2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
46 #include <asm/byteorder.h>
48 #include <asm/system.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
75 __le32 branch_address
;
77 __le16 transfer_status
;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
96 struct page
*pages
[AR_BUFFERS
];
98 struct descriptor
*descriptors
;
99 dma_addr_t descriptors_bus
;
101 unsigned int last_buffer_index
;
103 struct tasklet_struct tasklet
;
108 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
109 struct descriptor
*d
,
110 struct descriptor
*last
);
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
116 struct descriptor_buffer
{
117 struct list_head list
;
118 dma_addr_t buffer_bus
;
121 struct descriptor buffer
[0];
125 struct fw_ohci
*ohci
;
127 int total_allocation
;
132 * List of page-sized buffers for storing DMA descriptors.
133 * Head of list contains buffers in use and tail of list contains
136 struct list_head buffer_list
;
139 * Pointer to a buffer inside buffer_list that contains the tail
140 * end of the current DMA program.
142 struct descriptor_buffer
*buffer_tail
;
145 * The descriptor containing the branch address of the first
146 * descriptor that has not yet been filled by the device.
148 struct descriptor
*last
;
151 * The last descriptor in the DMA program. It contains the branch
152 * address that must be updated upon appending a new descriptor.
154 struct descriptor
*prev
;
156 descriptor_callback_t callback
;
158 struct tasklet_struct tasklet
;
161 #define IT_HEADER_SY(v) ((v) << 0)
162 #define IT_HEADER_TCODE(v) ((v) << 4)
163 #define IT_HEADER_CHANNEL(v) ((v) << 8)
164 #define IT_HEADER_TAG(v) ((v) << 14)
165 #define IT_HEADER_SPEED(v) ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169 struct fw_iso_context base
;
170 struct context context
;
173 size_t header_length
;
179 #define CONFIG_ROM_SIZE 1024
184 __iomem
char *registers
;
187 int request_generation
; /* for timestamping incoming requests */
189 unsigned int pri_req_max
;
192 bool csr_state_setclear_abdicate
;
196 * Spinlock for accessing fw_ohci data. Never call out of
197 * this driver with this lock held.
201 struct mutex phy_reg_mutex
;
204 dma_addr_t misc_buffer_bus
;
206 struct ar_context ar_request_ctx
;
207 struct ar_context ar_response_ctx
;
208 struct context at_request_ctx
;
209 struct context at_response_ctx
;
211 u32 it_context_support
;
212 u32 it_context_mask
; /* unoccupied IT contexts */
213 struct iso_context
*it_context_list
;
214 u64 ir_context_channels
; /* unoccupied channels */
215 u32 ir_context_support
;
216 u32 ir_context_mask
; /* unoccupied IR contexts */
217 struct iso_context
*ir_context_list
;
218 u64 mc_channels
; /* channels in use by the multichannel IR context */
222 dma_addr_t config_rom_bus
;
223 __be32
*next_config_rom
;
224 dma_addr_t next_config_rom_bus
;
228 dma_addr_t self_id_bus
;
229 struct tasklet_struct bus_reset_tasklet
;
231 u32 self_id_buffer
[512];
234 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
236 return container_of(card
, struct fw_ohci
, card
);
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240 #define IR_CONTEXT_BUFFER_FILL 0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
246 #define CONTEXT_RUN 0x8000
247 #define CONTEXT_WAKE 0x1000
248 #define CONTEXT_DEAD 0x0800
249 #define CONTEXT_ACTIVE 0x0400
251 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
255 #define OHCI1394_REGISTER_SIZE 0x800
256 #define OHCI1394_PCI_HCI_Control 0x40
257 #define SELF_ID_BUF_SIZE 0x800
258 #define OHCI_TCODE_PHY_PACKET 0x0e
259 #define OHCI_VERSION_1_1 0x010010
261 static char ohci_driver_name
[] = KBUILD_MODNAME
;
263 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
264 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
265 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
266 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
268 #define QUIRK_CYCLE_TIMER 1
269 #define QUIRK_RESET_PACKET 2
270 #define QUIRK_BE_HEADERS 4
271 #define QUIRK_NO_1394A 8
272 #define QUIRK_NO_MSI 16
274 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
275 static const struct {
276 unsigned short vendor
, device
, revision
, flags
;
278 {PCI_VENDOR_ID_AL
, PCI_ANY_ID
, PCI_ANY_ID
,
281 {PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_FW
, PCI_ANY_ID
,
284 {PCI_VENDOR_ID_ATT
, PCI_DEVICE_ID_AGERE_FW643
, 6,
287 {PCI_VENDOR_ID_JMICRON
, PCI_DEVICE_ID_JMICRON_JMB38X_FW
, PCI_ANY_ID
,
290 {PCI_VENDOR_ID_NEC
, PCI_ANY_ID
, PCI_ANY_ID
,
293 {PCI_VENDOR_ID_RICOH
, PCI_ANY_ID
, PCI_ANY_ID
,
296 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV22
, PCI_ANY_ID
,
297 QUIRK_CYCLE_TIMER
| QUIRK_RESET_PACKET
| QUIRK_NO_1394A
},
299 {PCI_VENDOR_ID_TI
, PCI_ANY_ID
, PCI_ANY_ID
,
302 {PCI_VENDOR_ID_VIA
, PCI_ANY_ID
, PCI_ANY_ID
,
303 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
306 /* This overrides anything that was found in ohci_quirks[]. */
307 static int param_quirks
;
308 module_param_named(quirks
, param_quirks
, int, 0644);
309 MODULE_PARM_DESC(quirks
, "Chip quirks (default = 0"
310 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER
)
311 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET
)
312 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS
)
313 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A
)
314 ", disable MSI = " __stringify(QUIRK_NO_MSI
)
317 #define OHCI_PARAM_DEBUG_AT_AR 1
318 #define OHCI_PARAM_DEBUG_SELFIDS 2
319 #define OHCI_PARAM_DEBUG_IRQS 4
320 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
322 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
324 static int param_debug
;
325 module_param_named(debug
, param_debug
, int, 0644);
326 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
327 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
328 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
329 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
330 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
331 ", or a combination, or all = -1)");
333 static void log_irqs(u32 evt
)
335 if (likely(!(param_debug
&
336 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
339 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
340 !(evt
& OHCI1394_busReset
))
343 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
344 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
345 evt
& OHCI1394_RQPkt
? " AR_req" : "",
346 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
347 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
348 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
349 evt
& OHCI1394_isochRx
? " IR" : "",
350 evt
& OHCI1394_isochTx
? " IT" : "",
351 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
352 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
353 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
354 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
355 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
356 evt
& OHCI1394_unrecoverableError
? " unrecoverableError" : "",
357 evt
& OHCI1394_busReset
? " busReset" : "",
358 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
359 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
360 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
361 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
362 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
363 OHCI1394_cycleInconsistent
|
364 OHCI1394_regAccessFail
| OHCI1394_busReset
)
368 static const char *speed
[] = {
369 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
371 static const char *power
[] = {
372 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
373 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
375 static const char port
[] = { '.', '-', 'p', 'c', };
377 static char _p(u32
*s
, int shift
)
379 return port
[*s
>> shift
& 3];
382 static void log_selfids(int node_id
, int generation
, int self_id_count
, u32
*s
)
384 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
387 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
388 self_id_count
, generation
, node_id
);
390 for (; self_id_count
--; ++s
)
391 if ((*s
& 1 << 23) == 0)
392 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
393 "%s gc=%d %s %s%s%s\n",
394 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
395 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
396 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
397 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
399 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
401 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
402 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
405 static const char *evts
[] = {
406 [0x00] = "evt_no_status", [0x01] = "-reserved-",
407 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
408 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
409 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
410 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
411 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
412 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
413 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
414 [0x10] = "-reserved-", [0x11] = "ack_complete",
415 [0x12] = "ack_pending ", [0x13] = "-reserved-",
416 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
417 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
418 [0x18] = "-reserved-", [0x19] = "-reserved-",
419 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
420 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
421 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
422 [0x20] = "pending/cancelled",
424 static const char *tcodes
[] = {
425 [0x0] = "QW req", [0x1] = "BW req",
426 [0x2] = "W resp", [0x3] = "-reserved-",
427 [0x4] = "QR req", [0x5] = "BR req",
428 [0x6] = "QR resp", [0x7] = "BR resp",
429 [0x8] = "cycle start", [0x9] = "Lk req",
430 [0xa] = "async stream packet", [0xb] = "Lk resp",
431 [0xc] = "-reserved-", [0xd] = "-reserved-",
432 [0xe] = "link internal", [0xf] = "-reserved-",
435 static void log_ar_at_event(char dir
, int speed
, u32
*header
, int evt
)
437 int tcode
= header
[0] >> 4 & 0xf;
440 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
443 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
446 if (evt
== OHCI1394_evt_bus_reset
) {
447 fw_notify("A%c evt_bus_reset, generation %d\n",
448 dir
, (header
[2] >> 16) & 0xff);
453 case 0x0: case 0x6: case 0x8:
454 snprintf(specific
, sizeof(specific
), " = %08x",
455 be32_to_cpu((__force __be32
)header
[3]));
457 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
458 snprintf(specific
, sizeof(specific
), " %x,%x",
459 header
[3] >> 16, header
[3] & 0xffff);
467 fw_notify("A%c %s, %s\n", dir
, evts
[evt
], tcodes
[tcode
]);
470 fw_notify("A%c %s, PHY %08x %08x\n",
471 dir
, evts
[evt
], header
[1], header
[2]);
473 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
474 fw_notify("A%c spd %x tl %02x, "
477 dir
, speed
, header
[0] >> 10 & 0x3f,
478 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
479 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
482 fw_notify("A%c spd %x tl %02x, "
485 dir
, speed
, header
[0] >> 10 & 0x3f,
486 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
487 tcodes
[tcode
], specific
);
493 #define param_debug 0
494 static inline void log_irqs(u32 evt
) {}
495 static inline void log_selfids(int node_id
, int generation
, int self_id_count
, u32
*s
) {}
496 static inline void log_ar_at_event(char dir
, int speed
, u32
*header
, int evt
) {}
498 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
500 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
502 writel(data
, ohci
->registers
+ offset
);
505 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
507 return readl(ohci
->registers
+ offset
);
510 static inline void flush_writes(const struct fw_ohci
*ohci
)
512 /* Do a dummy read to flush writes. */
513 reg_read(ohci
, OHCI1394_Version
);
517 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
518 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
519 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
520 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
522 static int read_phy_reg(struct fw_ohci
*ohci
, int addr
)
527 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
528 for (i
= 0; i
< 3 + 100; i
++) {
529 val
= reg_read(ohci
, OHCI1394_PhyControl
);
531 return -ENODEV
; /* Card was ejected. */
533 if (val
& OHCI1394_PhyControl_ReadDone
)
534 return OHCI1394_PhyControl_ReadData(val
);
537 * Try a few times without waiting. Sleeping is necessary
538 * only when the link/PHY interface is busy.
543 fw_error("failed to read phy reg\n");
548 static int write_phy_reg(const struct fw_ohci
*ohci
, int addr
, u32 val
)
552 reg_write(ohci
, OHCI1394_PhyControl
,
553 OHCI1394_PhyControl_Write(addr
, val
));
554 for (i
= 0; i
< 3 + 100; i
++) {
555 val
= reg_read(ohci
, OHCI1394_PhyControl
);
557 return -ENODEV
; /* Card was ejected. */
559 if (!(val
& OHCI1394_PhyControl_WritePending
))
565 fw_error("failed to write phy reg\n");
570 static int update_phy_reg(struct fw_ohci
*ohci
, int addr
,
571 int clear_bits
, int set_bits
)
573 int ret
= read_phy_reg(ohci
, addr
);
578 * The interrupt status bits are cleared by writing a one bit.
579 * Avoid clearing them unless explicitly requested in set_bits.
582 clear_bits
|= PHY_INT_STATUS_BITS
;
584 return write_phy_reg(ohci
, addr
, (ret
& ~clear_bits
) | set_bits
);
587 static int read_paged_phy_reg(struct fw_ohci
*ohci
, int page
, int addr
)
591 ret
= update_phy_reg(ohci
, 7, PHY_PAGE_SELECT
, page
<< 5);
595 return read_phy_reg(ohci
, addr
);
598 static int ohci_read_phy_reg(struct fw_card
*card
, int addr
)
600 struct fw_ohci
*ohci
= fw_ohci(card
);
603 mutex_lock(&ohci
->phy_reg_mutex
);
604 ret
= read_phy_reg(ohci
, addr
);
605 mutex_unlock(&ohci
->phy_reg_mutex
);
610 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
611 int clear_bits
, int set_bits
)
613 struct fw_ohci
*ohci
= fw_ohci(card
);
616 mutex_lock(&ohci
->phy_reg_mutex
);
617 ret
= update_phy_reg(ohci
, addr
, clear_bits
, set_bits
);
618 mutex_unlock(&ohci
->phy_reg_mutex
);
623 static inline dma_addr_t
ar_buffer_bus(struct ar_context
*ctx
, unsigned int i
)
625 return page_private(ctx
->pages
[i
]);
628 static void ar_context_link_page(struct ar_context
*ctx
, unsigned int index
)
630 struct descriptor
*d
;
632 d
= &ctx
->descriptors
[index
];
633 d
->branch_address
&= cpu_to_le32(~0xf);
634 d
->res_count
= cpu_to_le16(PAGE_SIZE
);
635 d
->transfer_status
= 0;
637 wmb(); /* finish init of new descriptors before branch_address update */
638 d
= &ctx
->descriptors
[ctx
->last_buffer_index
];
639 d
->branch_address
|= cpu_to_le32(1);
641 ctx
->last_buffer_index
= index
;
643 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
646 static void ar_context_release(struct ar_context
*ctx
)
651 vm_unmap_ram(ctx
->buffer
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
);
653 for (i
= 0; i
< AR_BUFFERS
; i
++)
655 dma_unmap_page(ctx
->ohci
->card
.device
,
656 ar_buffer_bus(ctx
, i
),
657 PAGE_SIZE
, DMA_FROM_DEVICE
);
658 __free_page(ctx
->pages
[i
]);
662 static void ar_context_abort(struct ar_context
*ctx
, const char *error_msg
)
664 if (reg_read(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
)) & CONTEXT_RUN
) {
665 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
666 flush_writes(ctx
->ohci
);
668 fw_error("AR error: %s; DMA stopped\n", error_msg
);
670 /* FIXME: restart? */
673 static inline unsigned int ar_next_buffer_index(unsigned int index
)
675 return (index
+ 1) % AR_BUFFERS
;
678 static inline unsigned int ar_prev_buffer_index(unsigned int index
)
680 return (index
- 1 + AR_BUFFERS
) % AR_BUFFERS
;
683 static inline unsigned int ar_first_buffer_index(struct ar_context
*ctx
)
685 return ar_next_buffer_index(ctx
->last_buffer_index
);
689 * We search for the buffer that contains the last AR packet DMA data written
692 static unsigned int ar_search_last_active_buffer(struct ar_context
*ctx
,
693 unsigned int *buffer_offset
)
695 unsigned int i
, next_i
, last
= ctx
->last_buffer_index
;
696 __le16 res_count
, next_res_count
;
698 i
= ar_first_buffer_index(ctx
);
699 res_count
= ACCESS_ONCE(ctx
->descriptors
[i
].res_count
);
701 /* A buffer that is not yet completely filled must be the last one. */
702 while (i
!= last
&& res_count
== 0) {
704 /* Peek at the next descriptor. */
705 next_i
= ar_next_buffer_index(i
);
706 rmb(); /* read descriptors in order */
707 next_res_count
= ACCESS_ONCE(
708 ctx
->descriptors
[next_i
].res_count
);
710 * If the next descriptor is still empty, we must stop at this
713 if (next_res_count
== cpu_to_le16(PAGE_SIZE
)) {
715 * The exception is when the DMA data for one packet is
716 * split over three buffers; in this case, the middle
717 * buffer's descriptor might be never updated by the
718 * controller and look still empty, and we have to peek
721 if (MAX_AR_PACKET_SIZE
> PAGE_SIZE
&& i
!= last
) {
722 next_i
= ar_next_buffer_index(next_i
);
724 next_res_count
= ACCESS_ONCE(
725 ctx
->descriptors
[next_i
].res_count
);
726 if (next_res_count
!= cpu_to_le16(PAGE_SIZE
))
727 goto next_buffer_is_active
;
733 next_buffer_is_active
:
735 res_count
= next_res_count
;
738 rmb(); /* read res_count before the DMA data */
740 *buffer_offset
= PAGE_SIZE
- le16_to_cpu(res_count
);
741 if (*buffer_offset
> PAGE_SIZE
) {
743 ar_context_abort(ctx
, "corrupted descriptor");
749 static void ar_sync_buffers_for_cpu(struct ar_context
*ctx
,
750 unsigned int end_buffer_index
,
751 unsigned int end_buffer_offset
)
755 i
= ar_first_buffer_index(ctx
);
756 while (i
!= end_buffer_index
) {
757 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
758 ar_buffer_bus(ctx
, i
),
759 PAGE_SIZE
, DMA_FROM_DEVICE
);
760 i
= ar_next_buffer_index(i
);
762 if (end_buffer_offset
> 0)
763 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
764 ar_buffer_bus(ctx
, i
),
765 end_buffer_offset
, DMA_FROM_DEVICE
);
768 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
769 #define cond_le32_to_cpu(v) \
770 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
772 #define cond_le32_to_cpu(v) le32_to_cpu(v)
775 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
777 struct fw_ohci
*ohci
= ctx
->ohci
;
779 u32 status
, length
, tcode
;
782 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
783 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
784 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
786 tcode
= (p
.header
[0] >> 4) & 0x0f;
788 case TCODE_WRITE_QUADLET_REQUEST
:
789 case TCODE_READ_QUADLET_RESPONSE
:
790 p
.header
[3] = (__force __u32
) buffer
[3];
791 p
.header_length
= 16;
792 p
.payload_length
= 0;
795 case TCODE_READ_BLOCK_REQUEST
:
796 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
797 p
.header_length
= 16;
798 p
.payload_length
= 0;
801 case TCODE_WRITE_BLOCK_REQUEST
:
802 case TCODE_READ_BLOCK_RESPONSE
:
803 case TCODE_LOCK_REQUEST
:
804 case TCODE_LOCK_RESPONSE
:
805 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
806 p
.header_length
= 16;
807 p
.payload_length
= p
.header
[3] >> 16;
808 if (p
.payload_length
> MAX_ASYNC_PAYLOAD
) {
809 ar_context_abort(ctx
, "invalid packet length");
814 case TCODE_WRITE_RESPONSE
:
815 case TCODE_READ_QUADLET_REQUEST
:
816 case OHCI_TCODE_PHY_PACKET
:
817 p
.header_length
= 12;
818 p
.payload_length
= 0;
822 ar_context_abort(ctx
, "invalid tcode");
826 p
.payload
= (void *) buffer
+ p
.header_length
;
828 /* FIXME: What to do about evt_* errors? */
829 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
830 status
= cond_le32_to_cpu(buffer
[length
]);
831 evt
= (status
>> 16) & 0x1f;
834 p
.speed
= (status
>> 21) & 0x7;
835 p
.timestamp
= status
& 0xffff;
836 p
.generation
= ohci
->request_generation
;
838 log_ar_at_event('R', p
.speed
, p
.header
, evt
);
841 * Several controllers, notably from NEC and VIA, forget to
842 * write ack_complete status at PHY packet reception.
844 if (evt
== OHCI1394_evt_no_status
&&
845 (p
.header
[0] & 0xff) == (OHCI1394_phy_tcode
<< 4))
846 p
.ack
= ACK_COMPLETE
;
849 * The OHCI bus reset handler synthesizes a PHY packet with
850 * the new generation number when a bus reset happens (see
851 * section 8.4.2.3). This helps us determine when a request
852 * was received and make sure we send the response in the same
853 * generation. We only need this for requests; for responses
854 * we use the unique tlabel for finding the matching
857 * Alas some chips sometimes emit bus reset packets with a
858 * wrong generation. We set the correct generation for these
859 * at a slightly incorrect time (in bus_reset_tasklet).
861 if (evt
== OHCI1394_evt_bus_reset
) {
862 if (!(ohci
->quirks
& QUIRK_RESET_PACKET
))
863 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
864 } else if (ctx
== &ohci
->ar_request_ctx
) {
865 fw_core_handle_request(&ohci
->card
, &p
);
867 fw_core_handle_response(&ohci
->card
, &p
);
870 return buffer
+ length
+ 1;
873 static void *handle_ar_packets(struct ar_context
*ctx
, void *p
, void *end
)
878 next
= handle_ar_packet(ctx
, p
);
887 static void ar_recycle_buffers(struct ar_context
*ctx
, unsigned int end_buffer
)
891 i
= ar_first_buffer_index(ctx
);
892 while (i
!= end_buffer
) {
893 dma_sync_single_for_device(ctx
->ohci
->card
.device
,
894 ar_buffer_bus(ctx
, i
),
895 PAGE_SIZE
, DMA_FROM_DEVICE
);
896 ar_context_link_page(ctx
, i
);
897 i
= ar_next_buffer_index(i
);
901 static void ar_context_tasklet(unsigned long data
)
903 struct ar_context
*ctx
= (struct ar_context
*)data
;
904 unsigned int end_buffer_index
, end_buffer_offset
;
911 end_buffer_index
= ar_search_last_active_buffer(ctx
,
913 ar_sync_buffers_for_cpu(ctx
, end_buffer_index
, end_buffer_offset
);
914 end
= ctx
->buffer
+ end_buffer_index
* PAGE_SIZE
+ end_buffer_offset
;
916 if (end_buffer_index
< ar_first_buffer_index(ctx
)) {
918 * The filled part of the overall buffer wraps around; handle
919 * all packets up to the buffer end here. If the last packet
920 * wraps around, its tail will be visible after the buffer end
921 * because the buffer start pages are mapped there again.
923 void *buffer_end
= ctx
->buffer
+ AR_BUFFERS
* PAGE_SIZE
;
924 p
= handle_ar_packets(ctx
, p
, buffer_end
);
927 /* adjust p to point back into the actual buffer */
928 p
-= AR_BUFFERS
* PAGE_SIZE
;
931 p
= handle_ar_packets(ctx
, p
, end
);
934 ar_context_abort(ctx
, "inconsistent descriptor");
939 ar_recycle_buffers(ctx
, end_buffer_index
);
947 static int ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
,
948 unsigned int descriptors_offset
, u32 regs
)
952 struct page
*pages
[AR_BUFFERS
+ AR_WRAPAROUND_PAGES
];
953 struct descriptor
*d
;
957 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
959 for (i
= 0; i
< AR_BUFFERS
; i
++) {
960 ctx
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
);
963 dma_addr
= dma_map_page(ohci
->card
.device
, ctx
->pages
[i
],
964 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
965 if (dma_mapping_error(ohci
->card
.device
, dma_addr
)) {
966 __free_page(ctx
->pages
[i
]);
967 ctx
->pages
[i
] = NULL
;
970 set_page_private(ctx
->pages
[i
], dma_addr
);
973 for (i
= 0; i
< AR_BUFFERS
; i
++)
974 pages
[i
] = ctx
->pages
[i
];
975 for (i
= 0; i
< AR_WRAPAROUND_PAGES
; i
++)
976 pages
[AR_BUFFERS
+ i
] = ctx
->pages
[i
];
977 ctx
->buffer
= vm_map_ram(pages
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
,
982 ctx
->descriptors
= ohci
->misc_buffer
+ descriptors_offset
;
983 ctx
->descriptors_bus
= ohci
->misc_buffer_bus
+ descriptors_offset
;
985 for (i
= 0; i
< AR_BUFFERS
; i
++) {
986 d
= &ctx
->descriptors
[i
];
987 d
->req_count
= cpu_to_le16(PAGE_SIZE
);
988 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
990 DESCRIPTOR_BRANCH_ALWAYS
);
991 d
->data_address
= cpu_to_le32(ar_buffer_bus(ctx
, i
));
992 d
->branch_address
= cpu_to_le32(ctx
->descriptors_bus
+
993 ar_next_buffer_index(i
) * sizeof(struct descriptor
));
999 ar_context_release(ctx
);
1004 static void ar_context_run(struct ar_context
*ctx
)
1008 for (i
= 0; i
< AR_BUFFERS
; i
++)
1009 ar_context_link_page(ctx
, i
);
1011 ctx
->pointer
= ctx
->buffer
;
1013 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ctx
->descriptors_bus
| 1);
1014 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
1017 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
1021 branch
= d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
);
1023 /* figure out which descriptor the branch address goes in */
1024 if (z
== 2 && branch
== cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
1030 static void context_tasklet(unsigned long data
)
1032 struct context
*ctx
= (struct context
*) data
;
1033 struct descriptor
*d
, *last
;
1036 struct descriptor_buffer
*desc
;
1038 desc
= list_entry(ctx
->buffer_list
.next
,
1039 struct descriptor_buffer
, list
);
1041 while (last
->branch_address
!= 0) {
1042 struct descriptor_buffer
*old_desc
= desc
;
1043 address
= le32_to_cpu(last
->branch_address
);
1047 /* If the branch address points to a buffer outside of the
1048 * current buffer, advance to the next buffer. */
1049 if (address
< desc
->buffer_bus
||
1050 address
>= desc
->buffer_bus
+ desc
->used
)
1051 desc
= list_entry(desc
->list
.next
,
1052 struct descriptor_buffer
, list
);
1053 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
1054 last
= find_branch_descriptor(d
, z
);
1056 if (!ctx
->callback(ctx
, d
, last
))
1059 if (old_desc
!= desc
) {
1060 /* If we've advanced to the next buffer, move the
1061 * previous buffer to the free list. */
1062 unsigned long flags
;
1064 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1065 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
1066 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1073 * Allocate a new buffer and add it to the list of free buffers for this
1074 * context. Must be called with ohci->lock held.
1076 static int context_add_buffer(struct context
*ctx
)
1078 struct descriptor_buffer
*desc
;
1079 dma_addr_t
uninitialized_var(bus_addr
);
1083 * 16MB of descriptors should be far more than enough for any DMA
1084 * program. This will catch run-away userspace or DoS attacks.
1086 if (ctx
->total_allocation
>= 16*1024*1024)
1089 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
1090 &bus_addr
, GFP_ATOMIC
);
1094 offset
= (void *)&desc
->buffer
- (void *)desc
;
1095 desc
->buffer_size
= PAGE_SIZE
- offset
;
1096 desc
->buffer_bus
= bus_addr
+ offset
;
1099 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
1100 ctx
->total_allocation
+= PAGE_SIZE
;
1105 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
1106 u32 regs
, descriptor_callback_t callback
)
1110 ctx
->total_allocation
= 0;
1112 INIT_LIST_HEAD(&ctx
->buffer_list
);
1113 if (context_add_buffer(ctx
) < 0)
1116 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
1117 struct descriptor_buffer
, list
);
1119 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
1120 ctx
->callback
= callback
;
1123 * We put a dummy descriptor in the buffer that has a NULL
1124 * branch address and looks like it's been sent. That way we
1125 * have a descriptor to append DMA programs to.
1127 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
1128 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
1129 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
1130 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
1131 ctx
->last
= ctx
->buffer_tail
->buffer
;
1132 ctx
->prev
= ctx
->buffer_tail
->buffer
;
1137 static void context_release(struct context
*ctx
)
1139 struct fw_card
*card
= &ctx
->ohci
->card
;
1140 struct descriptor_buffer
*desc
, *tmp
;
1142 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
1143 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
1145 ((void *)&desc
->buffer
- (void *)desc
));
1148 /* Must be called with ohci->lock held */
1149 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
1150 int z
, dma_addr_t
*d_bus
)
1152 struct descriptor
*d
= NULL
;
1153 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1155 if (z
* sizeof(*d
) > desc
->buffer_size
)
1158 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
1159 /* No room for the descriptor in this buffer, so advance to the
1162 if (desc
->list
.next
== &ctx
->buffer_list
) {
1163 /* If there is no free buffer next in the list,
1165 if (context_add_buffer(ctx
) < 0)
1168 desc
= list_entry(desc
->list
.next
,
1169 struct descriptor_buffer
, list
);
1170 ctx
->buffer_tail
= desc
;
1173 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
1174 memset(d
, 0, z
* sizeof(*d
));
1175 *d_bus
= desc
->buffer_bus
+ desc
->used
;
1180 static void context_run(struct context
*ctx
, u32 extra
)
1182 struct fw_ohci
*ohci
= ctx
->ohci
;
1184 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
1185 le32_to_cpu(ctx
->last
->branch_address
));
1186 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
1187 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
1188 ctx
->running
= true;
1192 static void context_append(struct context
*ctx
,
1193 struct descriptor
*d
, int z
, int extra
)
1196 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1198 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
1200 desc
->used
+= (z
+ extra
) * sizeof(*d
);
1202 wmb(); /* finish init of new descriptors before branch_address update */
1203 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
1204 ctx
->prev
= find_branch_descriptor(d
, z
);
1207 static void context_stop(struct context
*ctx
)
1212 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
1213 ctx
->running
= false;
1215 for (i
= 0; i
< 1000; i
++) {
1216 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
1217 if ((reg
& CONTEXT_ACTIVE
) == 0)
1223 fw_error("Error: DMA context still active (0x%08x)\n", reg
);
1226 struct driver_data
{
1228 struct fw_packet
*packet
;
1232 * This function apppends a packet to the DMA queue for transmission.
1233 * Must always be called with the ochi->lock held to ensure proper
1234 * generation handling and locking around packet queue manipulation.
1236 static int at_context_queue_packet(struct context
*ctx
,
1237 struct fw_packet
*packet
)
1239 struct fw_ohci
*ohci
= ctx
->ohci
;
1240 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
1241 struct driver_data
*driver_data
;
1242 struct descriptor
*d
, *last
;
1246 d
= context_get_descriptors(ctx
, 4, &d_bus
);
1248 packet
->ack
= RCODE_SEND_ERROR
;
1252 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1253 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
1256 * The DMA format for asyncronous link packets is different
1257 * from the IEEE1394 layout, so shift the fields around
1261 tcode
= (packet
->header
[0] >> 4) & 0x0f;
1262 header
= (__le32
*) &d
[1];
1264 case TCODE_WRITE_QUADLET_REQUEST
:
1265 case TCODE_WRITE_BLOCK_REQUEST
:
1266 case TCODE_WRITE_RESPONSE
:
1267 case TCODE_READ_QUADLET_REQUEST
:
1268 case TCODE_READ_BLOCK_REQUEST
:
1269 case TCODE_READ_QUADLET_RESPONSE
:
1270 case TCODE_READ_BLOCK_RESPONSE
:
1271 case TCODE_LOCK_REQUEST
:
1272 case TCODE_LOCK_RESPONSE
:
1273 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1274 (packet
->speed
<< 16));
1275 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
1276 (packet
->header
[0] & 0xffff0000));
1277 header
[2] = cpu_to_le32(packet
->header
[2]);
1279 if (TCODE_IS_BLOCK_PACKET(tcode
))
1280 header
[3] = cpu_to_le32(packet
->header
[3]);
1282 header
[3] = (__force __le32
) packet
->header
[3];
1284 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1287 case TCODE_LINK_INTERNAL
:
1288 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
1289 (packet
->speed
<< 16));
1290 header
[1] = cpu_to_le32(packet
->header
[1]);
1291 header
[2] = cpu_to_le32(packet
->header
[2]);
1292 d
[0].req_count
= cpu_to_le16(12);
1294 if (is_ping_packet(&packet
->header
[1]))
1295 d
[0].control
|= cpu_to_le16(DESCRIPTOR_PING
);
1298 case TCODE_STREAM_DATA
:
1299 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1300 (packet
->speed
<< 16));
1301 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
1302 d
[0].req_count
= cpu_to_le16(8);
1307 packet
->ack
= RCODE_SEND_ERROR
;
1311 BUILD_BUG_ON(sizeof(struct driver_data
) > sizeof(struct descriptor
));
1312 driver_data
= (struct driver_data
*) &d
[3];
1313 driver_data
->packet
= packet
;
1314 packet
->driver_data
= driver_data
;
1316 if (packet
->payload_length
> 0) {
1317 if (packet
->payload_length
> sizeof(driver_data
->inline_data
)) {
1318 payload_bus
= dma_map_single(ohci
->card
.device
,
1320 packet
->payload_length
,
1322 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1323 packet
->ack
= RCODE_SEND_ERROR
;
1326 packet
->payload_bus
= payload_bus
;
1327 packet
->payload_mapped
= true;
1329 memcpy(driver_data
->inline_data
, packet
->payload
,
1330 packet
->payload_length
);
1331 payload_bus
= d_bus
+ 3 * sizeof(*d
);
1334 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1335 d
[2].data_address
= cpu_to_le32(payload_bus
);
1343 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1344 DESCRIPTOR_IRQ_ALWAYS
|
1345 DESCRIPTOR_BRANCH_ALWAYS
);
1347 /* FIXME: Document how the locking works. */
1348 if (ohci
->generation
!= packet
->generation
) {
1349 if (packet
->payload_mapped
)
1350 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1351 packet
->payload_length
, DMA_TO_DEVICE
);
1352 packet
->ack
= RCODE_GENERATION
;
1356 context_append(ctx
, d
, z
, 4 - z
);
1359 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
1361 context_run(ctx
, 0);
1366 static void at_context_flush(struct context
*ctx
)
1368 tasklet_disable(&ctx
->tasklet
);
1370 ctx
->flushing
= true;
1371 context_tasklet((unsigned long)ctx
);
1372 ctx
->flushing
= false;
1374 tasklet_enable(&ctx
->tasklet
);
1377 static int handle_at_packet(struct context
*context
,
1378 struct descriptor
*d
,
1379 struct descriptor
*last
)
1381 struct driver_data
*driver_data
;
1382 struct fw_packet
*packet
;
1383 struct fw_ohci
*ohci
= context
->ohci
;
1386 if (last
->transfer_status
== 0 && !context
->flushing
)
1387 /* This descriptor isn't done yet, stop iteration. */
1390 driver_data
= (struct driver_data
*) &d
[3];
1391 packet
= driver_data
->packet
;
1393 /* This packet was cancelled, just continue. */
1396 if (packet
->payload_mapped
)
1397 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1398 packet
->payload_length
, DMA_TO_DEVICE
);
1400 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1401 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1403 log_ar_at_event('T', packet
->speed
, packet
->header
, evt
);
1406 case OHCI1394_evt_timeout
:
1407 /* Async response transmit timed out. */
1408 packet
->ack
= RCODE_CANCELLED
;
1411 case OHCI1394_evt_flushed
:
1413 * The packet was flushed should give same error as
1414 * when we try to use a stale generation count.
1416 packet
->ack
= RCODE_GENERATION
;
1419 case OHCI1394_evt_missing_ack
:
1420 if (context
->flushing
)
1421 packet
->ack
= RCODE_GENERATION
;
1424 * Using a valid (current) generation count, but the
1425 * node is not on the bus or not sending acks.
1427 packet
->ack
= RCODE_NO_ACK
;
1431 case ACK_COMPLETE
+ 0x10:
1432 case ACK_PENDING
+ 0x10:
1433 case ACK_BUSY_X
+ 0x10:
1434 case ACK_BUSY_A
+ 0x10:
1435 case ACK_BUSY_B
+ 0x10:
1436 case ACK_DATA_ERROR
+ 0x10:
1437 case ACK_TYPE_ERROR
+ 0x10:
1438 packet
->ack
= evt
- 0x10;
1441 case OHCI1394_evt_no_status
:
1442 if (context
->flushing
) {
1443 packet
->ack
= RCODE_GENERATION
;
1449 packet
->ack
= RCODE_SEND_ERROR
;
1453 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1458 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1459 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1460 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1461 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1462 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1464 static void handle_local_rom(struct fw_ohci
*ohci
,
1465 struct fw_packet
*packet
, u32 csr
)
1467 struct fw_packet response
;
1468 int tcode
, length
, i
;
1470 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1471 if (TCODE_IS_BLOCK_PACKET(tcode
))
1472 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1476 i
= csr
- CSR_CONFIG_ROM
;
1477 if (i
+ length
> CONFIG_ROM_SIZE
) {
1478 fw_fill_response(&response
, packet
->header
,
1479 RCODE_ADDRESS_ERROR
, NULL
, 0);
1480 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1481 fw_fill_response(&response
, packet
->header
,
1482 RCODE_TYPE_ERROR
, NULL
, 0);
1484 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1485 (void *) ohci
->config_rom
+ i
, length
);
1488 fw_core_handle_response(&ohci
->card
, &response
);
1491 static void handle_local_lock(struct fw_ohci
*ohci
,
1492 struct fw_packet
*packet
, u32 csr
)
1494 struct fw_packet response
;
1495 int tcode
, length
, ext_tcode
, sel
, try;
1496 __be32
*payload
, lock_old
;
1497 u32 lock_arg
, lock_data
;
1499 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1500 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1501 payload
= packet
->payload
;
1502 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1504 if (tcode
== TCODE_LOCK_REQUEST
&&
1505 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1506 lock_arg
= be32_to_cpu(payload
[0]);
1507 lock_data
= be32_to_cpu(payload
[1]);
1508 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1512 fw_fill_response(&response
, packet
->header
,
1513 RCODE_TYPE_ERROR
, NULL
, 0);
1517 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1518 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1519 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1520 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1522 for (try = 0; try < 20; try++)
1523 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000) {
1524 lock_old
= cpu_to_be32(reg_read(ohci
,
1526 fw_fill_response(&response
, packet
->header
,
1528 &lock_old
, sizeof(lock_old
));
1532 fw_error("swap not done (CSR lock timeout)\n");
1533 fw_fill_response(&response
, packet
->header
, RCODE_BUSY
, NULL
, 0);
1536 fw_core_handle_response(&ohci
->card
, &response
);
1539 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1543 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1544 packet
->ack
= ACK_PENDING
;
1545 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1549 ((unsigned long long)
1550 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1552 csr
= offset
- CSR_REGISTER_BASE
;
1554 /* Handle config rom reads. */
1555 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1556 handle_local_rom(ctx
->ohci
, packet
, csr
);
1558 case CSR_BUS_MANAGER_ID
:
1559 case CSR_BANDWIDTH_AVAILABLE
:
1560 case CSR_CHANNELS_AVAILABLE_HI
:
1561 case CSR_CHANNELS_AVAILABLE_LO
:
1562 handle_local_lock(ctx
->ohci
, packet
, csr
);
1565 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1566 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1568 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1572 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1573 packet
->ack
= ACK_COMPLETE
;
1574 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1578 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1580 unsigned long flags
;
1583 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1585 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1586 ctx
->ohci
->generation
== packet
->generation
) {
1587 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1588 handle_local_request(ctx
, packet
);
1592 ret
= at_context_queue_packet(ctx
, packet
);
1593 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1596 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1600 static void detect_dead_context(struct fw_ohci
*ohci
,
1601 const char *name
, unsigned int regs
)
1605 ctl
= reg_read(ohci
, CONTROL_SET(regs
));
1606 if (ctl
& CONTEXT_DEAD
) {
1607 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1608 fw_error("DMA context %s has stopped, error code: %s\n",
1609 name
, evts
[ctl
& 0x1f]);
1611 fw_error("DMA context %s has stopped, error code: %#x\n",
1617 static void handle_dead_contexts(struct fw_ohci
*ohci
)
1622 detect_dead_context(ohci
, "ATReq", OHCI1394_AsReqTrContextBase
);
1623 detect_dead_context(ohci
, "ATRsp", OHCI1394_AsRspTrContextBase
);
1624 detect_dead_context(ohci
, "ARReq", OHCI1394_AsReqRcvContextBase
);
1625 detect_dead_context(ohci
, "ARRsp", OHCI1394_AsRspRcvContextBase
);
1626 for (i
= 0; i
< 32; ++i
) {
1627 if (!(ohci
->it_context_support
& (1 << i
)))
1629 sprintf(name
, "IT%u", i
);
1630 detect_dead_context(ohci
, name
, OHCI1394_IsoXmitContextBase(i
));
1632 for (i
= 0; i
< 32; ++i
) {
1633 if (!(ohci
->ir_context_support
& (1 << i
)))
1635 sprintf(name
, "IR%u", i
);
1636 detect_dead_context(ohci
, name
, OHCI1394_IsoRcvContextBase(i
));
1638 /* TODO: maybe try to flush and restart the dead contexts */
1641 static u32
cycle_timer_ticks(u32 cycle_timer
)
1645 ticks
= cycle_timer
& 0xfff;
1646 ticks
+= 3072 * ((cycle_timer
>> 12) & 0x1fff);
1647 ticks
+= (3072 * 8000) * (cycle_timer
>> 25);
1653 * Some controllers exhibit one or more of the following bugs when updating the
1654 * iso cycle timer register:
1655 * - When the lowest six bits are wrapping around to zero, a read that happens
1656 * at the same time will return garbage in the lowest ten bits.
1657 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1658 * not incremented for about 60 ns.
1659 * - Occasionally, the entire register reads zero.
1661 * To catch these, we read the register three times and ensure that the
1662 * difference between each two consecutive reads is approximately the same, i.e.
1663 * less than twice the other. Furthermore, any negative difference indicates an
1664 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1665 * execute, so we have enough precision to compute the ratio of the differences.)
1667 static u32
get_cycle_time(struct fw_ohci
*ohci
)
1674 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1676 if (ohci
->quirks
& QUIRK_CYCLE_TIMER
) {
1679 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1683 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1684 t0
= cycle_timer_ticks(c0
);
1685 t1
= cycle_timer_ticks(c1
);
1686 t2
= cycle_timer_ticks(c2
);
1689 } while ((diff01
<= 0 || diff12
<= 0 ||
1690 diff01
/ diff12
>= 2 || diff12
/ diff01
>= 2)
1698 * This function has to be called at least every 64 seconds. The bus_time
1699 * field stores not only the upper 25 bits of the BUS_TIME register but also
1700 * the most significant bit of the cycle timer in bit 6 so that we can detect
1701 * changes in this bit.
1703 static u32
update_bus_time(struct fw_ohci
*ohci
)
1705 u32 cycle_time_seconds
= get_cycle_time(ohci
) >> 25;
1707 if ((ohci
->bus_time
& 0x40) != (cycle_time_seconds
& 0x40))
1708 ohci
->bus_time
+= 0x40;
1710 return ohci
->bus_time
| cycle_time_seconds
;
1713 static void bus_reset_tasklet(unsigned long data
)
1715 struct fw_ohci
*ohci
= (struct fw_ohci
*)data
;
1716 int self_id_count
, i
, j
, reg
;
1717 int generation
, new_generation
;
1718 unsigned long flags
;
1719 void *free_rom
= NULL
;
1720 dma_addr_t free_rom_bus
= 0;
1723 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1724 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1725 fw_notify("node ID not valid, new bus reset in progress\n");
1728 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1729 fw_notify("malconfigured bus\n");
1732 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1733 OHCI1394_NodeID_nodeNumber
);
1735 is_new_root
= (reg
& OHCI1394_NodeID_root
) != 0;
1736 if (!(ohci
->is_root
&& is_new_root
))
1737 reg_write(ohci
, OHCI1394_LinkControlSet
,
1738 OHCI1394_LinkControl_cycleMaster
);
1739 ohci
->is_root
= is_new_root
;
1741 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1742 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1743 fw_notify("inconsistent self IDs\n");
1747 * The count in the SelfIDCount register is the number of
1748 * bytes in the self ID receive buffer. Since we also receive
1749 * the inverted quadlets and a header quadlet, we shift one
1750 * bit extra to get the actual number of self IDs.
1752 self_id_count
= (reg
>> 3) & 0xff;
1753 if (self_id_count
== 0 || self_id_count
> 252) {
1754 fw_notify("inconsistent self IDs\n");
1757 generation
= (cond_le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
1760 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1761 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1]) {
1762 fw_notify("inconsistent self IDs\n");
1765 ohci
->self_id_buffer
[j
] =
1766 cond_le32_to_cpu(ohci
->self_id_cpu
[i
]);
1771 * Check the consistency of the self IDs we just read. The
1772 * problem we face is that a new bus reset can start while we
1773 * read out the self IDs from the DMA buffer. If this happens,
1774 * the DMA buffer will be overwritten with new self IDs and we
1775 * will read out inconsistent data. The OHCI specification
1776 * (section 11.2) recommends a technique similar to
1777 * linux/seqlock.h, where we remember the generation of the
1778 * self IDs in the buffer before reading them out and compare
1779 * it to the current generation after reading them out. If
1780 * the two generations match we know we have a consistent set
1784 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1785 if (new_generation
!= generation
) {
1786 fw_notify("recursive bus reset detected, "
1787 "discarding self ids\n");
1791 /* FIXME: Document how the locking works. */
1792 spin_lock_irqsave(&ohci
->lock
, flags
);
1794 ohci
->generation
= -1; /* prevent AT packet queueing */
1795 context_stop(&ohci
->at_request_ctx
);
1796 context_stop(&ohci
->at_response_ctx
);
1798 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1801 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1802 * packets in the AT queues and software needs to drain them.
1803 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1805 at_context_flush(&ohci
->at_request_ctx
);
1806 at_context_flush(&ohci
->at_response_ctx
);
1808 spin_lock_irqsave(&ohci
->lock
, flags
);
1810 ohci
->generation
= generation
;
1811 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
1813 if (ohci
->quirks
& QUIRK_RESET_PACKET
)
1814 ohci
->request_generation
= generation
;
1817 * This next bit is unrelated to the AT context stuff but we
1818 * have to do it under the spinlock also. If a new config rom
1819 * was set up before this reset, the old one is now no longer
1820 * in use and we can free it. Update the config rom pointers
1821 * to point to the current config rom and clear the
1822 * next_config_rom pointer so a new update can take place.
1825 if (ohci
->next_config_rom
!= NULL
) {
1826 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
1827 free_rom
= ohci
->config_rom
;
1828 free_rom_bus
= ohci
->config_rom_bus
;
1830 ohci
->config_rom
= ohci
->next_config_rom
;
1831 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
1832 ohci
->next_config_rom
= NULL
;
1835 * Restore config_rom image and manually update
1836 * config_rom registers. Writing the header quadlet
1837 * will indicate that the config rom is ready, so we
1840 reg_write(ohci
, OHCI1394_BusOptions
,
1841 be32_to_cpu(ohci
->config_rom
[2]));
1842 ohci
->config_rom
[0] = ohci
->next_header
;
1843 reg_write(ohci
, OHCI1394_ConfigROMhdr
,
1844 be32_to_cpu(ohci
->next_header
));
1847 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1848 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
1849 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
1852 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1855 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1856 free_rom
, free_rom_bus
);
1858 log_selfids(ohci
->node_id
, generation
,
1859 self_id_count
, ohci
->self_id_buffer
);
1861 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
1862 self_id_count
, ohci
->self_id_buffer
,
1863 ohci
->csr_state_setclear_abdicate
);
1864 ohci
->csr_state_setclear_abdicate
= false;
1867 static irqreturn_t
irq_handler(int irq
, void *data
)
1869 struct fw_ohci
*ohci
= data
;
1870 u32 event
, iso_event
;
1873 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
1875 if (!event
|| !~event
)
1879 * busReset and postedWriteErr must not be cleared yet
1880 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1882 reg_write(ohci
, OHCI1394_IntEventClear
,
1883 event
& ~(OHCI1394_busReset
| OHCI1394_postedWriteErr
));
1886 if (event
& OHCI1394_selfIDComplete
)
1887 tasklet_schedule(&ohci
->bus_reset_tasklet
);
1889 if (event
& OHCI1394_RQPkt
)
1890 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
1892 if (event
& OHCI1394_RSPkt
)
1893 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
1895 if (event
& OHCI1394_reqTxComplete
)
1896 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
1898 if (event
& OHCI1394_respTxComplete
)
1899 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
1901 if (event
& OHCI1394_isochRx
) {
1902 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
1903 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
1906 i
= ffs(iso_event
) - 1;
1908 &ohci
->ir_context_list
[i
].context
.tasklet
);
1909 iso_event
&= ~(1 << i
);
1913 if (event
& OHCI1394_isochTx
) {
1914 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
1915 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
1918 i
= ffs(iso_event
) - 1;
1920 &ohci
->it_context_list
[i
].context
.tasklet
);
1921 iso_event
&= ~(1 << i
);
1925 if (unlikely(event
& OHCI1394_regAccessFail
))
1926 fw_error("Register access failure - "
1927 "please notify linux1394-devel@lists.sf.net\n");
1929 if (unlikely(event
& OHCI1394_postedWriteErr
)) {
1930 reg_read(ohci
, OHCI1394_PostedWriteAddressHi
);
1931 reg_read(ohci
, OHCI1394_PostedWriteAddressLo
);
1932 reg_write(ohci
, OHCI1394_IntEventClear
,
1933 OHCI1394_postedWriteErr
);
1934 fw_error("PCI posted write error\n");
1937 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
1938 if (printk_ratelimit())
1939 fw_notify("isochronous cycle too long\n");
1940 reg_write(ohci
, OHCI1394_LinkControlSet
,
1941 OHCI1394_LinkControl_cycleMaster
);
1944 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
1946 * We need to clear this event bit in order to make
1947 * cycleMatch isochronous I/O work. In theory we should
1948 * stop active cycleMatch iso contexts now and restart
1949 * them at least two cycles later. (FIXME?)
1951 if (printk_ratelimit())
1952 fw_notify("isochronous cycle inconsistent\n");
1955 if (unlikely(event
& OHCI1394_unrecoverableError
))
1956 handle_dead_contexts(ohci
);
1958 if (event
& OHCI1394_cycle64Seconds
) {
1959 spin_lock(&ohci
->lock
);
1960 update_bus_time(ohci
);
1961 spin_unlock(&ohci
->lock
);
1968 static int software_reset(struct fw_ohci
*ohci
)
1973 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
1974 for (i
= 0; i
< 500; i
++) {
1975 val
= reg_read(ohci
, OHCI1394_HCControlSet
);
1977 return -ENODEV
; /* Card was ejected. */
1979 if (!(val
& OHCI1394_HCControl_softReset
))
1988 static void copy_config_rom(__be32
*dest
, const __be32
*src
, size_t length
)
1990 size_t size
= length
* 4;
1992 memcpy(dest
, src
, size
);
1993 if (size
< CONFIG_ROM_SIZE
)
1994 memset(&dest
[length
], 0, CONFIG_ROM_SIZE
- size
);
1997 static int configure_1394a_enhancements(struct fw_ohci
*ohci
)
2000 int ret
, clear
, set
, offset
;
2002 /* Check if the driver should configure link and PHY. */
2003 if (!(reg_read(ohci
, OHCI1394_HCControlSet
) &
2004 OHCI1394_HCControl_programPhyEnable
))
2007 /* Paranoia: check whether the PHY supports 1394a, too. */
2008 enable_1394a
= false;
2009 ret
= read_phy_reg(ohci
, 2);
2012 if ((ret
& PHY_EXTENDED_REGISTERS
) == PHY_EXTENDED_REGISTERS
) {
2013 ret
= read_paged_phy_reg(ohci
, 1, 8);
2017 enable_1394a
= true;
2020 if (ohci
->quirks
& QUIRK_NO_1394A
)
2021 enable_1394a
= false;
2023 /* Configure PHY and link consistently. */
2026 set
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2028 clear
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2031 ret
= update_phy_reg(ohci
, 5, clear
, set
);
2036 offset
= OHCI1394_HCControlSet
;
2038 offset
= OHCI1394_HCControlClear
;
2039 reg_write(ohci
, offset
, OHCI1394_HCControl_aPhyEnhanceEnable
);
2041 /* Clean up: configuration has been taken care of. */
2042 reg_write(ohci
, OHCI1394_HCControlClear
,
2043 OHCI1394_HCControl_programPhyEnable
);
2048 static int ohci_enable(struct fw_card
*card
,
2049 const __be32
*config_rom
, size_t length
)
2051 struct fw_ohci
*ohci
= fw_ohci(card
);
2052 struct pci_dev
*dev
= to_pci_dev(card
->device
);
2053 u32 lps
, seconds
, version
, irqs
;
2056 if (software_reset(ohci
)) {
2057 fw_error("Failed to reset ohci card.\n");
2062 * Now enable LPS, which we need in order to start accessing
2063 * most of the registers. In fact, on some cards (ALI M5251),
2064 * accessing registers in the SClk domain without LPS enabled
2065 * will lock up the machine. Wait 50msec to make sure we have
2066 * full link enabled. However, with some cards (well, at least
2067 * a JMicron PCIe card), we have to try again sometimes.
2069 reg_write(ohci
, OHCI1394_HCControlSet
,
2070 OHCI1394_HCControl_LPS
|
2071 OHCI1394_HCControl_postedWriteEnable
);
2074 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
2076 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
2077 OHCI1394_HCControl_LPS
;
2081 fw_error("Failed to set Link Power Status\n");
2085 reg_write(ohci
, OHCI1394_HCControlClear
,
2086 OHCI1394_HCControl_noByteSwapData
);
2088 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
2089 reg_write(ohci
, OHCI1394_LinkControlSet
,
2090 OHCI1394_LinkControl_cycleTimerEnable
|
2091 OHCI1394_LinkControl_cycleMaster
);
2093 reg_write(ohci
, OHCI1394_ATRetries
,
2094 OHCI1394_MAX_AT_REQ_RETRIES
|
2095 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
2096 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8) |
2099 seconds
= lower_32_bits(get_seconds());
2100 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, seconds
<< 25);
2101 ohci
->bus_time
= seconds
& ~0x3f;
2103 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2104 if (version
>= OHCI_VERSION_1_1
) {
2105 reg_write(ohci
, OHCI1394_InitialChannelsAvailableHi
,
2107 card
->broadcast_channel_auto_allocated
= true;
2110 /* Get implemented bits of the priority arbitration request counter. */
2111 reg_write(ohci
, OHCI1394_FairnessControl
, 0x3f);
2112 ohci
->pri_req_max
= reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f;
2113 reg_write(ohci
, OHCI1394_FairnessControl
, 0);
2114 card
->priority_budget_implemented
= ohci
->pri_req_max
!= 0;
2116 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
2117 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
2118 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2120 ret
= configure_1394a_enhancements(ohci
);
2124 /* Activate link_on bit and contender bit in our self ID packets.*/
2125 ret
= ohci_update_phy_reg(card
, 4, 0, PHY_LINK_ACTIVE
| PHY_CONTENDER
);
2130 * When the link is not yet enabled, the atomic config rom
2131 * update mechanism described below in ohci_set_config_rom()
2132 * is not active. We have to update ConfigRomHeader and
2133 * BusOptions manually, and the write to ConfigROMmap takes
2134 * effect immediately. We tie this to the enabling of the
2135 * link, so we have a valid config rom before enabling - the
2136 * OHCI requires that ConfigROMhdr and BusOptions have valid
2137 * values before enabling.
2139 * However, when the ConfigROMmap is written, some controllers
2140 * always read back quadlets 0 and 2 from the config rom to
2141 * the ConfigRomHeader and BusOptions registers on bus reset.
2142 * They shouldn't do that in this initial case where the link
2143 * isn't enabled. This means we have to use the same
2144 * workaround here, setting the bus header to 0 and then write
2145 * the right values in the bus reset tasklet.
2149 ohci
->next_config_rom
=
2150 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2151 &ohci
->next_config_rom_bus
,
2153 if (ohci
->next_config_rom
== NULL
)
2156 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2159 * In the suspend case, config_rom is NULL, which
2160 * means that we just reuse the old config rom.
2162 ohci
->next_config_rom
= ohci
->config_rom
;
2163 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
2166 ohci
->next_header
= ohci
->next_config_rom
[0];
2167 ohci
->next_config_rom
[0] = 0;
2168 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
2169 reg_write(ohci
, OHCI1394_BusOptions
,
2170 be32_to_cpu(ohci
->next_config_rom
[2]));
2171 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2173 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
2175 if (!(ohci
->quirks
& QUIRK_NO_MSI
))
2176 pci_enable_msi(dev
);
2177 if (request_irq(dev
->irq
, irq_handler
,
2178 pci_dev_msi_enabled(dev
) ? 0 : IRQF_SHARED
,
2179 ohci_driver_name
, ohci
)) {
2180 fw_error("Failed to allocate interrupt %d.\n", dev
->irq
);
2181 pci_disable_msi(dev
);
2184 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2185 ohci
->next_config_rom
,
2186 ohci
->next_config_rom_bus
);
2187 ohci
->next_config_rom
= NULL
;
2192 irqs
= OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
2193 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
2194 OHCI1394_isochTx
| OHCI1394_isochRx
|
2195 OHCI1394_postedWriteErr
|
2196 OHCI1394_selfIDComplete
|
2197 OHCI1394_regAccessFail
|
2198 OHCI1394_cycle64Seconds
|
2199 OHCI1394_cycleInconsistent
|
2200 OHCI1394_unrecoverableError
|
2201 OHCI1394_cycleTooLong
|
2202 OHCI1394_masterIntEnable
;
2203 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
2204 irqs
|= OHCI1394_busReset
;
2205 reg_write(ohci
, OHCI1394_IntMaskSet
, irqs
);
2207 reg_write(ohci
, OHCI1394_HCControlSet
,
2208 OHCI1394_HCControl_linkEnable
|
2209 OHCI1394_HCControl_BIBimageValid
);
2211 reg_write(ohci
, OHCI1394_LinkControlSet
,
2212 OHCI1394_LinkControl_rcvSelfID
|
2213 OHCI1394_LinkControl_rcvPhyPkt
);
2215 ar_context_run(&ohci
->ar_request_ctx
);
2216 ar_context_run(&ohci
->ar_response_ctx
);
2220 /* We are ready to go, reset bus to finish initialization. */
2221 fw_schedule_bus_reset(&ohci
->card
, false, true);
2226 static int ohci_set_config_rom(struct fw_card
*card
,
2227 const __be32
*config_rom
, size_t length
)
2229 struct fw_ohci
*ohci
;
2230 unsigned long flags
;
2231 __be32
*next_config_rom
;
2232 dma_addr_t
uninitialized_var(next_config_rom_bus
);
2234 ohci
= fw_ohci(card
);
2237 * When the OHCI controller is enabled, the config rom update
2238 * mechanism is a bit tricky, but easy enough to use. See
2239 * section 5.5.6 in the OHCI specification.
2241 * The OHCI controller caches the new config rom address in a
2242 * shadow register (ConfigROMmapNext) and needs a bus reset
2243 * for the changes to take place. When the bus reset is
2244 * detected, the controller loads the new values for the
2245 * ConfigRomHeader and BusOptions registers from the specified
2246 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2247 * shadow register. All automatically and atomically.
2249 * Now, there's a twist to this story. The automatic load of
2250 * ConfigRomHeader and BusOptions doesn't honor the
2251 * noByteSwapData bit, so with a be32 config rom, the
2252 * controller will load be32 values in to these registers
2253 * during the atomic update, even on litte endian
2254 * architectures. The workaround we use is to put a 0 in the
2255 * header quadlet; 0 is endian agnostic and means that the
2256 * config rom isn't ready yet. In the bus reset tasklet we
2257 * then set up the real values for the two registers.
2259 * We use ohci->lock to avoid racing with the code that sets
2260 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2264 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2265 &next_config_rom_bus
, GFP_KERNEL
);
2266 if (next_config_rom
== NULL
)
2269 spin_lock_irqsave(&ohci
->lock
, flags
);
2272 * If there is not an already pending config_rom update,
2273 * push our new allocation into the ohci->next_config_rom
2274 * and then mark the local variable as null so that we
2275 * won't deallocate the new buffer.
2277 * OTOH, if there is a pending config_rom update, just
2278 * use that buffer with the new config_rom data, and
2279 * let this routine free the unused DMA allocation.
2282 if (ohci
->next_config_rom
== NULL
) {
2283 ohci
->next_config_rom
= next_config_rom
;
2284 ohci
->next_config_rom_bus
= next_config_rom_bus
;
2285 next_config_rom
= NULL
;
2288 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2290 ohci
->next_header
= config_rom
[0];
2291 ohci
->next_config_rom
[0] = 0;
2293 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2295 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2297 /* If we didn't use the DMA allocation, delete it. */
2298 if (next_config_rom
!= NULL
)
2299 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2300 next_config_rom
, next_config_rom_bus
);
2303 * Now initiate a bus reset to have the changes take
2304 * effect. We clean up the old config rom memory and DMA
2305 * mappings in the bus reset tasklet, since the OHCI
2306 * controller could need to access it before the bus reset
2310 fw_schedule_bus_reset(&ohci
->card
, true, true);
2315 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
2317 struct fw_ohci
*ohci
= fw_ohci(card
);
2319 at_context_transmit(&ohci
->at_request_ctx
, packet
);
2322 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
2324 struct fw_ohci
*ohci
= fw_ohci(card
);
2326 at_context_transmit(&ohci
->at_response_ctx
, packet
);
2329 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
2331 struct fw_ohci
*ohci
= fw_ohci(card
);
2332 struct context
*ctx
= &ohci
->at_request_ctx
;
2333 struct driver_data
*driver_data
= packet
->driver_data
;
2336 tasklet_disable(&ctx
->tasklet
);
2338 if (packet
->ack
!= 0)
2341 if (packet
->payload_mapped
)
2342 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
2343 packet
->payload_length
, DMA_TO_DEVICE
);
2345 log_ar_at_event('T', packet
->speed
, packet
->header
, 0x20);
2346 driver_data
->packet
= NULL
;
2347 packet
->ack
= RCODE_CANCELLED
;
2348 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
2351 tasklet_enable(&ctx
->tasklet
);
2356 static int ohci_enable_phys_dma(struct fw_card
*card
,
2357 int node_id
, int generation
)
2359 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2362 struct fw_ohci
*ohci
= fw_ohci(card
);
2363 unsigned long flags
;
2367 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2368 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2371 spin_lock_irqsave(&ohci
->lock
, flags
);
2373 if (ohci
->generation
!= generation
) {
2379 * Note, if the node ID contains a non-local bus ID, physical DMA is
2380 * enabled for _all_ nodes on remote buses.
2383 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
2385 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
2387 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
2391 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2394 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2397 static u32
ohci_read_csr(struct fw_card
*card
, int csr_offset
)
2399 struct fw_ohci
*ohci
= fw_ohci(card
);
2400 unsigned long flags
;
2403 switch (csr_offset
) {
2404 case CSR_STATE_CLEAR
:
2406 if (ohci
->is_root
&&
2407 (reg_read(ohci
, OHCI1394_LinkControlSet
) &
2408 OHCI1394_LinkControl_cycleMaster
))
2409 value
= CSR_STATE_BIT_CMSTR
;
2412 if (ohci
->csr_state_setclear_abdicate
)
2413 value
|= CSR_STATE_BIT_ABDICATE
;
2418 return reg_read(ohci
, OHCI1394_NodeID
) << 16;
2420 case CSR_CYCLE_TIME
:
2421 return get_cycle_time(ohci
);
2425 * We might be called just after the cycle timer has wrapped
2426 * around but just before the cycle64Seconds handler, so we
2427 * better check here, too, if the bus time needs to be updated.
2429 spin_lock_irqsave(&ohci
->lock
, flags
);
2430 value
= update_bus_time(ohci
);
2431 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2434 case CSR_BUSY_TIMEOUT
:
2435 value
= reg_read(ohci
, OHCI1394_ATRetries
);
2436 return (value
>> 4) & 0x0ffff00f;
2438 case CSR_PRIORITY_BUDGET
:
2439 return (reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f) |
2440 (ohci
->pri_req_max
<< 8);
2448 static void ohci_write_csr(struct fw_card
*card
, int csr_offset
, u32 value
)
2450 struct fw_ohci
*ohci
= fw_ohci(card
);
2451 unsigned long flags
;
2453 switch (csr_offset
) {
2454 case CSR_STATE_CLEAR
:
2455 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2456 reg_write(ohci
, OHCI1394_LinkControlClear
,
2457 OHCI1394_LinkControl_cycleMaster
);
2460 if (value
& CSR_STATE_BIT_ABDICATE
)
2461 ohci
->csr_state_setclear_abdicate
= false;
2465 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2466 reg_write(ohci
, OHCI1394_LinkControlSet
,
2467 OHCI1394_LinkControl_cycleMaster
);
2470 if (value
& CSR_STATE_BIT_ABDICATE
)
2471 ohci
->csr_state_setclear_abdicate
= true;
2475 reg_write(ohci
, OHCI1394_NodeID
, value
>> 16);
2479 case CSR_CYCLE_TIME
:
2480 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, value
);
2481 reg_write(ohci
, OHCI1394_IntEventSet
,
2482 OHCI1394_cycleInconsistent
);
2487 spin_lock_irqsave(&ohci
->lock
, flags
);
2488 ohci
->bus_time
= (ohci
->bus_time
& 0x7f) | (value
& ~0x7f);
2489 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2492 case CSR_BUSY_TIMEOUT
:
2493 value
= (value
& 0xf) | ((value
& 0xf) << 4) |
2494 ((value
& 0xf) << 8) | ((value
& 0x0ffff000) << 4);
2495 reg_write(ohci
, OHCI1394_ATRetries
, value
);
2499 case CSR_PRIORITY_BUDGET
:
2500 reg_write(ohci
, OHCI1394_FairnessControl
, value
& 0x3f);
2510 static void copy_iso_headers(struct iso_context
*ctx
, void *p
)
2512 int i
= ctx
->header_length
;
2514 if (i
+ ctx
->base
.header_size
> PAGE_SIZE
)
2518 * The iso header is byteswapped to little endian by
2519 * the controller, but the remaining header quadlets
2520 * are big endian. We want to present all the headers
2521 * as big endian, so we have to swap the first quadlet.
2523 if (ctx
->base
.header_size
> 0)
2524 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
2525 if (ctx
->base
.header_size
> 4)
2526 *(u32
*) (ctx
->header
+ i
+ 4) = __swab32(*(u32
*) p
);
2527 if (ctx
->base
.header_size
> 8)
2528 memcpy(ctx
->header
+ i
+ 8, p
+ 8, ctx
->base
.header_size
- 8);
2529 ctx
->header_length
+= ctx
->base
.header_size
;
2532 static int handle_ir_packet_per_buffer(struct context
*context
,
2533 struct descriptor
*d
,
2534 struct descriptor
*last
)
2536 struct iso_context
*ctx
=
2537 container_of(context
, struct iso_context
, context
);
2538 struct descriptor
*pd
;
2542 for (pd
= d
; pd
<= last
; pd
++)
2543 if (pd
->transfer_status
)
2546 /* Descriptor(s) not done yet, stop iteration */
2550 copy_iso_headers(ctx
, p
);
2552 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
2553 ir_header
= (__le32
*) p
;
2554 ctx
->base
.callback
.sc(&ctx
->base
,
2555 le32_to_cpu(ir_header
[0]) & 0xffff,
2556 ctx
->header_length
, ctx
->header
,
2557 ctx
->base
.callback_data
);
2558 ctx
->header_length
= 0;
2564 /* d == last because each descriptor block is only a single descriptor. */
2565 static int handle_ir_buffer_fill(struct context
*context
,
2566 struct descriptor
*d
,
2567 struct descriptor
*last
)
2569 struct iso_context
*ctx
=
2570 container_of(context
, struct iso_context
, context
);
2572 if (!last
->transfer_status
)
2573 /* Descriptor(s) not done yet, stop iteration */
2576 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
)
2577 ctx
->base
.callback
.mc(&ctx
->base
,
2578 le32_to_cpu(last
->data_address
) +
2579 le16_to_cpu(last
->req_count
) -
2580 le16_to_cpu(last
->res_count
),
2581 ctx
->base
.callback_data
);
2586 static int handle_it_packet(struct context
*context
,
2587 struct descriptor
*d
,
2588 struct descriptor
*last
)
2590 struct iso_context
*ctx
=
2591 container_of(context
, struct iso_context
, context
);
2593 struct descriptor
*pd
;
2595 for (pd
= d
; pd
<= last
; pd
++)
2596 if (pd
->transfer_status
)
2599 /* Descriptor(s) not done yet, stop iteration */
2602 i
= ctx
->header_length
;
2603 if (i
+ 4 < PAGE_SIZE
) {
2604 /* Present this value as big-endian to match the receive code */
2605 *(__be32
*)(ctx
->header
+ i
) = cpu_to_be32(
2606 ((u32
)le16_to_cpu(pd
->transfer_status
) << 16) |
2607 le16_to_cpu(pd
->res_count
));
2608 ctx
->header_length
+= 4;
2610 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
2611 ctx
->base
.callback
.sc(&ctx
->base
, le16_to_cpu(last
->res_count
),
2612 ctx
->header_length
, ctx
->header
,
2613 ctx
->base
.callback_data
);
2614 ctx
->header_length
= 0;
2619 static void set_multichannel_mask(struct fw_ohci
*ohci
, u64 channels
)
2621 u32 hi
= channels
>> 32, lo
= channels
;
2623 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiClear
, ~hi
);
2624 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoClear
, ~lo
);
2625 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiSet
, hi
);
2626 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoSet
, lo
);
2628 ohci
->mc_channels
= channels
;
2631 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
2632 int type
, int channel
, size_t header_size
)
2634 struct fw_ohci
*ohci
= fw_ohci(card
);
2635 struct iso_context
*uninitialized_var(ctx
);
2636 descriptor_callback_t
uninitialized_var(callback
);
2637 u64
*uninitialized_var(channels
);
2638 u32
*uninitialized_var(mask
), uninitialized_var(regs
);
2639 unsigned long flags
;
2640 int index
, ret
= -EBUSY
;
2642 spin_lock_irqsave(&ohci
->lock
, flags
);
2645 case FW_ISO_CONTEXT_TRANSMIT
:
2646 mask
= &ohci
->it_context_mask
;
2647 callback
= handle_it_packet
;
2648 index
= ffs(*mask
) - 1;
2650 *mask
&= ~(1 << index
);
2651 regs
= OHCI1394_IsoXmitContextBase(index
);
2652 ctx
= &ohci
->it_context_list
[index
];
2656 case FW_ISO_CONTEXT_RECEIVE
:
2657 channels
= &ohci
->ir_context_channels
;
2658 mask
= &ohci
->ir_context_mask
;
2659 callback
= handle_ir_packet_per_buffer
;
2660 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
2662 *channels
&= ~(1ULL << channel
);
2663 *mask
&= ~(1 << index
);
2664 regs
= OHCI1394_IsoRcvContextBase(index
);
2665 ctx
= &ohci
->ir_context_list
[index
];
2669 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2670 mask
= &ohci
->ir_context_mask
;
2671 callback
= handle_ir_buffer_fill
;
2672 index
= !ohci
->mc_allocated
? ffs(*mask
) - 1 : -1;
2674 ohci
->mc_allocated
= true;
2675 *mask
&= ~(1 << index
);
2676 regs
= OHCI1394_IsoRcvContextBase(index
);
2677 ctx
= &ohci
->ir_context_list
[index
];
2686 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2689 return ERR_PTR(ret
);
2691 memset(ctx
, 0, sizeof(*ctx
));
2692 ctx
->header_length
= 0;
2693 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
2694 if (ctx
->header
== NULL
) {
2698 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
2700 goto out_with_header
;
2702 if (type
== FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
)
2703 set_multichannel_mask(ohci
, 0);
2708 free_page((unsigned long)ctx
->header
);
2710 spin_lock_irqsave(&ohci
->lock
, flags
);
2713 case FW_ISO_CONTEXT_RECEIVE
:
2714 *channels
|= 1ULL << channel
;
2717 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2718 ohci
->mc_allocated
= false;
2721 *mask
|= 1 << index
;
2723 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2725 return ERR_PTR(ret
);
2728 static int ohci_start_iso(struct fw_iso_context
*base
,
2729 s32 cycle
, u32 sync
, u32 tags
)
2731 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2732 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
2733 u32 control
= IR_CONTEXT_ISOCH_HEADER
, match
;
2736 /* the controller cannot start without any queued packets */
2737 if (ctx
->context
.last
->branch_address
== 0)
2740 switch (ctx
->base
.type
) {
2741 case FW_ISO_CONTEXT_TRANSMIT
:
2742 index
= ctx
- ohci
->it_context_list
;
2745 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
2746 (cycle
& 0x7fff) << 16;
2748 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
2749 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
2750 context_run(&ctx
->context
, match
);
2753 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2754 control
|= IR_CONTEXT_BUFFER_FILL
|IR_CONTEXT_MULTI_CHANNEL_MODE
;
2756 case FW_ISO_CONTEXT_RECEIVE
:
2757 index
= ctx
- ohci
->ir_context_list
;
2758 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
2760 match
|= (cycle
& 0x07fff) << 12;
2761 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
2764 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
2765 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
2766 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
2767 context_run(&ctx
->context
, control
);
2778 static int ohci_stop_iso(struct fw_iso_context
*base
)
2780 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2781 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2784 switch (ctx
->base
.type
) {
2785 case FW_ISO_CONTEXT_TRANSMIT
:
2786 index
= ctx
- ohci
->it_context_list
;
2787 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
2790 case FW_ISO_CONTEXT_RECEIVE
:
2791 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2792 index
= ctx
- ohci
->ir_context_list
;
2793 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
2797 context_stop(&ctx
->context
);
2798 tasklet_kill(&ctx
->context
.tasklet
);
2803 static void ohci_free_iso_context(struct fw_iso_context
*base
)
2805 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2806 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2807 unsigned long flags
;
2810 ohci_stop_iso(base
);
2811 context_release(&ctx
->context
);
2812 free_page((unsigned long)ctx
->header
);
2814 spin_lock_irqsave(&ohci
->lock
, flags
);
2816 switch (base
->type
) {
2817 case FW_ISO_CONTEXT_TRANSMIT
:
2818 index
= ctx
- ohci
->it_context_list
;
2819 ohci
->it_context_mask
|= 1 << index
;
2822 case FW_ISO_CONTEXT_RECEIVE
:
2823 index
= ctx
- ohci
->ir_context_list
;
2824 ohci
->ir_context_mask
|= 1 << index
;
2825 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
2828 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2829 index
= ctx
- ohci
->ir_context_list
;
2830 ohci
->ir_context_mask
|= 1 << index
;
2831 ohci
->ir_context_channels
|= ohci
->mc_channels
;
2832 ohci
->mc_channels
= 0;
2833 ohci
->mc_allocated
= false;
2837 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2840 static int ohci_set_iso_channels(struct fw_iso_context
*base
, u64
*channels
)
2842 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2843 unsigned long flags
;
2846 switch (base
->type
) {
2847 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2849 spin_lock_irqsave(&ohci
->lock
, flags
);
2851 /* Don't allow multichannel to grab other contexts' channels. */
2852 if (~ohci
->ir_context_channels
& ~ohci
->mc_channels
& *channels
) {
2853 *channels
= ohci
->ir_context_channels
;
2856 set_multichannel_mask(ohci
, *channels
);
2860 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2871 static void ohci_resume_iso_dma(struct fw_ohci
*ohci
)
2874 struct iso_context
*ctx
;
2876 for (i
= 0 ; i
< ohci
->n_ir
; i
++) {
2877 ctx
= &ohci
->ir_context_list
[i
];
2878 if (ctx
->context
.running
)
2879 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
2882 for (i
= 0 ; i
< ohci
->n_it
; i
++) {
2883 ctx
= &ohci
->it_context_list
[i
];
2884 if (ctx
->context
.running
)
2885 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
2890 static int queue_iso_transmit(struct iso_context
*ctx
,
2891 struct fw_iso_packet
*packet
,
2892 struct fw_iso_buffer
*buffer
,
2893 unsigned long payload
)
2895 struct descriptor
*d
, *last
, *pd
;
2896 struct fw_iso_packet
*p
;
2898 dma_addr_t d_bus
, page_bus
;
2899 u32 z
, header_z
, payload_z
, irq
;
2900 u32 payload_index
, payload_end_index
, next_page_index
;
2901 int page
, end_page
, i
, length
, offset
;
2904 payload_index
= payload
;
2910 if (p
->header_length
> 0)
2913 /* Determine the first page the payload isn't contained in. */
2914 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
2915 if (p
->payload_length
> 0)
2916 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
2922 /* Get header size in number of descriptors. */
2923 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
2925 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
2930 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
2931 d
[0].req_count
= cpu_to_le16(8);
2933 * Link the skip address to this descriptor itself. This causes
2934 * a context to skip a cycle whenever lost cycles or FIFO
2935 * overruns occur, without dropping the data. The application
2936 * should then decide whether this is an error condition or not.
2937 * FIXME: Make the context's cycle-lost behaviour configurable?
2939 d
[0].branch_address
= cpu_to_le32(d_bus
| z
);
2941 header
= (__le32
*) &d
[1];
2942 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
2943 IT_HEADER_TAG(p
->tag
) |
2944 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
2945 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
2946 IT_HEADER_SPEED(ctx
->base
.speed
));
2948 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
2949 p
->payload_length
));
2952 if (p
->header_length
> 0) {
2953 d
[2].req_count
= cpu_to_le16(p
->header_length
);
2954 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
2955 memcpy(&d
[z
], p
->header
, p
->header_length
);
2958 pd
= d
+ z
- payload_z
;
2959 payload_end_index
= payload_index
+ p
->payload_length
;
2960 for (i
= 0; i
< payload_z
; i
++) {
2961 page
= payload_index
>> PAGE_SHIFT
;
2962 offset
= payload_index
& ~PAGE_MASK
;
2963 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
2965 min(next_page_index
, payload_end_index
) - payload_index
;
2966 pd
[i
].req_count
= cpu_to_le16(length
);
2968 page_bus
= page_private(buffer
->pages
[page
]);
2969 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
2971 payload_index
+= length
;
2975 irq
= DESCRIPTOR_IRQ_ALWAYS
;
2977 irq
= DESCRIPTOR_NO_IRQ
;
2979 last
= z
== 2 ? d
: d
+ z
- 1;
2980 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
2982 DESCRIPTOR_BRANCH_ALWAYS
|
2985 context_append(&ctx
->context
, d
, z
, header_z
);
2990 static int queue_iso_packet_per_buffer(struct iso_context
*ctx
,
2991 struct fw_iso_packet
*packet
,
2992 struct fw_iso_buffer
*buffer
,
2993 unsigned long payload
)
2995 struct descriptor
*d
, *pd
;
2996 dma_addr_t d_bus
, page_bus
;
2997 u32 z
, header_z
, rest
;
2999 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
3002 * The OHCI controller puts the isochronous header and trailer in the
3003 * buffer, so we need at least 8 bytes.
3005 packet_count
= packet
->header_length
/ ctx
->base
.header_size
;
3006 header_size
= max(ctx
->base
.header_size
, (size_t)8);
3008 /* Get header size in number of descriptors. */
3009 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
3010 page
= payload
>> PAGE_SHIFT
;
3011 offset
= payload
& ~PAGE_MASK
;
3012 payload_per_buffer
= packet
->payload_length
/ packet_count
;
3014 for (i
= 0; i
< packet_count
; i
++) {
3015 /* d points to the header descriptor */
3016 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
3017 d
= context_get_descriptors(&ctx
->context
,
3018 z
+ header_z
, &d_bus
);
3022 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3023 DESCRIPTOR_INPUT_MORE
);
3024 if (packet
->skip
&& i
== 0)
3025 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3026 d
->req_count
= cpu_to_le16(header_size
);
3027 d
->res_count
= d
->req_count
;
3028 d
->transfer_status
= 0;
3029 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
3031 rest
= payload_per_buffer
;
3033 for (j
= 1; j
< z
; j
++) {
3035 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3036 DESCRIPTOR_INPUT_MORE
);
3038 if (offset
+ rest
< PAGE_SIZE
)
3041 length
= PAGE_SIZE
- offset
;
3042 pd
->req_count
= cpu_to_le16(length
);
3043 pd
->res_count
= pd
->req_count
;
3044 pd
->transfer_status
= 0;
3046 page_bus
= page_private(buffer
->pages
[page
]);
3047 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
3049 offset
= (offset
+ length
) & ~PAGE_MASK
;
3054 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3055 DESCRIPTOR_INPUT_LAST
|
3056 DESCRIPTOR_BRANCH_ALWAYS
);
3057 if (packet
->interrupt
&& i
== packet_count
- 1)
3058 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3060 context_append(&ctx
->context
, d
, z
, header_z
);
3066 static int queue_iso_buffer_fill(struct iso_context
*ctx
,
3067 struct fw_iso_packet
*packet
,
3068 struct fw_iso_buffer
*buffer
,
3069 unsigned long payload
)
3071 struct descriptor
*d
;
3072 dma_addr_t d_bus
, page_bus
;
3073 int page
, offset
, rest
, z
, i
, length
;
3075 page
= payload
>> PAGE_SHIFT
;
3076 offset
= payload
& ~PAGE_MASK
;
3077 rest
= packet
->payload_length
;
3079 /* We need one descriptor for each page in the buffer. */
3080 z
= DIV_ROUND_UP(offset
+ rest
, PAGE_SIZE
);
3082 if (WARN_ON(offset
& 3 || rest
& 3 || page
+ z
> buffer
->page_count
))
3085 for (i
= 0; i
< z
; i
++) {
3086 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
3090 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
3091 DESCRIPTOR_BRANCH_ALWAYS
);
3092 if (packet
->skip
&& i
== 0)
3093 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3094 if (packet
->interrupt
&& i
== z
- 1)
3095 d
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3097 if (offset
+ rest
< PAGE_SIZE
)
3100 length
= PAGE_SIZE
- offset
;
3101 d
->req_count
= cpu_to_le16(length
);
3102 d
->res_count
= d
->req_count
;
3103 d
->transfer_status
= 0;
3105 page_bus
= page_private(buffer
->pages
[page
]);
3106 d
->data_address
= cpu_to_le32(page_bus
+ offset
);
3112 context_append(&ctx
->context
, d
, 1, 0);
3118 static int ohci_queue_iso(struct fw_iso_context
*base
,
3119 struct fw_iso_packet
*packet
,
3120 struct fw_iso_buffer
*buffer
,
3121 unsigned long payload
)
3123 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3124 unsigned long flags
;
3127 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
3128 switch (base
->type
) {
3129 case FW_ISO_CONTEXT_TRANSMIT
:
3130 ret
= queue_iso_transmit(ctx
, packet
, buffer
, payload
);
3132 case FW_ISO_CONTEXT_RECEIVE
:
3133 ret
= queue_iso_packet_per_buffer(ctx
, packet
, buffer
, payload
);
3135 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3136 ret
= queue_iso_buffer_fill(ctx
, packet
, buffer
, payload
);
3139 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
3144 static void ohci_flush_queue_iso(struct fw_iso_context
*base
)
3146 struct context
*ctx
=
3147 &container_of(base
, struct iso_context
, base
)->context
;
3149 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
3152 static const struct fw_card_driver ohci_driver
= {
3153 .enable
= ohci_enable
,
3154 .read_phy_reg
= ohci_read_phy_reg
,
3155 .update_phy_reg
= ohci_update_phy_reg
,
3156 .set_config_rom
= ohci_set_config_rom
,
3157 .send_request
= ohci_send_request
,
3158 .send_response
= ohci_send_response
,
3159 .cancel_packet
= ohci_cancel_packet
,
3160 .enable_phys_dma
= ohci_enable_phys_dma
,
3161 .read_csr
= ohci_read_csr
,
3162 .write_csr
= ohci_write_csr
,
3164 .allocate_iso_context
= ohci_allocate_iso_context
,
3165 .free_iso_context
= ohci_free_iso_context
,
3166 .set_iso_channels
= ohci_set_iso_channels
,
3167 .queue_iso
= ohci_queue_iso
,
3168 .flush_queue_iso
= ohci_flush_queue_iso
,
3169 .start_iso
= ohci_start_iso
,
3170 .stop_iso
= ohci_stop_iso
,
3173 #ifdef CONFIG_PPC_PMAC
3174 static void pmac_ohci_on(struct pci_dev
*dev
)
3176 if (machine_is(powermac
)) {
3177 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3180 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
3181 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
3186 static void pmac_ohci_off(struct pci_dev
*dev
)
3188 if (machine_is(powermac
)) {
3189 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3192 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
3193 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
3198 static inline void pmac_ohci_on(struct pci_dev
*dev
) {}
3199 static inline void pmac_ohci_off(struct pci_dev
*dev
) {}
3200 #endif /* CONFIG_PPC_PMAC */
3202 static int __devinit
pci_probe(struct pci_dev
*dev
,
3203 const struct pci_device_id
*ent
)
3205 struct fw_ohci
*ohci
;
3206 u32 bus_options
, max_receive
, link_speed
, version
;
3211 if (dev
->vendor
== PCI_VENDOR_ID_PINNACLE_SYSTEMS
) {
3212 dev_err(&dev
->dev
, "Pinnacle MovieBoard is not yet supported\n");
3216 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
3222 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
3226 err
= pci_enable_device(dev
);
3228 fw_error("Failed to enable OHCI hardware\n");
3232 pci_set_master(dev
);
3233 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
3234 pci_set_drvdata(dev
, ohci
);
3236 spin_lock_init(&ohci
->lock
);
3237 mutex_init(&ohci
->phy_reg_mutex
);
3239 tasklet_init(&ohci
->bus_reset_tasklet
,
3240 bus_reset_tasklet
, (unsigned long)ohci
);
3242 err
= pci_request_region(dev
, 0, ohci_driver_name
);
3244 fw_error("MMIO resource unavailable\n");
3248 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
3249 if (ohci
->registers
== NULL
) {
3250 fw_error("Failed to remap registers\n");
3255 for (i
= 0; i
< ARRAY_SIZE(ohci_quirks
); i
++)
3256 if ((ohci_quirks
[i
].vendor
== dev
->vendor
) &&
3257 (ohci_quirks
[i
].device
== (unsigned short)PCI_ANY_ID
||
3258 ohci_quirks
[i
].device
== dev
->device
) &&
3259 (ohci_quirks
[i
].revision
== (unsigned short)PCI_ANY_ID
||
3260 ohci_quirks
[i
].revision
>= dev
->revision
)) {
3261 ohci
->quirks
= ohci_quirks
[i
].flags
;
3265 ohci
->quirks
= param_quirks
;
3268 * Because dma_alloc_coherent() allocates at least one page,
3269 * we save space by using a common buffer for the AR request/
3270 * response descriptors and the self IDs buffer.
3272 BUILD_BUG_ON(AR_BUFFERS
* sizeof(struct descriptor
) > PAGE_SIZE
/4);
3273 BUILD_BUG_ON(SELF_ID_BUF_SIZE
> PAGE_SIZE
/2);
3274 ohci
->misc_buffer
= dma_alloc_coherent(ohci
->card
.device
,
3276 &ohci
->misc_buffer_bus
,
3278 if (!ohci
->misc_buffer
) {
3283 err
= ar_context_init(&ohci
->ar_request_ctx
, ohci
, 0,
3284 OHCI1394_AsReqRcvContextControlSet
);
3288 err
= ar_context_init(&ohci
->ar_response_ctx
, ohci
, PAGE_SIZE
/4,
3289 OHCI1394_AsRspRcvContextControlSet
);
3291 goto fail_arreq_ctx
;
3293 err
= context_init(&ohci
->at_request_ctx
, ohci
,
3294 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
3296 goto fail_arrsp_ctx
;
3298 err
= context_init(&ohci
->at_response_ctx
, ohci
,
3299 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
3301 goto fail_atreq_ctx
;
3303 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
3304 ohci
->ir_context_channels
= ~0ULL;
3305 ohci
->ir_context_support
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
3306 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
3307 ohci
->ir_context_mask
= ohci
->ir_context_support
;
3308 ohci
->n_ir
= hweight32(ohci
->ir_context_mask
);
3309 size
= sizeof(struct iso_context
) * ohci
->n_ir
;
3310 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
3312 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
3313 ohci
->it_context_support
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
3314 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
3315 ohci
->it_context_mask
= ohci
->it_context_support
;
3316 ohci
->n_it
= hweight32(ohci
->it_context_mask
);
3317 size
= sizeof(struct iso_context
) * ohci
->n_it
;
3318 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
3320 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
3325 ohci
->self_id_cpu
= ohci
->misc_buffer
+ PAGE_SIZE
/2;
3326 ohci
->self_id_bus
= ohci
->misc_buffer_bus
+ PAGE_SIZE
/2;
3328 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
3329 max_receive
= (bus_options
>> 12) & 0xf;
3330 link_speed
= bus_options
& 0x7;
3331 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
3332 reg_read(ohci
, OHCI1394_GUIDLo
);
3334 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
3338 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
3339 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3340 "%d IR + %d IT contexts, quirks 0x%x\n",
3341 dev_name(&dev
->dev
), version
>> 16, version
& 0xff,
3342 ohci
->n_ir
, ohci
->n_it
, ohci
->quirks
);
3347 kfree(ohci
->ir_context_list
);
3348 kfree(ohci
->it_context_list
);
3349 context_release(&ohci
->at_response_ctx
);
3351 context_release(&ohci
->at_request_ctx
);
3353 ar_context_release(&ohci
->ar_response_ctx
);
3355 ar_context_release(&ohci
->ar_request_ctx
);
3357 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3358 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3360 pci_iounmap(dev
, ohci
->registers
);
3362 pci_release_region(dev
, 0);
3364 pci_disable_device(dev
);
3370 fw_error("Out of memory\n");
3375 static void pci_remove(struct pci_dev
*dev
)
3377 struct fw_ohci
*ohci
;
3379 ohci
= pci_get_drvdata(dev
);
3380 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
3382 fw_core_remove_card(&ohci
->card
);
3385 * FIXME: Fail all pending packets here, now that the upper
3386 * layers can't queue any more.
3389 software_reset(ohci
);
3390 free_irq(dev
->irq
, ohci
);
3392 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
3393 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3394 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
3395 if (ohci
->config_rom
)
3396 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3397 ohci
->config_rom
, ohci
->config_rom_bus
);
3398 ar_context_release(&ohci
->ar_request_ctx
);
3399 ar_context_release(&ohci
->ar_response_ctx
);
3400 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3401 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3402 context_release(&ohci
->at_request_ctx
);
3403 context_release(&ohci
->at_response_ctx
);
3404 kfree(ohci
->it_context_list
);
3405 kfree(ohci
->ir_context_list
);
3406 pci_disable_msi(dev
);
3407 pci_iounmap(dev
, ohci
->registers
);
3408 pci_release_region(dev
, 0);
3409 pci_disable_device(dev
);
3413 fw_notify("Removed fw-ohci device.\n");
3417 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
3419 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3422 software_reset(ohci
);
3423 free_irq(dev
->irq
, ohci
);
3424 pci_disable_msi(dev
);
3425 err
= pci_save_state(dev
);
3427 fw_error("pci_save_state failed\n");
3430 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
3432 fw_error("pci_set_power_state failed with %d\n", err
);
3438 static int pci_resume(struct pci_dev
*dev
)
3440 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3444 pci_set_power_state(dev
, PCI_D0
);
3445 pci_restore_state(dev
);
3446 err
= pci_enable_device(dev
);
3448 fw_error("pci_enable_device failed\n");
3452 /* Some systems don't setup GUID register on resume from ram */
3453 if (!reg_read(ohci
, OHCI1394_GUIDLo
) &&
3454 !reg_read(ohci
, OHCI1394_GUIDHi
)) {
3455 reg_write(ohci
, OHCI1394_GUIDLo
, (u32
)ohci
->card
.guid
);
3456 reg_write(ohci
, OHCI1394_GUIDHi
, (u32
)(ohci
->card
.guid
>> 32));
3459 err
= ohci_enable(&ohci
->card
, NULL
, 0);
3463 ohci_resume_iso_dma(ohci
);
3469 static const struct pci_device_id pci_table
[] = {
3470 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
3474 MODULE_DEVICE_TABLE(pci
, pci_table
);
3476 static struct pci_driver fw_ohci_pci_driver
= {
3477 .name
= ohci_driver_name
,
3478 .id_table
= pci_table
,
3480 .remove
= pci_remove
,
3482 .resume
= pci_resume
,
3483 .suspend
= pci_suspend
,
3487 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3488 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3489 MODULE_LICENSE("GPL");
3491 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3492 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3493 MODULE_ALIAS("ohci1394");
3496 static int __init
fw_ohci_init(void)
3498 return pci_register_driver(&fw_ohci_pci_driver
);
3501 static void __exit
fw_ohci_cleanup(void)
3503 pci_unregister_driver(&fw_ohci_pci_driver
);
3506 module_init(fw_ohci_init
);
3507 module_exit(fw_ohci_cleanup
);