2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2007 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
46 * @vi: vfs inode which to test
47 * @na: ntfs attribute which is being tested with
49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50 * inode @vi for equality with the ntfs attribute @na.
52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53 * @na->name and @na->name_len are then ignored.
55 * Return 1 if the attributes match and 0 if not.
57 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
60 int ntfs_test_inode(struct inode
*vi
, ntfs_attr
*na
)
64 if (vi
->i_ino
!= na
->mft_no
)
67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 if (likely(!NInoAttr(ni
))) {
69 /* If not looking for a normal inode this is a mismatch. */
70 if (unlikely(na
->type
!= AT_UNUSED
))
73 /* A fake inode describing an attribute. */
74 if (ni
->type
!= na
->type
)
76 if (ni
->name_len
!= na
->name_len
)
78 if (na
->name_len
&& memcmp(ni
->name
, na
->name
,
79 na
->name_len
* sizeof(ntfschar
)))
87 * ntfs_init_locked_inode - initialize an inode
88 * @vi: vfs inode to initialize
89 * @na: ntfs attribute which to initialize @vi to
91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92 * order to enable ntfs_test_inode() to do its work.
94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
96 * respectively. Although that is not strictly necessary as
97 * ntfs_read_locked_inode() will fill them in later.
99 * Return 0 on success and -errno on error.
101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
104 static int ntfs_init_locked_inode(struct inode
*vi
, ntfs_attr
*na
)
106 ntfs_inode
*ni
= NTFS_I(vi
);
108 vi
->i_ino
= na
->mft_no
;
111 if (na
->type
== AT_INDEX_ALLOCATION
)
112 NInoSetMstProtected(ni
);
115 ni
->name_len
= na
->name_len
;
117 /* If initializing a normal inode, we are done. */
118 if (likely(na
->type
== AT_UNUSED
)) {
120 BUG_ON(na
->name_len
);
124 /* It is a fake inode. */
128 * We have I30 global constant as an optimization as it is the name
129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 * allocation but that is ok. And most attributes are unnamed anyway,
131 * thus the fraction of named attributes with name != I30 is actually
134 if (na
->name_len
&& na
->name
!= I30
) {
138 i
= na
->name_len
* sizeof(ntfschar
);
139 ni
->name
= kmalloc(i
+ sizeof(ntfschar
), GFP_ATOMIC
);
142 memcpy(ni
->name
, na
->name
, i
);
143 ni
->name
[na
->name_len
] = 0;
148 typedef int (*set_t
)(struct inode
*, void *);
149 static int ntfs_read_locked_inode(struct inode
*vi
);
150 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
);
151 static int ntfs_read_locked_index_inode(struct inode
*base_vi
,
155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156 * @sb: super block of mounted volume
157 * @mft_no: mft record number / inode number to obtain
159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160 * file or directory).
162 * If the inode is in the cache, it is just returned with an increased
163 * reference count. Otherwise, a new struct inode is allocated and initialized,
164 * and finally ntfs_read_locked_inode() is called to read in the inode and
165 * fill in the remainder of the inode structure.
167 * Return the struct inode on success. Check the return value with IS_ERR() and
168 * if true, the function failed and the error code is obtained from PTR_ERR().
170 struct inode
*ntfs_iget(struct super_block
*sb
, unsigned long mft_no
)
181 vi
= iget5_locked(sb
, mft_no
, (test_t
)ntfs_test_inode
,
182 (set_t
)ntfs_init_locked_inode
, &na
);
184 return ERR_PTR(-ENOMEM
);
188 /* If this is a freshly allocated inode, need to read it now. */
189 if (vi
->i_state
& I_NEW
) {
190 err
= ntfs_read_locked_inode(vi
);
191 unlock_new_inode(vi
);
194 * There is no point in keeping bad inodes around if the failure was
195 * due to ENOMEM. We want to be able to retry again later.
197 if (unlikely(err
== -ENOMEM
)) {
205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206 * @base_vi: vfs base inode containing the attribute
207 * @type: attribute type
208 * @name: Unicode name of the attribute (NULL if unnamed)
209 * @name_len: length of @name in Unicode characters (0 if unnamed)
211 * Obtain the (fake) struct inode corresponding to the attribute specified by
212 * @type, @name, and @name_len, which is present in the base mft record
213 * specified by the vfs inode @base_vi.
215 * If the attribute inode is in the cache, it is just returned with an
216 * increased reference count. Otherwise, a new struct inode is allocated and
217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218 * attribute and fill in the inode structure.
220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
223 * Return the struct inode of the attribute inode on success. Check the return
224 * value with IS_ERR() and if true, the function failed and the error code is
225 * obtained from PTR_ERR().
227 struct inode
*ntfs_attr_iget(struct inode
*base_vi
, ATTR_TYPE type
,
228 ntfschar
*name
, u32 name_len
)
234 /* Make sure no one calls ntfs_attr_iget() for indices. */
235 BUG_ON(type
== AT_INDEX_ALLOCATION
);
237 na
.mft_no
= base_vi
->i_ino
;
240 na
.name_len
= name_len
;
242 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
243 (set_t
)ntfs_init_locked_inode
, &na
);
245 return ERR_PTR(-ENOMEM
);
249 /* If this is a freshly allocated inode, need to read it now. */
250 if (vi
->i_state
& I_NEW
) {
251 err
= ntfs_read_locked_attr_inode(base_vi
, vi
);
252 unlock_new_inode(vi
);
255 * There is no point in keeping bad attribute inodes around. This also
256 * simplifies things in that we never need to check for bad attribute
267 * ntfs_index_iget - obtain a struct inode corresponding to an index
268 * @base_vi: vfs base inode containing the index related attributes
269 * @name: Unicode name of the index
270 * @name_len: length of @name in Unicode characters
272 * Obtain the (fake) struct inode corresponding to the index specified by @name
273 * and @name_len, which is present in the base mft record specified by the vfs
276 * If the index inode is in the cache, it is just returned with an increased
277 * reference count. Otherwise, a new struct inode is allocated and
278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
279 * the index related attributes and fill in the inode structure.
281 * Return the struct inode of the index inode on success. Check the return
282 * value with IS_ERR() and if true, the function failed and the error code is
283 * obtained from PTR_ERR().
285 struct inode
*ntfs_index_iget(struct inode
*base_vi
, ntfschar
*name
,
292 na
.mft_no
= base_vi
->i_ino
;
293 na
.type
= AT_INDEX_ALLOCATION
;
295 na
.name_len
= name_len
;
297 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
298 (set_t
)ntfs_init_locked_inode
, &na
);
300 return ERR_PTR(-ENOMEM
);
304 /* If this is a freshly allocated inode, need to read it now. */
305 if (vi
->i_state
& I_NEW
) {
306 err
= ntfs_read_locked_index_inode(base_vi
, vi
);
307 unlock_new_inode(vi
);
310 * There is no point in keeping bad index inodes around. This also
311 * simplifies things in that we never need to check for bad index
321 struct inode
*ntfs_alloc_big_inode(struct super_block
*sb
)
325 ntfs_debug("Entering.");
326 ni
= kmem_cache_alloc(ntfs_big_inode_cache
, GFP_NOFS
);
327 if (likely(ni
!= NULL
)) {
331 ntfs_error(sb
, "Allocation of NTFS big inode structure failed.");
335 static void ntfs_i_callback(struct rcu_head
*head
)
337 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
338 kmem_cache_free(ntfs_big_inode_cache
, NTFS_I(inode
));
341 void ntfs_destroy_big_inode(struct inode
*inode
)
343 ntfs_inode
*ni
= NTFS_I(inode
);
345 ntfs_debug("Entering.");
347 if (!atomic_dec_and_test(&ni
->count
))
349 call_rcu(&inode
->i_rcu
, ntfs_i_callback
);
352 static inline ntfs_inode
*ntfs_alloc_extent_inode(void)
356 ntfs_debug("Entering.");
357 ni
= kmem_cache_alloc(ntfs_inode_cache
, GFP_NOFS
);
358 if (likely(ni
!= NULL
)) {
362 ntfs_error(NULL
, "Allocation of NTFS inode structure failed.");
366 static void ntfs_destroy_extent_inode(ntfs_inode
*ni
)
368 ntfs_debug("Entering.");
370 if (!atomic_dec_and_test(&ni
->count
))
372 kmem_cache_free(ntfs_inode_cache
, ni
);
376 * The attribute runlist lock has separate locking rules from the
377 * normal runlist lock, so split the two lock-classes:
379 static struct lock_class_key attr_list_rl_lock_class
;
382 * __ntfs_init_inode - initialize ntfs specific part of an inode
383 * @sb: super block of mounted volume
384 * @ni: freshly allocated ntfs inode which to initialize
386 * Initialize an ntfs inode to defaults.
388 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
389 * untouched. Make sure to initialize them elsewhere.
391 * Return zero on success and -ENOMEM on error.
393 void __ntfs_init_inode(struct super_block
*sb
, ntfs_inode
*ni
)
395 ntfs_debug("Entering.");
396 rwlock_init(&ni
->size_lock
);
397 ni
->initialized_size
= ni
->allocated_size
= 0;
399 atomic_set(&ni
->count
, 1);
400 ni
->vol
= NTFS_SB(sb
);
401 ntfs_init_runlist(&ni
->runlist
);
402 mutex_init(&ni
->mrec_lock
);
405 ni
->attr_list_size
= 0;
406 ni
->attr_list
= NULL
;
407 ntfs_init_runlist(&ni
->attr_list_rl
);
408 lockdep_set_class(&ni
->attr_list_rl
.lock
,
409 &attr_list_rl_lock_class
);
410 ni
->itype
.index
.block_size
= 0;
411 ni
->itype
.index
.vcn_size
= 0;
412 ni
->itype
.index
.collation_rule
= 0;
413 ni
->itype
.index
.block_size_bits
= 0;
414 ni
->itype
.index
.vcn_size_bits
= 0;
415 mutex_init(&ni
->extent_lock
);
417 ni
->ext
.base_ntfs_ino
= NULL
;
421 * Extent inodes get MFT-mapped in a nested way, while the base inode
422 * is still mapped. Teach this nesting to the lock validator by creating
423 * a separate class for nested inode's mrec_lock's:
425 static struct lock_class_key extent_inode_mrec_lock_key
;
427 inline ntfs_inode
*ntfs_new_extent_inode(struct super_block
*sb
,
428 unsigned long mft_no
)
430 ntfs_inode
*ni
= ntfs_alloc_extent_inode();
432 ntfs_debug("Entering.");
433 if (likely(ni
!= NULL
)) {
434 __ntfs_init_inode(sb
, ni
);
435 lockdep_set_class(&ni
->mrec_lock
, &extent_inode_mrec_lock_key
);
437 ni
->type
= AT_UNUSED
;
445 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
446 * @ctx: initialized attribute search context
448 * Search all file name attributes in the inode described by the attribute
449 * search context @ctx and check if any of the names are in the $Extend system
453 * 1: file is in $Extend directory
454 * 0: file is not in $Extend directory
455 * -errno: failed to determine if the file is in the $Extend directory
457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx
*ctx
)
461 /* Restart search. */
462 ntfs_attr_reinit_search_ctx(ctx
);
464 /* Get number of hard links. */
465 nr_links
= le16_to_cpu(ctx
->mrec
->link_count
);
467 /* Loop through all hard links. */
468 while (!(err
= ntfs_attr_lookup(AT_FILE_NAME
, NULL
, 0, 0, 0, NULL
, 0,
470 FILE_NAME_ATTR
*file_name_attr
;
471 ATTR_RECORD
*attr
= ctx
->attr
;
476 * Maximum sanity checking as we are called on an inode that
477 * we suspect might be corrupt.
479 p
= (u8
*)attr
+ le32_to_cpu(attr
->length
);
480 if (p
< (u8
*)ctx
->mrec
|| (u8
*)p
> (u8
*)ctx
->mrec
+
481 le32_to_cpu(ctx
->mrec
->bytes_in_use
)) {
483 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Corrupt file name "
484 "attribute. You should run chkdsk.");
487 if (attr
->non_resident
) {
488 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Non-resident file "
489 "name. You should run chkdsk.");
493 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "File name with "
494 "invalid flags. You should run "
498 if (!(attr
->data
.resident
.flags
& RESIDENT_ATTR_IS_INDEXED
)) {
499 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Unindexed file "
500 "name. You should run chkdsk.");
503 file_name_attr
= (FILE_NAME_ATTR
*)((u8
*)attr
+
504 le16_to_cpu(attr
->data
.resident
.value_offset
));
505 p2
= (u8
*)attr
+ le32_to_cpu(attr
->data
.resident
.value_length
);
506 if (p2
< (u8
*)attr
|| p2
> p
)
507 goto err_corrupt_attr
;
508 /* This attribute is ok, but is it in the $Extend directory? */
509 if (MREF_LE(file_name_attr
->parent_directory
) == FILE_Extend
)
510 return 1; /* YES, it's an extended system file. */
512 if (unlikely(err
!= -ENOENT
))
514 if (unlikely(nr_links
)) {
515 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Inode hard link count "
516 "doesn't match number of name attributes. You "
517 "should run chkdsk.");
520 return 0; /* NO, it is not an extended system file. */
524 * ntfs_read_locked_inode - read an inode from its device
527 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
528 * described by @vi into memory from the device.
530 * The only fields in @vi that we need to/can look at when the function is
531 * called are i_sb, pointing to the mounted device's super block, and i_ino,
532 * the number of the inode to load.
534 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
535 * for reading and sets up the necessary @vi fields as well as initializing
538 * Q: What locks are held when the function is called?
539 * A: i_state has I_NEW set, hence the inode is locked, also
540 * i_count is set to 1, so it is not going to go away
541 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
542 * is allowed to write to them. We should of course be honouring them but
543 * we need to do that using the IS_* macros defined in include/linux/fs.h.
544 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
546 * Return 0 on success and -errno on error. In the error case, the inode will
547 * have had make_bad_inode() executed on it.
549 static int ntfs_read_locked_inode(struct inode
*vi
)
551 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
556 STANDARD_INFORMATION
*si
;
557 ntfs_attr_search_ctx
*ctx
;
560 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
562 /* Setup the generic vfs inode parts now. */
565 * This is for checking whether an inode has changed w.r.t. a file so
566 * that the file can be updated if necessary (compare with f_version).
570 vi
->i_uid
= vol
->uid
;
571 vi
->i_gid
= vol
->gid
;
575 * Initialize the ntfs specific part of @vi special casing
576 * FILE_MFT which we need to do at mount time.
578 if (vi
->i_ino
!= FILE_MFT
)
579 ntfs_init_big_inode(vi
);
582 m
= map_mft_record(ni
);
587 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
593 if (!(m
->flags
& MFT_RECORD_IN_USE
)) {
594 ntfs_error(vi
->i_sb
, "Inode is not in use!");
597 if (m
->base_mft_record
) {
598 ntfs_error(vi
->i_sb
, "Inode is an extent inode!");
602 /* Transfer information from mft record into vfs and ntfs inodes. */
603 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
606 * FIXME: Keep in mind that link_count is two for files which have both
607 * a long file name and a short file name as separate entries, so if
608 * we are hiding short file names this will be too high. Either we need
609 * to account for the short file names by subtracting them or we need
610 * to make sure we delete files even though i_nlink is not zero which
611 * might be tricky due to vfs interactions. Need to think about this
612 * some more when implementing the unlink command.
614 set_nlink(vi
, le16_to_cpu(m
->link_count
));
616 * FIXME: Reparse points can have the directory bit set even though
617 * they would be S_IFLNK. Need to deal with this further below when we
618 * implement reparse points / symbolic links but it will do for now.
619 * Also if not a directory, it could be something else, rather than
620 * a regular file. But again, will do for now.
622 /* Everyone gets all permissions. */
623 vi
->i_mode
|= S_IRWXUGO
;
624 /* If read-only, no one gets write permissions. */
626 vi
->i_mode
&= ~S_IWUGO
;
627 if (m
->flags
& MFT_RECORD_IS_DIRECTORY
) {
628 vi
->i_mode
|= S_IFDIR
;
630 * Apply the directory permissions mask set in the mount
633 vi
->i_mode
&= ~vol
->dmask
;
634 /* Things break without this kludge! */
638 vi
->i_mode
|= S_IFREG
;
639 /* Apply the file permissions mask set in the mount options. */
640 vi
->i_mode
&= ~vol
->fmask
;
643 * Find the standard information attribute in the mft record. At this
644 * stage we haven't setup the attribute list stuff yet, so this could
645 * in fact fail if the standard information is in an extent record, but
646 * I don't think this actually ever happens.
648 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
651 if (err
== -ENOENT
) {
653 * TODO: We should be performing a hot fix here (if the
654 * recover mount option is set) by creating a new
657 ntfs_error(vi
->i_sb
, "$STANDARD_INFORMATION attribute "
663 /* Get the standard information attribute value. */
664 si
= (STANDARD_INFORMATION
*)((u8
*)a
+
665 le16_to_cpu(a
->data
.resident
.value_offset
));
667 /* Transfer information from the standard information into vi. */
669 * Note: The i_?times do not quite map perfectly onto the NTFS times,
670 * but they are close enough, and in the end it doesn't really matter
674 * mtime is the last change of the data within the file. Not changed
675 * when only metadata is changed, e.g. a rename doesn't affect mtime.
677 vi
->i_mtime
= ntfs2utc(si
->last_data_change_time
);
679 * ctime is the last change of the metadata of the file. This obviously
680 * always changes, when mtime is changed. ctime can be changed on its
681 * own, mtime is then not changed, e.g. when a file is renamed.
683 vi
->i_ctime
= ntfs2utc(si
->last_mft_change_time
);
685 * Last access to the data within the file. Not changed during a rename
686 * for example but changed whenever the file is written to.
688 vi
->i_atime
= ntfs2utc(si
->last_access_time
);
690 /* Find the attribute list attribute if present. */
691 ntfs_attr_reinit_search_ctx(ctx
);
692 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
694 if (unlikely(err
!= -ENOENT
)) {
695 ntfs_error(vi
->i_sb
, "Failed to lookup attribute list "
699 } else /* if (!err) */ {
700 if (vi
->i_ino
== FILE_MFT
)
701 goto skip_attr_list_load
;
702 ntfs_debug("Attribute list found in inode 0x%lx.", vi
->i_ino
);
705 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
706 ntfs_error(vi
->i_sb
, "Attribute list attribute is "
710 if (a
->flags
& ATTR_IS_ENCRYPTED
||
711 a
->flags
& ATTR_IS_SPARSE
) {
712 if (a
->non_resident
) {
713 ntfs_error(vi
->i_sb
, "Non-resident attribute "
714 "list attribute is encrypted/"
718 ntfs_warning(vi
->i_sb
, "Resident attribute list "
719 "attribute in inode 0x%lx is marked "
720 "encrypted/sparse which is not true. "
721 "However, Windows allows this and "
722 "chkdsk does not detect or correct it "
723 "so we will just ignore the invalid "
724 "flags and pretend they are not set.",
727 /* Now allocate memory for the attribute list. */
728 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
729 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
730 if (!ni
->attr_list
) {
731 ntfs_error(vi
->i_sb
, "Not enough memory to allocate "
732 "buffer for attribute list.");
736 if (a
->non_resident
) {
737 NInoSetAttrListNonResident(ni
);
738 if (a
->data
.non_resident
.lowest_vcn
) {
739 ntfs_error(vi
->i_sb
, "Attribute list has non "
744 * Setup the runlist. No need for locking as we have
745 * exclusive access to the inode at this time.
747 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
749 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
750 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
751 ni
->attr_list_rl
.rl
= NULL
;
752 ntfs_error(vi
->i_sb
, "Mapping pairs "
753 "decompression failed.");
756 /* Now load the attribute list. */
757 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
758 ni
->attr_list
, ni
->attr_list_size
,
759 sle64_to_cpu(a
->data
.non_resident
.
760 initialized_size
)))) {
761 ntfs_error(vi
->i_sb
, "Failed to load "
762 "attribute list attribute.");
765 } else /* if (!a->non_resident) */ {
766 if ((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
)
768 a
->data
.resident
.value_length
) >
769 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
770 ntfs_error(vi
->i_sb
, "Corrupt attribute list "
774 /* Now copy the attribute list. */
775 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
776 a
->data
.resident
.value_offset
),
778 a
->data
.resident
.value_length
));
783 * If an attribute list is present we now have the attribute list value
784 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
786 if (S_ISDIR(vi
->i_mode
)) {
790 u8
*ir_end
, *index_end
;
792 /* It is a directory, find index root attribute. */
793 ntfs_attr_reinit_search_ctx(ctx
);
794 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, I30
, 4, CASE_SENSITIVE
,
797 if (err
== -ENOENT
) {
798 // FIXME: File is corrupt! Hot-fix with empty
799 // index root attribute if recovery option is
801 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute "
807 /* Set up the state. */
808 if (unlikely(a
->non_resident
)) {
809 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not "
813 /* Ensure the attribute name is placed before the value. */
814 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
815 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
816 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is "
817 "placed after the attribute value.");
821 * Compressed/encrypted index root just means that the newly
822 * created files in that directory should be created compressed/
823 * encrypted. However index root cannot be both compressed and
826 if (a
->flags
& ATTR_COMPRESSION_MASK
)
827 NInoSetCompressed(ni
);
828 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
829 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
830 ntfs_error(vi
->i_sb
, "Found encrypted and "
831 "compressed attribute.");
834 NInoSetEncrypted(ni
);
836 if (a
->flags
& ATTR_IS_SPARSE
)
838 ir
= (INDEX_ROOT
*)((u8
*)a
+
839 le16_to_cpu(a
->data
.resident
.value_offset
));
840 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
841 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
842 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
846 index_end
= (u8
*)&ir
->index
+
847 le32_to_cpu(ir
->index
.index_length
);
848 if (index_end
> ir_end
) {
849 ntfs_error(vi
->i_sb
, "Directory index is corrupt.");
852 if (ir
->type
!= AT_FILE_NAME
) {
853 ntfs_error(vi
->i_sb
, "Indexed attribute is not "
857 if (ir
->collation_rule
!= COLLATION_FILE_NAME
) {
858 ntfs_error(vi
->i_sb
, "Index collation rule is not "
859 "COLLATION_FILE_NAME.");
862 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
863 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
864 if (ni
->itype
.index
.block_size
&
865 (ni
->itype
.index
.block_size
- 1)) {
866 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a "
868 ni
->itype
.index
.block_size
);
871 if (ni
->itype
.index
.block_size
> PAGE_CACHE_SIZE
) {
872 ntfs_error(vi
->i_sb
, "Index block size (%u) > "
873 "PAGE_CACHE_SIZE (%ld) is not "
875 ni
->itype
.index
.block_size
,
880 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
881 ntfs_error(vi
->i_sb
, "Index block size (%u) < "
882 "NTFS_BLOCK_SIZE (%i) is not "
884 ni
->itype
.index
.block_size
,
889 ni
->itype
.index
.block_size_bits
=
890 ffs(ni
->itype
.index
.block_size
) - 1;
891 /* Determine the size of a vcn in the directory index. */
892 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
893 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
894 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
896 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
897 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
900 /* Setup the index allocation attribute, even if not present. */
901 NInoSetMstProtected(ni
);
902 ni
->type
= AT_INDEX_ALLOCATION
;
906 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
907 /* No index allocation. */
908 vi
->i_size
= ni
->initialized_size
=
909 ni
->allocated_size
= 0;
910 /* We are done with the mft record, so we release it. */
911 ntfs_attr_put_search_ctx(ctx
);
912 unmap_mft_record(ni
);
915 goto skip_large_dir_stuff
;
916 } /* LARGE_INDEX: Index allocation present. Setup state. */
917 NInoSetIndexAllocPresent(ni
);
918 /* Find index allocation attribute. */
919 ntfs_attr_reinit_search_ctx(ctx
);
920 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, I30
, 4,
921 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
924 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION "
925 "attribute is not present but "
926 "$INDEX_ROOT indicated it is.");
928 ntfs_error(vi
->i_sb
, "Failed to lookup "
934 if (!a
->non_resident
) {
935 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
940 * Ensure the attribute name is placed before the mapping pairs
943 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
945 a
->data
.non_resident
.mapping_pairs_offset
)))) {
946 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name "
947 "is placed after the mapping pairs "
951 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
952 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
956 if (a
->flags
& ATTR_IS_SPARSE
) {
957 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
961 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
962 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
966 if (a
->data
.non_resident
.lowest_vcn
) {
967 ntfs_error(vi
->i_sb
, "First extent of "
968 "$INDEX_ALLOCATION attribute has non "
972 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
973 ni
->initialized_size
= sle64_to_cpu(
974 a
->data
.non_resident
.initialized_size
);
975 ni
->allocated_size
= sle64_to_cpu(
976 a
->data
.non_resident
.allocated_size
);
978 * We are done with the mft record, so we release it. Otherwise
979 * we would deadlock in ntfs_attr_iget().
981 ntfs_attr_put_search_ctx(ctx
);
982 unmap_mft_record(ni
);
985 /* Get the index bitmap attribute inode. */
986 bvi
= ntfs_attr_iget(vi
, AT_BITMAP
, I30
, 4);
988 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
993 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
995 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed "
996 "and/or encrypted and/or sparse.");
997 goto iput_unm_err_out
;
999 /* Consistency check bitmap size vs. index allocation size. */
1000 bvi_size
= i_size_read(bvi
);
1001 if ((bvi_size
<< 3) < (vi
->i_size
>>
1002 ni
->itype
.index
.block_size_bits
)) {
1003 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) "
1004 "for index allocation (0x%llx).",
1005 bvi_size
<< 3, vi
->i_size
);
1006 goto iput_unm_err_out
;
1008 /* No longer need the bitmap attribute inode. */
1010 skip_large_dir_stuff
:
1011 /* Setup the operations for this inode. */
1012 vi
->i_op
= &ntfs_dir_inode_ops
;
1013 vi
->i_fop
= &ntfs_dir_ops
;
1016 ntfs_attr_reinit_search_ctx(ctx
);
1018 /* Setup the data attribute, even if not present. */
1023 /* Find first extent of the unnamed data attribute. */
1024 err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
1025 if (unlikely(err
)) {
1026 vi
->i_size
= ni
->initialized_size
=
1027 ni
->allocated_size
= 0;
1028 if (err
!= -ENOENT
) {
1029 ntfs_error(vi
->i_sb
, "Failed to lookup $DATA "
1034 * FILE_Secure does not have an unnamed $DATA
1035 * attribute, so we special case it here.
1037 if (vi
->i_ino
== FILE_Secure
)
1038 goto no_data_attr_special_case
;
1040 * Most if not all the system files in the $Extend
1041 * system directory do not have unnamed data
1042 * attributes so we need to check if the parent
1043 * directory of the file is FILE_Extend and if it is
1044 * ignore this error. To do this we need to get the
1045 * name of this inode from the mft record as the name
1046 * contains the back reference to the parent directory.
1048 if (ntfs_is_extended_system_file(ctx
) > 0)
1049 goto no_data_attr_special_case
;
1050 // FIXME: File is corrupt! Hot-fix with empty data
1051 // attribute if recovery option is set.
1052 ntfs_error(vi
->i_sb
, "$DATA attribute is missing.");
1056 /* Setup the state. */
1057 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1058 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1059 NInoSetCompressed(ni
);
1060 if (vol
->cluster_size
> 4096) {
1061 ntfs_error(vi
->i_sb
, "Found "
1062 "compressed data but "
1065 "cluster size (%i) > "
1070 if ((a
->flags
& ATTR_COMPRESSION_MASK
)
1071 != ATTR_IS_COMPRESSED
) {
1072 ntfs_error(vi
->i_sb
, "Found unknown "
1073 "compression method "
1074 "or corrupt file.");
1078 if (a
->flags
& ATTR_IS_SPARSE
)
1081 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1082 if (NInoCompressed(ni
)) {
1083 ntfs_error(vi
->i_sb
, "Found encrypted and "
1084 "compressed data.");
1087 NInoSetEncrypted(ni
);
1089 if (a
->non_resident
) {
1090 NInoSetNonResident(ni
);
1091 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1092 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1093 compression_unit
!= 4) {
1094 ntfs_error(vi
->i_sb
, "Found "
1096 "compression unit (%u "
1098 "Cannot handle this.",
1099 a
->data
.non_resident
.
1104 if (a
->data
.non_resident
.compression_unit
) {
1105 ni
->itype
.compressed
.block_size
= 1U <<
1106 (a
->data
.non_resident
.
1108 vol
->cluster_size_bits
);
1109 ni
->itype
.compressed
.block_size_bits
=
1113 ni
->itype
.compressed
.block_clusters
=
1118 ni
->itype
.compressed
.block_size
= 0;
1119 ni
->itype
.compressed
.block_size_bits
=
1121 ni
->itype
.compressed
.block_clusters
=
1124 ni
->itype
.compressed
.size
= sle64_to_cpu(
1125 a
->data
.non_resident
.
1128 if (a
->data
.non_resident
.lowest_vcn
) {
1129 ntfs_error(vi
->i_sb
, "First extent of $DATA "
1130 "attribute has non zero "
1134 vi
->i_size
= sle64_to_cpu(
1135 a
->data
.non_resident
.data_size
);
1136 ni
->initialized_size
= sle64_to_cpu(
1137 a
->data
.non_resident
.initialized_size
);
1138 ni
->allocated_size
= sle64_to_cpu(
1139 a
->data
.non_resident
.allocated_size
);
1140 } else { /* Resident attribute. */
1141 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1142 a
->data
.resident
.value_length
);
1143 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1145 a
->data
.resident
.value_offset
);
1146 if (vi
->i_size
> ni
->allocated_size
) {
1147 ntfs_error(vi
->i_sb
, "Resident data attribute "
1148 "is corrupt (size exceeds "
1153 no_data_attr_special_case
:
1154 /* We are done with the mft record, so we release it. */
1155 ntfs_attr_put_search_ctx(ctx
);
1156 unmap_mft_record(ni
);
1159 /* Setup the operations for this inode. */
1160 vi
->i_op
= &ntfs_file_inode_ops
;
1161 vi
->i_fop
= &ntfs_file_ops
;
1163 if (NInoMstProtected(ni
))
1164 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1166 vi
->i_mapping
->a_ops
= &ntfs_aops
;
1168 * The number of 512-byte blocks used on disk (for stat). This is in so
1169 * far inaccurate as it doesn't account for any named streams or other
1170 * special non-resident attributes, but that is how Windows works, too,
1171 * so we are at least consistent with Windows, if not entirely
1172 * consistent with the Linux Way. Doing it the Linux Way would cause a
1173 * significant slowdown as it would involve iterating over all
1174 * attributes in the mft record and adding the allocated/compressed
1175 * sizes of all non-resident attributes present to give us the Linux
1176 * correct size that should go into i_blocks (after division by 512).
1178 if (S_ISREG(vi
->i_mode
) && (NInoCompressed(ni
) || NInoSparse(ni
)))
1179 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1181 vi
->i_blocks
= ni
->allocated_size
>> 9;
1182 ntfs_debug("Done.");
1190 ntfs_attr_put_search_ctx(ctx
);
1192 unmap_mft_record(ni
);
1194 ntfs_error(vol
->sb
, "Failed with error code %i. Marking corrupt "
1195 "inode 0x%lx as bad. Run chkdsk.", err
, vi
->i_ino
);
1197 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1203 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1204 * @base_vi: base inode
1205 * @vi: attribute inode to read
1207 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1208 * attribute inode described by @vi into memory from the base mft record
1209 * described by @base_ni.
1211 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1212 * reading and looks up the attribute described by @vi before setting up the
1213 * necessary fields in @vi as well as initializing the ntfs inode.
1215 * Q: What locks are held when the function is called?
1216 * A: i_state has I_NEW set, hence the inode is locked, also
1217 * i_count is set to 1, so it is not going to go away
1219 * Return 0 on success and -errno on error. In the error case, the inode will
1220 * have had make_bad_inode() executed on it.
1222 * Note this cannot be called for AT_INDEX_ALLOCATION.
1224 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
)
1226 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1227 ntfs_inode
*ni
, *base_ni
;
1230 ntfs_attr_search_ctx
*ctx
;
1233 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1235 ntfs_init_big_inode(vi
);
1238 base_ni
= NTFS_I(base_vi
);
1240 /* Just mirror the values from the base inode. */
1241 vi
->i_version
= base_vi
->i_version
;
1242 vi
->i_uid
= base_vi
->i_uid
;
1243 vi
->i_gid
= base_vi
->i_gid
;
1244 set_nlink(vi
, base_vi
->i_nlink
);
1245 vi
->i_mtime
= base_vi
->i_mtime
;
1246 vi
->i_ctime
= base_vi
->i_ctime
;
1247 vi
->i_atime
= base_vi
->i_atime
;
1248 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1250 /* Set inode type to zero but preserve permissions. */
1251 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1253 m
= map_mft_record(base_ni
);
1258 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1263 /* Find the attribute. */
1264 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1265 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1269 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1270 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1271 NInoSetCompressed(ni
);
1272 if ((ni
->type
!= AT_DATA
) || (ni
->type
== AT_DATA
&&
1274 ntfs_error(vi
->i_sb
, "Found compressed "
1275 "non-data or named data "
1276 "attribute. Please report "
1277 "you saw this message to "
1278 "linux-ntfs-dev@lists."
1282 if (vol
->cluster_size
> 4096) {
1283 ntfs_error(vi
->i_sb
, "Found compressed "
1284 "attribute but compression is "
1285 "disabled due to cluster size "
1290 if ((a
->flags
& ATTR_COMPRESSION_MASK
) !=
1291 ATTR_IS_COMPRESSED
) {
1292 ntfs_error(vi
->i_sb
, "Found unknown "
1293 "compression method.");
1298 * The compressed/sparse flag set in an index root just means
1299 * to compress all files.
1301 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1302 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1303 "but the attribute is %s. Please "
1304 "report you saw this message to "
1305 "linux-ntfs-dev@lists.sourceforge.net",
1306 NInoCompressed(ni
) ? "compressed" :
1310 if (a
->flags
& ATTR_IS_SPARSE
)
1313 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1314 if (NInoCompressed(ni
)) {
1315 ntfs_error(vi
->i_sb
, "Found encrypted and compressed "
1320 * The encryption flag set in an index root just means to
1321 * encrypt all files.
1323 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1324 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1325 "but the attribute is encrypted. "
1326 "Please report you saw this message "
1327 "to linux-ntfs-dev@lists.sourceforge."
1331 if (ni
->type
!= AT_DATA
) {
1332 ntfs_error(vi
->i_sb
, "Found encrypted non-data "
1336 NInoSetEncrypted(ni
);
1338 if (!a
->non_resident
) {
1339 /* Ensure the attribute name is placed before the value. */
1340 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1341 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1342 ntfs_error(vol
->sb
, "Attribute name is placed after "
1343 "the attribute value.");
1346 if (NInoMstProtected(ni
)) {
1347 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1348 "but the attribute is resident. "
1349 "Please report you saw this message to "
1350 "linux-ntfs-dev@lists.sourceforge.net");
1353 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1354 a
->data
.resident
.value_length
);
1355 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1356 le16_to_cpu(a
->data
.resident
.value_offset
);
1357 if (vi
->i_size
> ni
->allocated_size
) {
1358 ntfs_error(vi
->i_sb
, "Resident attribute is corrupt "
1359 "(size exceeds allocation).");
1363 NInoSetNonResident(ni
);
1365 * Ensure the attribute name is placed before the mapping pairs
1368 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1370 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1371 ntfs_error(vol
->sb
, "Attribute name is placed after "
1372 "the mapping pairs array.");
1375 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1376 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1377 compression_unit
!= 4) {
1378 ntfs_error(vi
->i_sb
, "Found non-standard "
1379 "compression unit (%u instead "
1380 "of 4). Cannot handle this.",
1381 a
->data
.non_resident
.
1386 if (a
->data
.non_resident
.compression_unit
) {
1387 ni
->itype
.compressed
.block_size
= 1U <<
1388 (a
->data
.non_resident
.
1390 vol
->cluster_size_bits
);
1391 ni
->itype
.compressed
.block_size_bits
=
1392 ffs(ni
->itype
.compressed
.
1394 ni
->itype
.compressed
.block_clusters
= 1U <<
1395 a
->data
.non_resident
.
1398 ni
->itype
.compressed
.block_size
= 0;
1399 ni
->itype
.compressed
.block_size_bits
= 0;
1400 ni
->itype
.compressed
.block_clusters
= 0;
1402 ni
->itype
.compressed
.size
= sle64_to_cpu(
1403 a
->data
.non_resident
.compressed_size
);
1405 if (a
->data
.non_resident
.lowest_vcn
) {
1406 ntfs_error(vi
->i_sb
, "First extent of attribute has "
1407 "non-zero lowest_vcn.");
1410 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1411 ni
->initialized_size
= sle64_to_cpu(
1412 a
->data
.non_resident
.initialized_size
);
1413 ni
->allocated_size
= sle64_to_cpu(
1414 a
->data
.non_resident
.allocated_size
);
1416 if (NInoMstProtected(ni
))
1417 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1419 vi
->i_mapping
->a_ops
= &ntfs_aops
;
1420 if ((NInoCompressed(ni
) || NInoSparse(ni
)) && ni
->type
!= AT_INDEX_ROOT
)
1421 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1423 vi
->i_blocks
= ni
->allocated_size
>> 9;
1425 * Make sure the base inode does not go away and attach it to the
1429 ni
->ext
.base_ntfs_ino
= base_ni
;
1430 ni
->nr_extents
= -1;
1432 ntfs_attr_put_search_ctx(ctx
);
1433 unmap_mft_record(base_ni
);
1435 ntfs_debug("Done.");
1442 ntfs_attr_put_search_ctx(ctx
);
1443 unmap_mft_record(base_ni
);
1445 ntfs_error(vol
->sb
, "Failed with error code %i while reading attribute "
1446 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1447 "Marking corrupt inode and base inode 0x%lx as bad. "
1448 "Run chkdsk.", err
, vi
->i_ino
, ni
->type
, ni
->name_len
,
1457 * ntfs_read_locked_index_inode - read an index inode from its base inode
1458 * @base_vi: base inode
1459 * @vi: index inode to read
1461 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1462 * index inode described by @vi into memory from the base mft record described
1465 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1466 * reading and looks up the attributes relating to the index described by @vi
1467 * before setting up the necessary fields in @vi as well as initializing the
1470 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1471 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1472 * are setup like directory inodes since directories are a special case of
1473 * indices ao they need to be treated in much the same way. Most importantly,
1474 * for small indices the index allocation attribute might not actually exist.
1475 * However, the index root attribute always exists but this does not need to
1476 * have an inode associated with it and this is why we define a new inode type
1477 * index. Also, like for directories, we need to have an attribute inode for
1478 * the bitmap attribute corresponding to the index allocation attribute and we
1479 * can store this in the appropriate field of the inode, just like we do for
1480 * normal directory inodes.
1482 * Q: What locks are held when the function is called?
1483 * A: i_state has I_NEW set, hence the inode is locked, also
1484 * i_count is set to 1, so it is not going to go away
1486 * Return 0 on success and -errno on error. In the error case, the inode will
1487 * have had make_bad_inode() executed on it.
1489 static int ntfs_read_locked_index_inode(struct inode
*base_vi
, struct inode
*vi
)
1492 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1493 ntfs_inode
*ni
, *base_ni
, *bni
;
1497 ntfs_attr_search_ctx
*ctx
;
1499 u8
*ir_end
, *index_end
;
1502 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1503 ntfs_init_big_inode(vi
);
1505 base_ni
= NTFS_I(base_vi
);
1506 /* Just mirror the values from the base inode. */
1507 vi
->i_version
= base_vi
->i_version
;
1508 vi
->i_uid
= base_vi
->i_uid
;
1509 vi
->i_gid
= base_vi
->i_gid
;
1510 set_nlink(vi
, base_vi
->i_nlink
);
1511 vi
->i_mtime
= base_vi
->i_mtime
;
1512 vi
->i_ctime
= base_vi
->i_ctime
;
1513 vi
->i_atime
= base_vi
->i_atime
;
1514 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1515 /* Set inode type to zero but preserve permissions. */
1516 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1517 /* Map the mft record for the base inode. */
1518 m
= map_mft_record(base_ni
);
1523 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1528 /* Find the index root attribute. */
1529 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, ni
->name
, ni
->name_len
,
1530 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1531 if (unlikely(err
)) {
1533 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
1538 /* Set up the state. */
1539 if (unlikely(a
->non_resident
)) {
1540 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not resident.");
1543 /* Ensure the attribute name is placed before the value. */
1544 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1545 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1546 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is placed "
1547 "after the attribute value.");
1551 * Compressed/encrypted/sparse index root is not allowed, except for
1552 * directories of course but those are not dealt with here.
1554 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_ENCRYPTED
|
1556 ntfs_error(vi
->i_sb
, "Found compressed/encrypted/sparse index "
1560 ir
= (INDEX_ROOT
*)((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
));
1561 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
1562 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1563 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is corrupt.");
1566 index_end
= (u8
*)&ir
->index
+ le32_to_cpu(ir
->index
.index_length
);
1567 if (index_end
> ir_end
) {
1568 ntfs_error(vi
->i_sb
, "Index is corrupt.");
1572 ntfs_error(vi
->i_sb
, "Index type is not 0 (type is 0x%x).",
1573 le32_to_cpu(ir
->type
));
1576 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
1577 ntfs_debug("Index collation rule is 0x%x.",
1578 le32_to_cpu(ir
->collation_rule
));
1579 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
1580 if (!is_power_of_2(ni
->itype
.index
.block_size
)) {
1581 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a power of "
1582 "two.", ni
->itype
.index
.block_size
);
1585 if (ni
->itype
.index
.block_size
> PAGE_CACHE_SIZE
) {
1586 ntfs_error(vi
->i_sb
, "Index block size (%u) > PAGE_CACHE_SIZE "
1587 "(%ld) is not supported. Sorry.",
1588 ni
->itype
.index
.block_size
, PAGE_CACHE_SIZE
);
1592 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
1593 ntfs_error(vi
->i_sb
, "Index block size (%u) < NTFS_BLOCK_SIZE "
1594 "(%i) is not supported. Sorry.",
1595 ni
->itype
.index
.block_size
, NTFS_BLOCK_SIZE
);
1599 ni
->itype
.index
.block_size_bits
= ffs(ni
->itype
.index
.block_size
) - 1;
1600 /* Determine the size of a vcn in the index. */
1601 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
1602 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
1603 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
1605 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
1606 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
1608 /* Check for presence of index allocation attribute. */
1609 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
1610 /* No index allocation. */
1611 vi
->i_size
= ni
->initialized_size
= ni
->allocated_size
= 0;
1612 /* We are done with the mft record, so we release it. */
1613 ntfs_attr_put_search_ctx(ctx
);
1614 unmap_mft_record(base_ni
);
1617 goto skip_large_index_stuff
;
1618 } /* LARGE_INDEX: Index allocation present. Setup state. */
1619 NInoSetIndexAllocPresent(ni
);
1620 /* Find index allocation attribute. */
1621 ntfs_attr_reinit_search_ctx(ctx
);
1622 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, ni
->name
, ni
->name_len
,
1623 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1624 if (unlikely(err
)) {
1626 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1627 "not present but $INDEX_ROOT "
1628 "indicated it is.");
1630 ntfs_error(vi
->i_sb
, "Failed to lookup "
1631 "$INDEX_ALLOCATION attribute.");
1635 if (!a
->non_resident
) {
1636 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1641 * Ensure the attribute name is placed before the mapping pairs array.
1643 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1645 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1646 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name is "
1647 "placed after the mapping pairs array.");
1650 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1651 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1655 if (a
->flags
& ATTR_IS_SPARSE
) {
1656 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is sparse.");
1659 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1660 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1664 if (a
->data
.non_resident
.lowest_vcn
) {
1665 ntfs_error(vi
->i_sb
, "First extent of $INDEX_ALLOCATION "
1666 "attribute has non zero lowest_vcn.");
1669 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1670 ni
->initialized_size
= sle64_to_cpu(
1671 a
->data
.non_resident
.initialized_size
);
1672 ni
->allocated_size
= sle64_to_cpu(a
->data
.non_resident
.allocated_size
);
1674 * We are done with the mft record, so we release it. Otherwise
1675 * we would deadlock in ntfs_attr_iget().
1677 ntfs_attr_put_search_ctx(ctx
);
1678 unmap_mft_record(base_ni
);
1681 /* Get the index bitmap attribute inode. */
1682 bvi
= ntfs_attr_iget(base_vi
, AT_BITMAP
, ni
->name
, ni
->name_len
);
1684 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
1689 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
1691 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed and/or "
1692 "encrypted and/or sparse.");
1693 goto iput_unm_err_out
;
1695 /* Consistency check bitmap size vs. index allocation size. */
1696 bvi_size
= i_size_read(bvi
);
1697 if ((bvi_size
<< 3) < (vi
->i_size
>> ni
->itype
.index
.block_size_bits
)) {
1698 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) for "
1699 "index allocation (0x%llx).", bvi_size
<< 3,
1701 goto iput_unm_err_out
;
1704 skip_large_index_stuff
:
1705 /* Setup the operations for this index inode. */
1708 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1709 vi
->i_blocks
= ni
->allocated_size
>> 9;
1711 * Make sure the base inode doesn't go away and attach it to the
1715 ni
->ext
.base_ntfs_ino
= base_ni
;
1716 ni
->nr_extents
= -1;
1718 ntfs_debug("Done.");
1726 ntfs_attr_put_search_ctx(ctx
);
1728 unmap_mft_record(base_ni
);
1730 ntfs_error(vi
->i_sb
, "Failed with error code %i while reading index "
1731 "inode (mft_no 0x%lx, name_len %i.", err
, vi
->i_ino
,
1734 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1740 * The MFT inode has special locking, so teach the lock validator
1741 * about this by splitting off the locking rules of the MFT from
1742 * the locking rules of other inodes. The MFT inode can never be
1743 * accessed from the VFS side (or even internally), only by the
1744 * map_mft functions.
1746 static struct lock_class_key mft_ni_runlist_lock_key
, mft_ni_mrec_lock_key
;
1749 * ntfs_read_inode_mount - special read_inode for mount time use only
1750 * @vi: inode to read
1752 * Read inode FILE_MFT at mount time, only called with super_block lock
1753 * held from within the read_super() code path.
1755 * This function exists because when it is called the page cache for $MFT/$DATA
1756 * is not initialized and hence we cannot get at the contents of mft records
1757 * by calling map_mft_record*().
1759 * Further it needs to cope with the circular references problem, i.e. cannot
1760 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1761 * we do not know where the other extent mft records are yet and again, because
1762 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1763 * attribute list is actually present in $MFT inode.
1765 * We solve these problems by starting with the $DATA attribute before anything
1766 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1767 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1768 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1769 * sufficient information for the next step to complete.
1771 * This should work but there are two possible pit falls (see inline comments
1772 * below), but only time will tell if they are real pits or just smoke...
1774 int ntfs_read_inode_mount(struct inode
*vi
)
1776 VCN next_vcn
, last_vcn
, highest_vcn
;
1778 struct super_block
*sb
= vi
->i_sb
;
1779 ntfs_volume
*vol
= NTFS_SB(sb
);
1780 struct buffer_head
*bh
;
1782 MFT_RECORD
*m
= NULL
;
1784 ntfs_attr_search_ctx
*ctx
;
1785 unsigned int i
, nr_blocks
;
1788 ntfs_debug("Entering.");
1790 /* Initialize the ntfs specific part of @vi. */
1791 ntfs_init_big_inode(vi
);
1795 /* Setup the data attribute. It is special as it is mst protected. */
1796 NInoSetNonResident(ni
);
1797 NInoSetMstProtected(ni
);
1798 NInoSetSparseDisabled(ni
);
1803 * This sets up our little cheat allowing us to reuse the async read io
1804 * completion handler for directories.
1806 ni
->itype
.index
.block_size
= vol
->mft_record_size
;
1807 ni
->itype
.index
.block_size_bits
= vol
->mft_record_size_bits
;
1809 /* Very important! Needed to be able to call map_mft_record*(). */
1812 /* Allocate enough memory to read the first mft record. */
1813 if (vol
->mft_record_size
> 64 * 1024) {
1814 ntfs_error(sb
, "Unsupported mft record size %i (max 64kiB).",
1815 vol
->mft_record_size
);
1818 i
= vol
->mft_record_size
;
1819 if (i
< sb
->s_blocksize
)
1820 i
= sb
->s_blocksize
;
1821 m
= (MFT_RECORD
*)ntfs_malloc_nofs(i
);
1823 ntfs_error(sb
, "Failed to allocate buffer for $MFT record 0.");
1827 /* Determine the first block of the $MFT/$DATA attribute. */
1828 block
= vol
->mft_lcn
<< vol
->cluster_size_bits
>>
1829 sb
->s_blocksize_bits
;
1830 nr_blocks
= vol
->mft_record_size
>> sb
->s_blocksize_bits
;
1834 /* Load $MFT/$DATA's first mft record. */
1835 for (i
= 0; i
< nr_blocks
; i
++) {
1836 bh
= sb_bread(sb
, block
++);
1838 ntfs_error(sb
, "Device read failed.");
1841 memcpy((char*)m
+ (i
<< sb
->s_blocksize_bits
), bh
->b_data
,
1846 /* Apply the mst fixups. */
1847 if (post_read_mst_fixup((NTFS_RECORD
*)m
, vol
->mft_record_size
)) {
1848 /* FIXME: Try to use the $MFTMirr now. */
1849 ntfs_error(sb
, "MST fixup failed. $MFT is corrupt.");
1853 /* Need this to sanity check attribute list references to $MFT. */
1854 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
1856 /* Provides readpage() and sync_page() for map_mft_record(). */
1857 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1859 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
1865 /* Find the attribute list attribute if present. */
1866 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
1868 if (unlikely(err
!= -ENOENT
)) {
1869 ntfs_error(sb
, "Failed to lookup attribute list "
1870 "attribute. You should run chkdsk.");
1873 } else /* if (!err) */ {
1874 ATTR_LIST_ENTRY
*al_entry
, *next_al_entry
;
1876 static const char *es
= " Not allowed. $MFT is corrupt. "
1877 "You should run chkdsk.";
1879 ntfs_debug("Attribute list attribute found in $MFT.");
1880 NInoSetAttrList(ni
);
1882 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1883 ntfs_error(sb
, "Attribute list attribute is "
1884 "compressed.%s", es
);
1887 if (a
->flags
& ATTR_IS_ENCRYPTED
||
1888 a
->flags
& ATTR_IS_SPARSE
) {
1889 if (a
->non_resident
) {
1890 ntfs_error(sb
, "Non-resident attribute list "
1891 "attribute is encrypted/"
1895 ntfs_warning(sb
, "Resident attribute list attribute "
1896 "in $MFT system file is marked "
1897 "encrypted/sparse which is not true. "
1898 "However, Windows allows this and "
1899 "chkdsk does not detect or correct it "
1900 "so we will just ignore the invalid "
1901 "flags and pretend they are not set.");
1903 /* Now allocate memory for the attribute list. */
1904 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
1905 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
1906 if (!ni
->attr_list
) {
1907 ntfs_error(sb
, "Not enough memory to allocate buffer "
1908 "for attribute list.");
1911 if (a
->non_resident
) {
1912 NInoSetAttrListNonResident(ni
);
1913 if (a
->data
.non_resident
.lowest_vcn
) {
1914 ntfs_error(sb
, "Attribute list has non zero "
1915 "lowest_vcn. $MFT is corrupt. "
1916 "You should run chkdsk.");
1919 /* Setup the runlist. */
1920 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
1922 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
1923 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
1924 ni
->attr_list_rl
.rl
= NULL
;
1925 ntfs_error(sb
, "Mapping pairs decompression "
1926 "failed with error code %i.",
1930 /* Now load the attribute list. */
1931 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
1932 ni
->attr_list
, ni
->attr_list_size
,
1933 sle64_to_cpu(a
->data
.
1934 non_resident
.initialized_size
)))) {
1935 ntfs_error(sb
, "Failed to load attribute list "
1936 "attribute with error code %i.",
1940 } else /* if (!ctx.attr->non_resident) */ {
1941 if ((u8
*)a
+ le16_to_cpu(
1942 a
->data
.resident
.value_offset
) +
1944 a
->data
.resident
.value_length
) >
1945 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1946 ntfs_error(sb
, "Corrupt attribute list "
1950 /* Now copy the attribute list. */
1951 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
1952 a
->data
.resident
.value_offset
),
1954 a
->data
.resident
.value_length
));
1956 /* The attribute list is now setup in memory. */
1958 * FIXME: I don't know if this case is actually possible.
1959 * According to logic it is not possible but I have seen too
1960 * many weird things in MS software to rely on logic... Thus we
1961 * perform a manual search and make sure the first $MFT/$DATA
1962 * extent is in the base inode. If it is not we abort with an
1963 * error and if we ever see a report of this error we will need
1964 * to do some magic in order to have the necessary mft record
1965 * loaded and in the right place in the page cache. But
1966 * hopefully logic will prevail and this never happens...
1968 al_entry
= (ATTR_LIST_ENTRY
*)ni
->attr_list
;
1969 al_end
= (u8
*)al_entry
+ ni
->attr_list_size
;
1970 for (;; al_entry
= next_al_entry
) {
1971 /* Out of bounds check. */
1972 if ((u8
*)al_entry
< ni
->attr_list
||
1973 (u8
*)al_entry
> al_end
)
1974 goto em_put_err_out
;
1975 /* Catch the end of the attribute list. */
1976 if ((u8
*)al_entry
== al_end
)
1977 goto em_put_err_out
;
1978 if (!al_entry
->length
)
1979 goto em_put_err_out
;
1980 if ((u8
*)al_entry
+ 6 > al_end
|| (u8
*)al_entry
+
1981 le16_to_cpu(al_entry
->length
) > al_end
)
1982 goto em_put_err_out
;
1983 next_al_entry
= (ATTR_LIST_ENTRY
*)((u8
*)al_entry
+
1984 le16_to_cpu(al_entry
->length
));
1985 if (le32_to_cpu(al_entry
->type
) > le32_to_cpu(AT_DATA
))
1986 goto em_put_err_out
;
1987 if (AT_DATA
!= al_entry
->type
)
1989 /* We want an unnamed attribute. */
1990 if (al_entry
->name_length
)
1991 goto em_put_err_out
;
1992 /* Want the first entry, i.e. lowest_vcn == 0. */
1993 if (al_entry
->lowest_vcn
)
1994 goto em_put_err_out
;
1995 /* First entry has to be in the base mft record. */
1996 if (MREF_LE(al_entry
->mft_reference
) != vi
->i_ino
) {
1997 /* MFT references do not match, logic fails. */
1998 ntfs_error(sb
, "BUG: The first $DATA extent "
1999 "of $MFT is not in the base "
2000 "mft record. Please report "
2001 "you saw this message to "
2002 "linux-ntfs-dev@lists."
2006 /* Sequence numbers must match. */
2007 if (MSEQNO_LE(al_entry
->mft_reference
) !=
2009 goto em_put_err_out
;
2010 /* Got it. All is ok. We can stop now. */
2016 ntfs_attr_reinit_search_ctx(ctx
);
2018 /* Now load all attribute extents. */
2020 next_vcn
= last_vcn
= highest_vcn
= 0;
2021 while (!(err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, next_vcn
, NULL
, 0,
2023 runlist_element
*nrl
;
2025 /* Cache the current attribute. */
2027 /* $MFT must be non-resident. */
2028 if (!a
->non_resident
) {
2029 ntfs_error(sb
, "$MFT must be non-resident but a "
2030 "resident extent was found. $MFT is "
2031 "corrupt. Run chkdsk.");
2034 /* $MFT must be uncompressed and unencrypted. */
2035 if (a
->flags
& ATTR_COMPRESSION_MASK
||
2036 a
->flags
& ATTR_IS_ENCRYPTED
||
2037 a
->flags
& ATTR_IS_SPARSE
) {
2038 ntfs_error(sb
, "$MFT must be uncompressed, "
2039 "non-sparse, and unencrypted but a "
2040 "compressed/sparse/encrypted extent "
2041 "was found. $MFT is corrupt. Run "
2046 * Decompress the mapping pairs array of this extent and merge
2047 * the result into the existing runlist. No need for locking
2048 * as we have exclusive access to the inode at this time and we
2049 * are a mount in progress task, too.
2051 nrl
= ntfs_mapping_pairs_decompress(vol
, a
, ni
->runlist
.rl
);
2053 ntfs_error(sb
, "ntfs_mapping_pairs_decompress() "
2054 "failed with error code %ld. $MFT is "
2055 "corrupt.", PTR_ERR(nrl
));
2058 ni
->runlist
.rl
= nrl
;
2060 /* Are we in the first extent? */
2062 if (a
->data
.non_resident
.lowest_vcn
) {
2063 ntfs_error(sb
, "First extent of $DATA "
2064 "attribute has non zero "
2065 "lowest_vcn. $MFT is corrupt. "
2066 "You should run chkdsk.");
2069 /* Get the last vcn in the $DATA attribute. */
2070 last_vcn
= sle64_to_cpu(
2071 a
->data
.non_resident
.allocated_size
)
2072 >> vol
->cluster_size_bits
;
2073 /* Fill in the inode size. */
2074 vi
->i_size
= sle64_to_cpu(
2075 a
->data
.non_resident
.data_size
);
2076 ni
->initialized_size
= sle64_to_cpu(
2077 a
->data
.non_resident
.initialized_size
);
2078 ni
->allocated_size
= sle64_to_cpu(
2079 a
->data
.non_resident
.allocated_size
);
2081 * Verify the number of mft records does not exceed
2084 if ((vi
->i_size
>> vol
->mft_record_size_bits
) >=
2086 ntfs_error(sb
, "$MFT is too big! Aborting.");
2090 * We have got the first extent of the runlist for
2091 * $MFT which means it is now relatively safe to call
2092 * the normal ntfs_read_inode() function.
2093 * Complete reading the inode, this will actually
2094 * re-read the mft record for $MFT, this time entering
2095 * it into the page cache with which we complete the
2096 * kick start of the volume. It should be safe to do
2097 * this now as the first extent of $MFT/$DATA is
2098 * already known and we would hope that we don't need
2099 * further extents in order to find the other
2100 * attributes belonging to $MFT. Only time will tell if
2101 * this is really the case. If not we will have to play
2102 * magic at this point, possibly duplicating a lot of
2103 * ntfs_read_inode() at this point. We will need to
2104 * ensure we do enough of its work to be able to call
2105 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2106 * hope this never happens...
2108 ntfs_read_locked_inode(vi
);
2109 if (is_bad_inode(vi
)) {
2110 ntfs_error(sb
, "ntfs_read_inode() of $MFT "
2111 "failed. BUG or corrupt $MFT. "
2112 "Run chkdsk and if no errors "
2113 "are found, please report you "
2114 "saw this message to "
2115 "linux-ntfs-dev@lists."
2117 ntfs_attr_put_search_ctx(ctx
);
2118 /* Revert to the safe super operations. */
2123 * Re-initialize some specifics about $MFT's inode as
2124 * ntfs_read_inode() will have set up the default ones.
2126 /* Set uid and gid to root. */
2127 vi
->i_uid
= GLOBAL_ROOT_UID
;
2128 vi
->i_gid
= GLOBAL_ROOT_GID
;
2129 /* Regular file. No access for anyone. */
2130 vi
->i_mode
= S_IFREG
;
2131 /* No VFS initiated operations allowed for $MFT. */
2132 vi
->i_op
= &ntfs_empty_inode_ops
;
2133 vi
->i_fop
= &ntfs_empty_file_ops
;
2136 /* Get the lowest vcn for the next extent. */
2137 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2138 next_vcn
= highest_vcn
+ 1;
2140 /* Only one extent or error, which we catch below. */
2144 /* Avoid endless loops due to corruption. */
2145 if (next_vcn
< sle64_to_cpu(
2146 a
->data
.non_resident
.lowest_vcn
)) {
2147 ntfs_error(sb
, "$MFT has corrupt attribute list "
2148 "attribute. Run chkdsk.");
2152 if (err
!= -ENOENT
) {
2153 ntfs_error(sb
, "Failed to lookup $MFT/$DATA attribute extent. "
2154 "$MFT is corrupt. Run chkdsk.");
2158 ntfs_error(sb
, "$MFT/$DATA attribute not found. $MFT is "
2159 "corrupt. Run chkdsk.");
2162 if (highest_vcn
&& highest_vcn
!= last_vcn
- 1) {
2163 ntfs_error(sb
, "Failed to load the complete runlist for "
2164 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2166 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2167 (unsigned long long)highest_vcn
,
2168 (unsigned long long)last_vcn
- 1);
2171 ntfs_attr_put_search_ctx(ctx
);
2172 ntfs_debug("Done.");
2176 * Split the locking rules of the MFT inode from the
2177 * locking rules of other inodes:
2179 lockdep_set_class(&ni
->runlist
.lock
, &mft_ni_runlist_lock_key
);
2180 lockdep_set_class(&ni
->mrec_lock
, &mft_ni_mrec_lock_key
);
2185 ntfs_error(sb
, "Couldn't find first extent of $DATA attribute in "
2186 "attribute list. $MFT is corrupt. Run chkdsk.");
2188 ntfs_attr_put_search_ctx(ctx
);
2190 ntfs_error(sb
, "Failed. Marking inode as bad.");
2196 static void __ntfs_clear_inode(ntfs_inode
*ni
)
2198 /* Free all alocated memory. */
2199 down_write(&ni
->runlist
.lock
);
2200 if (ni
->runlist
.rl
) {
2201 ntfs_free(ni
->runlist
.rl
);
2202 ni
->runlist
.rl
= NULL
;
2204 up_write(&ni
->runlist
.lock
);
2206 if (ni
->attr_list
) {
2207 ntfs_free(ni
->attr_list
);
2208 ni
->attr_list
= NULL
;
2211 down_write(&ni
->attr_list_rl
.lock
);
2212 if (ni
->attr_list_rl
.rl
) {
2213 ntfs_free(ni
->attr_list_rl
.rl
);
2214 ni
->attr_list_rl
.rl
= NULL
;
2216 up_write(&ni
->attr_list_rl
.lock
);
2218 if (ni
->name_len
&& ni
->name
!= I30
) {
2225 void ntfs_clear_extent_inode(ntfs_inode
*ni
)
2227 ntfs_debug("Entering for inode 0x%lx.", ni
->mft_no
);
2229 BUG_ON(NInoAttr(ni
));
2230 BUG_ON(ni
->nr_extents
!= -1);
2233 if (NInoDirty(ni
)) {
2234 if (!is_bad_inode(VFS_I(ni
->ext
.base_ntfs_ino
)))
2235 ntfs_error(ni
->vol
->sb
, "Clearing dirty extent inode! "
2236 "Losing data! This is a BUG!!!");
2237 // FIXME: Do something!!!
2239 #endif /* NTFS_RW */
2241 __ntfs_clear_inode(ni
);
2244 ntfs_destroy_extent_inode(ni
);
2248 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2249 * @vi: vfs inode pending annihilation
2251 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2252 * is called, which deallocates all memory belonging to the NTFS specific part
2253 * of the inode and returns.
2255 * If the MFT record is dirty, we commit it before doing anything else.
2257 void ntfs_evict_big_inode(struct inode
*vi
)
2259 ntfs_inode
*ni
= NTFS_I(vi
);
2261 truncate_inode_pages(&vi
->i_data
, 0);
2265 if (NInoDirty(ni
)) {
2266 bool was_bad
= (is_bad_inode(vi
));
2268 /* Committing the inode also commits all extent inodes. */
2269 ntfs_commit_inode(vi
);
2271 if (!was_bad
&& (is_bad_inode(vi
) || NInoDirty(ni
))) {
2272 ntfs_error(vi
->i_sb
, "Failed to commit dirty inode "
2273 "0x%lx. Losing data!", vi
->i_ino
);
2274 // FIXME: Do something!!!
2277 #endif /* NTFS_RW */
2279 /* No need to lock at this stage as no one else has a reference. */
2280 if (ni
->nr_extents
> 0) {
2283 for (i
= 0; i
< ni
->nr_extents
; i
++)
2284 ntfs_clear_extent_inode(ni
->ext
.extent_ntfs_inos
[i
]);
2285 kfree(ni
->ext
.extent_ntfs_inos
);
2288 __ntfs_clear_inode(ni
);
2291 /* Release the base inode if we are holding it. */
2292 if (ni
->nr_extents
== -1) {
2293 iput(VFS_I(ni
->ext
.base_ntfs_ino
));
2295 ni
->ext
.base_ntfs_ino
= NULL
;
2302 * ntfs_show_options - show mount options in /proc/mounts
2303 * @sf: seq_file in which to write our mount options
2304 * @root: root of the mounted tree whose mount options to display
2306 * Called by the VFS once for each mounted ntfs volume when someone reads
2307 * /proc/mounts in order to display the NTFS specific mount options of each
2308 * mount. The mount options of fs specified by @root are written to the seq file
2309 * @sf and success is returned.
2311 int ntfs_show_options(struct seq_file
*sf
, struct dentry
*root
)
2313 ntfs_volume
*vol
= NTFS_SB(root
->d_sb
);
2316 seq_printf(sf
, ",uid=%i", from_kuid_munged(&init_user_ns
, vol
->uid
));
2317 seq_printf(sf
, ",gid=%i", from_kgid_munged(&init_user_ns
, vol
->gid
));
2318 if (vol
->fmask
== vol
->dmask
)
2319 seq_printf(sf
, ",umask=0%o", vol
->fmask
);
2321 seq_printf(sf
, ",fmask=0%o", vol
->fmask
);
2322 seq_printf(sf
, ",dmask=0%o", vol
->dmask
);
2324 seq_printf(sf
, ",nls=%s", vol
->nls_map
->charset
);
2325 if (NVolCaseSensitive(vol
))
2326 seq_printf(sf
, ",case_sensitive");
2327 if (NVolShowSystemFiles(vol
))
2328 seq_printf(sf
, ",show_sys_files");
2329 if (!NVolSparseEnabled(vol
))
2330 seq_printf(sf
, ",disable_sparse");
2331 for (i
= 0; on_errors_arr
[i
].val
; i
++) {
2332 if (on_errors_arr
[i
].val
& vol
->on_errors
)
2333 seq_printf(sf
, ",errors=%s", on_errors_arr
[i
].str
);
2335 seq_printf(sf
, ",mft_zone_multiplier=%i", vol
->mft_zone_multiplier
);
2341 static const char *es
= " Leaving inconsistent metadata. Unmount and run "
2345 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2346 * @vi: inode for which the i_size was changed
2348 * We only support i_size changes for normal files at present, i.e. not
2349 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2352 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2353 * that the change is allowed.
2355 * This implies for us that @vi is a file inode rather than a directory, index,
2356 * or attribute inode as well as that @vi is a base inode.
2358 * Returns 0 on success or -errno on error.
2360 * Called with ->i_mutex held.
2362 int ntfs_truncate(struct inode
*vi
)
2364 s64 new_size
, old_size
, nr_freed
, new_alloc_size
, old_alloc_size
;
2366 unsigned long flags
;
2367 ntfs_inode
*base_ni
, *ni
= NTFS_I(vi
);
2368 ntfs_volume
*vol
= ni
->vol
;
2369 ntfs_attr_search_ctx
*ctx
;
2372 const char *te
= " Leaving file length out of sync with i_size.";
2373 int err
, mp_size
, size_change
, alloc_change
;
2376 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
2377 BUG_ON(NInoAttr(ni
));
2378 BUG_ON(S_ISDIR(vi
->i_mode
));
2379 BUG_ON(NInoMstProtected(ni
));
2380 BUG_ON(ni
->nr_extents
< 0);
2383 * Lock the runlist for writing and map the mft record to ensure it is
2384 * safe to mess with the attribute runlist and sizes.
2386 down_write(&ni
->runlist
.lock
);
2390 base_ni
= ni
->ext
.base_ntfs_ino
;
2391 m
= map_mft_record(base_ni
);
2394 ntfs_error(vi
->i_sb
, "Failed to map mft record for inode 0x%lx "
2395 "(error code %d).%s", vi
->i_ino
, err
, te
);
2400 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
2401 if (unlikely(!ctx
)) {
2402 ntfs_error(vi
->i_sb
, "Failed to allocate a search context for "
2403 "inode 0x%lx (not enough memory).%s",
2408 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
2409 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2410 if (unlikely(err
)) {
2411 if (err
== -ENOENT
) {
2412 ntfs_error(vi
->i_sb
, "Open attribute is missing from "
2413 "mft record. Inode 0x%lx is corrupt. "
2414 "Run chkdsk.%s", vi
->i_ino
, te
);
2417 ntfs_error(vi
->i_sb
, "Failed to lookup attribute in "
2418 "inode 0x%lx (error code %d).%s",
2419 vi
->i_ino
, err
, te
);
2425 * The i_size of the vfs inode is the new size for the attribute value.
2427 new_size
= i_size_read(vi
);
2428 /* The current size of the attribute value is the old size. */
2429 old_size
= ntfs_attr_size(a
);
2430 /* Calculate the new allocated size. */
2431 if (NInoNonResident(ni
))
2432 new_alloc_size
= (new_size
+ vol
->cluster_size
- 1) &
2433 ~(s64
)vol
->cluster_size_mask
;
2435 new_alloc_size
= (new_size
+ 7) & ~7;
2436 /* The current allocated size is the old allocated size. */
2437 read_lock_irqsave(&ni
->size_lock
, flags
);
2438 old_alloc_size
= ni
->allocated_size
;
2439 read_unlock_irqrestore(&ni
->size_lock
, flags
);
2441 * The change in the file size. This will be 0 if no change, >0 if the
2442 * size is growing, and <0 if the size is shrinking.
2445 if (new_size
- old_size
>= 0) {
2447 if (new_size
== old_size
)
2450 /* As above for the allocated size. */
2452 if (new_alloc_size
- old_alloc_size
>= 0) {
2454 if (new_alloc_size
== old_alloc_size
)
2458 * If neither the size nor the allocation are being changed there is
2461 if (!size_change
&& !alloc_change
)
2463 /* If the size is changing, check if new size is allowed in $AttrDef. */
2465 err
= ntfs_attr_size_bounds_check(vol
, ni
->type
, new_size
);
2466 if (unlikely(err
)) {
2467 if (err
== -ERANGE
) {
2468 ntfs_error(vol
->sb
, "Truncate would cause the "
2469 "inode 0x%lx to %simum size "
2470 "for its attribute type "
2471 "(0x%x). Aborting truncate.",
2473 new_size
> old_size
? "exceed "
2474 "the max" : "go under the min",
2475 le32_to_cpu(ni
->type
));
2478 ntfs_error(vol
->sb
, "Inode 0x%lx has unknown "
2479 "attribute type 0x%x. "
2480 "Aborting truncate.",
2482 le32_to_cpu(ni
->type
));
2485 /* Reset the vfs inode size to the old size. */
2486 i_size_write(vi
, old_size
);
2490 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2491 ntfs_warning(vi
->i_sb
, "Changes in inode size are not "
2492 "supported yet for %s files, ignoring.",
2493 NInoCompressed(ni
) ? "compressed" :
2498 if (a
->non_resident
)
2499 goto do_non_resident_truncate
;
2500 BUG_ON(NInoNonResident(ni
));
2501 /* Resize the attribute record to best fit the new attribute size. */
2502 if (new_size
< vol
->mft_record_size
&&
2503 !ntfs_resident_attr_value_resize(m
, a
, new_size
)) {
2504 /* The resize succeeded! */
2505 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2506 mark_mft_record_dirty(ctx
->ntfs_ino
);
2507 write_lock_irqsave(&ni
->size_lock
, flags
);
2508 /* Update the sizes in the ntfs inode and all is done. */
2509 ni
->allocated_size
= le32_to_cpu(a
->length
) -
2510 le16_to_cpu(a
->data
.resident
.value_offset
);
2512 * Note ntfs_resident_attr_value_resize() has already done any
2513 * necessary data clearing in the attribute record. When the
2514 * file is being shrunk vmtruncate() will already have cleared
2515 * the top part of the last partial page, i.e. since this is
2516 * the resident case this is the page with index 0. However,
2517 * when the file is being expanded, the page cache page data
2518 * between the old data_size, i.e. old_size, and the new_size
2519 * has not been zeroed. Fortunately, we do not need to zero it
2520 * either since on one hand it will either already be zero due
2521 * to both readpage and writepage clearing partial page data
2522 * beyond i_size in which case there is nothing to do or in the
2523 * case of the file being mmap()ped at the same time, POSIX
2524 * specifies that the behaviour is unspecified thus we do not
2525 * have to do anything. This means that in our implementation
2526 * in the rare case that the file is mmap()ped and a write
2527 * occurred into the mmap()ped region just beyond the file size
2528 * and writepage has not yet been called to write out the page
2529 * (which would clear the area beyond the file size) and we now
2530 * extend the file size to incorporate this dirty region
2531 * outside the file size, a write of the page would result in
2532 * this data being written to disk instead of being cleared.
2533 * Given both POSIX and the Linux mmap(2) man page specify that
2534 * this corner case is undefined, we choose to leave it like
2535 * that as this is much simpler for us as we cannot lock the
2536 * relevant page now since we are holding too many ntfs locks
2537 * which would result in a lock reversal deadlock.
2539 ni
->initialized_size
= new_size
;
2540 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2543 /* If the above resize failed, this must be an attribute extension. */
2544 BUG_ON(size_change
< 0);
2546 * We have to drop all the locks so we can call
2547 * ntfs_attr_make_non_resident(). This could be optimised by try-
2548 * locking the first page cache page and only if that fails dropping
2549 * the locks, locking the page, and redoing all the locking and
2550 * lookups. While this would be a huge optimisation, it is not worth
2551 * it as this is definitely a slow code path as it only ever can happen
2552 * once for any given file.
2554 ntfs_attr_put_search_ctx(ctx
);
2555 unmap_mft_record(base_ni
);
2556 up_write(&ni
->runlist
.lock
);
2558 * Not enough space in the mft record, try to make the attribute
2559 * non-resident and if successful restart the truncation process.
2561 err
= ntfs_attr_make_non_resident(ni
, old_size
);
2563 goto retry_truncate
;
2565 * Could not make non-resident. If this is due to this not being
2566 * permitted for this attribute type or there not being enough space,
2567 * try to make other attributes non-resident. Otherwise fail.
2569 if (unlikely(err
!= -EPERM
&& err
!= -ENOSPC
)) {
2570 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, attribute "
2571 "type 0x%x, because the conversion from "
2572 "resident to non-resident attribute failed "
2573 "with error code %i.", vi
->i_ino
,
2574 (unsigned)le32_to_cpu(ni
->type
), err
);
2579 /* TODO: Not implemented from here, abort. */
2581 ntfs_error(vol
->sb
, "Not enough space in the mft record/on "
2582 "disk for the non-resident attribute value. "
2583 "This case is not implemented yet.");
2584 else /* if (err == -EPERM) */
2585 ntfs_error(vol
->sb
, "This attribute type may not be "
2586 "non-resident. This case is not implemented "
2591 // TODO: Attempt to make other attributes non-resident.
2593 goto do_resident_extend
;
2595 * Both the attribute list attribute and the standard information
2596 * attribute must remain in the base inode. Thus, if this is one of
2597 * these attributes, we have to try to move other attributes out into
2598 * extent mft records instead.
2600 if (ni
->type
== AT_ATTRIBUTE_LIST
||
2601 ni
->type
== AT_STANDARD_INFORMATION
) {
2602 // TODO: Attempt to move other attributes into extent mft
2606 goto do_resident_extend
;
2609 // TODO: Attempt to move this attribute to an extent mft record, but
2610 // only if it is not already the only attribute in an mft record in
2611 // which case there would be nothing to gain.
2614 goto do_resident_extend
;
2615 /* There is nothing we can do to make enough space. )-: */
2618 do_non_resident_truncate
:
2619 BUG_ON(!NInoNonResident(ni
));
2620 if (alloc_change
< 0) {
2621 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2622 if (highest_vcn
> 0 &&
2623 old_alloc_size
>> vol
->cluster_size_bits
>
2626 * This attribute has multiple extents. Not yet
2629 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, "
2630 "attribute type 0x%x, because the "
2631 "attribute is highly fragmented (it "
2632 "consists of multiple extents) and "
2633 "this case is not implemented yet.",
2635 (unsigned)le32_to_cpu(ni
->type
));
2641 * If the size is shrinking, need to reduce the initialized_size and
2642 * the data_size before reducing the allocation.
2644 if (size_change
< 0) {
2646 * Make the valid size smaller (i_size is already up-to-date).
2648 write_lock_irqsave(&ni
->size_lock
, flags
);
2649 if (new_size
< ni
->initialized_size
) {
2650 ni
->initialized_size
= new_size
;
2651 a
->data
.non_resident
.initialized_size
=
2652 cpu_to_sle64(new_size
);
2654 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2655 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2656 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2657 mark_mft_record_dirty(ctx
->ntfs_ino
);
2658 /* If the allocated size is not changing, we are done. */
2662 * If the size is shrinking it makes no sense for the
2663 * allocation to be growing.
2665 BUG_ON(alloc_change
> 0);
2666 } else /* if (size_change >= 0) */ {
2668 * The file size is growing or staying the same but the
2669 * allocation can be shrinking, growing or staying the same.
2671 if (alloc_change
> 0) {
2673 * We need to extend the allocation and possibly update
2674 * the data size. If we are updating the data size,
2675 * since we are not touching the initialized_size we do
2676 * not need to worry about the actual data on disk.
2677 * And as far as the page cache is concerned, there
2678 * will be no pages beyond the old data size and any
2679 * partial region in the last page between the old and
2680 * new data size (or the end of the page if the new
2681 * data size is outside the page) does not need to be
2682 * modified as explained above for the resident
2683 * attribute truncate case. To do this, we simply drop
2684 * the locks we hold and leave all the work to our
2685 * friendly helper ntfs_attr_extend_allocation().
2687 ntfs_attr_put_search_ctx(ctx
);
2688 unmap_mft_record(base_ni
);
2689 up_write(&ni
->runlist
.lock
);
2690 err
= ntfs_attr_extend_allocation(ni
, new_size
,
2691 size_change
> 0 ? new_size
: -1, -1);
2693 * ntfs_attr_extend_allocation() will have done error
2701 /* alloc_change < 0 */
2702 /* Free the clusters. */
2703 nr_freed
= ntfs_cluster_free(ni
, new_alloc_size
>>
2704 vol
->cluster_size_bits
, -1, ctx
);
2707 if (unlikely(nr_freed
< 0)) {
2708 ntfs_error(vol
->sb
, "Failed to release cluster(s) (error code "
2709 "%lli). Unmount and run chkdsk to recover "
2710 "the lost cluster(s).", (long long)nr_freed
);
2714 /* Truncate the runlist. */
2715 err
= ntfs_rl_truncate_nolock(vol
, &ni
->runlist
,
2716 new_alloc_size
>> vol
->cluster_size_bits
);
2718 * If the runlist truncation failed and/or the search context is no
2719 * longer valid, we cannot resize the attribute record or build the
2720 * mapping pairs array thus we mark the inode bad so that no access to
2721 * the freed clusters can happen.
2723 if (unlikely(err
|| IS_ERR(m
))) {
2724 ntfs_error(vol
->sb
, "Failed to %s (error code %li).%s",
2726 "restore attribute search context" :
2727 "truncate attribute runlist",
2728 IS_ERR(m
) ? PTR_ERR(m
) : err
, es
);
2732 /* Get the size for the shrunk mapping pairs array for the runlist. */
2733 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, ni
->runlist
.rl
, 0, -1);
2734 if (unlikely(mp_size
<= 0)) {
2735 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2736 "attribute type 0x%x, because determining the "
2737 "size for the mapping pairs failed with error "
2738 "code %i.%s", vi
->i_ino
,
2739 (unsigned)le32_to_cpu(ni
->type
), mp_size
, es
);
2744 * Shrink the attribute record for the new mapping pairs array. Note,
2745 * this cannot fail since we are making the attribute smaller thus by
2746 * definition there is enough space to do so.
2748 attr_len
= le32_to_cpu(a
->length
);
2749 err
= ntfs_attr_record_resize(m
, a
, mp_size
+
2750 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
));
2753 * Generate the mapping pairs array directly into the attribute record.
2755 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+
2756 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
),
2757 mp_size
, ni
->runlist
.rl
, 0, -1, NULL
);
2758 if (unlikely(err
)) {
2759 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2760 "attribute type 0x%x, because building the "
2761 "mapping pairs failed with error code %i.%s",
2762 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
2767 /* Update the allocated/compressed size as well as the highest vcn. */
2768 a
->data
.non_resident
.highest_vcn
= cpu_to_sle64((new_alloc_size
>>
2769 vol
->cluster_size_bits
) - 1);
2770 write_lock_irqsave(&ni
->size_lock
, flags
);
2771 ni
->allocated_size
= new_alloc_size
;
2772 a
->data
.non_resident
.allocated_size
= cpu_to_sle64(new_alloc_size
);
2773 if (NInoSparse(ni
) || NInoCompressed(ni
)) {
2775 ni
->itype
.compressed
.size
-= nr_freed
<<
2776 vol
->cluster_size_bits
;
2777 BUG_ON(ni
->itype
.compressed
.size
< 0);
2778 a
->data
.non_resident
.compressed_size
= cpu_to_sle64(
2779 ni
->itype
.compressed
.size
);
2780 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
2783 vi
->i_blocks
= new_alloc_size
>> 9;
2784 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2786 * We have shrunk the allocation. If this is a shrinking truncate we
2787 * have already dealt with the initialized_size and the data_size above
2788 * and we are done. If the truncate is only changing the allocation
2789 * and not the data_size, we are also done. If this is an extending
2790 * truncate, need to extend the data_size now which is ensured by the
2791 * fact that @size_change is positive.
2795 * If the size is growing, need to update it now. If it is shrinking,
2796 * we have already updated it above (before the allocation change).
2798 if (size_change
> 0)
2799 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2800 /* Ensure the modified mft record is written out. */
2801 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2802 mark_mft_record_dirty(ctx
->ntfs_ino
);
2804 ntfs_attr_put_search_ctx(ctx
);
2805 unmap_mft_record(base_ni
);
2806 up_write(&ni
->runlist
.lock
);
2808 /* Update the mtime and ctime on the base inode. */
2809 /* normally ->truncate shouldn't update ctime or mtime,
2810 * but ntfs did before so it got a copy & paste version
2811 * of file_update_time. one day someone should fix this
2814 if (!IS_NOCMTIME(VFS_I(base_ni
)) && !IS_RDONLY(VFS_I(base_ni
))) {
2815 struct timespec now
= current_fs_time(VFS_I(base_ni
)->i_sb
);
2818 if (!timespec_equal(&VFS_I(base_ni
)->i_mtime
, &now
) ||
2819 !timespec_equal(&VFS_I(base_ni
)->i_ctime
, &now
))
2821 VFS_I(base_ni
)->i_mtime
= now
;
2822 VFS_I(base_ni
)->i_ctime
= now
;
2825 mark_inode_dirty_sync(VFS_I(base_ni
));
2829 NInoClearTruncateFailed(ni
);
2830 ntfs_debug("Done.");
2836 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2838 if (err
!= -EOPNOTSUPP
)
2839 NInoSetTruncateFailed(ni
);
2840 else if (old_size
>= 0)
2841 i_size_write(vi
, old_size
);
2844 ntfs_attr_put_search_ctx(ctx
);
2846 unmap_mft_record(base_ni
);
2847 up_write(&ni
->runlist
.lock
);
2849 ntfs_debug("Failed. Returning error code %i.", err
);
2852 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2854 if (err
!= -EOPNOTSUPP
)
2855 NInoSetTruncateFailed(ni
);
2857 i_size_write(vi
, old_size
);
2862 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2863 * @vi: inode for which the i_size was changed
2865 * Wrapper for ntfs_truncate() that has no return value.
2867 * See ntfs_truncate() description above for details.
2869 void ntfs_truncate_vfs(struct inode
*vi
) {
2874 * ntfs_setattr - called from notify_change() when an attribute is being changed
2875 * @dentry: dentry whose attributes to change
2876 * @attr: structure describing the attributes and the changes
2878 * We have to trap VFS attempts to truncate the file described by @dentry as
2879 * soon as possible, because we do not implement changes in i_size yet. So we
2880 * abort all i_size changes here.
2882 * We also abort all changes of user, group, and mode as we do not implement
2883 * the NTFS ACLs yet.
2885 * Called with ->i_mutex held.
2887 int ntfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2889 struct inode
*vi
= dentry
->d_inode
;
2891 unsigned int ia_valid
= attr
->ia_valid
;
2893 err
= inode_change_ok(vi
, attr
);
2896 /* We do not support NTFS ACLs yet. */
2897 if (ia_valid
& (ATTR_UID
| ATTR_GID
| ATTR_MODE
)) {
2898 ntfs_warning(vi
->i_sb
, "Changes in user/group/mode are not "
2899 "supported yet, ignoring.");
2903 if (ia_valid
& ATTR_SIZE
) {
2904 if (attr
->ia_size
!= i_size_read(vi
)) {
2905 ntfs_inode
*ni
= NTFS_I(vi
);
2907 * FIXME: For now we do not support resizing of
2908 * compressed or encrypted files yet.
2910 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2911 ntfs_warning(vi
->i_sb
, "Changes in inode size "
2912 "are not supported yet for "
2913 "%s files, ignoring.",
2914 NInoCompressed(ni
) ?
2915 "compressed" : "encrypted");
2918 err
= vmtruncate(vi
, attr
->ia_size
);
2919 if (err
|| ia_valid
== ATTR_SIZE
)
2923 * We skipped the truncate but must still update
2926 ia_valid
|= ATTR_MTIME
| ATTR_CTIME
;
2929 if (ia_valid
& ATTR_ATIME
)
2930 vi
->i_atime
= timespec_trunc(attr
->ia_atime
,
2931 vi
->i_sb
->s_time_gran
);
2932 if (ia_valid
& ATTR_MTIME
)
2933 vi
->i_mtime
= timespec_trunc(attr
->ia_mtime
,
2934 vi
->i_sb
->s_time_gran
);
2935 if (ia_valid
& ATTR_CTIME
)
2936 vi
->i_ctime
= timespec_trunc(attr
->ia_ctime
,
2937 vi
->i_sb
->s_time_gran
);
2938 mark_inode_dirty(vi
);
2944 * ntfs_write_inode - write out a dirty inode
2945 * @vi: inode to write out
2946 * @sync: if true, write out synchronously
2948 * Write out a dirty inode to disk including any extent inodes if present.
2950 * If @sync is true, commit the inode to disk and wait for io completion. This
2951 * is done using write_mft_record().
2953 * If @sync is false, just schedule the write to happen but do not wait for i/o
2954 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2955 * marking the page (and in this case mft record) dirty but we do not implement
2956 * this yet as write_mft_record() largely ignores the @sync parameter and
2957 * always performs synchronous writes.
2959 * Return 0 on success and -errno on error.
2961 int __ntfs_write_inode(struct inode
*vi
, int sync
)
2964 ntfs_inode
*ni
= NTFS_I(vi
);
2965 ntfs_attr_search_ctx
*ctx
;
2967 STANDARD_INFORMATION
*si
;
2969 bool modified
= false;
2971 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni
) ? "attr " : "",
2974 * Dirty attribute inodes are written via their real inodes so just
2975 * clean them here. Access time updates are taken care off when the
2976 * real inode is written.
2980 ntfs_debug("Done.");
2983 /* Map, pin, and lock the mft record belonging to the inode. */
2984 m
= map_mft_record(ni
);
2989 /* Update the access times in the standard information attribute. */
2990 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
2991 if (unlikely(!ctx
)) {
2995 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0,
2996 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2997 if (unlikely(err
)) {
2998 ntfs_attr_put_search_ctx(ctx
);
3001 si
= (STANDARD_INFORMATION
*)((u8
*)ctx
->attr
+
3002 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
3003 /* Update the access times if they have changed. */
3004 nt
= utc2ntfs(vi
->i_mtime
);
3005 if (si
->last_data_change_time
!= nt
) {
3006 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3007 "new = 0x%llx", vi
->i_ino
, (long long)
3008 sle64_to_cpu(si
->last_data_change_time
),
3009 (long long)sle64_to_cpu(nt
));
3010 si
->last_data_change_time
= nt
;
3013 nt
= utc2ntfs(vi
->i_ctime
);
3014 if (si
->last_mft_change_time
!= nt
) {
3015 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3016 "new = 0x%llx", vi
->i_ino
, (long long)
3017 sle64_to_cpu(si
->last_mft_change_time
),
3018 (long long)sle64_to_cpu(nt
));
3019 si
->last_mft_change_time
= nt
;
3022 nt
= utc2ntfs(vi
->i_atime
);
3023 if (si
->last_access_time
!= nt
) {
3024 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3025 "new = 0x%llx", vi
->i_ino
,
3026 (long long)sle64_to_cpu(si
->last_access_time
),
3027 (long long)sle64_to_cpu(nt
));
3028 si
->last_access_time
= nt
;
3032 * If we just modified the standard information attribute we need to
3033 * mark the mft record it is in dirty. We do this manually so that
3034 * mark_inode_dirty() is not called which would redirty the inode and
3035 * hence result in an infinite loop of trying to write the inode.
3036 * There is no need to mark the base inode nor the base mft record
3037 * dirty, since we are going to write this mft record below in any case
3038 * and the base mft record may actually not have been modified so it
3039 * might not need to be written out.
3040 * NOTE: It is not a problem when the inode for $MFT itself is being
3041 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3042 * on the $MFT inode and hence ntfs_write_inode() will not be
3043 * re-invoked because of it which in turn is ok since the dirtied mft
3044 * record will be cleaned and written out to disk below, i.e. before
3045 * this function returns.
3048 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
3049 if (!NInoTestSetDirty(ctx
->ntfs_ino
))
3050 mark_ntfs_record_dirty(ctx
->ntfs_ino
->page
,
3051 ctx
->ntfs_ino
->page_ofs
);
3053 ntfs_attr_put_search_ctx(ctx
);
3054 /* Now the access times are updated, write the base mft record. */
3056 err
= write_mft_record(ni
, m
, sync
);
3057 /* Write all attached extent mft records. */
3058 mutex_lock(&ni
->extent_lock
);
3059 if (ni
->nr_extents
> 0) {
3060 ntfs_inode
**extent_nis
= ni
->ext
.extent_ntfs_inos
;
3063 ntfs_debug("Writing %i extent inodes.", ni
->nr_extents
);
3064 for (i
= 0; i
< ni
->nr_extents
; i
++) {
3065 ntfs_inode
*tni
= extent_nis
[i
];
3067 if (NInoDirty(tni
)) {
3068 MFT_RECORD
*tm
= map_mft_record(tni
);
3072 if (!err
|| err
== -ENOMEM
)
3076 ret
= write_mft_record(tni
, tm
, sync
);
3077 unmap_mft_record(tni
);
3078 if (unlikely(ret
)) {
3079 if (!err
|| err
== -ENOMEM
)
3085 mutex_unlock(&ni
->extent_lock
);
3086 unmap_mft_record(ni
);
3089 ntfs_debug("Done.");
3092 unmap_mft_record(ni
);
3094 if (err
== -ENOMEM
) {
3095 ntfs_warning(vi
->i_sb
, "Not enough memory to write inode. "
3096 "Marking the inode dirty again, so the VFS "
3098 mark_inode_dirty(vi
);
3100 ntfs_error(vi
->i_sb
, "Failed (error %i): Run chkdsk.", -err
);
3101 NVolSetErrors(ni
->vol
);
3106 #endif /* NTFS_RW */