[MTD] [NOR] STAA: use writesize instead off eccsize to represent ECC block
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / chips / cfi_cmdset_0020.c
blob69d49e0250a9a3a532ff95f9ac7ce261862e314d
1 /*
2 * Common Flash Interface support:
3 * ST Advanced Architecture Command Set (ID 0x0020)
5 * (C) 2000 Red Hat. GPL'd
7 * $Id: cfi_cmdset_0020.c,v 1.22 2005/11/07 11:14:22 gleixner Exp $
9 * 10/10/2000 Nicolas Pitre <nico@cam.org>
10 * - completely revamped method functions so they are aware and
11 * independent of the flash geometry (buswidth, interleave, etc.)
12 * - scalability vs code size is completely set at compile-time
13 * (see include/linux/mtd/cfi.h for selection)
14 * - optimized write buffer method
15 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
16 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture
17 * (command set 0x0020)
18 * - added a writev function
19 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de>
20 * - Plugged memory leak in cfi_staa_writev().
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/cfi.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/compatmac.h>
41 static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
42 static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
43 static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
44 unsigned long count, loff_t to, size_t *retlen);
45 static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
46 static void cfi_staa_sync (struct mtd_info *);
47 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
48 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
49 static int cfi_staa_suspend (struct mtd_info *);
50 static void cfi_staa_resume (struct mtd_info *);
52 static void cfi_staa_destroy(struct mtd_info *);
54 struct mtd_info *cfi_cmdset_0020(struct map_info *, int);
56 static struct mtd_info *cfi_staa_setup (struct map_info *);
58 static struct mtd_chip_driver cfi_staa_chipdrv = {
59 .probe = NULL, /* Not usable directly */
60 .destroy = cfi_staa_destroy,
61 .name = "cfi_cmdset_0020",
62 .module = THIS_MODULE
65 /* #define DEBUG_LOCK_BITS */
66 //#define DEBUG_CFI_FEATURES
68 #ifdef DEBUG_CFI_FEATURES
69 static void cfi_tell_features(struct cfi_pri_intelext *extp)
71 int i;
72 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
73 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
74 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
75 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
76 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
77 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
78 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
79 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
80 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
81 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
82 for (i=9; i<32; i++) {
83 if (extp->FeatureSupport & (1<<i))
84 printk(" - Unknown Bit %X: supported\n", i);
87 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
88 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
89 for (i=1; i<8; i++) {
90 if (extp->SuspendCmdSupport & (1<<i))
91 printk(" - Unknown Bit %X: supported\n", i);
94 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
95 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
96 printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
97 for (i=2; i<16; i++) {
98 if (extp->BlkStatusRegMask & (1<<i))
99 printk(" - Unknown Bit %X Active: yes\n",i);
102 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
103 extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
104 if (extp->VppOptimal)
105 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
106 extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
108 #endif
110 /* This routine is made available to other mtd code via
111 * inter_module_register. It must only be accessed through
112 * inter_module_get which will bump the use count of this module. The
113 * addresses passed back in cfi are valid as long as the use count of
114 * this module is non-zero, i.e. between inter_module_get and
115 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
117 struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
119 struct cfi_private *cfi = map->fldrv_priv;
120 int i;
122 if (cfi->cfi_mode) {
124 * It's a real CFI chip, not one for which the probe
125 * routine faked a CFI structure. So we read the feature
126 * table from it.
128 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
129 struct cfi_pri_intelext *extp;
131 extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics");
132 if (!extp)
133 return NULL;
135 if (extp->MajorVersion != '1' ||
136 (extp->MinorVersion < '0' || extp->MinorVersion > '3')) {
137 printk(KERN_ERR " Unknown ST Microelectronics"
138 " Extended Query version %c.%c.\n",
139 extp->MajorVersion, extp->MinorVersion);
140 kfree(extp);
141 return NULL;
144 /* Do some byteswapping if necessary */
145 extp->FeatureSupport = cfi32_to_cpu(extp->FeatureSupport);
146 extp->BlkStatusRegMask = cfi32_to_cpu(extp->BlkStatusRegMask);
148 #ifdef DEBUG_CFI_FEATURES
149 /* Tell the user about it in lots of lovely detail */
150 cfi_tell_features(extp);
151 #endif
153 /* Install our own private info structure */
154 cfi->cmdset_priv = extp;
157 for (i=0; i< cfi->numchips; i++) {
158 cfi->chips[i].word_write_time = 128;
159 cfi->chips[i].buffer_write_time = 128;
160 cfi->chips[i].erase_time = 1024;
163 return cfi_staa_setup(map);
165 EXPORT_SYMBOL_GPL(cfi_cmdset_0020);
167 static struct mtd_info *cfi_staa_setup(struct map_info *map)
169 struct cfi_private *cfi = map->fldrv_priv;
170 struct mtd_info *mtd;
171 unsigned long offset = 0;
172 int i,j;
173 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
175 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
176 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
178 if (!mtd) {
179 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
180 kfree(cfi->cmdset_priv);
181 return NULL;
184 mtd->priv = map;
185 mtd->type = MTD_NORFLASH;
186 mtd->size = devsize * cfi->numchips;
188 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
189 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
190 * mtd->numeraseregions, GFP_KERNEL);
191 if (!mtd->eraseregions) {
192 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
193 kfree(cfi->cmdset_priv);
194 kfree(mtd);
195 return NULL;
198 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
199 unsigned long ernum, ersize;
200 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
201 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
203 if (mtd->erasesize < ersize) {
204 mtd->erasesize = ersize;
206 for (j=0; j<cfi->numchips; j++) {
207 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
208 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
209 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
211 offset += (ersize * ernum);
214 if (offset != devsize) {
215 /* Argh */
216 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
217 kfree(mtd->eraseregions);
218 kfree(cfi->cmdset_priv);
219 kfree(mtd);
220 return NULL;
223 for (i=0; i<mtd->numeraseregions;i++){
224 printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n",
225 i,mtd->eraseregions[i].offset,
226 mtd->eraseregions[i].erasesize,
227 mtd->eraseregions[i].numblocks);
230 /* Also select the correct geometry setup too */
231 mtd->erase = cfi_staa_erase_varsize;
232 mtd->read = cfi_staa_read;
233 mtd->write = cfi_staa_write_buffers;
234 mtd->writev = cfi_staa_writev;
235 mtd->sync = cfi_staa_sync;
236 mtd->lock = cfi_staa_lock;
237 mtd->unlock = cfi_staa_unlock;
238 mtd->suspend = cfi_staa_suspend;
239 mtd->resume = cfi_staa_resume;
240 mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE;
241 mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
242 map->fldrv = &cfi_staa_chipdrv;
243 __module_get(THIS_MODULE);
244 mtd->name = map->name;
245 return mtd;
249 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
251 map_word status, status_OK;
252 unsigned long timeo;
253 DECLARE_WAITQUEUE(wait, current);
254 int suspended = 0;
255 unsigned long cmd_addr;
256 struct cfi_private *cfi = map->fldrv_priv;
258 adr += chip->start;
260 /* Ensure cmd read/writes are aligned. */
261 cmd_addr = adr & ~(map_bankwidth(map)-1);
263 /* Let's determine this according to the interleave only once */
264 status_OK = CMD(0x80);
266 timeo = jiffies + HZ;
267 retry:
268 spin_lock_bh(chip->mutex);
270 /* Check that the chip's ready to talk to us.
271 * If it's in FL_ERASING state, suspend it and make it talk now.
273 switch (chip->state) {
274 case FL_ERASING:
275 if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2))
276 goto sleep; /* We don't support erase suspend */
278 map_write (map, CMD(0xb0), cmd_addr);
279 /* If the flash has finished erasing, then 'erase suspend'
280 * appears to make some (28F320) flash devices switch to
281 * 'read' mode. Make sure that we switch to 'read status'
282 * mode so we get the right data. --rmk
284 map_write(map, CMD(0x70), cmd_addr);
285 chip->oldstate = FL_ERASING;
286 chip->state = FL_ERASE_SUSPENDING;
287 // printk("Erase suspending at 0x%lx\n", cmd_addr);
288 for (;;) {
289 status = map_read(map, cmd_addr);
290 if (map_word_andequal(map, status, status_OK, status_OK))
291 break;
293 if (time_after(jiffies, timeo)) {
294 /* Urgh */
295 map_write(map, CMD(0xd0), cmd_addr);
296 /* make sure we're in 'read status' mode */
297 map_write(map, CMD(0x70), cmd_addr);
298 chip->state = FL_ERASING;
299 spin_unlock_bh(chip->mutex);
300 printk(KERN_ERR "Chip not ready after erase "
301 "suspended: status = 0x%lx\n", status.x[0]);
302 return -EIO;
305 spin_unlock_bh(chip->mutex);
306 cfi_udelay(1);
307 spin_lock_bh(chip->mutex);
310 suspended = 1;
311 map_write(map, CMD(0xff), cmd_addr);
312 chip->state = FL_READY;
313 break;
315 #if 0
316 case FL_WRITING:
317 /* Not quite yet */
318 #endif
320 case FL_READY:
321 break;
323 case FL_CFI_QUERY:
324 case FL_JEDEC_QUERY:
325 map_write(map, CMD(0x70), cmd_addr);
326 chip->state = FL_STATUS;
328 case FL_STATUS:
329 status = map_read(map, cmd_addr);
330 if (map_word_andequal(map, status, status_OK, status_OK)) {
331 map_write(map, CMD(0xff), cmd_addr);
332 chip->state = FL_READY;
333 break;
336 /* Urgh. Chip not yet ready to talk to us. */
337 if (time_after(jiffies, timeo)) {
338 spin_unlock_bh(chip->mutex);
339 printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]);
340 return -EIO;
343 /* Latency issues. Drop the lock, wait a while and retry */
344 spin_unlock_bh(chip->mutex);
345 cfi_udelay(1);
346 goto retry;
348 default:
349 sleep:
350 /* Stick ourselves on a wait queue to be woken when
351 someone changes the status */
352 set_current_state(TASK_UNINTERRUPTIBLE);
353 add_wait_queue(&chip->wq, &wait);
354 spin_unlock_bh(chip->mutex);
355 schedule();
356 remove_wait_queue(&chip->wq, &wait);
357 timeo = jiffies + HZ;
358 goto retry;
361 map_copy_from(map, buf, adr, len);
363 if (suspended) {
364 chip->state = chip->oldstate;
365 /* What if one interleaved chip has finished and the
366 other hasn't? The old code would leave the finished
367 one in READY mode. That's bad, and caused -EROFS
368 errors to be returned from do_erase_oneblock because
369 that's the only bit it checked for at the time.
370 As the state machine appears to explicitly allow
371 sending the 0x70 (Read Status) command to an erasing
372 chip and expecting it to be ignored, that's what we
373 do. */
374 map_write(map, CMD(0xd0), cmd_addr);
375 map_write(map, CMD(0x70), cmd_addr);
378 wake_up(&chip->wq);
379 spin_unlock_bh(chip->mutex);
380 return 0;
383 static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
385 struct map_info *map = mtd->priv;
386 struct cfi_private *cfi = map->fldrv_priv;
387 unsigned long ofs;
388 int chipnum;
389 int ret = 0;
391 /* ofs: offset within the first chip that the first read should start */
392 chipnum = (from >> cfi->chipshift);
393 ofs = from - (chipnum << cfi->chipshift);
395 *retlen = 0;
397 while (len) {
398 unsigned long thislen;
400 if (chipnum >= cfi->numchips)
401 break;
403 if ((len + ofs -1) >> cfi->chipshift)
404 thislen = (1<<cfi->chipshift) - ofs;
405 else
406 thislen = len;
408 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
409 if (ret)
410 break;
412 *retlen += thislen;
413 len -= thislen;
414 buf += thislen;
416 ofs = 0;
417 chipnum++;
419 return ret;
422 static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
423 unsigned long adr, const u_char *buf, int len)
425 struct cfi_private *cfi = map->fldrv_priv;
426 map_word status, status_OK;
427 unsigned long cmd_adr, timeo;
428 DECLARE_WAITQUEUE(wait, current);
429 int wbufsize, z;
431 /* M58LW064A requires bus alignment for buffer wriets -- saw */
432 if (adr & (map_bankwidth(map)-1))
433 return -EINVAL;
435 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
436 adr += chip->start;
437 cmd_adr = adr & ~(wbufsize-1);
439 /* Let's determine this according to the interleave only once */
440 status_OK = CMD(0x80);
442 timeo = jiffies + HZ;
443 retry:
445 #ifdef DEBUG_CFI_FEATURES
446 printk("%s: chip->state[%d]\n", __FUNCTION__, chip->state);
447 #endif
448 spin_lock_bh(chip->mutex);
450 /* Check that the chip's ready to talk to us.
451 * Later, we can actually think about interrupting it
452 * if it's in FL_ERASING state.
453 * Not just yet, though.
455 switch (chip->state) {
456 case FL_READY:
457 break;
459 case FL_CFI_QUERY:
460 case FL_JEDEC_QUERY:
461 map_write(map, CMD(0x70), cmd_adr);
462 chip->state = FL_STATUS;
463 #ifdef DEBUG_CFI_FEATURES
464 printk("%s: 1 status[%x]\n", __FUNCTION__, map_read(map, cmd_adr));
465 #endif
467 case FL_STATUS:
468 status = map_read(map, cmd_adr);
469 if (map_word_andequal(map, status, status_OK, status_OK))
470 break;
471 /* Urgh. Chip not yet ready to talk to us. */
472 if (time_after(jiffies, timeo)) {
473 spin_unlock_bh(chip->mutex);
474 printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
475 status.x[0], map_read(map, cmd_adr).x[0]);
476 return -EIO;
479 /* Latency issues. Drop the lock, wait a while and retry */
480 spin_unlock_bh(chip->mutex);
481 cfi_udelay(1);
482 goto retry;
484 default:
485 /* Stick ourselves on a wait queue to be woken when
486 someone changes the status */
487 set_current_state(TASK_UNINTERRUPTIBLE);
488 add_wait_queue(&chip->wq, &wait);
489 spin_unlock_bh(chip->mutex);
490 schedule();
491 remove_wait_queue(&chip->wq, &wait);
492 timeo = jiffies + HZ;
493 goto retry;
496 ENABLE_VPP(map);
497 map_write(map, CMD(0xe8), cmd_adr);
498 chip->state = FL_WRITING_TO_BUFFER;
500 z = 0;
501 for (;;) {
502 status = map_read(map, cmd_adr);
503 if (map_word_andequal(map, status, status_OK, status_OK))
504 break;
506 spin_unlock_bh(chip->mutex);
507 cfi_udelay(1);
508 spin_lock_bh(chip->mutex);
510 if (++z > 100) {
511 /* Argh. Not ready for write to buffer */
512 DISABLE_VPP(map);
513 map_write(map, CMD(0x70), cmd_adr);
514 chip->state = FL_STATUS;
515 spin_unlock_bh(chip->mutex);
516 printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]);
517 return -EIO;
521 /* Write length of data to come */
522 map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr );
524 /* Write data */
525 for (z = 0; z < len;
526 z += map_bankwidth(map), buf += map_bankwidth(map)) {
527 map_word d;
528 d = map_word_load(map, buf);
529 map_write(map, d, adr+z);
531 /* GO GO GO */
532 map_write(map, CMD(0xd0), cmd_adr);
533 chip->state = FL_WRITING;
535 spin_unlock_bh(chip->mutex);
536 cfi_udelay(chip->buffer_write_time);
537 spin_lock_bh(chip->mutex);
539 timeo = jiffies + (HZ/2);
540 z = 0;
541 for (;;) {
542 if (chip->state != FL_WRITING) {
543 /* Someone's suspended the write. Sleep */
544 set_current_state(TASK_UNINTERRUPTIBLE);
545 add_wait_queue(&chip->wq, &wait);
546 spin_unlock_bh(chip->mutex);
547 schedule();
548 remove_wait_queue(&chip->wq, &wait);
549 timeo = jiffies + (HZ / 2); /* FIXME */
550 spin_lock_bh(chip->mutex);
551 continue;
554 status = map_read(map, cmd_adr);
555 if (map_word_andequal(map, status, status_OK, status_OK))
556 break;
558 /* OK Still waiting */
559 if (time_after(jiffies, timeo)) {
560 /* clear status */
561 map_write(map, CMD(0x50), cmd_adr);
562 /* put back into read status register mode */
563 map_write(map, CMD(0x70), adr);
564 chip->state = FL_STATUS;
565 DISABLE_VPP(map);
566 spin_unlock_bh(chip->mutex);
567 printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
568 return -EIO;
571 /* Latency issues. Drop the lock, wait a while and retry */
572 spin_unlock_bh(chip->mutex);
573 cfi_udelay(1);
574 z++;
575 spin_lock_bh(chip->mutex);
577 if (!z) {
578 chip->buffer_write_time--;
579 if (!chip->buffer_write_time)
580 chip->buffer_write_time++;
582 if (z > 1)
583 chip->buffer_write_time++;
585 /* Done and happy. */
586 DISABLE_VPP(map);
587 chip->state = FL_STATUS;
589 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
590 if (map_word_bitsset(map, status, CMD(0x3a))) {
591 #ifdef DEBUG_CFI_FEATURES
592 printk("%s: 2 status[%lx]\n", __FUNCTION__, status.x[0]);
593 #endif
594 /* clear status */
595 map_write(map, CMD(0x50), cmd_adr);
596 /* put back into read status register mode */
597 map_write(map, CMD(0x70), adr);
598 wake_up(&chip->wq);
599 spin_unlock_bh(chip->mutex);
600 return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO;
602 wake_up(&chip->wq);
603 spin_unlock_bh(chip->mutex);
605 return 0;
608 static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
609 size_t len, size_t *retlen, const u_char *buf)
611 struct map_info *map = mtd->priv;
612 struct cfi_private *cfi = map->fldrv_priv;
613 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
614 int ret = 0;
615 int chipnum;
616 unsigned long ofs;
618 *retlen = 0;
619 if (!len)
620 return 0;
622 chipnum = to >> cfi->chipshift;
623 ofs = to - (chipnum << cfi->chipshift);
625 #ifdef DEBUG_CFI_FEATURES
626 printk("%s: map_bankwidth(map)[%x]\n", __FUNCTION__, map_bankwidth(map));
627 printk("%s: chipnum[%x] wbufsize[%x]\n", __FUNCTION__, chipnum, wbufsize);
628 printk("%s: ofs[%x] len[%x]\n", __FUNCTION__, ofs, len);
629 #endif
631 /* Write buffer is worth it only if more than one word to write... */
632 while (len > 0) {
633 /* We must not cross write block boundaries */
634 int size = wbufsize - (ofs & (wbufsize-1));
636 if (size > len)
637 size = len;
639 ret = do_write_buffer(map, &cfi->chips[chipnum],
640 ofs, buf, size);
641 if (ret)
642 return ret;
644 ofs += size;
645 buf += size;
646 (*retlen) += size;
647 len -= size;
649 if (ofs >> cfi->chipshift) {
650 chipnum ++;
651 ofs = 0;
652 if (chipnum == cfi->numchips)
653 return 0;
657 return 0;
661 * Writev for ECC-Flashes is a little more complicated. We need to maintain
662 * a small buffer for this.
663 * XXX: If the buffer size is not a multiple of 2, this will break
665 #define ECCBUF_SIZE (mtd->writesize)
666 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
667 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
668 static int
669 cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
670 unsigned long count, loff_t to, size_t *retlen)
672 unsigned long i;
673 size_t totlen = 0, thislen;
674 int ret = 0;
675 size_t buflen = 0;
676 static char *buffer;
678 if (!ECCBUF_SIZE) {
679 /* We should fall back to a general writev implementation.
680 * Until that is written, just break.
682 return -EIO;
684 buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
685 if (!buffer)
686 return -ENOMEM;
688 for (i=0; i<count; i++) {
689 size_t elem_len = vecs[i].iov_len;
690 void *elem_base = vecs[i].iov_base;
691 if (!elem_len) /* FIXME: Might be unnecessary. Check that */
692 continue;
693 if (buflen) { /* cut off head */
694 if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
695 memcpy(buffer+buflen, elem_base, elem_len);
696 buflen += elem_len;
697 continue;
699 memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
700 ret = mtd->write(mtd, to, ECCBUF_SIZE, &thislen, buffer);
701 totlen += thislen;
702 if (ret || thislen != ECCBUF_SIZE)
703 goto write_error;
704 elem_len -= thislen-buflen;
705 elem_base += thislen-buflen;
706 to += ECCBUF_SIZE;
708 if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
709 ret = mtd->write(mtd, to, ECCBUF_DIV(elem_len), &thislen, elem_base);
710 totlen += thislen;
711 if (ret || thislen != ECCBUF_DIV(elem_len))
712 goto write_error;
713 to += thislen;
715 buflen = ECCBUF_MOD(elem_len); /* cut off tail */
716 if (buflen) {
717 memset(buffer, 0xff, ECCBUF_SIZE);
718 memcpy(buffer, elem_base + thislen, buflen);
721 if (buflen) { /* flush last page, even if not full */
722 /* This is sometimes intended behaviour, really */
723 ret = mtd->write(mtd, to, buflen, &thislen, buffer);
724 totlen += thislen;
725 if (ret || thislen != ECCBUF_SIZE)
726 goto write_error;
728 write_error:
729 if (retlen)
730 *retlen = totlen;
731 kfree(buffer);
732 return ret;
736 static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
738 struct cfi_private *cfi = map->fldrv_priv;
739 map_word status, status_OK;
740 unsigned long timeo;
741 int retries = 3;
742 DECLARE_WAITQUEUE(wait, current);
743 int ret = 0;
745 adr += chip->start;
747 /* Let's determine this according to the interleave only once */
748 status_OK = CMD(0x80);
750 timeo = jiffies + HZ;
751 retry:
752 spin_lock_bh(chip->mutex);
754 /* Check that the chip's ready to talk to us. */
755 switch (chip->state) {
756 case FL_CFI_QUERY:
757 case FL_JEDEC_QUERY:
758 case FL_READY:
759 map_write(map, CMD(0x70), adr);
760 chip->state = FL_STATUS;
762 case FL_STATUS:
763 status = map_read(map, adr);
764 if (map_word_andequal(map, status, status_OK, status_OK))
765 break;
767 /* Urgh. Chip not yet ready to talk to us. */
768 if (time_after(jiffies, timeo)) {
769 spin_unlock_bh(chip->mutex);
770 printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
771 return -EIO;
774 /* Latency issues. Drop the lock, wait a while and retry */
775 spin_unlock_bh(chip->mutex);
776 cfi_udelay(1);
777 goto retry;
779 default:
780 /* Stick ourselves on a wait queue to be woken when
781 someone changes the status */
782 set_current_state(TASK_UNINTERRUPTIBLE);
783 add_wait_queue(&chip->wq, &wait);
784 spin_unlock_bh(chip->mutex);
785 schedule();
786 remove_wait_queue(&chip->wq, &wait);
787 timeo = jiffies + HZ;
788 goto retry;
791 ENABLE_VPP(map);
792 /* Clear the status register first */
793 map_write(map, CMD(0x50), adr);
795 /* Now erase */
796 map_write(map, CMD(0x20), adr);
797 map_write(map, CMD(0xD0), adr);
798 chip->state = FL_ERASING;
800 spin_unlock_bh(chip->mutex);
801 msleep(1000);
802 spin_lock_bh(chip->mutex);
804 /* FIXME. Use a timer to check this, and return immediately. */
805 /* Once the state machine's known to be working I'll do that */
807 timeo = jiffies + (HZ*20);
808 for (;;) {
809 if (chip->state != FL_ERASING) {
810 /* Someone's suspended the erase. Sleep */
811 set_current_state(TASK_UNINTERRUPTIBLE);
812 add_wait_queue(&chip->wq, &wait);
813 spin_unlock_bh(chip->mutex);
814 schedule();
815 remove_wait_queue(&chip->wq, &wait);
816 timeo = jiffies + (HZ*20); /* FIXME */
817 spin_lock_bh(chip->mutex);
818 continue;
821 status = map_read(map, adr);
822 if (map_word_andequal(map, status, status_OK, status_OK))
823 break;
825 /* OK Still waiting */
826 if (time_after(jiffies, timeo)) {
827 map_write(map, CMD(0x70), adr);
828 chip->state = FL_STATUS;
829 printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
830 DISABLE_VPP(map);
831 spin_unlock_bh(chip->mutex);
832 return -EIO;
835 /* Latency issues. Drop the lock, wait a while and retry */
836 spin_unlock_bh(chip->mutex);
837 cfi_udelay(1);
838 spin_lock_bh(chip->mutex);
841 DISABLE_VPP(map);
842 ret = 0;
844 /* We've broken this before. It doesn't hurt to be safe */
845 map_write(map, CMD(0x70), adr);
846 chip->state = FL_STATUS;
847 status = map_read(map, adr);
849 /* check for lock bit */
850 if (map_word_bitsset(map, status, CMD(0x3a))) {
851 unsigned char chipstatus = status.x[0];
852 if (!map_word_equal(map, status, CMD(chipstatus))) {
853 int i, w;
854 for (w=0; w<map_words(map); w++) {
855 for (i = 0; i<cfi_interleave(cfi); i++) {
856 chipstatus |= status.x[w] >> (cfi->device_type * 8);
859 printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
860 status.x[0], chipstatus);
862 /* Reset the error bits */
863 map_write(map, CMD(0x50), adr);
864 map_write(map, CMD(0x70), adr);
866 if ((chipstatus & 0x30) == 0x30) {
867 printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
868 ret = -EIO;
869 } else if (chipstatus & 0x02) {
870 /* Protection bit set */
871 ret = -EROFS;
872 } else if (chipstatus & 0x8) {
873 /* Voltage */
874 printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
875 ret = -EIO;
876 } else if (chipstatus & 0x20) {
877 if (retries--) {
878 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
879 timeo = jiffies + HZ;
880 chip->state = FL_STATUS;
881 spin_unlock_bh(chip->mutex);
882 goto retry;
884 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
885 ret = -EIO;
889 wake_up(&chip->wq);
890 spin_unlock_bh(chip->mutex);
891 return ret;
894 int cfi_staa_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
895 { struct map_info *map = mtd->priv;
896 struct cfi_private *cfi = map->fldrv_priv;
897 unsigned long adr, len;
898 int chipnum, ret = 0;
899 int i, first;
900 struct mtd_erase_region_info *regions = mtd->eraseregions;
902 if (instr->addr > mtd->size)
903 return -EINVAL;
905 if ((instr->len + instr->addr) > mtd->size)
906 return -EINVAL;
908 /* Check that both start and end of the requested erase are
909 * aligned with the erasesize at the appropriate addresses.
912 i = 0;
914 /* Skip all erase regions which are ended before the start of
915 the requested erase. Actually, to save on the calculations,
916 we skip to the first erase region which starts after the
917 start of the requested erase, and then go back one.
920 while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
921 i++;
922 i--;
924 /* OK, now i is pointing at the erase region in which this
925 erase request starts. Check the start of the requested
926 erase range is aligned with the erase size which is in
927 effect here.
930 if (instr->addr & (regions[i].erasesize-1))
931 return -EINVAL;
933 /* Remember the erase region we start on */
934 first = i;
936 /* Next, check that the end of the requested erase is aligned
937 * with the erase region at that address.
940 while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
941 i++;
943 /* As before, drop back one to point at the region in which
944 the address actually falls
946 i--;
948 if ((instr->addr + instr->len) & (regions[i].erasesize-1))
949 return -EINVAL;
951 chipnum = instr->addr >> cfi->chipshift;
952 adr = instr->addr - (chipnum << cfi->chipshift);
953 len = instr->len;
955 i=first;
957 while(len) {
958 ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);
960 if (ret)
961 return ret;
963 adr += regions[i].erasesize;
964 len -= regions[i].erasesize;
966 if (adr % (1<< cfi->chipshift) == ((regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
967 i++;
969 if (adr >> cfi->chipshift) {
970 adr = 0;
971 chipnum++;
973 if (chipnum >= cfi->numchips)
974 break;
978 instr->state = MTD_ERASE_DONE;
979 mtd_erase_callback(instr);
981 return 0;
984 static void cfi_staa_sync (struct mtd_info *mtd)
986 struct map_info *map = mtd->priv;
987 struct cfi_private *cfi = map->fldrv_priv;
988 int i;
989 struct flchip *chip;
990 int ret = 0;
991 DECLARE_WAITQUEUE(wait, current);
993 for (i=0; !ret && i<cfi->numchips; i++) {
994 chip = &cfi->chips[i];
996 retry:
997 spin_lock_bh(chip->mutex);
999 switch(chip->state) {
1000 case FL_READY:
1001 case FL_STATUS:
1002 case FL_CFI_QUERY:
1003 case FL_JEDEC_QUERY:
1004 chip->oldstate = chip->state;
1005 chip->state = FL_SYNCING;
1006 /* No need to wake_up() on this state change -
1007 * as the whole point is that nobody can do anything
1008 * with the chip now anyway.
1010 case FL_SYNCING:
1011 spin_unlock_bh(chip->mutex);
1012 break;
1014 default:
1015 /* Not an idle state */
1016 add_wait_queue(&chip->wq, &wait);
1018 spin_unlock_bh(chip->mutex);
1019 schedule();
1020 remove_wait_queue(&chip->wq, &wait);
1022 goto retry;
1026 /* Unlock the chips again */
1028 for (i--; i >=0; i--) {
1029 chip = &cfi->chips[i];
1031 spin_lock_bh(chip->mutex);
1033 if (chip->state == FL_SYNCING) {
1034 chip->state = chip->oldstate;
1035 wake_up(&chip->wq);
1037 spin_unlock_bh(chip->mutex);
1041 static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1043 struct cfi_private *cfi = map->fldrv_priv;
1044 map_word status, status_OK;
1045 unsigned long timeo = jiffies + HZ;
1046 DECLARE_WAITQUEUE(wait, current);
1048 adr += chip->start;
1050 /* Let's determine this according to the interleave only once */
1051 status_OK = CMD(0x80);
1053 timeo = jiffies + HZ;
1054 retry:
1055 spin_lock_bh(chip->mutex);
1057 /* Check that the chip's ready to talk to us. */
1058 switch (chip->state) {
1059 case FL_CFI_QUERY:
1060 case FL_JEDEC_QUERY:
1061 case FL_READY:
1062 map_write(map, CMD(0x70), adr);
1063 chip->state = FL_STATUS;
1065 case FL_STATUS:
1066 status = map_read(map, adr);
1067 if (map_word_andequal(map, status, status_OK, status_OK))
1068 break;
1070 /* Urgh. Chip not yet ready to talk to us. */
1071 if (time_after(jiffies, timeo)) {
1072 spin_unlock_bh(chip->mutex);
1073 printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
1074 return -EIO;
1077 /* Latency issues. Drop the lock, wait a while and retry */
1078 spin_unlock_bh(chip->mutex);
1079 cfi_udelay(1);
1080 goto retry;
1082 default:
1083 /* Stick ourselves on a wait queue to be woken when
1084 someone changes the status */
1085 set_current_state(TASK_UNINTERRUPTIBLE);
1086 add_wait_queue(&chip->wq, &wait);
1087 spin_unlock_bh(chip->mutex);
1088 schedule();
1089 remove_wait_queue(&chip->wq, &wait);
1090 timeo = jiffies + HZ;
1091 goto retry;
1094 ENABLE_VPP(map);
1095 map_write(map, CMD(0x60), adr);
1096 map_write(map, CMD(0x01), adr);
1097 chip->state = FL_LOCKING;
1099 spin_unlock_bh(chip->mutex);
1100 msleep(1000);
1101 spin_lock_bh(chip->mutex);
1103 /* FIXME. Use a timer to check this, and return immediately. */
1104 /* Once the state machine's known to be working I'll do that */
1106 timeo = jiffies + (HZ*2);
1107 for (;;) {
1109 status = map_read(map, adr);
1110 if (map_word_andequal(map, status, status_OK, status_OK))
1111 break;
1113 /* OK Still waiting */
1114 if (time_after(jiffies, timeo)) {
1115 map_write(map, CMD(0x70), adr);
1116 chip->state = FL_STATUS;
1117 printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1118 DISABLE_VPP(map);
1119 spin_unlock_bh(chip->mutex);
1120 return -EIO;
1123 /* Latency issues. Drop the lock, wait a while and retry */
1124 spin_unlock_bh(chip->mutex);
1125 cfi_udelay(1);
1126 spin_lock_bh(chip->mutex);
1129 /* Done and happy. */
1130 chip->state = FL_STATUS;
1131 DISABLE_VPP(map);
1132 wake_up(&chip->wq);
1133 spin_unlock_bh(chip->mutex);
1134 return 0;
1136 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1138 struct map_info *map = mtd->priv;
1139 struct cfi_private *cfi = map->fldrv_priv;
1140 unsigned long adr;
1141 int chipnum, ret = 0;
1142 #ifdef DEBUG_LOCK_BITS
1143 int ofs_factor = cfi->interleave * cfi->device_type;
1144 #endif
1146 if (ofs & (mtd->erasesize - 1))
1147 return -EINVAL;
1149 if (len & (mtd->erasesize -1))
1150 return -EINVAL;
1152 if ((len + ofs) > mtd->size)
1153 return -EINVAL;
1155 chipnum = ofs >> cfi->chipshift;
1156 adr = ofs - (chipnum << cfi->chipshift);
1158 while(len) {
1160 #ifdef DEBUG_LOCK_BITS
1161 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1162 printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1163 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1164 #endif
1166 ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);
1168 #ifdef DEBUG_LOCK_BITS
1169 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1170 printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1171 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1172 #endif
1174 if (ret)
1175 return ret;
1177 adr += mtd->erasesize;
1178 len -= mtd->erasesize;
1180 if (adr >> cfi->chipshift) {
1181 adr = 0;
1182 chipnum++;
1184 if (chipnum >= cfi->numchips)
1185 break;
1188 return 0;
1190 static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1192 struct cfi_private *cfi = map->fldrv_priv;
1193 map_word status, status_OK;
1194 unsigned long timeo = jiffies + HZ;
1195 DECLARE_WAITQUEUE(wait, current);
1197 adr += chip->start;
1199 /* Let's determine this according to the interleave only once */
1200 status_OK = CMD(0x80);
1202 timeo = jiffies + HZ;
1203 retry:
1204 spin_lock_bh(chip->mutex);
1206 /* Check that the chip's ready to talk to us. */
1207 switch (chip->state) {
1208 case FL_CFI_QUERY:
1209 case FL_JEDEC_QUERY:
1210 case FL_READY:
1211 map_write(map, CMD(0x70), adr);
1212 chip->state = FL_STATUS;
1214 case FL_STATUS:
1215 status = map_read(map, adr);
1216 if (map_word_andequal(map, status, status_OK, status_OK))
1217 break;
1219 /* Urgh. Chip not yet ready to talk to us. */
1220 if (time_after(jiffies, timeo)) {
1221 spin_unlock_bh(chip->mutex);
1222 printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
1223 return -EIO;
1226 /* Latency issues. Drop the lock, wait a while and retry */
1227 spin_unlock_bh(chip->mutex);
1228 cfi_udelay(1);
1229 goto retry;
1231 default:
1232 /* Stick ourselves on a wait queue to be woken when
1233 someone changes the status */
1234 set_current_state(TASK_UNINTERRUPTIBLE);
1235 add_wait_queue(&chip->wq, &wait);
1236 spin_unlock_bh(chip->mutex);
1237 schedule();
1238 remove_wait_queue(&chip->wq, &wait);
1239 timeo = jiffies + HZ;
1240 goto retry;
1243 ENABLE_VPP(map);
1244 map_write(map, CMD(0x60), adr);
1245 map_write(map, CMD(0xD0), adr);
1246 chip->state = FL_UNLOCKING;
1248 spin_unlock_bh(chip->mutex);
1249 msleep(1000);
1250 spin_lock_bh(chip->mutex);
1252 /* FIXME. Use a timer to check this, and return immediately. */
1253 /* Once the state machine's known to be working I'll do that */
1255 timeo = jiffies + (HZ*2);
1256 for (;;) {
1258 status = map_read(map, adr);
1259 if (map_word_andequal(map, status, status_OK, status_OK))
1260 break;
1262 /* OK Still waiting */
1263 if (time_after(jiffies, timeo)) {
1264 map_write(map, CMD(0x70), adr);
1265 chip->state = FL_STATUS;
1266 printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1267 DISABLE_VPP(map);
1268 spin_unlock_bh(chip->mutex);
1269 return -EIO;
1272 /* Latency issues. Drop the unlock, wait a while and retry */
1273 spin_unlock_bh(chip->mutex);
1274 cfi_udelay(1);
1275 spin_lock_bh(chip->mutex);
1278 /* Done and happy. */
1279 chip->state = FL_STATUS;
1280 DISABLE_VPP(map);
1281 wake_up(&chip->wq);
1282 spin_unlock_bh(chip->mutex);
1283 return 0;
1285 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1287 struct map_info *map = mtd->priv;
1288 struct cfi_private *cfi = map->fldrv_priv;
1289 unsigned long adr;
1290 int chipnum, ret = 0;
1291 #ifdef DEBUG_LOCK_BITS
1292 int ofs_factor = cfi->interleave * cfi->device_type;
1293 #endif
1295 chipnum = ofs >> cfi->chipshift;
1296 adr = ofs - (chipnum << cfi->chipshift);
1298 #ifdef DEBUG_LOCK_BITS
1300 unsigned long temp_adr = adr;
1301 unsigned long temp_len = len;
1303 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1304 while (temp_len) {
1305 printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
1306 temp_adr += mtd->erasesize;
1307 temp_len -= mtd->erasesize;
1309 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1311 #endif
1313 ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);
1315 #ifdef DEBUG_LOCK_BITS
1316 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1317 printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1318 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1319 #endif
1321 return ret;
1324 static int cfi_staa_suspend(struct mtd_info *mtd)
1326 struct map_info *map = mtd->priv;
1327 struct cfi_private *cfi = map->fldrv_priv;
1328 int i;
1329 struct flchip *chip;
1330 int ret = 0;
1332 for (i=0; !ret && i<cfi->numchips; i++) {
1333 chip = &cfi->chips[i];
1335 spin_lock_bh(chip->mutex);
1337 switch(chip->state) {
1338 case FL_READY:
1339 case FL_STATUS:
1340 case FL_CFI_QUERY:
1341 case FL_JEDEC_QUERY:
1342 chip->oldstate = chip->state;
1343 chip->state = FL_PM_SUSPENDED;
1344 /* No need to wake_up() on this state change -
1345 * as the whole point is that nobody can do anything
1346 * with the chip now anyway.
1348 case FL_PM_SUSPENDED:
1349 break;
1351 default:
1352 ret = -EAGAIN;
1353 break;
1355 spin_unlock_bh(chip->mutex);
1358 /* Unlock the chips again */
1360 if (ret) {
1361 for (i--; i >=0; i--) {
1362 chip = &cfi->chips[i];
1364 spin_lock_bh(chip->mutex);
1366 if (chip->state == FL_PM_SUSPENDED) {
1367 /* No need to force it into a known state here,
1368 because we're returning failure, and it didn't
1369 get power cycled */
1370 chip->state = chip->oldstate;
1371 wake_up(&chip->wq);
1373 spin_unlock_bh(chip->mutex);
1377 return ret;
1380 static void cfi_staa_resume(struct mtd_info *mtd)
1382 struct map_info *map = mtd->priv;
1383 struct cfi_private *cfi = map->fldrv_priv;
1384 int i;
1385 struct flchip *chip;
1387 for (i=0; i<cfi->numchips; i++) {
1389 chip = &cfi->chips[i];
1391 spin_lock_bh(chip->mutex);
1393 /* Go to known state. Chip may have been power cycled */
1394 if (chip->state == FL_PM_SUSPENDED) {
1395 map_write(map, CMD(0xFF), 0);
1396 chip->state = FL_READY;
1397 wake_up(&chip->wq);
1400 spin_unlock_bh(chip->mutex);
1404 static void cfi_staa_destroy(struct mtd_info *mtd)
1406 struct map_info *map = mtd->priv;
1407 struct cfi_private *cfi = map->fldrv_priv;
1408 kfree(cfi->cmdset_priv);
1409 kfree(cfi);
1412 MODULE_LICENSE("GPL");