4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/acct.h>
20 #include <linux/capability.h>
21 #include <linux/cpumask.h>
22 #include <linux/module.h>
23 #include <linux/sysfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/mnt_namespace.h>
26 #include <linux/namei.h>
27 #include <linux/nsproxy.h>
28 #include <linux/security.h>
29 #include <linux/mount.h>
30 #include <linux/ramfs.h>
31 #include <linux/log2.h>
32 #include <linux/idr.h>
33 #include <linux/fs_struct.h>
34 #include <linux/fsnotify.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
40 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
41 #define HASH_SIZE (1UL << HASH_SHIFT)
44 static DEFINE_IDA(mnt_id_ida
);
45 static DEFINE_IDA(mnt_group_ida
);
46 static DEFINE_SPINLOCK(mnt_id_lock
);
47 static int mnt_id_start
= 0;
48 static int mnt_group_start
= 1;
50 static struct list_head
*mount_hashtable __read_mostly
;
51 static struct kmem_cache
*mnt_cache __read_mostly
;
52 static struct rw_semaphore namespace_sem
;
55 struct kobject
*fs_kobj
;
56 EXPORT_SYMBOL_GPL(fs_kobj
);
59 * vfsmount lock may be taken for read to prevent changes to the
60 * vfsmount hash, ie. during mountpoint lookups or walking back
63 * It should be taken for write in all cases where the vfsmount
64 * tree or hash is modified or when a vfsmount structure is modified.
66 DEFINE_BRLOCK(vfsmount_lock
);
68 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
70 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
71 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
72 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
73 return tmp
& (HASH_SIZE
- 1);
76 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
79 * allocation is serialized by namespace_sem, but we need the spinlock to
80 * serialize with freeing.
82 static int mnt_alloc_id(struct vfsmount
*mnt
)
87 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
88 spin_lock(&mnt_id_lock
);
89 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
91 mnt_id_start
= mnt
->mnt_id
+ 1;
92 spin_unlock(&mnt_id_lock
);
99 static void mnt_free_id(struct vfsmount
*mnt
)
101 int id
= mnt
->mnt_id
;
102 spin_lock(&mnt_id_lock
);
103 ida_remove(&mnt_id_ida
, id
);
104 if (mnt_id_start
> id
)
106 spin_unlock(&mnt_id_lock
);
110 * Allocate a new peer group ID
112 * mnt_group_ida is protected by namespace_sem
114 static int mnt_alloc_group_id(struct vfsmount
*mnt
)
118 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
121 res
= ida_get_new_above(&mnt_group_ida
,
125 mnt_group_start
= mnt
->mnt_group_id
+ 1;
131 * Release a peer group ID
133 void mnt_release_group_id(struct vfsmount
*mnt
)
135 int id
= mnt
->mnt_group_id
;
136 ida_remove(&mnt_group_ida
, id
);
137 if (mnt_group_start
> id
)
138 mnt_group_start
= id
;
139 mnt
->mnt_group_id
= 0;
142 struct vfsmount
*alloc_vfsmnt(const char *name
)
144 struct vfsmount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
148 err
= mnt_alloc_id(mnt
);
153 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
154 if (!mnt
->mnt_devname
)
158 atomic_set(&mnt
->mnt_count
, 1);
159 INIT_LIST_HEAD(&mnt
->mnt_hash
);
160 INIT_LIST_HEAD(&mnt
->mnt_child
);
161 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
162 INIT_LIST_HEAD(&mnt
->mnt_list
);
163 INIT_LIST_HEAD(&mnt
->mnt_expire
);
164 INIT_LIST_HEAD(&mnt
->mnt_share
);
165 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
166 INIT_LIST_HEAD(&mnt
->mnt_slave
);
167 #ifdef CONFIG_FSNOTIFY
168 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
171 mnt
->mnt_writers
= alloc_percpu(int);
172 if (!mnt
->mnt_writers
)
173 goto out_free_devname
;
175 mnt
->mnt_writers
= 0;
182 kfree(mnt
->mnt_devname
);
187 kmem_cache_free(mnt_cache
, mnt
);
192 * Most r/o checks on a fs are for operations that take
193 * discrete amounts of time, like a write() or unlink().
194 * We must keep track of when those operations start
195 * (for permission checks) and when they end, so that
196 * we can determine when writes are able to occur to
200 * __mnt_is_readonly: check whether a mount is read-only
201 * @mnt: the mount to check for its write status
203 * This shouldn't be used directly ouside of the VFS.
204 * It does not guarantee that the filesystem will stay
205 * r/w, just that it is right *now*. This can not and
206 * should not be used in place of IS_RDONLY(inode).
207 * mnt_want/drop_write() will _keep_ the filesystem
210 int __mnt_is_readonly(struct vfsmount
*mnt
)
212 if (mnt
->mnt_flags
& MNT_READONLY
)
214 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
218 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
220 static inline void inc_mnt_writers(struct vfsmount
*mnt
)
223 (*per_cpu_ptr(mnt
->mnt_writers
, smp_processor_id()))++;
229 static inline void dec_mnt_writers(struct vfsmount
*mnt
)
232 (*per_cpu_ptr(mnt
->mnt_writers
, smp_processor_id()))--;
238 static unsigned int count_mnt_writers(struct vfsmount
*mnt
)
241 unsigned int count
= 0;
244 for_each_possible_cpu(cpu
) {
245 count
+= *per_cpu_ptr(mnt
->mnt_writers
, cpu
);
250 return mnt
->mnt_writers
;
255 * Most r/o checks on a fs are for operations that take
256 * discrete amounts of time, like a write() or unlink().
257 * We must keep track of when those operations start
258 * (for permission checks) and when they end, so that
259 * we can determine when writes are able to occur to
263 * mnt_want_write - get write access to a mount
264 * @mnt: the mount on which to take a write
266 * This tells the low-level filesystem that a write is
267 * about to be performed to it, and makes sure that
268 * writes are allowed before returning success. When
269 * the write operation is finished, mnt_drop_write()
270 * must be called. This is effectively a refcount.
272 int mnt_want_write(struct vfsmount
*mnt
)
277 inc_mnt_writers(mnt
);
279 * The store to inc_mnt_writers must be visible before we pass
280 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
281 * incremented count after it has set MNT_WRITE_HOLD.
284 while (mnt
->mnt_flags
& MNT_WRITE_HOLD
)
287 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
288 * be set to match its requirements. So we must not load that until
289 * MNT_WRITE_HOLD is cleared.
292 if (__mnt_is_readonly(mnt
)) {
293 dec_mnt_writers(mnt
);
301 EXPORT_SYMBOL_GPL(mnt_want_write
);
304 * mnt_clone_write - get write access to a mount
305 * @mnt: the mount on which to take a write
307 * This is effectively like mnt_want_write, except
308 * it must only be used to take an extra write reference
309 * on a mountpoint that we already know has a write reference
310 * on it. This allows some optimisation.
312 * After finished, mnt_drop_write must be called as usual to
313 * drop the reference.
315 int mnt_clone_write(struct vfsmount
*mnt
)
317 /* superblock may be r/o */
318 if (__mnt_is_readonly(mnt
))
321 inc_mnt_writers(mnt
);
325 EXPORT_SYMBOL_GPL(mnt_clone_write
);
328 * mnt_want_write_file - get write access to a file's mount
329 * @file: the file who's mount on which to take a write
331 * This is like mnt_want_write, but it takes a file and can
332 * do some optimisations if the file is open for write already
334 int mnt_want_write_file(struct file
*file
)
336 struct inode
*inode
= file
->f_dentry
->d_inode
;
337 if (!(file
->f_mode
& FMODE_WRITE
) || special_file(inode
->i_mode
))
338 return mnt_want_write(file
->f_path
.mnt
);
340 return mnt_clone_write(file
->f_path
.mnt
);
342 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
345 * mnt_drop_write - give up write access to a mount
346 * @mnt: the mount on which to give up write access
348 * Tells the low-level filesystem that we are done
349 * performing writes to it. Must be matched with
350 * mnt_want_write() call above.
352 void mnt_drop_write(struct vfsmount
*mnt
)
355 dec_mnt_writers(mnt
);
358 EXPORT_SYMBOL_GPL(mnt_drop_write
);
360 static int mnt_make_readonly(struct vfsmount
*mnt
)
364 br_write_lock(vfsmount_lock
);
365 mnt
->mnt_flags
|= MNT_WRITE_HOLD
;
367 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
368 * should be visible before we do.
373 * With writers on hold, if this value is zero, then there are
374 * definitely no active writers (although held writers may subsequently
375 * increment the count, they'll have to wait, and decrement it after
376 * seeing MNT_READONLY).
378 * It is OK to have counter incremented on one CPU and decremented on
379 * another: the sum will add up correctly. The danger would be when we
380 * sum up each counter, if we read a counter before it is incremented,
381 * but then read another CPU's count which it has been subsequently
382 * decremented from -- we would see more decrements than we should.
383 * MNT_WRITE_HOLD protects against this scenario, because
384 * mnt_want_write first increments count, then smp_mb, then spins on
385 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
386 * we're counting up here.
388 if (count_mnt_writers(mnt
) > 0)
391 mnt
->mnt_flags
|= MNT_READONLY
;
393 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
394 * that become unheld will see MNT_READONLY.
397 mnt
->mnt_flags
&= ~MNT_WRITE_HOLD
;
398 br_write_unlock(vfsmount_lock
);
402 static void __mnt_unmake_readonly(struct vfsmount
*mnt
)
404 br_write_lock(vfsmount_lock
);
405 mnt
->mnt_flags
&= ~MNT_READONLY
;
406 br_write_unlock(vfsmount_lock
);
409 void simple_set_mnt(struct vfsmount
*mnt
, struct super_block
*sb
)
412 mnt
->mnt_root
= dget(sb
->s_root
);
415 EXPORT_SYMBOL(simple_set_mnt
);
417 void free_vfsmnt(struct vfsmount
*mnt
)
419 kfree(mnt
->mnt_devname
);
422 free_percpu(mnt
->mnt_writers
);
424 kmem_cache_free(mnt_cache
, mnt
);
428 * find the first or last mount at @dentry on vfsmount @mnt depending on
429 * @dir. If @dir is set return the first mount else return the last mount.
430 * vfsmount_lock must be held for read or write.
432 struct vfsmount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
435 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
436 struct list_head
*tmp
= head
;
437 struct vfsmount
*p
, *found
= NULL
;
440 tmp
= dir
? tmp
->next
: tmp
->prev
;
444 p
= list_entry(tmp
, struct vfsmount
, mnt_hash
);
445 if (p
->mnt_parent
== mnt
&& p
->mnt_mountpoint
== dentry
) {
454 * lookup_mnt increments the ref count before returning
455 * the vfsmount struct.
457 struct vfsmount
*lookup_mnt(struct path
*path
)
459 struct vfsmount
*child_mnt
;
461 br_read_lock(vfsmount_lock
);
462 if ((child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
, 1)))
464 br_read_unlock(vfsmount_lock
);
468 static inline int check_mnt(struct vfsmount
*mnt
)
470 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
474 * vfsmount lock must be held for write
476 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
480 wake_up_interruptible(&ns
->poll
);
485 * vfsmount lock must be held for write
487 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
489 if (ns
&& ns
->event
!= event
) {
491 wake_up_interruptible(&ns
->poll
);
496 * vfsmount lock must be held for write
498 static void detach_mnt(struct vfsmount
*mnt
, struct path
*old_path
)
500 old_path
->dentry
= mnt
->mnt_mountpoint
;
501 old_path
->mnt
= mnt
->mnt_parent
;
502 mnt
->mnt_parent
= mnt
;
503 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
504 list_del_init(&mnt
->mnt_child
);
505 list_del_init(&mnt
->mnt_hash
);
506 old_path
->dentry
->d_mounted
--;
510 * vfsmount lock must be held for write
512 void mnt_set_mountpoint(struct vfsmount
*mnt
, struct dentry
*dentry
,
513 struct vfsmount
*child_mnt
)
515 child_mnt
->mnt_parent
= mntget(mnt
);
516 child_mnt
->mnt_mountpoint
= dget(dentry
);
521 * vfsmount lock must be held for write
523 static void attach_mnt(struct vfsmount
*mnt
, struct path
*path
)
525 mnt_set_mountpoint(path
->mnt
, path
->dentry
, mnt
);
526 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
527 hash(path
->mnt
, path
->dentry
));
528 list_add_tail(&mnt
->mnt_child
, &path
->mnt
->mnt_mounts
);
532 * vfsmount lock must be held for write
534 static void commit_tree(struct vfsmount
*mnt
)
536 struct vfsmount
*parent
= mnt
->mnt_parent
;
539 struct mnt_namespace
*n
= parent
->mnt_ns
;
541 BUG_ON(parent
== mnt
);
543 list_add_tail(&head
, &mnt
->mnt_list
);
544 list_for_each_entry(m
, &head
, mnt_list
)
546 list_splice(&head
, n
->list
.prev
);
548 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
549 hash(parent
, mnt
->mnt_mountpoint
));
550 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
551 touch_mnt_namespace(n
);
554 static struct vfsmount
*next_mnt(struct vfsmount
*p
, struct vfsmount
*root
)
556 struct list_head
*next
= p
->mnt_mounts
.next
;
557 if (next
== &p
->mnt_mounts
) {
561 next
= p
->mnt_child
.next
;
562 if (next
!= &p
->mnt_parent
->mnt_mounts
)
567 return list_entry(next
, struct vfsmount
, mnt_child
);
570 static struct vfsmount
*skip_mnt_tree(struct vfsmount
*p
)
572 struct list_head
*prev
= p
->mnt_mounts
.prev
;
573 while (prev
!= &p
->mnt_mounts
) {
574 p
= list_entry(prev
, struct vfsmount
, mnt_child
);
575 prev
= p
->mnt_mounts
.prev
;
580 static struct vfsmount
*clone_mnt(struct vfsmount
*old
, struct dentry
*root
,
583 struct super_block
*sb
= old
->mnt_sb
;
584 struct vfsmount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
587 if (flag
& (CL_SLAVE
| CL_PRIVATE
))
588 mnt
->mnt_group_id
= 0; /* not a peer of original */
590 mnt
->mnt_group_id
= old
->mnt_group_id
;
592 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
593 int err
= mnt_alloc_group_id(mnt
);
598 mnt
->mnt_flags
= old
->mnt_flags
;
599 atomic_inc(&sb
->s_active
);
601 mnt
->mnt_root
= dget(root
);
602 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
603 mnt
->mnt_parent
= mnt
;
605 if (flag
& CL_SLAVE
) {
606 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
607 mnt
->mnt_master
= old
;
608 CLEAR_MNT_SHARED(mnt
);
609 } else if (!(flag
& CL_PRIVATE
)) {
610 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
611 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
612 if (IS_MNT_SLAVE(old
))
613 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
614 mnt
->mnt_master
= old
->mnt_master
;
616 if (flag
& CL_MAKE_SHARED
)
619 /* stick the duplicate mount on the same expiry list
620 * as the original if that was on one */
621 if (flag
& CL_EXPIRE
) {
622 if (!list_empty(&old
->mnt_expire
))
623 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
633 static inline void __mntput(struct vfsmount
*mnt
)
635 struct super_block
*sb
= mnt
->mnt_sb
;
637 * This probably indicates that somebody messed
638 * up a mnt_want/drop_write() pair. If this
639 * happens, the filesystem was probably unable
640 * to make r/w->r/o transitions.
643 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
644 * provides barriers, so count_mnt_writers() below is safe. AV
646 WARN_ON(count_mnt_writers(mnt
));
647 fsnotify_vfsmount_delete(mnt
);
650 deactivate_super(sb
);
653 void mntput_no_expire(struct vfsmount
*mnt
)
656 if (atomic_add_unless(&mnt
->mnt_count
, -1, 1))
658 br_write_lock(vfsmount_lock
);
659 if (!atomic_dec_and_test(&mnt
->mnt_count
)) {
660 br_write_unlock(vfsmount_lock
);
663 if (likely(!mnt
->mnt_pinned
)) {
664 br_write_unlock(vfsmount_lock
);
668 atomic_add(mnt
->mnt_pinned
+ 1, &mnt
->mnt_count
);
670 br_write_unlock(vfsmount_lock
);
671 acct_auto_close_mnt(mnt
);
674 EXPORT_SYMBOL(mntput_no_expire
);
676 void mnt_pin(struct vfsmount
*mnt
)
678 br_write_lock(vfsmount_lock
);
680 br_write_unlock(vfsmount_lock
);
683 EXPORT_SYMBOL(mnt_pin
);
685 void mnt_unpin(struct vfsmount
*mnt
)
687 br_write_lock(vfsmount_lock
);
688 if (mnt
->mnt_pinned
) {
689 atomic_inc(&mnt
->mnt_count
);
692 br_write_unlock(vfsmount_lock
);
695 EXPORT_SYMBOL(mnt_unpin
);
697 static inline void mangle(struct seq_file
*m
, const char *s
)
699 seq_escape(m
, s
, " \t\n\\");
703 * Simple .show_options callback for filesystems which don't want to
704 * implement more complex mount option showing.
706 * See also save_mount_options().
708 int generic_show_options(struct seq_file
*m
, struct vfsmount
*mnt
)
713 options
= rcu_dereference(mnt
->mnt_sb
->s_options
);
715 if (options
!= NULL
&& options
[0]) {
723 EXPORT_SYMBOL(generic_show_options
);
726 * If filesystem uses generic_show_options(), this function should be
727 * called from the fill_super() callback.
729 * The .remount_fs callback usually needs to be handled in a special
730 * way, to make sure, that previous options are not overwritten if the
733 * Also note, that if the filesystem's .remount_fs function doesn't
734 * reset all options to their default value, but changes only newly
735 * given options, then the displayed options will not reflect reality
738 void save_mount_options(struct super_block
*sb
, char *options
)
740 BUG_ON(sb
->s_options
);
741 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
743 EXPORT_SYMBOL(save_mount_options
);
745 void replace_mount_options(struct super_block
*sb
, char *options
)
747 char *old
= sb
->s_options
;
748 rcu_assign_pointer(sb
->s_options
, options
);
754 EXPORT_SYMBOL(replace_mount_options
);
756 #ifdef CONFIG_PROC_FS
758 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
760 struct proc_mounts
*p
= m
->private;
762 down_read(&namespace_sem
);
763 return seq_list_start(&p
->ns
->list
, *pos
);
766 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
768 struct proc_mounts
*p
= m
->private;
770 return seq_list_next(v
, &p
->ns
->list
, pos
);
773 static void m_stop(struct seq_file
*m
, void *v
)
775 up_read(&namespace_sem
);
778 int mnt_had_events(struct proc_mounts
*p
)
780 struct mnt_namespace
*ns
= p
->ns
;
783 br_read_lock(vfsmount_lock
);
784 if (p
->event
!= ns
->event
) {
785 p
->event
= ns
->event
;
788 br_read_unlock(vfsmount_lock
);
793 struct proc_fs_info
{
798 static int show_sb_opts(struct seq_file
*m
, struct super_block
*sb
)
800 static const struct proc_fs_info fs_info
[] = {
801 { MS_SYNCHRONOUS
, ",sync" },
802 { MS_DIRSYNC
, ",dirsync" },
803 { MS_MANDLOCK
, ",mand" },
806 const struct proc_fs_info
*fs_infop
;
808 for (fs_infop
= fs_info
; fs_infop
->flag
; fs_infop
++) {
809 if (sb
->s_flags
& fs_infop
->flag
)
810 seq_puts(m
, fs_infop
->str
);
813 return security_sb_show_options(m
, sb
);
816 static void show_mnt_opts(struct seq_file
*m
, struct vfsmount
*mnt
)
818 static const struct proc_fs_info mnt_info
[] = {
819 { MNT_NOSUID
, ",nosuid" },
820 { MNT_NODEV
, ",nodev" },
821 { MNT_NOEXEC
, ",noexec" },
822 { MNT_NOATIME
, ",noatime" },
823 { MNT_NODIRATIME
, ",nodiratime" },
824 { MNT_RELATIME
, ",relatime" },
827 const struct proc_fs_info
*fs_infop
;
829 for (fs_infop
= mnt_info
; fs_infop
->flag
; fs_infop
++) {
830 if (mnt
->mnt_flags
& fs_infop
->flag
)
831 seq_puts(m
, fs_infop
->str
);
835 static void show_type(struct seq_file
*m
, struct super_block
*sb
)
837 mangle(m
, sb
->s_type
->name
);
838 if (sb
->s_subtype
&& sb
->s_subtype
[0]) {
840 mangle(m
, sb
->s_subtype
);
844 static int show_vfsmnt(struct seq_file
*m
, void *v
)
846 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
848 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
850 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
852 seq_path(m
, &mnt_path
, " \t\n\\");
854 show_type(m
, mnt
->mnt_sb
);
855 seq_puts(m
, __mnt_is_readonly(mnt
) ? " ro" : " rw");
856 err
= show_sb_opts(m
, mnt
->mnt_sb
);
859 show_mnt_opts(m
, mnt
);
860 if (mnt
->mnt_sb
->s_op
->show_options
)
861 err
= mnt
->mnt_sb
->s_op
->show_options(m
, mnt
);
862 seq_puts(m
, " 0 0\n");
867 const struct seq_operations mounts_op
= {
874 static int show_mountinfo(struct seq_file
*m
, void *v
)
876 struct proc_mounts
*p
= m
->private;
877 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
878 struct super_block
*sb
= mnt
->mnt_sb
;
879 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
880 struct path root
= p
->root
;
883 seq_printf(m
, "%i %i %u:%u ", mnt
->mnt_id
, mnt
->mnt_parent
->mnt_id
,
884 MAJOR(sb
->s_dev
), MINOR(sb
->s_dev
));
885 seq_dentry(m
, mnt
->mnt_root
, " \t\n\\");
887 seq_path_root(m
, &mnt_path
, &root
, " \t\n\\");
888 if (root
.mnt
!= p
->root
.mnt
|| root
.dentry
!= p
->root
.dentry
) {
890 * Mountpoint is outside root, discard that one. Ugly,
891 * but less so than trying to do that in iterator in a
892 * race-free way (due to renames).
896 seq_puts(m
, mnt
->mnt_flags
& MNT_READONLY
? " ro" : " rw");
897 show_mnt_opts(m
, mnt
);
899 /* Tagged fields ("foo:X" or "bar") */
900 if (IS_MNT_SHARED(mnt
))
901 seq_printf(m
, " shared:%i", mnt
->mnt_group_id
);
902 if (IS_MNT_SLAVE(mnt
)) {
903 int master
= mnt
->mnt_master
->mnt_group_id
;
904 int dom
= get_dominating_id(mnt
, &p
->root
);
905 seq_printf(m
, " master:%i", master
);
906 if (dom
&& dom
!= master
)
907 seq_printf(m
, " propagate_from:%i", dom
);
909 if (IS_MNT_UNBINDABLE(mnt
))
910 seq_puts(m
, " unbindable");
912 /* Filesystem specific data */
916 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
917 seq_puts(m
, sb
->s_flags
& MS_RDONLY
? " ro" : " rw");
918 err
= show_sb_opts(m
, sb
);
921 if (sb
->s_op
->show_options
)
922 err
= sb
->s_op
->show_options(m
, mnt
);
928 const struct seq_operations mountinfo_op
= {
932 .show
= show_mountinfo
,
935 static int show_vfsstat(struct seq_file
*m
, void *v
)
937 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
938 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
942 if (mnt
->mnt_devname
) {
943 seq_puts(m
, "device ");
944 mangle(m
, mnt
->mnt_devname
);
946 seq_puts(m
, "no device");
949 seq_puts(m
, " mounted on ");
950 seq_path(m
, &mnt_path
, " \t\n\\");
953 /* file system type */
954 seq_puts(m
, "with fstype ");
955 show_type(m
, mnt
->mnt_sb
);
957 /* optional statistics */
958 if (mnt
->mnt_sb
->s_op
->show_stats
) {
960 err
= mnt
->mnt_sb
->s_op
->show_stats(m
, mnt
);
967 const struct seq_operations mountstats_op
= {
971 .show
= show_vfsstat
,
973 #endif /* CONFIG_PROC_FS */
976 * may_umount_tree - check if a mount tree is busy
977 * @mnt: root of mount tree
979 * This is called to check if a tree of mounts has any
980 * open files, pwds, chroots or sub mounts that are
983 int may_umount_tree(struct vfsmount
*mnt
)
986 int minimum_refs
= 0;
989 br_read_lock(vfsmount_lock
);
990 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
991 actual_refs
+= atomic_read(&p
->mnt_count
);
994 br_read_unlock(vfsmount_lock
);
996 if (actual_refs
> minimum_refs
)
1002 EXPORT_SYMBOL(may_umount_tree
);
1005 * may_umount - check if a mount point is busy
1006 * @mnt: root of mount
1008 * This is called to check if a mount point has any
1009 * open files, pwds, chroots or sub mounts. If the
1010 * mount has sub mounts this will return busy
1011 * regardless of whether the sub mounts are busy.
1013 * Doesn't take quota and stuff into account. IOW, in some cases it will
1014 * give false negatives. The main reason why it's here is that we need
1015 * a non-destructive way to look for easily umountable filesystems.
1017 int may_umount(struct vfsmount
*mnt
)
1020 down_read(&namespace_sem
);
1021 br_read_lock(vfsmount_lock
);
1022 if (propagate_mount_busy(mnt
, 2))
1024 br_read_unlock(vfsmount_lock
);
1025 up_read(&namespace_sem
);
1029 EXPORT_SYMBOL(may_umount
);
1031 void release_mounts(struct list_head
*head
)
1033 struct vfsmount
*mnt
;
1034 while (!list_empty(head
)) {
1035 mnt
= list_first_entry(head
, struct vfsmount
, mnt_hash
);
1036 list_del_init(&mnt
->mnt_hash
);
1037 if (mnt
->mnt_parent
!= mnt
) {
1038 struct dentry
*dentry
;
1041 br_write_lock(vfsmount_lock
);
1042 dentry
= mnt
->mnt_mountpoint
;
1043 m
= mnt
->mnt_parent
;
1044 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
1045 mnt
->mnt_parent
= mnt
;
1047 br_write_unlock(vfsmount_lock
);
1056 * vfsmount lock must be held for write
1057 * namespace_sem must be held for write
1059 void umount_tree(struct vfsmount
*mnt
, int propagate
, struct list_head
*kill
)
1063 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1064 list_move(&p
->mnt_hash
, kill
);
1067 propagate_umount(kill
);
1069 list_for_each_entry(p
, kill
, mnt_hash
) {
1070 list_del_init(&p
->mnt_expire
);
1071 list_del_init(&p
->mnt_list
);
1072 __touch_mnt_namespace(p
->mnt_ns
);
1074 list_del_init(&p
->mnt_child
);
1075 if (p
->mnt_parent
!= p
) {
1076 p
->mnt_parent
->mnt_ghosts
++;
1077 p
->mnt_mountpoint
->d_mounted
--;
1079 change_mnt_propagation(p
, MS_PRIVATE
);
1083 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
);
1085 static int do_umount(struct vfsmount
*mnt
, int flags
)
1087 struct super_block
*sb
= mnt
->mnt_sb
;
1089 LIST_HEAD(umount_list
);
1091 retval
= security_sb_umount(mnt
, flags
);
1096 * Allow userspace to request a mountpoint be expired rather than
1097 * unmounting unconditionally. Unmount only happens if:
1098 * (1) the mark is already set (the mark is cleared by mntput())
1099 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1101 if (flags
& MNT_EXPIRE
) {
1102 if (mnt
== current
->fs
->root
.mnt
||
1103 flags
& (MNT_FORCE
| MNT_DETACH
))
1106 if (atomic_read(&mnt
->mnt_count
) != 2)
1109 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1114 * If we may have to abort operations to get out of this
1115 * mount, and they will themselves hold resources we must
1116 * allow the fs to do things. In the Unix tradition of
1117 * 'Gee thats tricky lets do it in userspace' the umount_begin
1118 * might fail to complete on the first run through as other tasks
1119 * must return, and the like. Thats for the mount program to worry
1120 * about for the moment.
1123 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1124 sb
->s_op
->umount_begin(sb
);
1128 * No sense to grab the lock for this test, but test itself looks
1129 * somewhat bogus. Suggestions for better replacement?
1130 * Ho-hum... In principle, we might treat that as umount + switch
1131 * to rootfs. GC would eventually take care of the old vfsmount.
1132 * Actually it makes sense, especially if rootfs would contain a
1133 * /reboot - static binary that would close all descriptors and
1134 * call reboot(9). Then init(8) could umount root and exec /reboot.
1136 if (mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1138 * Special case for "unmounting" root ...
1139 * we just try to remount it readonly.
1141 down_write(&sb
->s_umount
);
1142 if (!(sb
->s_flags
& MS_RDONLY
))
1143 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1144 up_write(&sb
->s_umount
);
1148 down_write(&namespace_sem
);
1149 br_write_lock(vfsmount_lock
);
1152 if (!(flags
& MNT_DETACH
))
1153 shrink_submounts(mnt
, &umount_list
);
1156 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
1157 if (!list_empty(&mnt
->mnt_list
))
1158 umount_tree(mnt
, 1, &umount_list
);
1161 br_write_unlock(vfsmount_lock
);
1162 up_write(&namespace_sem
);
1163 release_mounts(&umount_list
);
1168 * Now umount can handle mount points as well as block devices.
1169 * This is important for filesystems which use unnamed block devices.
1171 * We now support a flag for forced unmount like the other 'big iron'
1172 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1175 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1179 int lookup_flags
= 0;
1181 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1184 if (!(flags
& UMOUNT_NOFOLLOW
))
1185 lookup_flags
|= LOOKUP_FOLLOW
;
1187 retval
= user_path_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1191 if (path
.dentry
!= path
.mnt
->mnt_root
)
1193 if (!check_mnt(path
.mnt
))
1197 if (!capable(CAP_SYS_ADMIN
))
1200 retval
= do_umount(path
.mnt
, flags
);
1202 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1204 mntput_no_expire(path
.mnt
);
1209 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1212 * The 2.0 compatible umount. No flags.
1214 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1216 return sys_umount(name
, 0);
1221 static int mount_is_safe(struct path
*path
)
1223 if (capable(CAP_SYS_ADMIN
))
1227 if (S_ISLNK(path
->dentry
->d_inode
->i_mode
))
1229 if (path
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
1230 if (current_uid() != path
->dentry
->d_inode
->i_uid
)
1233 if (inode_permission(path
->dentry
->d_inode
, MAY_WRITE
))
1239 struct vfsmount
*copy_tree(struct vfsmount
*mnt
, struct dentry
*dentry
,
1242 struct vfsmount
*res
, *p
, *q
, *r
, *s
;
1245 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
1248 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1251 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1254 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1255 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1258 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1259 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
1260 s
= skip_mnt_tree(s
);
1263 while (p
!= s
->mnt_parent
) {
1269 path
.dentry
= p
->mnt_mountpoint
;
1270 q
= clone_mnt(p
, p
->mnt_root
, flag
);
1273 br_write_lock(vfsmount_lock
);
1274 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1275 attach_mnt(q
, &path
);
1276 br_write_unlock(vfsmount_lock
);
1282 LIST_HEAD(umount_list
);
1283 br_write_lock(vfsmount_lock
);
1284 umount_tree(res
, 0, &umount_list
);
1285 br_write_unlock(vfsmount_lock
);
1286 release_mounts(&umount_list
);
1291 struct vfsmount
*collect_mounts(struct path
*path
)
1293 struct vfsmount
*tree
;
1294 down_write(&namespace_sem
);
1295 tree
= copy_tree(path
->mnt
, path
->dentry
, CL_COPY_ALL
| CL_PRIVATE
);
1296 up_write(&namespace_sem
);
1300 void drop_collected_mounts(struct vfsmount
*mnt
)
1302 LIST_HEAD(umount_list
);
1303 down_write(&namespace_sem
);
1304 br_write_lock(vfsmount_lock
);
1305 umount_tree(mnt
, 0, &umount_list
);
1306 br_write_unlock(vfsmount_lock
);
1307 up_write(&namespace_sem
);
1308 release_mounts(&umount_list
);
1311 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1312 struct vfsmount
*root
)
1314 struct vfsmount
*mnt
;
1315 int res
= f(root
, arg
);
1318 list_for_each_entry(mnt
, &root
->mnt_list
, mnt_list
) {
1326 static void cleanup_group_ids(struct vfsmount
*mnt
, struct vfsmount
*end
)
1330 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1331 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1332 mnt_release_group_id(p
);
1336 static int invent_group_ids(struct vfsmount
*mnt
, bool recurse
)
1340 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1341 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1342 int err
= mnt_alloc_group_id(p
);
1344 cleanup_group_ids(mnt
, p
);
1354 * @source_mnt : mount tree to be attached
1355 * @nd : place the mount tree @source_mnt is attached
1356 * @parent_nd : if non-null, detach the source_mnt from its parent and
1357 * store the parent mount and mountpoint dentry.
1358 * (done when source_mnt is moved)
1360 * NOTE: in the table below explains the semantics when a source mount
1361 * of a given type is attached to a destination mount of a given type.
1362 * ---------------------------------------------------------------------------
1363 * | BIND MOUNT OPERATION |
1364 * |**************************************************************************
1365 * | source-->| shared | private | slave | unbindable |
1369 * |**************************************************************************
1370 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1372 * |non-shared| shared (+) | private | slave (*) | invalid |
1373 * ***************************************************************************
1374 * A bind operation clones the source mount and mounts the clone on the
1375 * destination mount.
1377 * (++) the cloned mount is propagated to all the mounts in the propagation
1378 * tree of the destination mount and the cloned mount is added to
1379 * the peer group of the source mount.
1380 * (+) the cloned mount is created under the destination mount and is marked
1381 * as shared. The cloned mount is added to the peer group of the source
1383 * (+++) the mount is propagated to all the mounts in the propagation tree
1384 * of the destination mount and the cloned mount is made slave
1385 * of the same master as that of the source mount. The cloned mount
1386 * is marked as 'shared and slave'.
1387 * (*) the cloned mount is made a slave of the same master as that of the
1390 * ---------------------------------------------------------------------------
1391 * | MOVE MOUNT OPERATION |
1392 * |**************************************************************************
1393 * | source-->| shared | private | slave | unbindable |
1397 * |**************************************************************************
1398 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1400 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1401 * ***************************************************************************
1403 * (+) the mount is moved to the destination. And is then propagated to
1404 * all the mounts in the propagation tree of the destination mount.
1405 * (+*) the mount is moved to the destination.
1406 * (+++) the mount is moved to the destination and is then propagated to
1407 * all the mounts belonging to the destination mount's propagation tree.
1408 * the mount is marked as 'shared and slave'.
1409 * (*) the mount continues to be a slave at the new location.
1411 * if the source mount is a tree, the operations explained above is
1412 * applied to each mount in the tree.
1413 * Must be called without spinlocks held, since this function can sleep
1416 static int attach_recursive_mnt(struct vfsmount
*source_mnt
,
1417 struct path
*path
, struct path
*parent_path
)
1419 LIST_HEAD(tree_list
);
1420 struct vfsmount
*dest_mnt
= path
->mnt
;
1421 struct dentry
*dest_dentry
= path
->dentry
;
1422 struct vfsmount
*child
, *p
;
1425 if (IS_MNT_SHARED(dest_mnt
)) {
1426 err
= invent_group_ids(source_mnt
, true);
1430 err
= propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
);
1432 goto out_cleanup_ids
;
1434 br_write_lock(vfsmount_lock
);
1436 if (IS_MNT_SHARED(dest_mnt
)) {
1437 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1441 detach_mnt(source_mnt
, parent_path
);
1442 attach_mnt(source_mnt
, path
);
1443 touch_mnt_namespace(parent_path
->mnt
->mnt_ns
);
1445 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
1446 commit_tree(source_mnt
);
1449 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1450 list_del_init(&child
->mnt_hash
);
1453 br_write_unlock(vfsmount_lock
);
1458 if (IS_MNT_SHARED(dest_mnt
))
1459 cleanup_group_ids(source_mnt
, NULL
);
1464 static int graft_tree(struct vfsmount
*mnt
, struct path
*path
)
1467 if (mnt
->mnt_sb
->s_flags
& MS_NOUSER
)
1470 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1471 S_ISDIR(mnt
->mnt_root
->d_inode
->i_mode
))
1475 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1476 if (cant_mount(path
->dentry
))
1479 if (!d_unlinked(path
->dentry
))
1480 err
= attach_recursive_mnt(mnt
, path
, NULL
);
1482 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1487 * Sanity check the flags to change_mnt_propagation.
1490 static int flags_to_propagation_type(int flags
)
1492 int type
= flags
& ~MS_REC
;
1494 /* Fail if any non-propagation flags are set */
1495 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1497 /* Only one propagation flag should be set */
1498 if (!is_power_of_2(type
))
1504 * recursively change the type of the mountpoint.
1506 static int do_change_type(struct path
*path
, int flag
)
1508 struct vfsmount
*m
, *mnt
= path
->mnt
;
1509 int recurse
= flag
& MS_REC
;
1513 if (!capable(CAP_SYS_ADMIN
))
1516 if (path
->dentry
!= path
->mnt
->mnt_root
)
1519 type
= flags_to_propagation_type(flag
);
1523 down_write(&namespace_sem
);
1524 if (type
== MS_SHARED
) {
1525 err
= invent_group_ids(mnt
, recurse
);
1530 br_write_lock(vfsmount_lock
);
1531 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1532 change_mnt_propagation(m
, type
);
1533 br_write_unlock(vfsmount_lock
);
1536 up_write(&namespace_sem
);
1541 * do loopback mount.
1543 static int do_loopback(struct path
*path
, char *old_name
,
1546 struct path old_path
;
1547 struct vfsmount
*mnt
= NULL
;
1548 int err
= mount_is_safe(path
);
1551 if (!old_name
|| !*old_name
)
1553 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1557 down_write(&namespace_sem
);
1559 if (IS_MNT_UNBINDABLE(old_path
.mnt
))
1562 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1567 mnt
= copy_tree(old_path
.mnt
, old_path
.dentry
, 0);
1569 mnt
= clone_mnt(old_path
.mnt
, old_path
.dentry
, 0);
1574 err
= graft_tree(mnt
, path
);
1576 LIST_HEAD(umount_list
);
1578 br_write_lock(vfsmount_lock
);
1579 umount_tree(mnt
, 0, &umount_list
);
1580 br_write_unlock(vfsmount_lock
);
1581 release_mounts(&umount_list
);
1585 up_write(&namespace_sem
);
1586 path_put(&old_path
);
1590 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1593 int readonly_request
= 0;
1595 if (ms_flags
& MS_RDONLY
)
1596 readonly_request
= 1;
1597 if (readonly_request
== __mnt_is_readonly(mnt
))
1600 if (readonly_request
)
1601 error
= mnt_make_readonly(mnt
);
1603 __mnt_unmake_readonly(mnt
);
1608 * change filesystem flags. dir should be a physical root of filesystem.
1609 * If you've mounted a non-root directory somewhere and want to do remount
1610 * on it - tough luck.
1612 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1616 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1618 if (!capable(CAP_SYS_ADMIN
))
1621 if (!check_mnt(path
->mnt
))
1624 if (path
->dentry
!= path
->mnt
->mnt_root
)
1627 down_write(&sb
->s_umount
);
1628 if (flags
& MS_BIND
)
1629 err
= change_mount_flags(path
->mnt
, flags
);
1631 err
= do_remount_sb(sb
, flags
, data
, 0);
1633 br_write_lock(vfsmount_lock
);
1634 mnt_flags
|= path
->mnt
->mnt_flags
& MNT_PROPAGATION_MASK
;
1635 path
->mnt
->mnt_flags
= mnt_flags
;
1636 br_write_unlock(vfsmount_lock
);
1638 up_write(&sb
->s_umount
);
1640 br_write_lock(vfsmount_lock
);
1641 touch_mnt_namespace(path
->mnt
->mnt_ns
);
1642 br_write_unlock(vfsmount_lock
);
1647 static inline int tree_contains_unbindable(struct vfsmount
*mnt
)
1650 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1651 if (IS_MNT_UNBINDABLE(p
))
1657 static int do_move_mount(struct path
*path
, char *old_name
)
1659 struct path old_path
, parent_path
;
1662 if (!capable(CAP_SYS_ADMIN
))
1664 if (!old_name
|| !*old_name
)
1666 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1670 down_write(&namespace_sem
);
1671 while (d_mountpoint(path
->dentry
) &&
1675 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1679 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1680 if (cant_mount(path
->dentry
))
1683 if (d_unlinked(path
->dentry
))
1687 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
1690 if (old_path
.mnt
== old_path
.mnt
->mnt_parent
)
1693 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1694 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
1697 * Don't move a mount residing in a shared parent.
1699 if (old_path
.mnt
->mnt_parent
&&
1700 IS_MNT_SHARED(old_path
.mnt
->mnt_parent
))
1703 * Don't move a mount tree containing unbindable mounts to a destination
1704 * mount which is shared.
1706 if (IS_MNT_SHARED(path
->mnt
) &&
1707 tree_contains_unbindable(old_path
.mnt
))
1710 for (p
= path
->mnt
; p
->mnt_parent
!= p
; p
= p
->mnt_parent
)
1711 if (p
== old_path
.mnt
)
1714 err
= attach_recursive_mnt(old_path
.mnt
, path
, &parent_path
);
1718 /* if the mount is moved, it should no longer be expire
1720 list_del_init(&old_path
.mnt
->mnt_expire
);
1722 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1724 up_write(&namespace_sem
);
1726 path_put(&parent_path
);
1727 path_put(&old_path
);
1732 * create a new mount for userspace and request it to be added into the
1735 static int do_new_mount(struct path
*path
, char *type
, int flags
,
1736 int mnt_flags
, char *name
, void *data
)
1738 struct vfsmount
*mnt
;
1743 /* we need capabilities... */
1744 if (!capable(CAP_SYS_ADMIN
))
1748 mnt
= do_kern_mount(type
, flags
, name
, data
);
1751 return PTR_ERR(mnt
);
1753 return do_add_mount(mnt
, path
, mnt_flags
, NULL
);
1757 * add a mount into a namespace's mount tree
1758 * - provide the option of adding the new mount to an expiration list
1760 int do_add_mount(struct vfsmount
*newmnt
, struct path
*path
,
1761 int mnt_flags
, struct list_head
*fslist
)
1765 mnt_flags
&= ~(MNT_SHARED
| MNT_WRITE_HOLD
| MNT_INTERNAL
);
1767 down_write(&namespace_sem
);
1768 /* Something was mounted here while we slept */
1769 while (d_mountpoint(path
->dentry
) &&
1773 if (!(mnt_flags
& MNT_SHRINKABLE
) && !check_mnt(path
->mnt
))
1776 /* Refuse the same filesystem on the same mount point */
1778 if (path
->mnt
->mnt_sb
== newmnt
->mnt_sb
&&
1779 path
->mnt
->mnt_root
== path
->dentry
)
1783 if (S_ISLNK(newmnt
->mnt_root
->d_inode
->i_mode
))
1786 newmnt
->mnt_flags
= mnt_flags
;
1787 if ((err
= graft_tree(newmnt
, path
)))
1790 if (fslist
) /* add to the specified expiration list */
1791 list_add_tail(&newmnt
->mnt_expire
, fslist
);
1793 up_write(&namespace_sem
);
1797 up_write(&namespace_sem
);
1802 EXPORT_SYMBOL_GPL(do_add_mount
);
1805 * process a list of expirable mountpoints with the intent of discarding any
1806 * mountpoints that aren't in use and haven't been touched since last we came
1809 void mark_mounts_for_expiry(struct list_head
*mounts
)
1811 struct vfsmount
*mnt
, *next
;
1812 LIST_HEAD(graveyard
);
1815 if (list_empty(mounts
))
1818 down_write(&namespace_sem
);
1819 br_write_lock(vfsmount_lock
);
1821 /* extract from the expiration list every vfsmount that matches the
1822 * following criteria:
1823 * - only referenced by its parent vfsmount
1824 * - still marked for expiry (marked on the last call here; marks are
1825 * cleared by mntput())
1827 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
1828 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
1829 propagate_mount_busy(mnt
, 1))
1831 list_move(&mnt
->mnt_expire
, &graveyard
);
1833 while (!list_empty(&graveyard
)) {
1834 mnt
= list_first_entry(&graveyard
, struct vfsmount
, mnt_expire
);
1835 touch_mnt_namespace(mnt
->mnt_ns
);
1836 umount_tree(mnt
, 1, &umounts
);
1838 br_write_unlock(vfsmount_lock
);
1839 up_write(&namespace_sem
);
1841 release_mounts(&umounts
);
1844 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
1847 * Ripoff of 'select_parent()'
1849 * search the list of submounts for a given mountpoint, and move any
1850 * shrinkable submounts to the 'graveyard' list.
1852 static int select_submounts(struct vfsmount
*parent
, struct list_head
*graveyard
)
1854 struct vfsmount
*this_parent
= parent
;
1855 struct list_head
*next
;
1859 next
= this_parent
->mnt_mounts
.next
;
1861 while (next
!= &this_parent
->mnt_mounts
) {
1862 struct list_head
*tmp
= next
;
1863 struct vfsmount
*mnt
= list_entry(tmp
, struct vfsmount
, mnt_child
);
1866 if (!(mnt
->mnt_flags
& MNT_SHRINKABLE
))
1869 * Descend a level if the d_mounts list is non-empty.
1871 if (!list_empty(&mnt
->mnt_mounts
)) {
1876 if (!propagate_mount_busy(mnt
, 1)) {
1877 list_move_tail(&mnt
->mnt_expire
, graveyard
);
1882 * All done at this level ... ascend and resume the search
1884 if (this_parent
!= parent
) {
1885 next
= this_parent
->mnt_child
.next
;
1886 this_parent
= this_parent
->mnt_parent
;
1893 * process a list of expirable mountpoints with the intent of discarding any
1894 * submounts of a specific parent mountpoint
1896 * vfsmount_lock must be held for write
1898 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
)
1900 LIST_HEAD(graveyard
);
1903 /* extract submounts of 'mountpoint' from the expiration list */
1904 while (select_submounts(mnt
, &graveyard
)) {
1905 while (!list_empty(&graveyard
)) {
1906 m
= list_first_entry(&graveyard
, struct vfsmount
,
1908 touch_mnt_namespace(m
->mnt_ns
);
1909 umount_tree(m
, 1, umounts
);
1915 * Some copy_from_user() implementations do not return the exact number of
1916 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1917 * Note that this function differs from copy_from_user() in that it will oops
1918 * on bad values of `to', rather than returning a short copy.
1920 static long exact_copy_from_user(void *to
, const void __user
* from
,
1924 const char __user
*f
= from
;
1927 if (!access_ok(VERIFY_READ
, from
, n
))
1931 if (__get_user(c
, f
)) {
1942 int copy_mount_options(const void __user
* data
, unsigned long *where
)
1952 if (!(page
= __get_free_page(GFP_KERNEL
)))
1955 /* We only care that *some* data at the address the user
1956 * gave us is valid. Just in case, we'll zero
1957 * the remainder of the page.
1959 /* copy_from_user cannot cross TASK_SIZE ! */
1960 size
= TASK_SIZE
- (unsigned long)data
;
1961 if (size
> PAGE_SIZE
)
1964 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
1970 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
1975 int copy_mount_string(const void __user
*data
, char **where
)
1984 tmp
= strndup_user(data
, PAGE_SIZE
);
1986 return PTR_ERR(tmp
);
1993 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1994 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1996 * data is a (void *) that can point to any structure up to
1997 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1998 * information (or be NULL).
2000 * Pre-0.97 versions of mount() didn't have a flags word.
2001 * When the flags word was introduced its top half was required
2002 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2003 * Therefore, if this magic number is present, it carries no information
2004 * and must be discarded.
2006 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
2007 unsigned long flags
, void *data_page
)
2014 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2015 flags
&= ~MS_MGC_MSK
;
2017 /* Basic sanity checks */
2019 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
2023 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2025 /* ... and get the mountpoint */
2026 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
2030 retval
= security_sb_mount(dev_name
, &path
,
2031 type_page
, flags
, data_page
);
2035 /* Default to relatime unless overriden */
2036 if (!(flags
& MS_NOATIME
))
2037 mnt_flags
|= MNT_RELATIME
;
2039 /* Separate the per-mountpoint flags */
2040 if (flags
& MS_NOSUID
)
2041 mnt_flags
|= MNT_NOSUID
;
2042 if (flags
& MS_NODEV
)
2043 mnt_flags
|= MNT_NODEV
;
2044 if (flags
& MS_NOEXEC
)
2045 mnt_flags
|= MNT_NOEXEC
;
2046 if (flags
& MS_NOATIME
)
2047 mnt_flags
|= MNT_NOATIME
;
2048 if (flags
& MS_NODIRATIME
)
2049 mnt_flags
|= MNT_NODIRATIME
;
2050 if (flags
& MS_STRICTATIME
)
2051 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2052 if (flags
& MS_RDONLY
)
2053 mnt_flags
|= MNT_READONLY
;
2055 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2056 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2059 if (flags
& MS_REMOUNT
)
2060 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2062 else if (flags
& MS_BIND
)
2063 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2064 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2065 retval
= do_change_type(&path
, flags
);
2066 else if (flags
& MS_MOVE
)
2067 retval
= do_move_mount(&path
, dev_name
);
2069 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2070 dev_name
, data_page
);
2076 static struct mnt_namespace
*alloc_mnt_ns(void)
2078 struct mnt_namespace
*new_ns
;
2080 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2082 return ERR_PTR(-ENOMEM
);
2083 atomic_set(&new_ns
->count
, 1);
2084 new_ns
->root
= NULL
;
2085 INIT_LIST_HEAD(&new_ns
->list
);
2086 init_waitqueue_head(&new_ns
->poll
);
2092 * Allocate a new namespace structure and populate it with contents
2093 * copied from the namespace of the passed in task structure.
2095 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
2096 struct fs_struct
*fs
)
2098 struct mnt_namespace
*new_ns
;
2099 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2100 struct vfsmount
*p
, *q
;
2102 new_ns
= alloc_mnt_ns();
2106 down_write(&namespace_sem
);
2107 /* First pass: copy the tree topology */
2108 new_ns
->root
= copy_tree(mnt_ns
->root
, mnt_ns
->root
->mnt_root
,
2109 CL_COPY_ALL
| CL_EXPIRE
);
2110 if (!new_ns
->root
) {
2111 up_write(&namespace_sem
);
2113 return ERR_PTR(-ENOMEM
);
2115 br_write_lock(vfsmount_lock
);
2116 list_add_tail(&new_ns
->list
, &new_ns
->root
->mnt_list
);
2117 br_write_unlock(vfsmount_lock
);
2120 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2121 * as belonging to new namespace. We have already acquired a private
2122 * fs_struct, so tsk->fs->lock is not needed.
2129 if (p
== fs
->root
.mnt
) {
2131 fs
->root
.mnt
= mntget(q
);
2133 if (p
== fs
->pwd
.mnt
) {
2135 fs
->pwd
.mnt
= mntget(q
);
2138 p
= next_mnt(p
, mnt_ns
->root
);
2139 q
= next_mnt(q
, new_ns
->root
);
2141 up_write(&namespace_sem
);
2151 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2152 struct fs_struct
*new_fs
)
2154 struct mnt_namespace
*new_ns
;
2159 if (!(flags
& CLONE_NEWNS
))
2162 new_ns
= dup_mnt_ns(ns
, new_fs
);
2169 * create_mnt_ns - creates a private namespace and adds a root filesystem
2170 * @mnt: pointer to the new root filesystem mountpoint
2172 struct mnt_namespace
*create_mnt_ns(struct vfsmount
*mnt
)
2174 struct mnt_namespace
*new_ns
;
2176 new_ns
= alloc_mnt_ns();
2177 if (!IS_ERR(new_ns
)) {
2178 mnt
->mnt_ns
= new_ns
;
2180 list_add(&new_ns
->list
, &new_ns
->root
->mnt_list
);
2184 EXPORT_SYMBOL(create_mnt_ns
);
2186 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2187 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2193 unsigned long data_page
;
2195 ret
= copy_mount_string(type
, &kernel_type
);
2199 kernel_dir
= getname(dir_name
);
2200 if (IS_ERR(kernel_dir
)) {
2201 ret
= PTR_ERR(kernel_dir
);
2205 ret
= copy_mount_string(dev_name
, &kernel_dev
);
2209 ret
= copy_mount_options(data
, &data_page
);
2213 ret
= do_mount(kernel_dev
, kernel_dir
, kernel_type
, flags
,
2214 (void *) data_page
);
2216 free_page(data_page
);
2220 putname(kernel_dir
);
2228 * pivot_root Semantics:
2229 * Moves the root file system of the current process to the directory put_old,
2230 * makes new_root as the new root file system of the current process, and sets
2231 * root/cwd of all processes which had them on the current root to new_root.
2234 * The new_root and put_old must be directories, and must not be on the
2235 * same file system as the current process root. The put_old must be
2236 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2237 * pointed to by put_old must yield the same directory as new_root. No other
2238 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2240 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2241 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2242 * in this situation.
2245 * - we don't move root/cwd if they are not at the root (reason: if something
2246 * cared enough to change them, it's probably wrong to force them elsewhere)
2247 * - it's okay to pick a root that isn't the root of a file system, e.g.
2248 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2249 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2252 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2253 const char __user
*, put_old
)
2255 struct vfsmount
*tmp
;
2256 struct path
new, old
, parent_path
, root_parent
, root
;
2259 if (!capable(CAP_SYS_ADMIN
))
2262 error
= user_path_dir(new_root
, &new);
2266 if (!check_mnt(new.mnt
))
2269 error
= user_path_dir(put_old
, &old
);
2273 error
= security_sb_pivotroot(&old
, &new);
2279 get_fs_root(current
->fs
, &root
);
2280 down_write(&namespace_sem
);
2281 mutex_lock(&old
.dentry
->d_inode
->i_mutex
);
2283 if (IS_MNT_SHARED(old
.mnt
) ||
2284 IS_MNT_SHARED(new.mnt
->mnt_parent
) ||
2285 IS_MNT_SHARED(root
.mnt
->mnt_parent
))
2287 if (!check_mnt(root
.mnt
))
2290 if (cant_mount(old
.dentry
))
2292 if (d_unlinked(new.dentry
))
2294 if (d_unlinked(old
.dentry
))
2297 if (new.mnt
== root
.mnt
||
2298 old
.mnt
== root
.mnt
)
2299 goto out2
; /* loop, on the same file system */
2301 if (root
.mnt
->mnt_root
!= root
.dentry
)
2302 goto out2
; /* not a mountpoint */
2303 if (root
.mnt
->mnt_parent
== root
.mnt
)
2304 goto out2
; /* not attached */
2305 if (new.mnt
->mnt_root
!= new.dentry
)
2306 goto out2
; /* not a mountpoint */
2307 if (new.mnt
->mnt_parent
== new.mnt
)
2308 goto out2
; /* not attached */
2309 /* make sure we can reach put_old from new_root */
2311 br_write_lock(vfsmount_lock
);
2312 if (tmp
!= new.mnt
) {
2314 if (tmp
->mnt_parent
== tmp
)
2315 goto out3
; /* already mounted on put_old */
2316 if (tmp
->mnt_parent
== new.mnt
)
2318 tmp
= tmp
->mnt_parent
;
2320 if (!is_subdir(tmp
->mnt_mountpoint
, new.dentry
))
2322 } else if (!is_subdir(old
.dentry
, new.dentry
))
2324 detach_mnt(new.mnt
, &parent_path
);
2325 detach_mnt(root
.mnt
, &root_parent
);
2326 /* mount old root on put_old */
2327 attach_mnt(root
.mnt
, &old
);
2328 /* mount new_root on / */
2329 attach_mnt(new.mnt
, &root_parent
);
2330 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2331 br_write_unlock(vfsmount_lock
);
2332 chroot_fs_refs(&root
, &new);
2334 path_put(&root_parent
);
2335 path_put(&parent_path
);
2337 mutex_unlock(&old
.dentry
->d_inode
->i_mutex
);
2338 up_write(&namespace_sem
);
2346 br_write_unlock(vfsmount_lock
);
2350 static void __init
init_mount_tree(void)
2352 struct vfsmount
*mnt
;
2353 struct mnt_namespace
*ns
;
2356 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
2358 panic("Can't create rootfs");
2359 ns
= create_mnt_ns(mnt
);
2361 panic("Can't allocate initial namespace");
2363 init_task
.nsproxy
->mnt_ns
= ns
;
2366 root
.mnt
= ns
->root
;
2367 root
.dentry
= ns
->root
->mnt_root
;
2369 set_fs_pwd(current
->fs
, &root
);
2370 set_fs_root(current
->fs
, &root
);
2373 void __init
mnt_init(void)
2378 init_rwsem(&namespace_sem
);
2380 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct vfsmount
),
2381 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2383 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2385 if (!mount_hashtable
)
2386 panic("Failed to allocate mount hash table\n");
2388 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2390 for (u
= 0; u
< HASH_SIZE
; u
++)
2391 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2393 br_lock_init(vfsmount_lock
);
2397 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2399 fs_kobj
= kobject_create_and_add("fs", NULL
);
2401 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2406 void put_mnt_ns(struct mnt_namespace
*ns
)
2408 LIST_HEAD(umount_list
);
2410 if (!atomic_dec_and_test(&ns
->count
))
2412 down_write(&namespace_sem
);
2413 br_write_lock(vfsmount_lock
);
2414 umount_tree(ns
->root
, 0, &umount_list
);
2415 br_write_unlock(vfsmount_lock
);
2416 up_write(&namespace_sem
);
2417 release_mounts(&umount_list
);
2420 EXPORT_SYMBOL(put_mnt_ns
);