2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
43 #include <linux/slab.h>
44 #include <linux/poll.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
59 #include <asm/futex.h>
61 #include "rtmutex_common.h"
63 int __read_mostly futex_cmpxchg_enabled
;
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
68 * Priority Inheritance state:
70 struct futex_pi_state
{
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
75 struct list_head list
;
80 struct rt_mutex pi_mutex
;
82 struct task_struct
*owner
;
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiters, then make the second condition true.
98 struct plist_node list
;
99 wait_queue_head_t waiters
;
101 /* Which hash list lock to use: */
102 spinlock_t
*lock_ptr
;
104 /* Key which the futex is hashed on: */
107 /* For fd, sigio sent using these: */
111 /* Optional priority inheritance state: */
112 struct futex_pi_state
*pi_state
;
113 struct task_struct
*task
;
115 /* Bitset for the optional bitmasked wakeup */
120 * Split the global futex_lock into every hash list lock.
122 struct futex_hash_bucket
{
124 struct plist_head chain
;
127 static struct futex_hash_bucket futex_queues
[1<<FUTEX_HASHBITS
];
129 /* Futex-fs vfsmount entry: */
130 static struct vfsmount
*futex_mnt
;
133 * Take mm->mmap_sem, when futex is shared
135 static inline void futex_lock_mm(struct rw_semaphore
*fshared
)
142 * Release mm->mmap_sem, when the futex is shared
144 static inline void futex_unlock_mm(struct rw_semaphore
*fshared
)
151 * We hash on the keys returned from get_futex_key (see below).
153 static struct futex_hash_bucket
*hash_futex(union futex_key
*key
)
155 u32 hash
= jhash2((u32
*)&key
->both
.word
,
156 (sizeof(key
->both
.word
)+sizeof(key
->both
.ptr
))/4,
158 return &futex_queues
[hash
& ((1 << FUTEX_HASHBITS
)-1)];
162 * Return 1 if two futex_keys are equal, 0 otherwise.
164 static inline int match_futex(union futex_key
*key1
, union futex_key
*key2
)
166 return (key1
->both
.word
== key2
->both
.word
167 && key1
->both
.ptr
== key2
->both
.ptr
168 && key1
->both
.offset
== key2
->both
.offset
);
172 * get_futex_key - Get parameters which are the keys for a futex.
173 * @uaddr: virtual address of the futex
174 * @shared: NULL for a PROCESS_PRIVATE futex,
175 * ¤t->mm->mmap_sem for a PROCESS_SHARED futex
176 * @key: address where result is stored.
178 * Returns a negative error code or 0
179 * The key words are stored in *key on success.
181 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
182 * offset_within_page). For private mappings, it's (uaddr, current->mm).
183 * We can usually work out the index without swapping in the page.
185 * fshared is NULL for PROCESS_PRIVATE futexes
186 * For other futexes, it points to ¤t->mm->mmap_sem and
187 * caller must have taken the reader lock. but NOT any spinlocks.
189 static int get_futex_key(u32 __user
*uaddr
, struct rw_semaphore
*fshared
,
190 union futex_key
*key
)
192 unsigned long address
= (unsigned long)uaddr
;
193 struct mm_struct
*mm
= current
->mm
;
194 struct vm_area_struct
*vma
;
199 * The futex address must be "naturally" aligned.
201 key
->both
.offset
= address
% PAGE_SIZE
;
202 if (unlikely((address
% sizeof(u32
)) != 0))
204 address
-= key
->both
.offset
;
207 * PROCESS_PRIVATE futexes are fast.
208 * As the mm cannot disappear under us and the 'key' only needs
209 * virtual address, we dont even have to find the underlying vma.
210 * Note : We do have to check 'uaddr' is a valid user address,
211 * but access_ok() should be faster than find_vma()
214 if (unlikely(!access_ok(VERIFY_WRITE
, uaddr
, sizeof(u32
))))
216 key
->private.mm
= mm
;
217 key
->private.address
= address
;
221 * The futex is hashed differently depending on whether
222 * it's in a shared or private mapping. So check vma first.
224 vma
= find_extend_vma(mm
, address
);
231 if (unlikely((vma
->vm_flags
& (VM_IO
|VM_READ
)) != VM_READ
))
232 return (vma
->vm_flags
& VM_IO
) ? -EPERM
: -EACCES
;
235 * Private mappings are handled in a simple way.
237 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
238 * it's a read-only handle, it's expected that futexes attach to
239 * the object not the particular process. Therefore we use
240 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
241 * mappings of _writable_ handles.
243 if (likely(!(vma
->vm_flags
& VM_MAYSHARE
))) {
244 key
->both
.offset
|= FUT_OFF_MMSHARED
; /* reference taken on mm */
245 key
->private.mm
= mm
;
246 key
->private.address
= address
;
251 * Linear file mappings are also simple.
253 key
->shared
.inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
254 key
->both
.offset
|= FUT_OFF_INODE
; /* inode-based key. */
255 if (likely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
256 key
->shared
.pgoff
= (((address
- vma
->vm_start
) >> PAGE_SHIFT
)
262 * We could walk the page table to read the non-linear
263 * pte, and get the page index without fetching the page
264 * from swap. But that's a lot of code to duplicate here
265 * for a rare case, so we simply fetch the page.
267 err
= get_user_pages(current
, mm
, address
, 1, 0, 0, &page
, NULL
);
270 page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
278 * Take a reference to the resource addressed by a key.
279 * Can be called while holding spinlocks.
282 static void get_futex_key_refs(union futex_key
*key
)
284 if (key
->both
.ptr
== 0)
286 switch (key
->both
.offset
& (FUT_OFF_INODE
|FUT_OFF_MMSHARED
)) {
288 atomic_inc(&key
->shared
.inode
->i_count
);
290 case FUT_OFF_MMSHARED
:
291 atomic_inc(&key
->private.mm
->mm_count
);
297 * Drop a reference to the resource addressed by a key.
298 * The hash bucket spinlock must not be held.
300 static void drop_futex_key_refs(union futex_key
*key
)
304 switch (key
->both
.offset
& (FUT_OFF_INODE
|FUT_OFF_MMSHARED
)) {
306 iput(key
->shared
.inode
);
308 case FUT_OFF_MMSHARED
:
309 mmdrop(key
->private.mm
);
314 static u32
cmpxchg_futex_value_locked(u32 __user
*uaddr
, u32 uval
, u32 newval
)
319 curval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, newval
);
325 static int get_futex_value_locked(u32
*dest
, u32 __user
*from
)
330 ret
= __copy_from_user_inatomic(dest
, from
, sizeof(u32
));
333 return ret
? -EFAULT
: 0;
338 * if fshared is non NULL, current->mm->mmap_sem is already held
340 static int futex_handle_fault(unsigned long address
,
341 struct rw_semaphore
*fshared
, int attempt
)
343 struct vm_area_struct
* vma
;
344 struct mm_struct
*mm
= current
->mm
;
351 down_read(&mm
->mmap_sem
);
352 vma
= find_vma(mm
, address
);
353 if (vma
&& address
>= vma
->vm_start
&&
354 (vma
->vm_flags
& VM_WRITE
)) {
356 fault
= handle_mm_fault(mm
, vma
, address
, 1);
357 if (unlikely((fault
& VM_FAULT_ERROR
))) {
359 /* XXX: let's do this when we verify it is OK */
360 if (ret
& VM_FAULT_OOM
)
365 if (fault
& VM_FAULT_MAJOR
)
372 up_read(&mm
->mmap_sem
);
379 static int refill_pi_state_cache(void)
381 struct futex_pi_state
*pi_state
;
383 if (likely(current
->pi_state_cache
))
386 pi_state
= kzalloc(sizeof(*pi_state
), GFP_KERNEL
);
391 INIT_LIST_HEAD(&pi_state
->list
);
392 /* pi_mutex gets initialized later */
393 pi_state
->owner
= NULL
;
394 atomic_set(&pi_state
->refcount
, 1);
396 current
->pi_state_cache
= pi_state
;
401 static struct futex_pi_state
* alloc_pi_state(void)
403 struct futex_pi_state
*pi_state
= current
->pi_state_cache
;
406 current
->pi_state_cache
= NULL
;
411 static void free_pi_state(struct futex_pi_state
*pi_state
)
413 if (!atomic_dec_and_test(&pi_state
->refcount
))
417 * If pi_state->owner is NULL, the owner is most probably dying
418 * and has cleaned up the pi_state already
420 if (pi_state
->owner
) {
421 spin_lock_irq(&pi_state
->owner
->pi_lock
);
422 list_del_init(&pi_state
->list
);
423 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
425 rt_mutex_proxy_unlock(&pi_state
->pi_mutex
, pi_state
->owner
);
428 if (current
->pi_state_cache
)
432 * pi_state->list is already empty.
433 * clear pi_state->owner.
434 * refcount is at 0 - put it back to 1.
436 pi_state
->owner
= NULL
;
437 atomic_set(&pi_state
->refcount
, 1);
438 current
->pi_state_cache
= pi_state
;
443 * Look up the task based on what TID userspace gave us.
446 static struct task_struct
* futex_find_get_task(pid_t pid
)
448 struct task_struct
*p
;
451 p
= find_task_by_vpid(pid
);
452 if (!p
|| ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
)))
463 * This task is holding PI mutexes at exit time => bad.
464 * Kernel cleans up PI-state, but userspace is likely hosed.
465 * (Robust-futex cleanup is separate and might save the day for userspace.)
467 void exit_pi_state_list(struct task_struct
*curr
)
469 struct list_head
*next
, *head
= &curr
->pi_state_list
;
470 struct futex_pi_state
*pi_state
;
471 struct futex_hash_bucket
*hb
;
474 if (!futex_cmpxchg_enabled
)
477 * We are a ZOMBIE and nobody can enqueue itself on
478 * pi_state_list anymore, but we have to be careful
479 * versus waiters unqueueing themselves:
481 spin_lock_irq(&curr
->pi_lock
);
482 while (!list_empty(head
)) {
485 pi_state
= list_entry(next
, struct futex_pi_state
, list
);
487 hb
= hash_futex(&key
);
488 spin_unlock_irq(&curr
->pi_lock
);
490 spin_lock(&hb
->lock
);
492 spin_lock_irq(&curr
->pi_lock
);
494 * We dropped the pi-lock, so re-check whether this
495 * task still owns the PI-state:
497 if (head
->next
!= next
) {
498 spin_unlock(&hb
->lock
);
502 WARN_ON(pi_state
->owner
!= curr
);
503 WARN_ON(list_empty(&pi_state
->list
));
504 list_del_init(&pi_state
->list
);
505 pi_state
->owner
= NULL
;
506 spin_unlock_irq(&curr
->pi_lock
);
508 rt_mutex_unlock(&pi_state
->pi_mutex
);
510 spin_unlock(&hb
->lock
);
512 spin_lock_irq(&curr
->pi_lock
);
514 spin_unlock_irq(&curr
->pi_lock
);
518 lookup_pi_state(u32 uval
, struct futex_hash_bucket
*hb
,
519 union futex_key
*key
, struct futex_pi_state
**ps
)
521 struct futex_pi_state
*pi_state
= NULL
;
522 struct futex_q
*this, *next
;
523 struct plist_head
*head
;
524 struct task_struct
*p
;
525 pid_t pid
= uval
& FUTEX_TID_MASK
;
529 plist_for_each_entry_safe(this, next
, head
, list
) {
530 if (match_futex(&this->key
, key
)) {
532 * Another waiter already exists - bump up
533 * the refcount and return its pi_state:
535 pi_state
= this->pi_state
;
537 * Userspace might have messed up non PI and PI futexes
539 if (unlikely(!pi_state
))
542 WARN_ON(!atomic_read(&pi_state
->refcount
));
543 WARN_ON(pid
&& pi_state
->owner
&&
544 pi_state
->owner
->pid
!= pid
);
546 atomic_inc(&pi_state
->refcount
);
554 * We are the first waiter - try to look up the real owner and attach
555 * the new pi_state to it, but bail out when TID = 0
559 p
= futex_find_get_task(pid
);
564 * We need to look at the task state flags to figure out,
565 * whether the task is exiting. To protect against the do_exit
566 * change of the task flags, we do this protected by
569 spin_lock_irq(&p
->pi_lock
);
570 if (unlikely(p
->flags
& PF_EXITING
)) {
572 * The task is on the way out. When PF_EXITPIDONE is
573 * set, we know that the task has finished the
576 int ret
= (p
->flags
& PF_EXITPIDONE
) ? -ESRCH
: -EAGAIN
;
578 spin_unlock_irq(&p
->pi_lock
);
583 pi_state
= alloc_pi_state();
586 * Initialize the pi_mutex in locked state and make 'p'
589 rt_mutex_init_proxy_locked(&pi_state
->pi_mutex
, p
);
591 /* Store the key for possible exit cleanups: */
592 pi_state
->key
= *key
;
594 WARN_ON(!list_empty(&pi_state
->list
));
595 list_add(&pi_state
->list
, &p
->pi_state_list
);
597 spin_unlock_irq(&p
->pi_lock
);
607 * The hash bucket lock must be held when this is called.
608 * Afterwards, the futex_q must not be accessed.
610 static void wake_futex(struct futex_q
*q
)
612 plist_del(&q
->list
, &q
->list
.plist
);
614 send_sigio(&q
->filp
->f_owner
, q
->fd
, POLL_IN
);
616 * The lock in wake_up_all() is a crucial memory barrier after the
617 * plist_del() and also before assigning to q->lock_ptr.
619 wake_up_all(&q
->waiters
);
621 * The waiting task can free the futex_q as soon as this is written,
622 * without taking any locks. This must come last.
624 * A memory barrier is required here to prevent the following store
625 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
626 * at the end of wake_up_all() does not prevent this store from
633 static int wake_futex_pi(u32 __user
*uaddr
, u32 uval
, struct futex_q
*this)
635 struct task_struct
*new_owner
;
636 struct futex_pi_state
*pi_state
= this->pi_state
;
642 spin_lock(&pi_state
->pi_mutex
.wait_lock
);
643 new_owner
= rt_mutex_next_owner(&pi_state
->pi_mutex
);
646 * This happens when we have stolen the lock and the original
647 * pending owner did not enqueue itself back on the rt_mutex.
648 * Thats not a tragedy. We know that way, that a lock waiter
649 * is on the fly. We make the futex_q waiter the pending owner.
652 new_owner
= this->task
;
655 * We pass it to the next owner. (The WAITERS bit is always
656 * kept enabled while there is PI state around. We must also
657 * preserve the owner died bit.)
659 if (!(uval
& FUTEX_OWNER_DIED
)) {
662 newval
= FUTEX_WAITERS
| task_pid_vnr(new_owner
);
664 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
666 if (curval
== -EFAULT
)
668 else if (curval
!= uval
)
671 spin_unlock(&pi_state
->pi_mutex
.wait_lock
);
676 spin_lock_irq(&pi_state
->owner
->pi_lock
);
677 WARN_ON(list_empty(&pi_state
->list
));
678 list_del_init(&pi_state
->list
);
679 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
681 spin_lock_irq(&new_owner
->pi_lock
);
682 WARN_ON(!list_empty(&pi_state
->list
));
683 list_add(&pi_state
->list
, &new_owner
->pi_state_list
);
684 pi_state
->owner
= new_owner
;
685 spin_unlock_irq(&new_owner
->pi_lock
);
687 spin_unlock(&pi_state
->pi_mutex
.wait_lock
);
688 rt_mutex_unlock(&pi_state
->pi_mutex
);
693 static int unlock_futex_pi(u32 __user
*uaddr
, u32 uval
)
698 * There is no waiter, so we unlock the futex. The owner died
699 * bit has not to be preserved here. We are the owner:
701 oldval
= cmpxchg_futex_value_locked(uaddr
, uval
, 0);
703 if (oldval
== -EFAULT
)
712 * Express the locking dependencies for lockdep:
715 double_lock_hb(struct futex_hash_bucket
*hb1
, struct futex_hash_bucket
*hb2
)
718 spin_lock(&hb1
->lock
);
720 spin_lock_nested(&hb2
->lock
, SINGLE_DEPTH_NESTING
);
721 } else { /* hb1 > hb2 */
722 spin_lock(&hb2
->lock
);
723 spin_lock_nested(&hb1
->lock
, SINGLE_DEPTH_NESTING
);
728 * Wake up all waiters hashed on the physical page that is mapped
729 * to this virtual address:
731 static int futex_wake(u32 __user
*uaddr
, struct rw_semaphore
*fshared
,
732 int nr_wake
, u32 bitset
)
734 struct futex_hash_bucket
*hb
;
735 struct futex_q
*this, *next
;
736 struct plist_head
*head
;
743 futex_lock_mm(fshared
);
745 ret
= get_futex_key(uaddr
, fshared
, &key
);
746 if (unlikely(ret
!= 0))
749 hb
= hash_futex(&key
);
750 spin_lock(&hb
->lock
);
753 plist_for_each_entry_safe(this, next
, head
, list
) {
754 if (match_futex (&this->key
, &key
)) {
755 if (this->pi_state
) {
760 /* Check if one of the bits is set in both bitsets */
761 if (!(this->bitset
& bitset
))
765 if (++ret
>= nr_wake
)
770 spin_unlock(&hb
->lock
);
772 futex_unlock_mm(fshared
);
777 * Wake up all waiters hashed on the physical page that is mapped
778 * to this virtual address:
781 futex_wake_op(u32 __user
*uaddr1
, struct rw_semaphore
*fshared
,
783 int nr_wake
, int nr_wake2
, int op
)
785 union futex_key key1
, key2
;
786 struct futex_hash_bucket
*hb1
, *hb2
;
787 struct plist_head
*head
;
788 struct futex_q
*this, *next
;
789 int ret
, op_ret
, attempt
= 0;
792 futex_lock_mm(fshared
);
794 ret
= get_futex_key(uaddr1
, fshared
, &key1
);
795 if (unlikely(ret
!= 0))
797 ret
= get_futex_key(uaddr2
, fshared
, &key2
);
798 if (unlikely(ret
!= 0))
801 hb1
= hash_futex(&key1
);
802 hb2
= hash_futex(&key2
);
805 double_lock_hb(hb1
, hb2
);
807 op_ret
= futex_atomic_op_inuser(op
, uaddr2
);
808 if (unlikely(op_ret
< 0)) {
811 spin_unlock(&hb1
->lock
);
813 spin_unlock(&hb2
->lock
);
817 * we don't get EFAULT from MMU faults if we don't have an MMU,
818 * but we might get them from range checking
824 if (unlikely(op_ret
!= -EFAULT
)) {
830 * futex_atomic_op_inuser needs to both read and write
831 * *(int __user *)uaddr2, but we can't modify it
832 * non-atomically. Therefore, if get_user below is not
833 * enough, we need to handle the fault ourselves, while
834 * still holding the mmap_sem.
837 ret
= futex_handle_fault((unsigned long)uaddr2
,
845 * If we would have faulted, release mmap_sem,
846 * fault it in and start all over again.
848 futex_unlock_mm(fshared
);
850 ret
= get_user(dummy
, uaddr2
);
859 plist_for_each_entry_safe(this, next
, head
, list
) {
860 if (match_futex (&this->key
, &key1
)) {
862 if (++ret
>= nr_wake
)
871 plist_for_each_entry_safe(this, next
, head
, list
) {
872 if (match_futex (&this->key
, &key2
)) {
874 if (++op_ret
>= nr_wake2
)
881 spin_unlock(&hb1
->lock
);
883 spin_unlock(&hb2
->lock
);
885 futex_unlock_mm(fshared
);
891 * Requeue all waiters hashed on one physical page to another
894 static int futex_requeue(u32 __user
*uaddr1
, struct rw_semaphore
*fshared
,
896 int nr_wake
, int nr_requeue
, u32
*cmpval
)
898 union futex_key key1
, key2
;
899 struct futex_hash_bucket
*hb1
, *hb2
;
900 struct plist_head
*head1
;
901 struct futex_q
*this, *next
;
902 int ret
, drop_count
= 0;
905 futex_lock_mm(fshared
);
907 ret
= get_futex_key(uaddr1
, fshared
, &key1
);
908 if (unlikely(ret
!= 0))
910 ret
= get_futex_key(uaddr2
, fshared
, &key2
);
911 if (unlikely(ret
!= 0))
914 hb1
= hash_futex(&key1
);
915 hb2
= hash_futex(&key2
);
917 double_lock_hb(hb1
, hb2
);
919 if (likely(cmpval
!= NULL
)) {
922 ret
= get_futex_value_locked(&curval
, uaddr1
);
925 spin_unlock(&hb1
->lock
);
927 spin_unlock(&hb2
->lock
);
930 * If we would have faulted, release mmap_sem, fault
931 * it in and start all over again.
933 futex_unlock_mm(fshared
);
935 ret
= get_user(curval
, uaddr1
);
942 if (curval
!= *cmpval
) {
949 plist_for_each_entry_safe(this, next
, head1
, list
) {
950 if (!match_futex (&this->key
, &key1
))
952 if (++ret
<= nr_wake
) {
956 * If key1 and key2 hash to the same bucket, no need to
959 if (likely(head1
!= &hb2
->chain
)) {
960 plist_del(&this->list
, &hb1
->chain
);
961 plist_add(&this->list
, &hb2
->chain
);
962 this->lock_ptr
= &hb2
->lock
;
963 #ifdef CONFIG_DEBUG_PI_LIST
964 this->list
.plist
.lock
= &hb2
->lock
;
968 get_futex_key_refs(&key2
);
971 if (ret
- nr_wake
>= nr_requeue
)
977 spin_unlock(&hb1
->lock
);
979 spin_unlock(&hb2
->lock
);
981 /* drop_futex_key_refs() must be called outside the spinlocks. */
982 while (--drop_count
>= 0)
983 drop_futex_key_refs(&key1
);
986 futex_unlock_mm(fshared
);
990 /* The key must be already stored in q->key. */
991 static inline struct futex_hash_bucket
*
992 queue_lock(struct futex_q
*q
, int fd
, struct file
*filp
)
994 struct futex_hash_bucket
*hb
;
999 init_waitqueue_head(&q
->waiters
);
1001 get_futex_key_refs(&q
->key
);
1002 hb
= hash_futex(&q
->key
);
1003 q
->lock_ptr
= &hb
->lock
;
1005 spin_lock(&hb
->lock
);
1009 static inline void __queue_me(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
1014 * The priority used to register this element is
1015 * - either the real thread-priority for the real-time threads
1016 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1017 * - or MAX_RT_PRIO for non-RT threads.
1018 * Thus, all RT-threads are woken first in priority order, and
1019 * the others are woken last, in FIFO order.
1021 prio
= min(current
->normal_prio
, MAX_RT_PRIO
);
1023 plist_node_init(&q
->list
, prio
);
1024 #ifdef CONFIG_DEBUG_PI_LIST
1025 q
->list
.plist
.lock
= &hb
->lock
;
1027 plist_add(&q
->list
, &hb
->chain
);
1029 spin_unlock(&hb
->lock
);
1033 queue_unlock(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
1035 spin_unlock(&hb
->lock
);
1036 drop_futex_key_refs(&q
->key
);
1040 * queue_me and unqueue_me must be called as a pair, each
1041 * exactly once. They are called with the hashed spinlock held.
1044 /* The key must be already stored in q->key. */
1045 static void queue_me(struct futex_q
*q
, int fd
, struct file
*filp
)
1047 struct futex_hash_bucket
*hb
;
1049 hb
= queue_lock(q
, fd
, filp
);
1053 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1054 static int unqueue_me(struct futex_q
*q
)
1056 spinlock_t
*lock_ptr
;
1059 /* In the common case we don't take the spinlock, which is nice. */
1061 lock_ptr
= q
->lock_ptr
;
1063 if (lock_ptr
!= NULL
) {
1064 spin_lock(lock_ptr
);
1066 * q->lock_ptr can change between reading it and
1067 * spin_lock(), causing us to take the wrong lock. This
1068 * corrects the race condition.
1070 * Reasoning goes like this: if we have the wrong lock,
1071 * q->lock_ptr must have changed (maybe several times)
1072 * between reading it and the spin_lock(). It can
1073 * change again after the spin_lock() but only if it was
1074 * already changed before the spin_lock(). It cannot,
1075 * however, change back to the original value. Therefore
1076 * we can detect whether we acquired the correct lock.
1078 if (unlikely(lock_ptr
!= q
->lock_ptr
)) {
1079 spin_unlock(lock_ptr
);
1082 WARN_ON(plist_node_empty(&q
->list
));
1083 plist_del(&q
->list
, &q
->list
.plist
);
1085 BUG_ON(q
->pi_state
);
1087 spin_unlock(lock_ptr
);
1091 drop_futex_key_refs(&q
->key
);
1096 * PI futexes can not be requeued and must remove themself from the
1097 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1100 static void unqueue_me_pi(struct futex_q
*q
)
1102 WARN_ON(plist_node_empty(&q
->list
));
1103 plist_del(&q
->list
, &q
->list
.plist
);
1105 BUG_ON(!q
->pi_state
);
1106 free_pi_state(q
->pi_state
);
1109 spin_unlock(q
->lock_ptr
);
1111 drop_futex_key_refs(&q
->key
);
1115 * Fixup the pi_state owner with the new owner.
1117 * Must be called with hash bucket lock held and mm->sem held for non
1120 static int fixup_pi_state_owner(u32 __user
*uaddr
, struct futex_q
*q
,
1121 struct task_struct
*newowner
)
1123 u32 newtid
= task_pid_vnr(newowner
) | FUTEX_WAITERS
;
1124 struct futex_pi_state
*pi_state
= q
->pi_state
;
1125 u32 uval
, curval
, newval
;
1129 if (pi_state
->owner
!= NULL
) {
1130 spin_lock_irq(&pi_state
->owner
->pi_lock
);
1131 WARN_ON(list_empty(&pi_state
->list
));
1132 list_del_init(&pi_state
->list
);
1133 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
1135 newtid
|= FUTEX_OWNER_DIED
;
1137 pi_state
->owner
= newowner
;
1139 spin_lock_irq(&newowner
->pi_lock
);
1140 WARN_ON(!list_empty(&pi_state
->list
));
1141 list_add(&pi_state
->list
, &newowner
->pi_state_list
);
1142 spin_unlock_irq(&newowner
->pi_lock
);
1145 * We own it, so we have to replace the pending owner
1146 * TID. This must be atomic as we have preserve the
1147 * owner died bit here.
1149 ret
= get_futex_value_locked(&uval
, uaddr
);
1152 newval
= (uval
& FUTEX_OWNER_DIED
) | newtid
;
1154 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
1156 if (curval
== -EFAULT
)
1166 * In case we must use restart_block to restart a futex_wait,
1167 * we encode in the 'flags' shared capability
1169 #define FLAGS_SHARED 1
1171 static long futex_wait_restart(struct restart_block
*restart
);
1173 static int futex_wait(u32 __user
*uaddr
, struct rw_semaphore
*fshared
,
1174 u32 val
, ktime_t
*abs_time
, u32 bitset
)
1176 struct task_struct
*curr
= current
;
1177 DECLARE_WAITQUEUE(wait
, curr
);
1178 struct futex_hash_bucket
*hb
;
1182 struct hrtimer_sleeper t
;
1191 futex_lock_mm(fshared
);
1193 ret
= get_futex_key(uaddr
, fshared
, &q
.key
);
1194 if (unlikely(ret
!= 0))
1195 goto out_release_sem
;
1197 hb
= queue_lock(&q
, -1, NULL
);
1200 * Access the page AFTER the futex is queued.
1201 * Order is important:
1203 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1204 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1206 * The basic logical guarantee of a futex is that it blocks ONLY
1207 * if cond(var) is known to be true at the time of blocking, for
1208 * any cond. If we queued after testing *uaddr, that would open
1209 * a race condition where we could block indefinitely with
1210 * cond(var) false, which would violate the guarantee.
1212 * A consequence is that futex_wait() can return zero and absorb
1213 * a wakeup when *uaddr != val on entry to the syscall. This is
1216 * for shared futexes, we hold the mmap semaphore, so the mapping
1217 * cannot have changed since we looked it up in get_futex_key.
1219 ret
= get_futex_value_locked(&uval
, uaddr
);
1221 if (unlikely(ret
)) {
1222 queue_unlock(&q
, hb
);
1225 * If we would have faulted, release mmap_sem, fault it in and
1226 * start all over again.
1228 futex_unlock_mm(fshared
);
1230 ret
= get_user(uval
, uaddr
);
1238 goto out_unlock_release_sem
;
1240 /* Only actually queue if *uaddr contained val. */
1244 * Now the futex is queued and we have checked the data, we
1245 * don't want to hold mmap_sem while we sleep.
1247 futex_unlock_mm(fshared
);
1250 * There might have been scheduling since the queue_me(), as we
1251 * cannot hold a spinlock across the get_user() in case it
1252 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1253 * queueing ourselves into the futex hash. This code thus has to
1254 * rely on the futex_wake() code removing us from hash when it
1258 /* add_wait_queue is the barrier after __set_current_state. */
1259 __set_current_state(TASK_INTERRUPTIBLE
);
1260 add_wait_queue(&q
.waiters
, &wait
);
1262 * !plist_node_empty() is safe here without any lock.
1263 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1265 if (likely(!plist_node_empty(&q
.list
))) {
1269 hrtimer_init(&t
.timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1270 hrtimer_init_sleeper(&t
, current
);
1271 t
.timer
.expires
= *abs_time
;
1273 hrtimer_start(&t
.timer
, t
.timer
.expires
, HRTIMER_MODE_ABS
);
1274 if (!hrtimer_active(&t
.timer
))
1278 * the timer could have already expired, in which
1279 * case current would be flagged for rescheduling.
1280 * Don't bother calling schedule.
1285 hrtimer_cancel(&t
.timer
);
1287 /* Flag if a timeout occured */
1288 rem
= (t
.task
== NULL
);
1291 __set_current_state(TASK_RUNNING
);
1294 * NOTE: we don't remove ourselves from the waitqueue because
1295 * we are the only user of it.
1298 /* If we were woken (and unqueued), we succeeded, whatever. */
1299 if (!unqueue_me(&q
))
1305 * We expect signal_pending(current), but another thread may
1306 * have handled it for us already.
1309 return -ERESTARTSYS
;
1311 struct restart_block
*restart
;
1312 restart
= ¤t_thread_info()->restart_block
;
1313 restart
->fn
= futex_wait_restart
;
1314 restart
->futex
.uaddr
= (u32
*)uaddr
;
1315 restart
->futex
.val
= val
;
1316 restart
->futex
.time
= abs_time
->tv64
;
1317 restart
->futex
.bitset
= bitset
;
1318 restart
->futex
.flags
= 0;
1321 restart
->futex
.flags
|= FLAGS_SHARED
;
1322 return -ERESTART_RESTARTBLOCK
;
1325 out_unlock_release_sem
:
1326 queue_unlock(&q
, hb
);
1329 futex_unlock_mm(fshared
);
1334 static long futex_wait_restart(struct restart_block
*restart
)
1336 u32 __user
*uaddr
= (u32 __user
*)restart
->futex
.uaddr
;
1337 struct rw_semaphore
*fshared
= NULL
;
1340 t
.tv64
= restart
->futex
.time
;
1341 restart
->fn
= do_no_restart_syscall
;
1342 if (restart
->futex
.flags
& FLAGS_SHARED
)
1343 fshared
= ¤t
->mm
->mmap_sem
;
1344 return (long)futex_wait(uaddr
, fshared
, restart
->futex
.val
, &t
,
1345 restart
->futex
.bitset
);
1350 * Userspace tried a 0 -> TID atomic transition of the futex value
1351 * and failed. The kernel side here does the whole locking operation:
1352 * if there are waiters then it will block, it does PI, etc. (Due to
1353 * races the kernel might see a 0 value of the futex too.)
1355 static int futex_lock_pi(u32 __user
*uaddr
, struct rw_semaphore
*fshared
,
1356 int detect
, ktime_t
*time
, int trylock
)
1358 struct hrtimer_sleeper timeout
, *to
= NULL
;
1359 struct task_struct
*curr
= current
;
1360 struct futex_hash_bucket
*hb
;
1361 u32 uval
, newval
, curval
;
1363 int ret
, lock_taken
, ownerdied
= 0, attempt
= 0;
1365 if (refill_pi_state_cache())
1370 hrtimer_init(&to
->timer
, CLOCK_REALTIME
, HRTIMER_MODE_ABS
);
1371 hrtimer_init_sleeper(to
, current
);
1372 to
->timer
.expires
= *time
;
1377 futex_lock_mm(fshared
);
1379 ret
= get_futex_key(uaddr
, fshared
, &q
.key
);
1380 if (unlikely(ret
!= 0))
1381 goto out_release_sem
;
1384 hb
= queue_lock(&q
, -1, NULL
);
1387 ret
= lock_taken
= 0;
1390 * To avoid races, we attempt to take the lock here again
1391 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1392 * the locks. It will most likely not succeed.
1394 newval
= task_pid_vnr(current
);
1396 curval
= cmpxchg_futex_value_locked(uaddr
, 0, newval
);
1398 if (unlikely(curval
== -EFAULT
))
1402 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1403 * situation and we return success to user space.
1405 if (unlikely((curval
& FUTEX_TID_MASK
) == task_pid_vnr(current
))) {
1407 goto out_unlock_release_sem
;
1411 * Surprise - we got the lock. Just return to userspace:
1413 if (unlikely(!curval
))
1414 goto out_unlock_release_sem
;
1419 * Set the WAITERS flag, so the owner will know it has someone
1420 * to wake at next unlock
1422 newval
= curval
| FUTEX_WAITERS
;
1425 * There are two cases, where a futex might have no owner (the
1426 * owner TID is 0): OWNER_DIED. We take over the futex in this
1427 * case. We also do an unconditional take over, when the owner
1428 * of the futex died.
1430 * This is safe as we are protected by the hash bucket lock !
1432 if (unlikely(ownerdied
|| !(curval
& FUTEX_TID_MASK
))) {
1433 /* Keep the OWNER_DIED bit */
1434 newval
= (curval
& ~FUTEX_TID_MASK
) | task_pid_vnr(current
);
1439 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
1441 if (unlikely(curval
== -EFAULT
))
1443 if (unlikely(curval
!= uval
))
1447 * We took the lock due to owner died take over.
1449 if (unlikely(lock_taken
))
1450 goto out_unlock_release_sem
;
1453 * We dont have the lock. Look up the PI state (or create it if
1454 * we are the first waiter):
1456 ret
= lookup_pi_state(uval
, hb
, &q
.key
, &q
.pi_state
);
1458 if (unlikely(ret
)) {
1463 * Task is exiting and we just wait for the
1466 queue_unlock(&q
, hb
);
1467 futex_unlock_mm(fshared
);
1473 * No owner found for this futex. Check if the
1474 * OWNER_DIED bit is set to figure out whether
1475 * this is a robust futex or not.
1477 if (get_futex_value_locked(&curval
, uaddr
))
1481 * We simply start over in case of a robust
1482 * futex. The code above will take the futex
1485 if (curval
& FUTEX_OWNER_DIED
) {
1490 goto out_unlock_release_sem
;
1495 * Only actually queue now that the atomic ops are done:
1500 * Now the futex is queued and we have checked the data, we
1501 * don't want to hold mmap_sem while we sleep.
1503 futex_unlock_mm(fshared
);
1505 WARN_ON(!q
.pi_state
);
1507 * Block on the PI mutex:
1510 ret
= rt_mutex_timed_lock(&q
.pi_state
->pi_mutex
, to
, 1);
1512 ret
= rt_mutex_trylock(&q
.pi_state
->pi_mutex
);
1513 /* Fixup the trylock return value: */
1514 ret
= ret
? 0 : -EWOULDBLOCK
;
1517 futex_lock_mm(fshared
);
1518 spin_lock(q
.lock_ptr
);
1522 * Got the lock. We might not be the anticipated owner
1523 * if we did a lock-steal - fix up the PI-state in
1526 if (q
.pi_state
->owner
!= curr
)
1527 ret
= fixup_pi_state_owner(uaddr
, &q
, curr
);
1530 * Catch the rare case, where the lock was released
1531 * when we were on the way back before we locked the
1534 if (q
.pi_state
->owner
== curr
) {
1536 * Try to get the rt_mutex now. This might
1537 * fail as some other task acquired the
1538 * rt_mutex after we removed ourself from the
1539 * rt_mutex waiters list.
1541 if (rt_mutex_trylock(&q
.pi_state
->pi_mutex
))
1545 * pi_state is incorrect, some other
1546 * task did a lock steal and we
1547 * returned due to timeout or signal
1548 * without taking the rt_mutex. Too
1549 * late. We can access the
1550 * rt_mutex_owner without locking, as
1551 * the other task is now blocked on
1552 * the hash bucket lock. Fix the state
1555 struct task_struct
*owner
;
1558 owner
= rt_mutex_owner(&q
.pi_state
->pi_mutex
);
1559 res
= fixup_pi_state_owner(uaddr
, &q
, owner
);
1561 /* propagate -EFAULT, if the fixup failed */
1567 * Paranoia check. If we did not take the lock
1568 * in the trylock above, then we should not be
1569 * the owner of the rtmutex, neither the real
1570 * nor the pending one:
1572 if (rt_mutex_owner(&q
.pi_state
->pi_mutex
) == curr
)
1573 printk(KERN_ERR
"futex_lock_pi: ret = %d "
1574 "pi-mutex: %p pi-state %p\n", ret
,
1575 q
.pi_state
->pi_mutex
.owner
,
1580 /* Unqueue and drop the lock */
1582 futex_unlock_mm(fshared
);
1584 return ret
!= -EINTR
? ret
: -ERESTARTNOINTR
;
1586 out_unlock_release_sem
:
1587 queue_unlock(&q
, hb
);
1590 futex_unlock_mm(fshared
);
1595 * We have to r/w *(int __user *)uaddr, but we can't modify it
1596 * non-atomically. Therefore, if get_user below is not
1597 * enough, we need to handle the fault ourselves, while
1598 * still holding the mmap_sem.
1600 * ... and hb->lock. :-) --ANK
1602 queue_unlock(&q
, hb
);
1605 ret
= futex_handle_fault((unsigned long)uaddr
, fshared
,
1608 goto out_release_sem
;
1609 goto retry_unlocked
;
1612 futex_unlock_mm(fshared
);
1614 ret
= get_user(uval
, uaddr
);
1615 if (!ret
&& (uval
!= -EFAULT
))
1622 * Userspace attempted a TID -> 0 atomic transition, and failed.
1623 * This is the in-kernel slowpath: we look up the PI state (if any),
1624 * and do the rt-mutex unlock.
1626 static int futex_unlock_pi(u32 __user
*uaddr
, struct rw_semaphore
*fshared
)
1628 struct futex_hash_bucket
*hb
;
1629 struct futex_q
*this, *next
;
1631 struct plist_head
*head
;
1632 union futex_key key
;
1633 int ret
, attempt
= 0;
1636 if (get_user(uval
, uaddr
))
1639 * We release only a lock we actually own:
1641 if ((uval
& FUTEX_TID_MASK
) != task_pid_vnr(current
))
1644 * First take all the futex related locks:
1646 futex_lock_mm(fshared
);
1648 ret
= get_futex_key(uaddr
, fshared
, &key
);
1649 if (unlikely(ret
!= 0))
1652 hb
= hash_futex(&key
);
1654 spin_lock(&hb
->lock
);
1657 * To avoid races, try to do the TID -> 0 atomic transition
1658 * again. If it succeeds then we can return without waking
1661 if (!(uval
& FUTEX_OWNER_DIED
))
1662 uval
= cmpxchg_futex_value_locked(uaddr
, task_pid_vnr(current
), 0);
1665 if (unlikely(uval
== -EFAULT
))
1668 * Rare case: we managed to release the lock atomically,
1669 * no need to wake anyone else up:
1671 if (unlikely(uval
== task_pid_vnr(current
)))
1675 * Ok, other tasks may need to be woken up - check waiters
1676 * and do the wakeup if necessary:
1680 plist_for_each_entry_safe(this, next
, head
, list
) {
1681 if (!match_futex (&this->key
, &key
))
1683 ret
= wake_futex_pi(uaddr
, uval
, this);
1685 * The atomic access to the futex value
1686 * generated a pagefault, so retry the
1687 * user-access and the wakeup:
1694 * No waiters - kernel unlocks the futex:
1696 if (!(uval
& FUTEX_OWNER_DIED
)) {
1697 ret
= unlock_futex_pi(uaddr
, uval
);
1703 spin_unlock(&hb
->lock
);
1705 futex_unlock_mm(fshared
);
1711 * We have to r/w *(int __user *)uaddr, but we can't modify it
1712 * non-atomically. Therefore, if get_user below is not
1713 * enough, we need to handle the fault ourselves, while
1714 * still holding the mmap_sem.
1716 * ... and hb->lock. --ANK
1718 spin_unlock(&hb
->lock
);
1721 ret
= futex_handle_fault((unsigned long)uaddr
, fshared
,
1726 goto retry_unlocked
;
1729 futex_unlock_mm(fshared
);
1731 ret
= get_user(uval
, uaddr
);
1732 if (!ret
&& (uval
!= -EFAULT
))
1738 static int futex_close(struct inode
*inode
, struct file
*filp
)
1740 struct futex_q
*q
= filp
->private_data
;
1748 /* This is one-shot: once it's gone off you need a new fd */
1749 static unsigned int futex_poll(struct file
*filp
,
1750 struct poll_table_struct
*wait
)
1752 struct futex_q
*q
= filp
->private_data
;
1755 poll_wait(filp
, &q
->waiters
, wait
);
1758 * plist_node_empty() is safe here without any lock.
1759 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1761 if (plist_node_empty(&q
->list
))
1762 ret
= POLLIN
| POLLRDNORM
;
1767 static const struct file_operations futex_fops
= {
1768 .release
= futex_close
,
1773 * Signal allows caller to avoid the race which would occur if they
1774 * set the sigio stuff up afterwards.
1776 static int futex_fd(u32 __user
*uaddr
, int signal
)
1781 struct rw_semaphore
*fshared
;
1782 static unsigned long printk_interval
;
1784 if (printk_timed_ratelimit(&printk_interval
, 60 * 60 * 1000)) {
1785 printk(KERN_WARNING
"Process `%s' used FUTEX_FD, which "
1786 "will be removed from the kernel in June 2007\n",
1791 if (!valid_signal(signal
))
1794 ret
= get_unused_fd();
1797 filp
= get_empty_filp();
1803 filp
->f_op
= &futex_fops
;
1804 filp
->f_path
.mnt
= mntget(futex_mnt
);
1805 filp
->f_path
.dentry
= dget(futex_mnt
->mnt_root
);
1806 filp
->f_mapping
= filp
->f_path
.dentry
->d_inode
->i_mapping
;
1809 err
= __f_setown(filp
, task_pid(current
), PIDTYPE_PID
, 1);
1813 filp
->f_owner
.signum
= signal
;
1816 q
= kmalloc(sizeof(*q
), GFP_KERNEL
);
1823 fshared
= ¤t
->mm
->mmap_sem
;
1825 err
= get_futex_key(uaddr
, fshared
, &q
->key
);
1827 if (unlikely(err
!= 0)) {
1834 * queue_me() must be called before releasing mmap_sem, because
1835 * key->shared.inode needs to be referenced while holding it.
1837 filp
->private_data
= q
;
1839 queue_me(q
, ret
, filp
);
1842 /* Now we map fd to filp, so userspace can access it */
1843 fd_install(ret
, filp
);
1854 * Support for robust futexes: the kernel cleans up held futexes at
1857 * Implementation: user-space maintains a per-thread list of locks it
1858 * is holding. Upon do_exit(), the kernel carefully walks this list,
1859 * and marks all locks that are owned by this thread with the
1860 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1861 * always manipulated with the lock held, so the list is private and
1862 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1863 * field, to allow the kernel to clean up if the thread dies after
1864 * acquiring the lock, but just before it could have added itself to
1865 * the list. There can only be one such pending lock.
1869 * sys_set_robust_list - set the robust-futex list head of a task
1870 * @head: pointer to the list-head
1871 * @len: length of the list-head, as userspace expects
1874 sys_set_robust_list(struct robust_list_head __user
*head
,
1877 if (!futex_cmpxchg_enabled
)
1880 * The kernel knows only one size for now:
1882 if (unlikely(len
!= sizeof(*head
)))
1885 current
->robust_list
= head
;
1891 * sys_get_robust_list - get the robust-futex list head of a task
1892 * @pid: pid of the process [zero for current task]
1893 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1894 * @len_ptr: pointer to a length field, the kernel fills in the header size
1897 sys_get_robust_list(int pid
, struct robust_list_head __user
* __user
*head_ptr
,
1898 size_t __user
*len_ptr
)
1900 struct robust_list_head __user
*head
;
1903 if (!futex_cmpxchg_enabled
)
1907 head
= current
->robust_list
;
1909 struct task_struct
*p
;
1913 p
= find_task_by_vpid(pid
);
1917 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
1918 !capable(CAP_SYS_PTRACE
))
1920 head
= p
->robust_list
;
1924 if (put_user(sizeof(*head
), len_ptr
))
1926 return put_user(head
, head_ptr
);
1935 * Process a futex-list entry, check whether it's owned by the
1936 * dying task, and do notification if so:
1938 int handle_futex_death(u32 __user
*uaddr
, struct task_struct
*curr
, int pi
)
1940 u32 uval
, nval
, mval
;
1943 if (get_user(uval
, uaddr
))
1946 if ((uval
& FUTEX_TID_MASK
) == task_pid_vnr(curr
)) {
1948 * Ok, this dying thread is truly holding a futex
1949 * of interest. Set the OWNER_DIED bit atomically
1950 * via cmpxchg, and if the value had FUTEX_WAITERS
1951 * set, wake up a waiter (if any). (We have to do a
1952 * futex_wake() even if OWNER_DIED is already set -
1953 * to handle the rare but possible case of recursive
1954 * thread-death.) The rest of the cleanup is done in
1957 mval
= (uval
& FUTEX_WAITERS
) | FUTEX_OWNER_DIED
;
1958 nval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, mval
);
1960 if (nval
== -EFAULT
)
1967 * Wake robust non-PI futexes here. The wakeup of
1968 * PI futexes happens in exit_pi_state():
1970 if (!pi
&& (uval
& FUTEX_WAITERS
))
1971 futex_wake(uaddr
, &curr
->mm
->mmap_sem
, 1,
1972 FUTEX_BITSET_MATCH_ANY
);
1978 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1980 static inline int fetch_robust_entry(struct robust_list __user
**entry
,
1981 struct robust_list __user
* __user
*head
,
1984 unsigned long uentry
;
1986 if (get_user(uentry
, (unsigned long __user
*)head
))
1989 *entry
= (void __user
*)(uentry
& ~1UL);
1996 * Walk curr->robust_list (very carefully, it's a userspace list!)
1997 * and mark any locks found there dead, and notify any waiters.
1999 * We silently return on any sign of list-walking problem.
2001 void exit_robust_list(struct task_struct
*curr
)
2003 struct robust_list_head __user
*head
= curr
->robust_list
;
2004 struct robust_list __user
*entry
, *next_entry
, *pending
;
2005 unsigned int limit
= ROBUST_LIST_LIMIT
, pi
, next_pi
, pip
;
2006 unsigned long futex_offset
;
2009 if (!futex_cmpxchg_enabled
)
2013 * Fetch the list head (which was registered earlier, via
2014 * sys_set_robust_list()):
2016 if (fetch_robust_entry(&entry
, &head
->list
.next
, &pi
))
2019 * Fetch the relative futex offset:
2021 if (get_user(futex_offset
, &head
->futex_offset
))
2024 * Fetch any possibly pending lock-add first, and handle it
2027 if (fetch_robust_entry(&pending
, &head
->list_op_pending
, &pip
))
2030 next_entry
= NULL
; /* avoid warning with gcc */
2031 while (entry
!= &head
->list
) {
2033 * Fetch the next entry in the list before calling
2034 * handle_futex_death:
2036 rc
= fetch_robust_entry(&next_entry
, &entry
->next
, &next_pi
);
2038 * A pending lock might already be on the list, so
2039 * don't process it twice:
2041 if (entry
!= pending
)
2042 if (handle_futex_death((void __user
*)entry
+ futex_offset
,
2050 * Avoid excessively long or circular lists:
2059 handle_futex_death((void __user
*)pending
+ futex_offset
,
2063 long do_futex(u32 __user
*uaddr
, int op
, u32 val
, ktime_t
*timeout
,
2064 u32 __user
*uaddr2
, u32 val2
, u32 val3
)
2067 int cmd
= op
& FUTEX_CMD_MASK
;
2068 struct rw_semaphore
*fshared
= NULL
;
2070 if (!(op
& FUTEX_PRIVATE_FLAG
))
2071 fshared
= ¤t
->mm
->mmap_sem
;
2075 val3
= FUTEX_BITSET_MATCH_ANY
;
2076 case FUTEX_WAIT_BITSET
:
2077 ret
= futex_wait(uaddr
, fshared
, val
, timeout
, val3
);
2080 val3
= FUTEX_BITSET_MATCH_ANY
;
2081 case FUTEX_WAKE_BITSET
:
2082 ret
= futex_wake(uaddr
, fshared
, val
, val3
);
2085 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2086 ret
= futex_fd(uaddr
, val
);
2089 ret
= futex_requeue(uaddr
, fshared
, uaddr2
, val
, val2
, NULL
);
2091 case FUTEX_CMP_REQUEUE
:
2092 ret
= futex_requeue(uaddr
, fshared
, uaddr2
, val
, val2
, &val3
);
2095 ret
= futex_wake_op(uaddr
, fshared
, uaddr2
, val
, val2
, val3
);
2098 if (futex_cmpxchg_enabled
)
2099 ret
= futex_lock_pi(uaddr
, fshared
, val
, timeout
, 0);
2101 case FUTEX_UNLOCK_PI
:
2102 if (futex_cmpxchg_enabled
)
2103 ret
= futex_unlock_pi(uaddr
, fshared
);
2105 case FUTEX_TRYLOCK_PI
:
2106 if (futex_cmpxchg_enabled
)
2107 ret
= futex_lock_pi(uaddr
, fshared
, 0, timeout
, 1);
2116 asmlinkage
long sys_futex(u32 __user
*uaddr
, int op
, u32 val
,
2117 struct timespec __user
*utime
, u32 __user
*uaddr2
,
2121 ktime_t t
, *tp
= NULL
;
2123 int cmd
= op
& FUTEX_CMD_MASK
;
2125 if (utime
&& (cmd
== FUTEX_WAIT
|| cmd
== FUTEX_LOCK_PI
||
2126 cmd
== FUTEX_WAIT_BITSET
)) {
2127 if (copy_from_user(&ts
, utime
, sizeof(ts
)) != 0)
2129 if (!timespec_valid(&ts
))
2132 t
= timespec_to_ktime(ts
);
2133 if (cmd
== FUTEX_WAIT
)
2134 t
= ktime_add_safe(ktime_get(), t
);
2138 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2139 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2141 if (cmd
== FUTEX_REQUEUE
|| cmd
== FUTEX_CMP_REQUEUE
||
2142 cmd
== FUTEX_WAKE_OP
)
2143 val2
= (u32
) (unsigned long) utime
;
2145 return do_futex(uaddr
, op
, val
, tp
, uaddr2
, val2
, val3
);
2148 static int futexfs_get_sb(struct file_system_type
*fs_type
,
2149 int flags
, const char *dev_name
, void *data
,
2150 struct vfsmount
*mnt
)
2152 return get_sb_pseudo(fs_type
, "futex", NULL
, FUTEXFS_SUPER_MAGIC
, mnt
);
2155 static struct file_system_type futex_fs_type
= {
2157 .get_sb
= futexfs_get_sb
,
2158 .kill_sb
= kill_anon_super
,
2161 static int __init
init(void)
2167 * This will fail and we want it. Some arch implementations do
2168 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2169 * functionality. We want to know that before we call in any
2170 * of the complex code paths. Also we want to prevent
2171 * registration of robust lists in that case. NULL is
2172 * guaranteed to fault and we get -EFAULT on functional
2173 * implementation, the non functional ones will return
2176 curval
= cmpxchg_futex_value_locked(NULL
, 0, 0);
2177 if (curval
== -EFAULT
)
2178 futex_cmpxchg_enabled
= 1;
2180 for (i
= 0; i
< ARRAY_SIZE(futex_queues
); i
++) {
2181 plist_head_init(&futex_queues
[i
].chain
, &futex_queues
[i
].lock
);
2182 spin_lock_init(&futex_queues
[i
].lock
);
2185 i
= register_filesystem(&futex_fs_type
);
2189 futex_mnt
= kern_mount(&futex_fs_type
);
2190 if (IS_ERR(futex_mnt
)) {
2191 unregister_filesystem(&futex_fs_type
);
2192 return PTR_ERR(futex_mnt
);