rcu(&tg
->list
);
8638 list_del_rcu(&tg
->siblings
);
8639 spin_unlock_irqrestore(&task_group_lock
, flags
);
8641 /* wait for possible concurrent references to cfs_rqs complete */
8642 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8645 /* change task's runqueue when it moves between groups.
8646 * The caller of this function should have put the task in its new group
8647 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8648 * reflect its new group.
8650 void sched_move_task(struct task_struct
*tsk
)
8653 unsigned long flags
;
8656 rq
= task_rq_lock(tsk
, &flags
);
8658 update_rq_clock(rq
);
8660 running
= task_current(rq
, tsk
);
8661 on_rq
= tsk
->se
.on_rq
;
8664 dequeue_task(rq
, tsk
, 0);
8665 if (unlikely(running
))
8666 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8668 set_task_rq(tsk
, task_cpu(tsk
));
8670 #ifdef CONFIG_FAIR_GROUP_SCHED
8671 if (tsk
->sched_class
->moved_group
)
8672 tsk
->sched_class
->moved_group(tsk
);
8675 if (unlikely(running
))
8676 tsk
->sched_class
->set_curr_task(rq
);
8678 enqueue_task(rq
, tsk
, 0);
8680 task_rq_unlock(rq
, &flags
);
8684 #ifdef CONFIG_FAIR_GROUP_SCHED
8685 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8687 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8692 dequeue_entity(cfs_rq
, se
, 0);
8694 se
->load
.weight
= shares
;
8695 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
8698 enqueue_entity(cfs_rq
, se
, 0);
8701 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8703 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8704 struct rq
*rq
= cfs_rq
->rq
;
8705 unsigned long flags
;
8707 spin_lock_irqsave(&rq
->lock
, flags
);
8708 __set_se_shares(se
, shares
);
8709 spin_unlock_irqrestore(&rq
->lock
, flags
);
8712 static DEFINE_MUTEX(shares_mutex
);
8714 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8717 unsigned long flags
;
8720 * We can't change the weight of the root cgroup.
8726 * A weight of 0 or 1 can cause arithmetics problems.
8727 * (The default weight is 1024 - so there's no practical
8728 * limitation from this.)
8730 if (shares
< MIN_SHARES
)
8731 shares
= MIN_SHARES
;
8733 mutex_lock(&shares_mutex
);
8734 if (tg
->shares
== shares
)
8737 spin_lock_irqsave(&task_group_lock
, flags
);
8738 for_each_possible_cpu(i
)
8739 unregister_fair_sched_group(tg
, i
);
8740 list_del_rcu(&tg
->siblings
);
8741 spin_unlock_irqrestore(&task_group_lock
, flags
);
8743 /* wait for any ongoing reference to this group to finish */
8744 synchronize_sched();
8747 * Now we are free to modify the group's share on each cpu
8748 * w/o tripping rebalance_share or load_balance_fair.
8750 tg
->shares
= shares
;
8751 for_each_possible_cpu(i
) {
8755 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8756 set_se_shares(tg
->se
[i
], shares
/nr_cpu_ids
);
8760 * Enable load balance activity on this group, by inserting it back on
8761 * each cpu's rq->leaf_cfs_rq_list.
8763 spin_lock_irqsave(&task_group_lock
, flags
);
8764 for_each_possible_cpu(i
)
8765 register_fair_sched_group(tg
, i
);
8766 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8767 spin_unlock_irqrestore(&task_group_lock
, flags
);
8769 mutex_unlock(&shares_mutex
);
8773 unsigned long sched_group_shares(struct task_group
*tg
)
8779 #ifdef CONFIG_RT_GROUP_SCHED
8781 * Ensure that the real time constraints are schedulable.
8783 static DEFINE_MUTEX(rt_constraints_mutex
);
8785 static unsigned long to_ratio(u64 period
, u64 runtime
)
8787 if (runtime
== RUNTIME_INF
)
8790 return div64_64(runtime
<< 16, period
);
8793 #ifdef CONFIG_CGROUP_SCHED
8794 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8796 struct task_group
*tgi
, *parent
= tg
->parent
;
8797 unsigned long total
= 0;
8800 if (global_rt_period() < period
)
8803 return to_ratio(period
, runtime
) <
8804 to_ratio(global_rt_period(), global_rt_runtime());
8807 if (ktime_to_ns(parent
->rt_bandwidth
.rt_period
) < period
)
8811 list_for_each_entry_rcu(tgi
, &parent
->children
, siblings
) {
8815 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8816 tgi
->rt_bandwidth
.rt_runtime
);
8820 return total
+ to_ratio(period
, runtime
) <
8821 to_ratio(ktime_to_ns(parent
->rt_bandwidth
.rt_period
),
8822 parent
->rt_bandwidth
.rt_runtime
);
8824 #elif defined CONFIG_USER_SCHED
8825 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8827 struct task_group
*tgi
;
8828 unsigned long total
= 0;
8829 unsigned long global_ratio
=
8830 to_ratio(global_rt_period(), global_rt_runtime());
8833 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
8837 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8838 tgi
->rt_bandwidth
.rt_runtime
);
8842 return total
+ to_ratio(period
, runtime
) < global_ratio
;
8846 /* Must be called with tasklist_lock held */
8847 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8849 struct task_struct
*g
, *p
;
8850 do_each_thread(g
, p
) {
8851 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8853 } while_each_thread(g
, p
);
8857 static int tg_set_bandwidth(struct task_group
*tg
,
8858 u64 rt_period
, u64 rt_runtime
)
8862 mutex_lock(&rt_constraints_mutex
);
8863 read_lock(&tasklist_lock
);
8864 if (rt_runtime
== 0 && tg_has_rt_tasks(tg
)) {
8868 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
8873 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8874 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8875 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8877 for_each_possible_cpu(i
) {
8878 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8880 spin_lock(&rt_rq
->rt_runtime_lock
);
8881 rt_rq
->rt_runtime
= rt_runtime
;
8882 spin_unlock(&rt_rq
->rt_runtime_lock
);
8884 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8886 read_unlock(&tasklist_lock
);
8887 mutex_unlock(&rt_constraints_mutex
);
8892 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8894 u64 rt_runtime
, rt_period
;
8896 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8897 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8898 if (rt_runtime_us
< 0)
8899 rt_runtime
= RUNTIME_INF
;
8901 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8904 long sched_group_rt_runtime(struct task_group
*tg
)
8908 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8911 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8912 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8913 return rt_runtime_us
;
8916 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8918 u64 rt_runtime
, rt_period
;
8920 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8921 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8923 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8926 long sched_group_rt_period(struct task_group
*tg
)
8930 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8931 do_div(rt_period_us
, NSEC_PER_USEC
);
8932 return rt_period_us
;
8935 static int sched_rt_global_constraints(void)
8939 mutex_lock(&rt_constraints_mutex
);
8940 if (!__rt_schedulable(NULL
, 1, 0))
8942 mutex_unlock(&rt_constraints_mutex
);
8947 static int sched_rt_global_constraints(void)
8949 unsigned long flags
;
8952 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8953 for_each_possible_cpu(i
) {
8954 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8956 spin_lock(&rt_rq
->rt_runtime_lock
);
8957 rt_rq
->rt_runtime
= global_rt_runtime();
8958 spin_unlock(&rt_rq
->rt_runtime_lock
);
8960 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8966 int sched_rt_handler(struct ctl_table
*table
, int write
,
8967 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
8971 int old_period
, old_runtime
;
8972 static DEFINE_MUTEX(mutex
);
8975 old_period
= sysctl_sched_rt_period
;
8976 old_runtime
= sysctl_sched_rt_runtime
;
8978 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
8980 if (!ret
&& write
) {
8981 ret
= sched_rt_global_constraints();
8983 sysctl_sched_rt_period
= old_period
;
8984 sysctl_sched_rt_runtime
= old_runtime
;
8986 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8987 def_rt_bandwidth
.rt_period
=
8988 ns_to_ktime(global_rt_period());
8991 mutex_unlock(&mutex
);
8996 #ifdef CONFIG_CGROUP_SCHED
8998 /* return corresponding task_group object of a cgroup */
8999 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9001 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9002 struct task_group
, css
);
9005 static struct cgroup_subsys_state
*
9006 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9008 struct task_group
*tg
, *parent
;
9010 if (!cgrp
->parent
) {
9011 /* This is early initialization for the top cgroup */
9012 init_task_group
.css
.cgroup
= cgrp
;
9013 return &init_task_group
.css
;
9016 parent
= cgroup_tg(cgrp
->parent
);
9017 tg
= sched_create_group(parent
);
9019 return ERR_PTR(-ENOMEM
);
9021 /* Bind the cgroup to task_group object we just created */
9022 tg
->css
.cgroup
= cgrp
;
9028 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9030 struct task_group
*tg
= cgroup_tg(cgrp
);
9032 sched_destroy_group(tg
);
9036 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9037 struct task_struct
*tsk
)
9039 #ifdef CONFIG_RT_GROUP_SCHED
9040 /* Don't accept realtime tasks when there is no way for them to run */
9041 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
9044 /* We don't support RT-tasks being in separate groups */
9045 if (tsk
->sched_class
!= &fair_sched_class
)
9053 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9054 struct cgroup
*old_cont
, struct task_struct
*tsk
)
9056 sched_move_task(tsk
);
9059 #ifdef CONFIG_FAIR_GROUP_SCHED
9060 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9063 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9066 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9068 struct task_group
*tg
= cgroup_tg(cgrp
);
9070 return (u64
) tg
->shares
;
9074 #ifdef CONFIG_RT_GROUP_SCHED
9075 static ssize_t
cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9077 const char __user
*userbuf
,
9078 size_t nbytes
, loff_t
*unused_ppos
)
9087 if (nbytes
>= sizeof(buffer
))
9089 if (copy_from_user(buffer
, userbuf
, nbytes
))
9092 buffer
[nbytes
] = 0; /* nul-terminate */
9094 /* strip newline if necessary */
9095 if (nbytes
&& (buffer
[nbytes
-1] == '\n'))
9096 buffer
[nbytes
-1] = 0;
9097 val
= simple_strtoll(buffer
, &end
, 0);
9101 /* Pass to subsystem */
9102 retval
= sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9108 static ssize_t
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
,
9110 char __user
*buf
, size_t nbytes
,
9114 long val
= sched_group_rt_runtime(cgroup_tg(cgrp
));
9115 int len
= sprintf(tmp
, "%ld\n", val
);
9117 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
9120 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9123 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9126 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9128 return sched_group_rt_period(cgroup_tg(cgrp
));
9132 static struct cftype cpu_files
[] = {
9133 #ifdef CONFIG_FAIR_GROUP_SCHED
9136 .read_uint
= cpu_shares_read_uint
,
9137 .write_uint
= cpu_shares_write_uint
,
9140 #ifdef CONFIG_RT_GROUP_SCHED
9142 .name
= "rt_runtime_us",
9143 .read
= cpu_rt_runtime_read
,
9144 .write
= cpu_rt_runtime_write
,
9147 .name
= "rt_period_us",
9148 .read_uint
= cpu_rt_period_read_uint
,
9149 .write_uint
= cpu_rt_period_write_uint
,
9154 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9156 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9159 struct cgroup_subsys cpu_cgroup_subsys
= {
9161 .create
= cpu_cgroup_create
,
9162 .destroy
= cpu_cgroup_destroy
,
9163 .can_attach
= cpu_cgroup_can_attach
,
9164 .attach
= cpu_cgroup_attach
,
9165 .populate
= cpu_cgroup_populate
,
9166 .subsys_id
= cpu_cgroup_subsys_id
,
9170 #endif /* CONFIG_CGROUP_SCHED */
9172 #ifdef CONFIG_CGROUP_CPUACCT
9175 * CPU accounting code for task groups.
9177 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9178 * (balbir@in.ibm.com).
9181 /* track cpu usage of a group of tasks */
9183 struct cgroup_subsys_state css
;
9184 /* cpuusage holds pointer to a u64-type object on every cpu */
9188 struct cgroup_subsys cpuacct_subsys
;
9190 /* return cpu accounting group corresponding to this container */
9191 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9193 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9194 struct cpuacct
, css
);
9197 /* return cpu accounting group to which this task belongs */
9198 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9200 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9201 struct cpuacct
, css
);
9204 /* create a new cpu accounting group */
9205 static struct cgroup_subsys_state
*cpuacct_create(
9206 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9208 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9211 return ERR_PTR(-ENOMEM
);
9213 ca
->cpuusage
= alloc_percpu(u64
);
9214 if (!ca
->cpuusage
) {
9216 return ERR_PTR(-ENOMEM
);
9222 /* destroy an existing cpu accounting group */
9224 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9226 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9228 free_percpu(ca
->cpuusage
);
9232 /* return total cpu usage (in nanoseconds) of a group */
9233 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9235 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9236 u64 totalcpuusage
= 0;
9239 for_each_possible_cpu(i
) {
9240 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9243 * Take rq->lock to make 64-bit addition safe on 32-bit
9246 spin_lock_irq(&cpu_rq(i
)->lock
);
9247 totalcpuusage
+= *cpuusage
;
9248 spin_unlock_irq(&cpu_rq(i
)->lock
);
9251 return totalcpuusage
;
9254 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9257 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9266 for_each_possible_cpu(i
) {
9267 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9269 spin_lock_irq(&cpu_rq(i
)->lock
);
9271 spin_unlock_irq(&cpu_rq(i
)->lock
);
9277 static struct cftype files
[] = {
9280 .read_uint
= cpuusage_read
,
9281 .write_uint
= cpuusage_write
,
9285 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9287 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9291 * charge this task's execution time to its accounting group.
9293 * called with rq->lock held.
9295 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9299 if (!cpuacct_subsys
.active
)
9304 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
9306 *cpuusage
+= cputime
;
9310 struct cgroup_subsys cpuacct_subsys
= {
9312 .create
= cpuacct_create
,
9313 .destroy
= cpuacct_destroy
,
9314 .populate
= cpuacct_populate
,
9315 .subsys_id
= cpuacct_subsys_id
,
9317 #endif /* CONFIG_CGROUP_CPUACCT */