sound: oss: remove __dev* attributes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / pid_namespace.c
blob7b07cc0dfb75fb6b2f2f802178abf82565d9c1a4
1 /*
2 * Pid namespaces
4 * Authors:
5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
9 */
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/syscalls.h>
14 #include <linux/err.h>
15 #include <linux/acct.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/reboot.h>
19 #include <linux/export.h>
21 #define BITS_PER_PAGE (PAGE_SIZE*8)
23 struct pid_cache {
24 int nr_ids;
25 char name[16];
26 struct kmem_cache *cachep;
27 struct list_head list;
30 static LIST_HEAD(pid_caches_lh);
31 static DEFINE_MUTEX(pid_caches_mutex);
32 static struct kmem_cache *pid_ns_cachep;
35 * creates the kmem cache to allocate pids from.
36 * @nr_ids: the number of numerical ids this pid will have to carry
39 static struct kmem_cache *create_pid_cachep(int nr_ids)
41 struct pid_cache *pcache;
42 struct kmem_cache *cachep;
44 mutex_lock(&pid_caches_mutex);
45 list_for_each_entry(pcache, &pid_caches_lh, list)
46 if (pcache->nr_ids == nr_ids)
47 goto out;
49 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
50 if (pcache == NULL)
51 goto err_alloc;
53 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
54 cachep = kmem_cache_create(pcache->name,
55 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
56 0, SLAB_HWCACHE_ALIGN, NULL);
57 if (cachep == NULL)
58 goto err_cachep;
60 pcache->nr_ids = nr_ids;
61 pcache->cachep = cachep;
62 list_add(&pcache->list, &pid_caches_lh);
63 out:
64 mutex_unlock(&pid_caches_mutex);
65 return pcache->cachep;
67 err_cachep:
68 kfree(pcache);
69 err_alloc:
70 mutex_unlock(&pid_caches_mutex);
71 return NULL;
74 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
75 #define MAX_PID_NS_LEVEL 32
77 static struct pid_namespace *create_pid_namespace(struct pid_namespace *parent_pid_ns)
79 struct pid_namespace *ns;
80 unsigned int level = parent_pid_ns->level + 1;
81 int i;
82 int err;
84 if (level > MAX_PID_NS_LEVEL) {
85 err = -EINVAL;
86 goto out;
89 err = -ENOMEM;
90 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
91 if (ns == NULL)
92 goto out;
94 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
95 if (!ns->pidmap[0].page)
96 goto out_free;
98 ns->pid_cachep = create_pid_cachep(level + 1);
99 if (ns->pid_cachep == NULL)
100 goto out_free_map;
102 kref_init(&ns->kref);
103 ns->level = level;
104 ns->parent = get_pid_ns(parent_pid_ns);
106 set_bit(0, ns->pidmap[0].page);
107 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
109 for (i = 1; i < PIDMAP_ENTRIES; i++)
110 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
112 err = pid_ns_prepare_proc(ns);
113 if (err)
114 goto out_put_parent_pid_ns;
116 return ns;
118 out_put_parent_pid_ns:
119 put_pid_ns(parent_pid_ns);
120 out_free_map:
121 kfree(ns->pidmap[0].page);
122 out_free:
123 kmem_cache_free(pid_ns_cachep, ns);
124 out:
125 return ERR_PTR(err);
128 static void destroy_pid_namespace(struct pid_namespace *ns)
130 int i;
132 for (i = 0; i < PIDMAP_ENTRIES; i++)
133 kfree(ns->pidmap[i].page);
134 kmem_cache_free(pid_ns_cachep, ns);
137 struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
139 if (!(flags & CLONE_NEWPID))
140 return get_pid_ns(old_ns);
141 if (flags & (CLONE_THREAD|CLONE_PARENT))
142 return ERR_PTR(-EINVAL);
143 return create_pid_namespace(old_ns);
146 static void free_pid_ns(struct kref *kref)
148 struct pid_namespace *ns;
150 ns = container_of(kref, struct pid_namespace, kref);
151 destroy_pid_namespace(ns);
154 void put_pid_ns(struct pid_namespace *ns)
156 struct pid_namespace *parent;
158 while (ns != &init_pid_ns) {
159 parent = ns->parent;
160 if (!kref_put(&ns->kref, free_pid_ns))
161 break;
162 ns = parent;
165 EXPORT_SYMBOL_GPL(put_pid_ns);
167 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
169 int nr;
170 int rc;
171 struct task_struct *task, *me = current;
173 /* Ignore SIGCHLD causing any terminated children to autoreap */
174 spin_lock_irq(&me->sighand->siglock);
175 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
176 spin_unlock_irq(&me->sighand->siglock);
179 * The last thread in the cgroup-init thread group is terminating.
180 * Find remaining pid_ts in the namespace, signal and wait for them
181 * to exit.
183 * Note: This signals each threads in the namespace - even those that
184 * belong to the same thread group, To avoid this, we would have
185 * to walk the entire tasklist looking a processes in this
186 * namespace, but that could be unnecessarily expensive if the
187 * pid namespace has just a few processes. Or we need to
188 * maintain a tasklist for each pid namespace.
191 read_lock(&tasklist_lock);
192 nr = next_pidmap(pid_ns, 1);
193 while (nr > 0) {
194 rcu_read_lock();
196 task = pid_task(find_vpid(nr), PIDTYPE_PID);
197 if (task && !__fatal_signal_pending(task))
198 send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
200 rcu_read_unlock();
202 nr = next_pidmap(pid_ns, nr);
204 read_unlock(&tasklist_lock);
206 /* Firstly reap the EXIT_ZOMBIE children we may have. */
207 do {
208 clear_thread_flag(TIF_SIGPENDING);
209 rc = sys_wait4(-1, NULL, __WALL, NULL);
210 } while (rc != -ECHILD);
213 * sys_wait4() above can't reap the TASK_DEAD children.
214 * Make sure they all go away, see __unhash_process().
216 for (;;) {
217 bool need_wait = false;
219 read_lock(&tasklist_lock);
220 if (!list_empty(&current->children)) {
221 __set_current_state(TASK_UNINTERRUPTIBLE);
222 need_wait = true;
224 read_unlock(&tasklist_lock);
226 if (!need_wait)
227 break;
228 schedule();
231 if (pid_ns->reboot)
232 current->signal->group_exit_code = pid_ns->reboot;
234 acct_exit_ns(pid_ns);
235 return;
238 #ifdef CONFIG_CHECKPOINT_RESTORE
239 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
240 void __user *buffer, size_t *lenp, loff_t *ppos)
242 struct ctl_table tmp = *table;
244 if (write && !capable(CAP_SYS_ADMIN))
245 return -EPERM;
248 * Writing directly to ns' last_pid field is OK, since this field
249 * is volatile in a living namespace anyway and a code writing to
250 * it should synchronize its usage with external means.
253 tmp.data = &current->nsproxy->pid_ns->last_pid;
254 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
257 extern int pid_max;
258 static int zero = 0;
259 static struct ctl_table pid_ns_ctl_table[] = {
261 .procname = "ns_last_pid",
262 .maxlen = sizeof(int),
263 .mode = 0666, /* permissions are checked in the handler */
264 .proc_handler = pid_ns_ctl_handler,
265 .extra1 = &zero,
266 .extra2 = &pid_max,
270 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
271 #endif /* CONFIG_CHECKPOINT_RESTORE */
273 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
275 if (pid_ns == &init_pid_ns)
276 return 0;
278 switch (cmd) {
279 case LINUX_REBOOT_CMD_RESTART2:
280 case LINUX_REBOOT_CMD_RESTART:
281 pid_ns->reboot = SIGHUP;
282 break;
284 case LINUX_REBOOT_CMD_POWER_OFF:
285 case LINUX_REBOOT_CMD_HALT:
286 pid_ns->reboot = SIGINT;
287 break;
288 default:
289 return -EINVAL;
292 read_lock(&tasklist_lock);
293 force_sig(SIGKILL, pid_ns->child_reaper);
294 read_unlock(&tasklist_lock);
296 do_exit(0);
298 /* Not reached */
299 return 0;
302 static __init int pid_namespaces_init(void)
304 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
306 #ifdef CONFIG_CHECKPOINT_RESTORE
307 register_sysctl_paths(kern_path, pid_ns_ctl_table);
308 #endif
309 return 0;
312 __initcall(pid_namespaces_init);