ath9k: use per-device struct for pm_qos_* operations
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / cgroup.c
blob7b69b8d0313d63a92bd4efaf4d07676456fe71fc
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/eventfd.h>
59 #include <linux/poll.h>
61 #include <asm/atomic.h>
63 static DEFINE_MUTEX(cgroup_mutex);
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
69 * cgroup_mutex.
71 #define SUBSYS(_x) &_x ## _subsys,
72 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
73 #include <linux/cgroup_subsys.h>
76 #define MAX_CGROUP_ROOT_NAMELEN 64
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
81 * hierarchy
83 struct cgroupfs_root {
84 struct super_block *sb;
87 * The bitmask of subsystems intended to be attached to this
88 * hierarchy
90 unsigned long subsys_bits;
92 /* Unique id for this hierarchy. */
93 int hierarchy_id;
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits;
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list;
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup;
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups;
107 /* A list running through the active hierarchies */
108 struct list_head root_list;
110 /* Hierarchy-specific flags */
111 unsigned long flags;
113 /* The path to use for release notifications. */
114 char release_agent_path[PATH_MAX];
116 /* The name for this hierarchy - may be empty */
117 char name[MAX_CGROUP_ROOT_NAMELEN];
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
125 static struct cgroupfs_root rootnode;
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
131 #define CSS_ID_MAX (65535)
132 struct css_id {
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
140 struct cgroup_subsys_state __rcu *css;
142 * ID of this css.
144 unsigned short id;
146 * Depth in hierarchy which this ID belongs to.
148 unsigned short depth;
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
152 struct rcu_head rcu_head;
154 * Hierarchy of CSS ID belongs to.
156 unsigned short stack[0]; /* Array of Length (depth+1) */
160 * cgroup_event represents events which userspace want to recieve.
162 struct cgroup_event {
164 * Cgroup which the event belongs to.
166 struct cgroup *cgrp;
168 * Control file which the event associated.
170 struct cftype *cft;
172 * eventfd to signal userspace about the event.
174 struct eventfd_ctx *eventfd;
176 * Each of these stored in a list by the cgroup.
178 struct list_head list;
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
183 poll_table pt;
184 wait_queue_head_t *wqh;
185 wait_queue_t wait;
186 struct work_struct remove;
189 /* The list of hierarchy roots */
191 static LIST_HEAD(roots);
192 static int root_count;
194 static DEFINE_IDA(hierarchy_ida);
195 static int next_hierarchy_id;
196 static DEFINE_SPINLOCK(hierarchy_id_lock);
198 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199 #define dummytop (&rootnode.top_cgroup)
201 /* This flag indicates whether tasks in the fork and exit paths should
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
206 static int need_forkexit_callback __read_mostly;
208 #ifdef CONFIG_PROVE_LOCKING
209 int cgroup_lock_is_held(void)
211 return lockdep_is_held(&cgroup_mutex);
213 #else /* #ifdef CONFIG_PROVE_LOCKING */
214 int cgroup_lock_is_held(void)
216 return mutex_is_locked(&cgroup_mutex);
218 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
220 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
222 /* convenient tests for these bits */
223 inline int cgroup_is_removed(const struct cgroup *cgrp)
225 return test_bit(CGRP_REMOVED, &cgrp->flags);
228 /* bits in struct cgroupfs_root flags field */
229 enum {
230 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
233 static int cgroup_is_releasable(const struct cgroup *cgrp)
235 const int bits =
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
241 static int notify_on_release(const struct cgroup *cgrp)
243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
247 * for_each_subsys() allows you to iterate on each subsystem attached to
248 * an active hierarchy
250 #define for_each_subsys(_root, _ss) \
251 list_for_each_entry(_ss, &_root->subsys_list, sibling)
253 /* for_each_active_root() allows you to iterate across the active hierarchies */
254 #define for_each_active_root(_root) \
255 list_for_each_entry(_root, &roots, root_list)
257 /* the list of cgroups eligible for automatic release. Protected by
258 * release_list_lock */
259 static LIST_HEAD(release_list);
260 static DEFINE_SPINLOCK(release_list_lock);
261 static void cgroup_release_agent(struct work_struct *work);
262 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
263 static void check_for_release(struct cgroup *cgrp);
265 /* Link structure for associating css_set objects with cgroups */
266 struct cg_cgroup_link {
268 * List running through cg_cgroup_links associated with a
269 * cgroup, anchored on cgroup->css_sets
271 struct list_head cgrp_link_list;
272 struct cgroup *cgrp;
274 * List running through cg_cgroup_links pointing at a
275 * single css_set object, anchored on css_set->cg_links
277 struct list_head cg_link_list;
278 struct css_set *cg;
281 /* The default css_set - used by init and its children prior to any
282 * hierarchies being mounted. It contains a pointer to the root state
283 * for each subsystem. Also used to anchor the list of css_sets. Not
284 * reference-counted, to improve performance when child cgroups
285 * haven't been created.
288 static struct css_set init_css_set;
289 static struct cg_cgroup_link init_css_set_link;
291 static int cgroup_init_idr(struct cgroup_subsys *ss,
292 struct cgroup_subsys_state *css);
294 /* css_set_lock protects the list of css_set objects, and the
295 * chain of tasks off each css_set. Nests outside task->alloc_lock
296 * due to cgroup_iter_start() */
297 static DEFINE_RWLOCK(css_set_lock);
298 static int css_set_count;
301 * hash table for cgroup groups. This improves the performance to find
302 * an existing css_set. This hash doesn't (currently) take into
303 * account cgroups in empty hierarchies.
305 #define CSS_SET_HASH_BITS 7
306 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
307 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
309 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
311 int i;
312 int index;
313 unsigned long tmp = 0UL;
315 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
316 tmp += (unsigned long)css[i];
317 tmp = (tmp >> 16) ^ tmp;
319 index = hash_long(tmp, CSS_SET_HASH_BITS);
321 return &css_set_table[index];
324 static void free_css_set_rcu(struct rcu_head *obj)
326 struct css_set *cg = container_of(obj, struct css_set, rcu_head);
327 kfree(cg);
330 /* We don't maintain the lists running through each css_set to its
331 * task until after the first call to cgroup_iter_start(). This
332 * reduces the fork()/exit() overhead for people who have cgroups
333 * compiled into their kernel but not actually in use */
334 static int use_task_css_set_links __read_mostly;
336 static void __put_css_set(struct css_set *cg, int taskexit)
338 struct cg_cgroup_link *link;
339 struct cg_cgroup_link *saved_link;
341 * Ensure that the refcount doesn't hit zero while any readers
342 * can see it. Similar to atomic_dec_and_lock(), but for an
343 * rwlock
345 if (atomic_add_unless(&cg->refcount, -1, 1))
346 return;
347 write_lock(&css_set_lock);
348 if (!atomic_dec_and_test(&cg->refcount)) {
349 write_unlock(&css_set_lock);
350 return;
353 /* This css_set is dead. unlink it and release cgroup refcounts */
354 hlist_del(&cg->hlist);
355 css_set_count--;
357 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
358 cg_link_list) {
359 struct cgroup *cgrp = link->cgrp;
360 list_del(&link->cg_link_list);
361 list_del(&link->cgrp_link_list);
362 if (atomic_dec_and_test(&cgrp->count) &&
363 notify_on_release(cgrp)) {
364 if (taskexit)
365 set_bit(CGRP_RELEASABLE, &cgrp->flags);
366 check_for_release(cgrp);
369 kfree(link);
372 write_unlock(&css_set_lock);
373 call_rcu(&cg->rcu_head, free_css_set_rcu);
377 * refcounted get/put for css_set objects
379 static inline void get_css_set(struct css_set *cg)
381 atomic_inc(&cg->refcount);
384 static inline void put_css_set(struct css_set *cg)
386 __put_css_set(cg, 0);
389 static inline void put_css_set_taskexit(struct css_set *cg)
391 __put_css_set(cg, 1);
395 * compare_css_sets - helper function for find_existing_css_set().
396 * @cg: candidate css_set being tested
397 * @old_cg: existing css_set for a task
398 * @new_cgrp: cgroup that's being entered by the task
399 * @template: desired set of css pointers in css_set (pre-calculated)
401 * Returns true if "cg" matches "old_cg" except for the hierarchy
402 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
404 static bool compare_css_sets(struct css_set *cg,
405 struct css_set *old_cg,
406 struct cgroup *new_cgrp,
407 struct cgroup_subsys_state *template[])
409 struct list_head *l1, *l2;
411 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
412 /* Not all subsystems matched */
413 return false;
417 * Compare cgroup pointers in order to distinguish between
418 * different cgroups in heirarchies with no subsystems. We
419 * could get by with just this check alone (and skip the
420 * memcmp above) but on most setups the memcmp check will
421 * avoid the need for this more expensive check on almost all
422 * candidates.
425 l1 = &cg->cg_links;
426 l2 = &old_cg->cg_links;
427 while (1) {
428 struct cg_cgroup_link *cgl1, *cgl2;
429 struct cgroup *cg1, *cg2;
431 l1 = l1->next;
432 l2 = l2->next;
433 /* See if we reached the end - both lists are equal length. */
434 if (l1 == &cg->cg_links) {
435 BUG_ON(l2 != &old_cg->cg_links);
436 break;
437 } else {
438 BUG_ON(l2 == &old_cg->cg_links);
440 /* Locate the cgroups associated with these links. */
441 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
442 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
443 cg1 = cgl1->cgrp;
444 cg2 = cgl2->cgrp;
445 /* Hierarchies should be linked in the same order. */
446 BUG_ON(cg1->root != cg2->root);
449 * If this hierarchy is the hierarchy of the cgroup
450 * that's changing, then we need to check that this
451 * css_set points to the new cgroup; if it's any other
452 * hierarchy, then this css_set should point to the
453 * same cgroup as the old css_set.
455 if (cg1->root == new_cgrp->root) {
456 if (cg1 != new_cgrp)
457 return false;
458 } else {
459 if (cg1 != cg2)
460 return false;
463 return true;
467 * find_existing_css_set() is a helper for
468 * find_css_set(), and checks to see whether an existing
469 * css_set is suitable.
471 * oldcg: the cgroup group that we're using before the cgroup
472 * transition
474 * cgrp: the cgroup that we're moving into
476 * template: location in which to build the desired set of subsystem
477 * state objects for the new cgroup group
479 static struct css_set *find_existing_css_set(
480 struct css_set *oldcg,
481 struct cgroup *cgrp,
482 struct cgroup_subsys_state *template[])
484 int i;
485 struct cgroupfs_root *root = cgrp->root;
486 struct hlist_head *hhead;
487 struct hlist_node *node;
488 struct css_set *cg;
491 * Build the set of subsystem state objects that we want to see in the
492 * new css_set. while subsystems can change globally, the entries here
493 * won't change, so no need for locking.
495 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
496 if (root->subsys_bits & (1UL << i)) {
497 /* Subsystem is in this hierarchy. So we want
498 * the subsystem state from the new
499 * cgroup */
500 template[i] = cgrp->subsys[i];
501 } else {
502 /* Subsystem is not in this hierarchy, so we
503 * don't want to change the subsystem state */
504 template[i] = oldcg->subsys[i];
508 hhead = css_set_hash(template);
509 hlist_for_each_entry(cg, node, hhead, hlist) {
510 if (!compare_css_sets(cg, oldcg, cgrp, template))
511 continue;
513 /* This css_set matches what we need */
514 return cg;
517 /* No existing cgroup group matched */
518 return NULL;
521 static void free_cg_links(struct list_head *tmp)
523 struct cg_cgroup_link *link;
524 struct cg_cgroup_link *saved_link;
526 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
527 list_del(&link->cgrp_link_list);
528 kfree(link);
533 * allocate_cg_links() allocates "count" cg_cgroup_link structures
534 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
535 * success or a negative error
537 static int allocate_cg_links(int count, struct list_head *tmp)
539 struct cg_cgroup_link *link;
540 int i;
541 INIT_LIST_HEAD(tmp);
542 for (i = 0; i < count; i++) {
543 link = kmalloc(sizeof(*link), GFP_KERNEL);
544 if (!link) {
545 free_cg_links(tmp);
546 return -ENOMEM;
548 list_add(&link->cgrp_link_list, tmp);
550 return 0;
554 * link_css_set - a helper function to link a css_set to a cgroup
555 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
556 * @cg: the css_set to be linked
557 * @cgrp: the destination cgroup
559 static void link_css_set(struct list_head *tmp_cg_links,
560 struct css_set *cg, struct cgroup *cgrp)
562 struct cg_cgroup_link *link;
564 BUG_ON(list_empty(tmp_cg_links));
565 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
566 cgrp_link_list);
567 link->cg = cg;
568 link->cgrp = cgrp;
569 atomic_inc(&cgrp->count);
570 list_move(&link->cgrp_link_list, &cgrp->css_sets);
572 * Always add links to the tail of the list so that the list
573 * is sorted by order of hierarchy creation
575 list_add_tail(&link->cg_link_list, &cg->cg_links);
579 * find_css_set() takes an existing cgroup group and a
580 * cgroup object, and returns a css_set object that's
581 * equivalent to the old group, but with the given cgroup
582 * substituted into the appropriate hierarchy. Must be called with
583 * cgroup_mutex held
585 static struct css_set *find_css_set(
586 struct css_set *oldcg, struct cgroup *cgrp)
588 struct css_set *res;
589 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
591 struct list_head tmp_cg_links;
593 struct hlist_head *hhead;
594 struct cg_cgroup_link *link;
596 /* First see if we already have a cgroup group that matches
597 * the desired set */
598 read_lock(&css_set_lock);
599 res = find_existing_css_set(oldcg, cgrp, template);
600 if (res)
601 get_css_set(res);
602 read_unlock(&css_set_lock);
604 if (res)
605 return res;
607 res = kmalloc(sizeof(*res), GFP_KERNEL);
608 if (!res)
609 return NULL;
611 /* Allocate all the cg_cgroup_link objects that we'll need */
612 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
613 kfree(res);
614 return NULL;
617 atomic_set(&res->refcount, 1);
618 INIT_LIST_HEAD(&res->cg_links);
619 INIT_LIST_HEAD(&res->tasks);
620 INIT_HLIST_NODE(&res->hlist);
622 /* Copy the set of subsystem state objects generated in
623 * find_existing_css_set() */
624 memcpy(res->subsys, template, sizeof(res->subsys));
626 write_lock(&css_set_lock);
627 /* Add reference counts and links from the new css_set. */
628 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
629 struct cgroup *c = link->cgrp;
630 if (c->root == cgrp->root)
631 c = cgrp;
632 link_css_set(&tmp_cg_links, res, c);
635 BUG_ON(!list_empty(&tmp_cg_links));
637 css_set_count++;
639 /* Add this cgroup group to the hash table */
640 hhead = css_set_hash(res->subsys);
641 hlist_add_head(&res->hlist, hhead);
643 write_unlock(&css_set_lock);
645 return res;
649 * Return the cgroup for "task" from the given hierarchy. Must be
650 * called with cgroup_mutex held.
652 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
653 struct cgroupfs_root *root)
655 struct css_set *css;
656 struct cgroup *res = NULL;
658 BUG_ON(!mutex_is_locked(&cgroup_mutex));
659 read_lock(&css_set_lock);
661 * No need to lock the task - since we hold cgroup_mutex the
662 * task can't change groups, so the only thing that can happen
663 * is that it exits and its css is set back to init_css_set.
665 css = task->cgroups;
666 if (css == &init_css_set) {
667 res = &root->top_cgroup;
668 } else {
669 struct cg_cgroup_link *link;
670 list_for_each_entry(link, &css->cg_links, cg_link_list) {
671 struct cgroup *c = link->cgrp;
672 if (c->root == root) {
673 res = c;
674 break;
678 read_unlock(&css_set_lock);
679 BUG_ON(!res);
680 return res;
684 * There is one global cgroup mutex. We also require taking
685 * task_lock() when dereferencing a task's cgroup subsys pointers.
686 * See "The task_lock() exception", at the end of this comment.
688 * A task must hold cgroup_mutex to modify cgroups.
690 * Any task can increment and decrement the count field without lock.
691 * So in general, code holding cgroup_mutex can't rely on the count
692 * field not changing. However, if the count goes to zero, then only
693 * cgroup_attach_task() can increment it again. Because a count of zero
694 * means that no tasks are currently attached, therefore there is no
695 * way a task attached to that cgroup can fork (the other way to
696 * increment the count). So code holding cgroup_mutex can safely
697 * assume that if the count is zero, it will stay zero. Similarly, if
698 * a task holds cgroup_mutex on a cgroup with zero count, it
699 * knows that the cgroup won't be removed, as cgroup_rmdir()
700 * needs that mutex.
702 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
703 * (usually) take cgroup_mutex. These are the two most performance
704 * critical pieces of code here. The exception occurs on cgroup_exit(),
705 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
706 * is taken, and if the cgroup count is zero, a usermode call made
707 * to the release agent with the name of the cgroup (path relative to
708 * the root of cgroup file system) as the argument.
710 * A cgroup can only be deleted if both its 'count' of using tasks
711 * is zero, and its list of 'children' cgroups is empty. Since all
712 * tasks in the system use _some_ cgroup, and since there is always at
713 * least one task in the system (init, pid == 1), therefore, top_cgroup
714 * always has either children cgroups and/or using tasks. So we don't
715 * need a special hack to ensure that top_cgroup cannot be deleted.
717 * The task_lock() exception
719 * The need for this exception arises from the action of
720 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
721 * another. It does so using cgroup_mutex, however there are
722 * several performance critical places that need to reference
723 * task->cgroup without the expense of grabbing a system global
724 * mutex. Therefore except as noted below, when dereferencing or, as
725 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
726 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
727 * the task_struct routinely used for such matters.
729 * P.S. One more locking exception. RCU is used to guard the
730 * update of a tasks cgroup pointer by cgroup_attach_task()
734 * cgroup_lock - lock out any changes to cgroup structures
737 void cgroup_lock(void)
739 mutex_lock(&cgroup_mutex);
741 EXPORT_SYMBOL_GPL(cgroup_lock);
744 * cgroup_unlock - release lock on cgroup changes
746 * Undo the lock taken in a previous cgroup_lock() call.
748 void cgroup_unlock(void)
750 mutex_unlock(&cgroup_mutex);
752 EXPORT_SYMBOL_GPL(cgroup_unlock);
755 * A couple of forward declarations required, due to cyclic reference loop:
756 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
757 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
758 * -> cgroup_mkdir.
761 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
762 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
763 static int cgroup_populate_dir(struct cgroup *cgrp);
764 static const struct inode_operations cgroup_dir_inode_operations;
765 static const struct file_operations proc_cgroupstats_operations;
767 static struct backing_dev_info cgroup_backing_dev_info = {
768 .name = "cgroup",
769 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
772 static int alloc_css_id(struct cgroup_subsys *ss,
773 struct cgroup *parent, struct cgroup *child);
775 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
777 struct inode *inode = new_inode(sb);
779 if (inode) {
780 inode->i_mode = mode;
781 inode->i_uid = current_fsuid();
782 inode->i_gid = current_fsgid();
783 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
784 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
786 return inode;
790 * Call subsys's pre_destroy handler.
791 * This is called before css refcnt check.
793 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
795 struct cgroup_subsys *ss;
796 int ret = 0;
798 for_each_subsys(cgrp->root, ss)
799 if (ss->pre_destroy) {
800 ret = ss->pre_destroy(ss, cgrp);
801 if (ret)
802 break;
805 return ret;
808 static void free_cgroup_rcu(struct rcu_head *obj)
810 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
812 kfree(cgrp);
815 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
817 /* is dentry a directory ? if so, kfree() associated cgroup */
818 if (S_ISDIR(inode->i_mode)) {
819 struct cgroup *cgrp = dentry->d_fsdata;
820 struct cgroup_subsys *ss;
821 BUG_ON(!(cgroup_is_removed(cgrp)));
822 /* It's possible for external users to be holding css
823 * reference counts on a cgroup; css_put() needs to
824 * be able to access the cgroup after decrementing
825 * the reference count in order to know if it needs to
826 * queue the cgroup to be handled by the release
827 * agent */
828 synchronize_rcu();
830 mutex_lock(&cgroup_mutex);
832 * Release the subsystem state objects.
834 for_each_subsys(cgrp->root, ss)
835 ss->destroy(ss, cgrp);
837 cgrp->root->number_of_cgroups--;
838 mutex_unlock(&cgroup_mutex);
841 * Drop the active superblock reference that we took when we
842 * created the cgroup
844 deactivate_super(cgrp->root->sb);
847 * if we're getting rid of the cgroup, refcount should ensure
848 * that there are no pidlists left.
850 BUG_ON(!list_empty(&cgrp->pidlists));
852 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
854 iput(inode);
857 static void remove_dir(struct dentry *d)
859 struct dentry *parent = dget(d->d_parent);
861 d_delete(d);
862 simple_rmdir(parent->d_inode, d);
863 dput(parent);
866 static void cgroup_clear_directory(struct dentry *dentry)
868 struct list_head *node;
870 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
871 spin_lock(&dcache_lock);
872 node = dentry->d_subdirs.next;
873 while (node != &dentry->d_subdirs) {
874 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
875 list_del_init(node);
876 if (d->d_inode) {
877 /* This should never be called on a cgroup
878 * directory with child cgroups */
879 BUG_ON(d->d_inode->i_mode & S_IFDIR);
880 d = dget_locked(d);
881 spin_unlock(&dcache_lock);
882 d_delete(d);
883 simple_unlink(dentry->d_inode, d);
884 dput(d);
885 spin_lock(&dcache_lock);
887 node = dentry->d_subdirs.next;
889 spin_unlock(&dcache_lock);
893 * NOTE : the dentry must have been dget()'ed
895 static void cgroup_d_remove_dir(struct dentry *dentry)
897 cgroup_clear_directory(dentry);
899 spin_lock(&dcache_lock);
900 list_del_init(&dentry->d_u.d_child);
901 spin_unlock(&dcache_lock);
902 remove_dir(dentry);
906 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
907 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
908 * reference to css->refcnt. In general, this refcnt is expected to goes down
909 * to zero, soon.
911 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
913 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
915 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
917 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
918 wake_up_all(&cgroup_rmdir_waitq);
921 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
923 css_get(css);
926 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
928 cgroup_wakeup_rmdir_waiter(css->cgroup);
929 css_put(css);
933 * Call with cgroup_mutex held. Drops reference counts on modules, including
934 * any duplicate ones that parse_cgroupfs_options took. If this function
935 * returns an error, no reference counts are touched.
937 static int rebind_subsystems(struct cgroupfs_root *root,
938 unsigned long final_bits)
940 unsigned long added_bits, removed_bits;
941 struct cgroup *cgrp = &root->top_cgroup;
942 int i;
944 BUG_ON(!mutex_is_locked(&cgroup_mutex));
946 removed_bits = root->actual_subsys_bits & ~final_bits;
947 added_bits = final_bits & ~root->actual_subsys_bits;
948 /* Check that any added subsystems are currently free */
949 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
950 unsigned long bit = 1UL << i;
951 struct cgroup_subsys *ss = subsys[i];
952 if (!(bit & added_bits))
953 continue;
955 * Nobody should tell us to do a subsys that doesn't exist:
956 * parse_cgroupfs_options should catch that case and refcounts
957 * ensure that subsystems won't disappear once selected.
959 BUG_ON(ss == NULL);
960 if (ss->root != &rootnode) {
961 /* Subsystem isn't free */
962 return -EBUSY;
966 /* Currently we don't handle adding/removing subsystems when
967 * any child cgroups exist. This is theoretically supportable
968 * but involves complex error handling, so it's being left until
969 * later */
970 if (root->number_of_cgroups > 1)
971 return -EBUSY;
973 /* Process each subsystem */
974 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
975 struct cgroup_subsys *ss = subsys[i];
976 unsigned long bit = 1UL << i;
977 if (bit & added_bits) {
978 /* We're binding this subsystem to this hierarchy */
979 BUG_ON(ss == NULL);
980 BUG_ON(cgrp->subsys[i]);
981 BUG_ON(!dummytop->subsys[i]);
982 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
983 mutex_lock(&ss->hierarchy_mutex);
984 cgrp->subsys[i] = dummytop->subsys[i];
985 cgrp->subsys[i]->cgroup = cgrp;
986 list_move(&ss->sibling, &root->subsys_list);
987 ss->root = root;
988 if (ss->bind)
989 ss->bind(ss, cgrp);
990 mutex_unlock(&ss->hierarchy_mutex);
991 /* refcount was already taken, and we're keeping it */
992 } else if (bit & removed_bits) {
993 /* We're removing this subsystem */
994 BUG_ON(ss == NULL);
995 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
996 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
997 mutex_lock(&ss->hierarchy_mutex);
998 if (ss->bind)
999 ss->bind(ss, dummytop);
1000 dummytop->subsys[i]->cgroup = dummytop;
1001 cgrp->subsys[i] = NULL;
1002 subsys[i]->root = &rootnode;
1003 list_move(&ss->sibling, &rootnode.subsys_list);
1004 mutex_unlock(&ss->hierarchy_mutex);
1005 /* subsystem is now free - drop reference on module */
1006 module_put(ss->module);
1007 } else if (bit & final_bits) {
1008 /* Subsystem state should already exist */
1009 BUG_ON(ss == NULL);
1010 BUG_ON(!cgrp->subsys[i]);
1012 * a refcount was taken, but we already had one, so
1013 * drop the extra reference.
1015 module_put(ss->module);
1016 #ifdef CONFIG_MODULE_UNLOAD
1017 BUG_ON(ss->module && !module_refcount(ss->module));
1018 #endif
1019 } else {
1020 /* Subsystem state shouldn't exist */
1021 BUG_ON(cgrp->subsys[i]);
1024 root->subsys_bits = root->actual_subsys_bits = final_bits;
1025 synchronize_rcu();
1027 return 0;
1030 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1032 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1033 struct cgroup_subsys *ss;
1035 mutex_lock(&cgroup_mutex);
1036 for_each_subsys(root, ss)
1037 seq_printf(seq, ",%s", ss->name);
1038 if (test_bit(ROOT_NOPREFIX, &root->flags))
1039 seq_puts(seq, ",noprefix");
1040 if (strlen(root->release_agent_path))
1041 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1042 if (strlen(root->name))
1043 seq_printf(seq, ",name=%s", root->name);
1044 mutex_unlock(&cgroup_mutex);
1045 return 0;
1048 struct cgroup_sb_opts {
1049 unsigned long subsys_bits;
1050 unsigned long flags;
1051 char *release_agent;
1052 char *name;
1053 /* User explicitly requested empty subsystem */
1054 bool none;
1056 struct cgroupfs_root *new_root;
1061 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1062 * with cgroup_mutex held to protect the subsys[] array. This function takes
1063 * refcounts on subsystems to be used, unless it returns error, in which case
1064 * no refcounts are taken.
1066 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1068 char *token, *o = data ?: "all";
1069 unsigned long mask = (unsigned long)-1;
1070 int i;
1071 bool module_pin_failed = false;
1073 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1075 #ifdef CONFIG_CPUSETS
1076 mask = ~(1UL << cpuset_subsys_id);
1077 #endif
1079 memset(opts, 0, sizeof(*opts));
1081 while ((token = strsep(&o, ",")) != NULL) {
1082 if (!*token)
1083 return -EINVAL;
1084 if (!strcmp(token, "all")) {
1085 /* Add all non-disabled subsystems */
1086 opts->subsys_bits = 0;
1087 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1088 struct cgroup_subsys *ss = subsys[i];
1089 if (ss == NULL)
1090 continue;
1091 if (!ss->disabled)
1092 opts->subsys_bits |= 1ul << i;
1094 } else if (!strcmp(token, "none")) {
1095 /* Explicitly have no subsystems */
1096 opts->none = true;
1097 } else if (!strcmp(token, "noprefix")) {
1098 set_bit(ROOT_NOPREFIX, &opts->flags);
1099 } else if (!strncmp(token, "release_agent=", 14)) {
1100 /* Specifying two release agents is forbidden */
1101 if (opts->release_agent)
1102 return -EINVAL;
1103 opts->release_agent =
1104 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1105 if (!opts->release_agent)
1106 return -ENOMEM;
1107 } else if (!strncmp(token, "name=", 5)) {
1108 const char *name = token + 5;
1109 /* Can't specify an empty name */
1110 if (!strlen(name))
1111 return -EINVAL;
1112 /* Must match [\w.-]+ */
1113 for (i = 0; i < strlen(name); i++) {
1114 char c = name[i];
1115 if (isalnum(c))
1116 continue;
1117 if ((c == '.') || (c == '-') || (c == '_'))
1118 continue;
1119 return -EINVAL;
1121 /* Specifying two names is forbidden */
1122 if (opts->name)
1123 return -EINVAL;
1124 opts->name = kstrndup(name,
1125 MAX_CGROUP_ROOT_NAMELEN - 1,
1126 GFP_KERNEL);
1127 if (!opts->name)
1128 return -ENOMEM;
1129 } else {
1130 struct cgroup_subsys *ss;
1131 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1132 ss = subsys[i];
1133 if (ss == NULL)
1134 continue;
1135 if (!strcmp(token, ss->name)) {
1136 if (!ss->disabled)
1137 set_bit(i, &opts->subsys_bits);
1138 break;
1141 if (i == CGROUP_SUBSYS_COUNT)
1142 return -ENOENT;
1146 /* Consistency checks */
1149 * Option noprefix was introduced just for backward compatibility
1150 * with the old cpuset, so we allow noprefix only if mounting just
1151 * the cpuset subsystem.
1153 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1154 (opts->subsys_bits & mask))
1155 return -EINVAL;
1158 /* Can't specify "none" and some subsystems */
1159 if (opts->subsys_bits && opts->none)
1160 return -EINVAL;
1163 * We either have to specify by name or by subsystems. (So all
1164 * empty hierarchies must have a name).
1166 if (!opts->subsys_bits && !opts->name)
1167 return -EINVAL;
1170 * Grab references on all the modules we'll need, so the subsystems
1171 * don't dance around before rebind_subsystems attaches them. This may
1172 * take duplicate reference counts on a subsystem that's already used,
1173 * but rebind_subsystems handles this case.
1175 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1176 unsigned long bit = 1UL << i;
1178 if (!(bit & opts->subsys_bits))
1179 continue;
1180 if (!try_module_get(subsys[i]->module)) {
1181 module_pin_failed = true;
1182 break;
1185 if (module_pin_failed) {
1187 * oops, one of the modules was going away. this means that we
1188 * raced with a module_delete call, and to the user this is
1189 * essentially a "subsystem doesn't exist" case.
1191 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1192 /* drop refcounts only on the ones we took */
1193 unsigned long bit = 1UL << i;
1195 if (!(bit & opts->subsys_bits))
1196 continue;
1197 module_put(subsys[i]->module);
1199 return -ENOENT;
1202 return 0;
1205 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1207 int i;
1208 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1209 unsigned long bit = 1UL << i;
1211 if (!(bit & subsys_bits))
1212 continue;
1213 module_put(subsys[i]->module);
1217 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1219 int ret = 0;
1220 struct cgroupfs_root *root = sb->s_fs_info;
1221 struct cgroup *cgrp = &root->top_cgroup;
1222 struct cgroup_sb_opts opts;
1224 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1225 mutex_lock(&cgroup_mutex);
1227 /* See what subsystems are wanted */
1228 ret = parse_cgroupfs_options(data, &opts);
1229 if (ret)
1230 goto out_unlock;
1232 /* Don't allow flags or name to change at remount */
1233 if (opts.flags != root->flags ||
1234 (opts.name && strcmp(opts.name, root->name))) {
1235 ret = -EINVAL;
1236 drop_parsed_module_refcounts(opts.subsys_bits);
1237 goto out_unlock;
1240 ret = rebind_subsystems(root, opts.subsys_bits);
1241 if (ret) {
1242 drop_parsed_module_refcounts(opts.subsys_bits);
1243 goto out_unlock;
1246 /* (re)populate subsystem files */
1247 cgroup_populate_dir(cgrp);
1249 if (opts.release_agent)
1250 strcpy(root->release_agent_path, opts.release_agent);
1251 out_unlock:
1252 kfree(opts.release_agent);
1253 kfree(opts.name);
1254 mutex_unlock(&cgroup_mutex);
1255 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1256 return ret;
1259 static const struct super_operations cgroup_ops = {
1260 .statfs = simple_statfs,
1261 .drop_inode = generic_delete_inode,
1262 .show_options = cgroup_show_options,
1263 .remount_fs = cgroup_remount,
1266 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1268 INIT_LIST_HEAD(&cgrp->sibling);
1269 INIT_LIST_HEAD(&cgrp->children);
1270 INIT_LIST_HEAD(&cgrp->css_sets);
1271 INIT_LIST_HEAD(&cgrp->release_list);
1272 INIT_LIST_HEAD(&cgrp->pidlists);
1273 mutex_init(&cgrp->pidlist_mutex);
1274 INIT_LIST_HEAD(&cgrp->event_list);
1275 spin_lock_init(&cgrp->event_list_lock);
1278 static void init_cgroup_root(struct cgroupfs_root *root)
1280 struct cgroup *cgrp = &root->top_cgroup;
1281 INIT_LIST_HEAD(&root->subsys_list);
1282 INIT_LIST_HEAD(&root->root_list);
1283 root->number_of_cgroups = 1;
1284 cgrp->root = root;
1285 cgrp->top_cgroup = cgrp;
1286 init_cgroup_housekeeping(cgrp);
1289 static bool init_root_id(struct cgroupfs_root *root)
1291 int ret = 0;
1293 do {
1294 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1295 return false;
1296 spin_lock(&hierarchy_id_lock);
1297 /* Try to allocate the next unused ID */
1298 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1299 &root->hierarchy_id);
1300 if (ret == -ENOSPC)
1301 /* Try again starting from 0 */
1302 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1303 if (!ret) {
1304 next_hierarchy_id = root->hierarchy_id + 1;
1305 } else if (ret != -EAGAIN) {
1306 /* Can only get here if the 31-bit IDR is full ... */
1307 BUG_ON(ret);
1309 spin_unlock(&hierarchy_id_lock);
1310 } while (ret);
1311 return true;
1314 static int cgroup_test_super(struct super_block *sb, void *data)
1316 struct cgroup_sb_opts *opts = data;
1317 struct cgroupfs_root *root = sb->s_fs_info;
1319 /* If we asked for a name then it must match */
1320 if (opts->name && strcmp(opts->name, root->name))
1321 return 0;
1324 * If we asked for subsystems (or explicitly for no
1325 * subsystems) then they must match
1327 if ((opts->subsys_bits || opts->none)
1328 && (opts->subsys_bits != root->subsys_bits))
1329 return 0;
1331 return 1;
1334 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1336 struct cgroupfs_root *root;
1338 if (!opts->subsys_bits && !opts->none)
1339 return NULL;
1341 root = kzalloc(sizeof(*root), GFP_KERNEL);
1342 if (!root)
1343 return ERR_PTR(-ENOMEM);
1345 if (!init_root_id(root)) {
1346 kfree(root);
1347 return ERR_PTR(-ENOMEM);
1349 init_cgroup_root(root);
1351 root->subsys_bits = opts->subsys_bits;
1352 root->flags = opts->flags;
1353 if (opts->release_agent)
1354 strcpy(root->release_agent_path, opts->release_agent);
1355 if (opts->name)
1356 strcpy(root->name, opts->name);
1357 return root;
1360 static void cgroup_drop_root(struct cgroupfs_root *root)
1362 if (!root)
1363 return;
1365 BUG_ON(!root->hierarchy_id);
1366 spin_lock(&hierarchy_id_lock);
1367 ida_remove(&hierarchy_ida, root->hierarchy_id);
1368 spin_unlock(&hierarchy_id_lock);
1369 kfree(root);
1372 static int cgroup_set_super(struct super_block *sb, void *data)
1374 int ret;
1375 struct cgroup_sb_opts *opts = data;
1377 /* If we don't have a new root, we can't set up a new sb */
1378 if (!opts->new_root)
1379 return -EINVAL;
1381 BUG_ON(!opts->subsys_bits && !opts->none);
1383 ret = set_anon_super(sb, NULL);
1384 if (ret)
1385 return ret;
1387 sb->s_fs_info = opts->new_root;
1388 opts->new_root->sb = sb;
1390 sb->s_blocksize = PAGE_CACHE_SIZE;
1391 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1392 sb->s_magic = CGROUP_SUPER_MAGIC;
1393 sb->s_op = &cgroup_ops;
1395 return 0;
1398 static int cgroup_get_rootdir(struct super_block *sb)
1400 struct inode *inode =
1401 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1402 struct dentry *dentry;
1404 if (!inode)
1405 return -ENOMEM;
1407 inode->i_fop = &simple_dir_operations;
1408 inode->i_op = &cgroup_dir_inode_operations;
1409 /* directories start off with i_nlink == 2 (for "." entry) */
1410 inc_nlink(inode);
1411 dentry = d_alloc_root(inode);
1412 if (!dentry) {
1413 iput(inode);
1414 return -ENOMEM;
1416 sb->s_root = dentry;
1417 return 0;
1420 static int cgroup_get_sb(struct file_system_type *fs_type,
1421 int flags, const char *unused_dev_name,
1422 void *data, struct vfsmount *mnt)
1424 struct cgroup_sb_opts opts;
1425 struct cgroupfs_root *root;
1426 int ret = 0;
1427 struct super_block *sb;
1428 struct cgroupfs_root *new_root;
1430 /* First find the desired set of subsystems */
1431 mutex_lock(&cgroup_mutex);
1432 ret = parse_cgroupfs_options(data, &opts);
1433 mutex_unlock(&cgroup_mutex);
1434 if (ret)
1435 goto out_err;
1438 * Allocate a new cgroup root. We may not need it if we're
1439 * reusing an existing hierarchy.
1441 new_root = cgroup_root_from_opts(&opts);
1442 if (IS_ERR(new_root)) {
1443 ret = PTR_ERR(new_root);
1444 goto drop_modules;
1446 opts.new_root = new_root;
1448 /* Locate an existing or new sb for this hierarchy */
1449 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1450 if (IS_ERR(sb)) {
1451 ret = PTR_ERR(sb);
1452 cgroup_drop_root(opts.new_root);
1453 goto drop_modules;
1456 root = sb->s_fs_info;
1457 BUG_ON(!root);
1458 if (root == opts.new_root) {
1459 /* We used the new root structure, so this is a new hierarchy */
1460 struct list_head tmp_cg_links;
1461 struct cgroup *root_cgrp = &root->top_cgroup;
1462 struct inode *inode;
1463 struct cgroupfs_root *existing_root;
1464 int i;
1466 BUG_ON(sb->s_root != NULL);
1468 ret = cgroup_get_rootdir(sb);
1469 if (ret)
1470 goto drop_new_super;
1471 inode = sb->s_root->d_inode;
1473 mutex_lock(&inode->i_mutex);
1474 mutex_lock(&cgroup_mutex);
1476 if (strlen(root->name)) {
1477 /* Check for name clashes with existing mounts */
1478 for_each_active_root(existing_root) {
1479 if (!strcmp(existing_root->name, root->name)) {
1480 ret = -EBUSY;
1481 mutex_unlock(&cgroup_mutex);
1482 mutex_unlock(&inode->i_mutex);
1483 goto drop_new_super;
1489 * We're accessing css_set_count without locking
1490 * css_set_lock here, but that's OK - it can only be
1491 * increased by someone holding cgroup_lock, and
1492 * that's us. The worst that can happen is that we
1493 * have some link structures left over
1495 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1496 if (ret) {
1497 mutex_unlock(&cgroup_mutex);
1498 mutex_unlock(&inode->i_mutex);
1499 goto drop_new_super;
1502 ret = rebind_subsystems(root, root->subsys_bits);
1503 if (ret == -EBUSY) {
1504 mutex_unlock(&cgroup_mutex);
1505 mutex_unlock(&inode->i_mutex);
1506 free_cg_links(&tmp_cg_links);
1507 goto drop_new_super;
1510 * There must be no failure case after here, since rebinding
1511 * takes care of subsystems' refcounts, which are explicitly
1512 * dropped in the failure exit path.
1515 /* EBUSY should be the only error here */
1516 BUG_ON(ret);
1518 list_add(&root->root_list, &roots);
1519 root_count++;
1521 sb->s_root->d_fsdata = root_cgrp;
1522 root->top_cgroup.dentry = sb->s_root;
1524 /* Link the top cgroup in this hierarchy into all
1525 * the css_set objects */
1526 write_lock(&css_set_lock);
1527 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1528 struct hlist_head *hhead = &css_set_table[i];
1529 struct hlist_node *node;
1530 struct css_set *cg;
1532 hlist_for_each_entry(cg, node, hhead, hlist)
1533 link_css_set(&tmp_cg_links, cg, root_cgrp);
1535 write_unlock(&css_set_lock);
1537 free_cg_links(&tmp_cg_links);
1539 BUG_ON(!list_empty(&root_cgrp->sibling));
1540 BUG_ON(!list_empty(&root_cgrp->children));
1541 BUG_ON(root->number_of_cgroups != 1);
1543 cgroup_populate_dir(root_cgrp);
1544 mutex_unlock(&cgroup_mutex);
1545 mutex_unlock(&inode->i_mutex);
1546 } else {
1548 * We re-used an existing hierarchy - the new root (if
1549 * any) is not needed
1551 cgroup_drop_root(opts.new_root);
1552 /* no subsys rebinding, so refcounts don't change */
1553 drop_parsed_module_refcounts(opts.subsys_bits);
1556 simple_set_mnt(mnt, sb);
1557 kfree(opts.release_agent);
1558 kfree(opts.name);
1559 return 0;
1561 drop_new_super:
1562 deactivate_locked_super(sb);
1563 drop_modules:
1564 drop_parsed_module_refcounts(opts.subsys_bits);
1565 out_err:
1566 kfree(opts.release_agent);
1567 kfree(opts.name);
1568 return ret;
1571 static void cgroup_kill_sb(struct super_block *sb) {
1572 struct cgroupfs_root *root = sb->s_fs_info;
1573 struct cgroup *cgrp = &root->top_cgroup;
1574 int ret;
1575 struct cg_cgroup_link *link;
1576 struct cg_cgroup_link *saved_link;
1578 BUG_ON(!root);
1580 BUG_ON(root->number_of_cgroups != 1);
1581 BUG_ON(!list_empty(&cgrp->children));
1582 BUG_ON(!list_empty(&cgrp->sibling));
1584 mutex_lock(&cgroup_mutex);
1586 /* Rebind all subsystems back to the default hierarchy */
1587 ret = rebind_subsystems(root, 0);
1588 /* Shouldn't be able to fail ... */
1589 BUG_ON(ret);
1592 * Release all the links from css_sets to this hierarchy's
1593 * root cgroup
1595 write_lock(&css_set_lock);
1597 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1598 cgrp_link_list) {
1599 list_del(&link->cg_link_list);
1600 list_del(&link->cgrp_link_list);
1601 kfree(link);
1603 write_unlock(&css_set_lock);
1605 if (!list_empty(&root->root_list)) {
1606 list_del(&root->root_list);
1607 root_count--;
1610 mutex_unlock(&cgroup_mutex);
1612 kill_litter_super(sb);
1613 cgroup_drop_root(root);
1616 static struct file_system_type cgroup_fs_type = {
1617 .name = "cgroup",
1618 .get_sb = cgroup_get_sb,
1619 .kill_sb = cgroup_kill_sb,
1622 static struct kobject *cgroup_kobj;
1624 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1626 return dentry->d_fsdata;
1629 static inline struct cftype *__d_cft(struct dentry *dentry)
1631 return dentry->d_fsdata;
1635 * cgroup_path - generate the path of a cgroup
1636 * @cgrp: the cgroup in question
1637 * @buf: the buffer to write the path into
1638 * @buflen: the length of the buffer
1640 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1641 * reference. Writes path of cgroup into buf. Returns 0 on success,
1642 * -errno on error.
1644 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1646 char *start;
1647 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1648 rcu_read_lock_held() ||
1649 cgroup_lock_is_held());
1651 if (!dentry || cgrp == dummytop) {
1653 * Inactive subsystems have no dentry for their root
1654 * cgroup
1656 strcpy(buf, "/");
1657 return 0;
1660 start = buf + buflen;
1662 *--start = '\0';
1663 for (;;) {
1664 int len = dentry->d_name.len;
1666 if ((start -= len) < buf)
1667 return -ENAMETOOLONG;
1668 memcpy(start, dentry->d_name.name, len);
1669 cgrp = cgrp->parent;
1670 if (!cgrp)
1671 break;
1673 dentry = rcu_dereference_check(cgrp->dentry,
1674 rcu_read_lock_held() ||
1675 cgroup_lock_is_held());
1676 if (!cgrp->parent)
1677 continue;
1678 if (--start < buf)
1679 return -ENAMETOOLONG;
1680 *start = '/';
1682 memmove(buf, start, buf + buflen - start);
1683 return 0;
1685 EXPORT_SYMBOL_GPL(cgroup_path);
1688 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1689 * @cgrp: the cgroup the task is attaching to
1690 * @tsk: the task to be attached
1692 * Call holding cgroup_mutex. May take task_lock of
1693 * the task 'tsk' during call.
1695 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1697 int retval = 0;
1698 struct cgroup_subsys *ss, *failed_ss = NULL;
1699 struct cgroup *oldcgrp;
1700 struct css_set *cg;
1701 struct css_set *newcg;
1702 struct cgroupfs_root *root = cgrp->root;
1704 /* Nothing to do if the task is already in that cgroup */
1705 oldcgrp = task_cgroup_from_root(tsk, root);
1706 if (cgrp == oldcgrp)
1707 return 0;
1709 for_each_subsys(root, ss) {
1710 if (ss->can_attach) {
1711 retval = ss->can_attach(ss, cgrp, tsk, false);
1712 if (retval) {
1714 * Remember on which subsystem the can_attach()
1715 * failed, so that we only call cancel_attach()
1716 * against the subsystems whose can_attach()
1717 * succeeded. (See below)
1719 failed_ss = ss;
1720 goto out;
1725 task_lock(tsk);
1726 cg = tsk->cgroups;
1727 get_css_set(cg);
1728 task_unlock(tsk);
1730 * Locate or allocate a new css_set for this task,
1731 * based on its final set of cgroups
1733 newcg = find_css_set(cg, cgrp);
1734 put_css_set(cg);
1735 if (!newcg) {
1736 retval = -ENOMEM;
1737 goto out;
1740 task_lock(tsk);
1741 if (tsk->flags & PF_EXITING) {
1742 task_unlock(tsk);
1743 put_css_set(newcg);
1744 retval = -ESRCH;
1745 goto out;
1747 rcu_assign_pointer(tsk->cgroups, newcg);
1748 task_unlock(tsk);
1750 /* Update the css_set linked lists if we're using them */
1751 write_lock(&css_set_lock);
1752 if (!list_empty(&tsk->cg_list)) {
1753 list_del(&tsk->cg_list);
1754 list_add(&tsk->cg_list, &newcg->tasks);
1756 write_unlock(&css_set_lock);
1758 for_each_subsys(root, ss) {
1759 if (ss->attach)
1760 ss->attach(ss, cgrp, oldcgrp, tsk, false);
1762 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1763 synchronize_rcu();
1764 put_css_set(cg);
1767 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1768 * is no longer empty.
1770 cgroup_wakeup_rmdir_waiter(cgrp);
1771 out:
1772 if (retval) {
1773 for_each_subsys(root, ss) {
1774 if (ss == failed_ss)
1776 * This subsystem was the one that failed the
1777 * can_attach() check earlier, so we don't need
1778 * to call cancel_attach() against it or any
1779 * remaining subsystems.
1781 break;
1782 if (ss->cancel_attach)
1783 ss->cancel_attach(ss, cgrp, tsk, false);
1786 return retval;
1790 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1791 * @from: attach to all cgroups of a given task
1792 * @tsk: the task to be attached
1794 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1796 struct cgroupfs_root *root;
1797 int retval = 0;
1799 cgroup_lock();
1800 for_each_active_root(root) {
1801 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1803 retval = cgroup_attach_task(from_cg, tsk);
1804 if (retval)
1805 break;
1807 cgroup_unlock();
1809 return retval;
1811 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1814 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1815 * held. May take task_lock of task
1817 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1819 struct task_struct *tsk;
1820 const struct cred *cred = current_cred(), *tcred;
1821 int ret;
1823 if (pid) {
1824 rcu_read_lock();
1825 tsk = find_task_by_vpid(pid);
1826 if (!tsk || tsk->flags & PF_EXITING) {
1827 rcu_read_unlock();
1828 return -ESRCH;
1831 tcred = __task_cred(tsk);
1832 if (cred->euid &&
1833 cred->euid != tcred->uid &&
1834 cred->euid != tcred->suid) {
1835 rcu_read_unlock();
1836 return -EACCES;
1838 get_task_struct(tsk);
1839 rcu_read_unlock();
1840 } else {
1841 tsk = current;
1842 get_task_struct(tsk);
1845 ret = cgroup_attach_task(cgrp, tsk);
1846 put_task_struct(tsk);
1847 return ret;
1850 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1852 int ret;
1853 if (!cgroup_lock_live_group(cgrp))
1854 return -ENODEV;
1855 ret = attach_task_by_pid(cgrp, pid);
1856 cgroup_unlock();
1857 return ret;
1861 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1862 * @cgrp: the cgroup to be checked for liveness
1864 * On success, returns true; the lock should be later released with
1865 * cgroup_unlock(). On failure returns false with no lock held.
1867 bool cgroup_lock_live_group(struct cgroup *cgrp)
1869 mutex_lock(&cgroup_mutex);
1870 if (cgroup_is_removed(cgrp)) {
1871 mutex_unlock(&cgroup_mutex);
1872 return false;
1874 return true;
1876 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1878 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1879 const char *buffer)
1881 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1882 if (!cgroup_lock_live_group(cgrp))
1883 return -ENODEV;
1884 strcpy(cgrp->root->release_agent_path, buffer);
1885 cgroup_unlock();
1886 return 0;
1889 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1890 struct seq_file *seq)
1892 if (!cgroup_lock_live_group(cgrp))
1893 return -ENODEV;
1894 seq_puts(seq, cgrp->root->release_agent_path);
1895 seq_putc(seq, '\n');
1896 cgroup_unlock();
1897 return 0;
1900 /* A buffer size big enough for numbers or short strings */
1901 #define CGROUP_LOCAL_BUFFER_SIZE 64
1903 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1904 struct file *file,
1905 const char __user *userbuf,
1906 size_t nbytes, loff_t *unused_ppos)
1908 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1909 int retval = 0;
1910 char *end;
1912 if (!nbytes)
1913 return -EINVAL;
1914 if (nbytes >= sizeof(buffer))
1915 return -E2BIG;
1916 if (copy_from_user(buffer, userbuf, nbytes))
1917 return -EFAULT;
1919 buffer[nbytes] = 0; /* nul-terminate */
1920 if (cft->write_u64) {
1921 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1922 if (*end)
1923 return -EINVAL;
1924 retval = cft->write_u64(cgrp, cft, val);
1925 } else {
1926 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1927 if (*end)
1928 return -EINVAL;
1929 retval = cft->write_s64(cgrp, cft, val);
1931 if (!retval)
1932 retval = nbytes;
1933 return retval;
1936 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1937 struct file *file,
1938 const char __user *userbuf,
1939 size_t nbytes, loff_t *unused_ppos)
1941 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1942 int retval = 0;
1943 size_t max_bytes = cft->max_write_len;
1944 char *buffer = local_buffer;
1946 if (!max_bytes)
1947 max_bytes = sizeof(local_buffer) - 1;
1948 if (nbytes >= max_bytes)
1949 return -E2BIG;
1950 /* Allocate a dynamic buffer if we need one */
1951 if (nbytes >= sizeof(local_buffer)) {
1952 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1953 if (buffer == NULL)
1954 return -ENOMEM;
1956 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1957 retval = -EFAULT;
1958 goto out;
1961 buffer[nbytes] = 0; /* nul-terminate */
1962 retval = cft->write_string(cgrp, cft, strstrip(buffer));
1963 if (!retval)
1964 retval = nbytes;
1965 out:
1966 if (buffer != local_buffer)
1967 kfree(buffer);
1968 return retval;
1971 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1972 size_t nbytes, loff_t *ppos)
1974 struct cftype *cft = __d_cft(file->f_dentry);
1975 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1977 if (cgroup_is_removed(cgrp))
1978 return -ENODEV;
1979 if (cft->write)
1980 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1981 if (cft->write_u64 || cft->write_s64)
1982 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1983 if (cft->write_string)
1984 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1985 if (cft->trigger) {
1986 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1987 return ret ? ret : nbytes;
1989 return -EINVAL;
1992 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1993 struct file *file,
1994 char __user *buf, size_t nbytes,
1995 loff_t *ppos)
1997 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1998 u64 val = cft->read_u64(cgrp, cft);
1999 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2001 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2004 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2005 struct file *file,
2006 char __user *buf, size_t nbytes,
2007 loff_t *ppos)
2009 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2010 s64 val = cft->read_s64(cgrp, cft);
2011 int len = sprintf(tmp, "%lld\n", (long long) val);
2013 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2016 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2017 size_t nbytes, loff_t *ppos)
2019 struct cftype *cft = __d_cft(file->f_dentry);
2020 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2022 if (cgroup_is_removed(cgrp))
2023 return -ENODEV;
2025 if (cft->read)
2026 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2027 if (cft->read_u64)
2028 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2029 if (cft->read_s64)
2030 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2031 return -EINVAL;
2035 * seqfile ops/methods for returning structured data. Currently just
2036 * supports string->u64 maps, but can be extended in future.
2039 struct cgroup_seqfile_state {
2040 struct cftype *cft;
2041 struct cgroup *cgroup;
2044 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2046 struct seq_file *sf = cb->state;
2047 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2050 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2052 struct cgroup_seqfile_state *state = m->private;
2053 struct cftype *cft = state->cft;
2054 if (cft->read_map) {
2055 struct cgroup_map_cb cb = {
2056 .fill = cgroup_map_add,
2057 .state = m,
2059 return cft->read_map(state->cgroup, cft, &cb);
2061 return cft->read_seq_string(state->cgroup, cft, m);
2064 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2066 struct seq_file *seq = file->private_data;
2067 kfree(seq->private);
2068 return single_release(inode, file);
2071 static const struct file_operations cgroup_seqfile_operations = {
2072 .read = seq_read,
2073 .write = cgroup_file_write,
2074 .llseek = seq_lseek,
2075 .release = cgroup_seqfile_release,
2078 static int cgroup_file_open(struct inode *inode, struct file *file)
2080 int err;
2081 struct cftype *cft;
2083 err = generic_file_open(inode, file);
2084 if (err)
2085 return err;
2086 cft = __d_cft(file->f_dentry);
2088 if (cft->read_map || cft->read_seq_string) {
2089 struct cgroup_seqfile_state *state =
2090 kzalloc(sizeof(*state), GFP_USER);
2091 if (!state)
2092 return -ENOMEM;
2093 state->cft = cft;
2094 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2095 file->f_op = &cgroup_seqfile_operations;
2096 err = single_open(file, cgroup_seqfile_show, state);
2097 if (err < 0)
2098 kfree(state);
2099 } else if (cft->open)
2100 err = cft->open(inode, file);
2101 else
2102 err = 0;
2104 return err;
2107 static int cgroup_file_release(struct inode *inode, struct file *file)
2109 struct cftype *cft = __d_cft(file->f_dentry);
2110 if (cft->release)
2111 return cft->release(inode, file);
2112 return 0;
2116 * cgroup_rename - Only allow simple rename of directories in place.
2118 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2119 struct inode *new_dir, struct dentry *new_dentry)
2121 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2122 return -ENOTDIR;
2123 if (new_dentry->d_inode)
2124 return -EEXIST;
2125 if (old_dir != new_dir)
2126 return -EIO;
2127 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2130 static const struct file_operations cgroup_file_operations = {
2131 .read = cgroup_file_read,
2132 .write = cgroup_file_write,
2133 .llseek = generic_file_llseek,
2134 .open = cgroup_file_open,
2135 .release = cgroup_file_release,
2138 static const struct inode_operations cgroup_dir_inode_operations = {
2139 .lookup = simple_lookup,
2140 .mkdir = cgroup_mkdir,
2141 .rmdir = cgroup_rmdir,
2142 .rename = cgroup_rename,
2146 * Check if a file is a control file
2148 static inline struct cftype *__file_cft(struct file *file)
2150 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2151 return ERR_PTR(-EINVAL);
2152 return __d_cft(file->f_dentry);
2155 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2156 struct super_block *sb)
2158 static const struct dentry_operations cgroup_dops = {
2159 .d_iput = cgroup_diput,
2162 struct inode *inode;
2164 if (!dentry)
2165 return -ENOENT;
2166 if (dentry->d_inode)
2167 return -EEXIST;
2169 inode = cgroup_new_inode(mode, sb);
2170 if (!inode)
2171 return -ENOMEM;
2173 if (S_ISDIR(mode)) {
2174 inode->i_op = &cgroup_dir_inode_operations;
2175 inode->i_fop = &simple_dir_operations;
2177 /* start off with i_nlink == 2 (for "." entry) */
2178 inc_nlink(inode);
2180 /* start with the directory inode held, so that we can
2181 * populate it without racing with another mkdir */
2182 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2183 } else if (S_ISREG(mode)) {
2184 inode->i_size = 0;
2185 inode->i_fop = &cgroup_file_operations;
2187 dentry->d_op = &cgroup_dops;
2188 d_instantiate(dentry, inode);
2189 dget(dentry); /* Extra count - pin the dentry in core */
2190 return 0;
2194 * cgroup_create_dir - create a directory for an object.
2195 * @cgrp: the cgroup we create the directory for. It must have a valid
2196 * ->parent field. And we are going to fill its ->dentry field.
2197 * @dentry: dentry of the new cgroup
2198 * @mode: mode to set on new directory.
2200 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2201 mode_t mode)
2203 struct dentry *parent;
2204 int error = 0;
2206 parent = cgrp->parent->dentry;
2207 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2208 if (!error) {
2209 dentry->d_fsdata = cgrp;
2210 inc_nlink(parent->d_inode);
2211 rcu_assign_pointer(cgrp->dentry, dentry);
2212 dget(dentry);
2214 dput(dentry);
2216 return error;
2220 * cgroup_file_mode - deduce file mode of a control file
2221 * @cft: the control file in question
2223 * returns cft->mode if ->mode is not 0
2224 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2225 * returns S_IRUGO if it has only a read handler
2226 * returns S_IWUSR if it has only a write hander
2228 static mode_t cgroup_file_mode(const struct cftype *cft)
2230 mode_t mode = 0;
2232 if (cft->mode)
2233 return cft->mode;
2235 if (cft->read || cft->read_u64 || cft->read_s64 ||
2236 cft->read_map || cft->read_seq_string)
2237 mode |= S_IRUGO;
2239 if (cft->write || cft->write_u64 || cft->write_s64 ||
2240 cft->write_string || cft->trigger)
2241 mode |= S_IWUSR;
2243 return mode;
2246 int cgroup_add_file(struct cgroup *cgrp,
2247 struct cgroup_subsys *subsys,
2248 const struct cftype *cft)
2250 struct dentry *dir = cgrp->dentry;
2251 struct dentry *dentry;
2252 int error;
2253 mode_t mode;
2255 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2256 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2257 strcpy(name, subsys->name);
2258 strcat(name, ".");
2260 strcat(name, cft->name);
2261 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2262 dentry = lookup_one_len(name, dir, strlen(name));
2263 if (!IS_ERR(dentry)) {
2264 mode = cgroup_file_mode(cft);
2265 error = cgroup_create_file(dentry, mode | S_IFREG,
2266 cgrp->root->sb);
2267 if (!error)
2268 dentry->d_fsdata = (void *)cft;
2269 dput(dentry);
2270 } else
2271 error = PTR_ERR(dentry);
2272 return error;
2274 EXPORT_SYMBOL_GPL(cgroup_add_file);
2276 int cgroup_add_files(struct cgroup *cgrp,
2277 struct cgroup_subsys *subsys,
2278 const struct cftype cft[],
2279 int count)
2281 int i, err;
2282 for (i = 0; i < count; i++) {
2283 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2284 if (err)
2285 return err;
2287 return 0;
2289 EXPORT_SYMBOL_GPL(cgroup_add_files);
2292 * cgroup_task_count - count the number of tasks in a cgroup.
2293 * @cgrp: the cgroup in question
2295 * Return the number of tasks in the cgroup.
2297 int cgroup_task_count(const struct cgroup *cgrp)
2299 int count = 0;
2300 struct cg_cgroup_link *link;
2302 read_lock(&css_set_lock);
2303 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2304 count += atomic_read(&link->cg->refcount);
2306 read_unlock(&css_set_lock);
2307 return count;
2311 * Advance a list_head iterator. The iterator should be positioned at
2312 * the start of a css_set
2314 static void cgroup_advance_iter(struct cgroup *cgrp,
2315 struct cgroup_iter *it)
2317 struct list_head *l = it->cg_link;
2318 struct cg_cgroup_link *link;
2319 struct css_set *cg;
2321 /* Advance to the next non-empty css_set */
2322 do {
2323 l = l->next;
2324 if (l == &cgrp->css_sets) {
2325 it->cg_link = NULL;
2326 return;
2328 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2329 cg = link->cg;
2330 } while (list_empty(&cg->tasks));
2331 it->cg_link = l;
2332 it->task = cg->tasks.next;
2336 * To reduce the fork() overhead for systems that are not actually
2337 * using their cgroups capability, we don't maintain the lists running
2338 * through each css_set to its tasks until we see the list actually
2339 * used - in other words after the first call to cgroup_iter_start().
2341 * The tasklist_lock is not held here, as do_each_thread() and
2342 * while_each_thread() are protected by RCU.
2344 static void cgroup_enable_task_cg_lists(void)
2346 struct task_struct *p, *g;
2347 write_lock(&css_set_lock);
2348 use_task_css_set_links = 1;
2349 do_each_thread(g, p) {
2350 task_lock(p);
2352 * We should check if the process is exiting, otherwise
2353 * it will race with cgroup_exit() in that the list
2354 * entry won't be deleted though the process has exited.
2356 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2357 list_add(&p->cg_list, &p->cgroups->tasks);
2358 task_unlock(p);
2359 } while_each_thread(g, p);
2360 write_unlock(&css_set_lock);
2363 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2366 * The first time anyone tries to iterate across a cgroup,
2367 * we need to enable the list linking each css_set to its
2368 * tasks, and fix up all existing tasks.
2370 if (!use_task_css_set_links)
2371 cgroup_enable_task_cg_lists();
2373 read_lock(&css_set_lock);
2374 it->cg_link = &cgrp->css_sets;
2375 cgroup_advance_iter(cgrp, it);
2378 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2379 struct cgroup_iter *it)
2381 struct task_struct *res;
2382 struct list_head *l = it->task;
2383 struct cg_cgroup_link *link;
2385 /* If the iterator cg is NULL, we have no tasks */
2386 if (!it->cg_link)
2387 return NULL;
2388 res = list_entry(l, struct task_struct, cg_list);
2389 /* Advance iterator to find next entry */
2390 l = l->next;
2391 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2392 if (l == &link->cg->tasks) {
2393 /* We reached the end of this task list - move on to
2394 * the next cg_cgroup_link */
2395 cgroup_advance_iter(cgrp, it);
2396 } else {
2397 it->task = l;
2399 return res;
2402 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2404 read_unlock(&css_set_lock);
2407 static inline int started_after_time(struct task_struct *t1,
2408 struct timespec *time,
2409 struct task_struct *t2)
2411 int start_diff = timespec_compare(&t1->start_time, time);
2412 if (start_diff > 0) {
2413 return 1;
2414 } else if (start_diff < 0) {
2415 return 0;
2416 } else {
2418 * Arbitrarily, if two processes started at the same
2419 * time, we'll say that the lower pointer value
2420 * started first. Note that t2 may have exited by now
2421 * so this may not be a valid pointer any longer, but
2422 * that's fine - it still serves to distinguish
2423 * between two tasks started (effectively) simultaneously.
2425 return t1 > t2;
2430 * This function is a callback from heap_insert() and is used to order
2431 * the heap.
2432 * In this case we order the heap in descending task start time.
2434 static inline int started_after(void *p1, void *p2)
2436 struct task_struct *t1 = p1;
2437 struct task_struct *t2 = p2;
2438 return started_after_time(t1, &t2->start_time, t2);
2442 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2443 * @scan: struct cgroup_scanner containing arguments for the scan
2445 * Arguments include pointers to callback functions test_task() and
2446 * process_task().
2447 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2448 * and if it returns true, call process_task() for it also.
2449 * The test_task pointer may be NULL, meaning always true (select all tasks).
2450 * Effectively duplicates cgroup_iter_{start,next,end}()
2451 * but does not lock css_set_lock for the call to process_task().
2452 * The struct cgroup_scanner may be embedded in any structure of the caller's
2453 * creation.
2454 * It is guaranteed that process_task() will act on every task that
2455 * is a member of the cgroup for the duration of this call. This
2456 * function may or may not call process_task() for tasks that exit
2457 * or move to a different cgroup during the call, or are forked or
2458 * move into the cgroup during the call.
2460 * Note that test_task() may be called with locks held, and may in some
2461 * situations be called multiple times for the same task, so it should
2462 * be cheap.
2463 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2464 * pre-allocated and will be used for heap operations (and its "gt" member will
2465 * be overwritten), else a temporary heap will be used (allocation of which
2466 * may cause this function to fail).
2468 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2470 int retval, i;
2471 struct cgroup_iter it;
2472 struct task_struct *p, *dropped;
2473 /* Never dereference latest_task, since it's not refcounted */
2474 struct task_struct *latest_task = NULL;
2475 struct ptr_heap tmp_heap;
2476 struct ptr_heap *heap;
2477 struct timespec latest_time = { 0, 0 };
2479 if (scan->heap) {
2480 /* The caller supplied our heap and pre-allocated its memory */
2481 heap = scan->heap;
2482 heap->gt = &started_after;
2483 } else {
2484 /* We need to allocate our own heap memory */
2485 heap = &tmp_heap;
2486 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2487 if (retval)
2488 /* cannot allocate the heap */
2489 return retval;
2492 again:
2494 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2495 * to determine which are of interest, and using the scanner's
2496 * "process_task" callback to process any of them that need an update.
2497 * Since we don't want to hold any locks during the task updates,
2498 * gather tasks to be processed in a heap structure.
2499 * The heap is sorted by descending task start time.
2500 * If the statically-sized heap fills up, we overflow tasks that
2501 * started later, and in future iterations only consider tasks that
2502 * started after the latest task in the previous pass. This
2503 * guarantees forward progress and that we don't miss any tasks.
2505 heap->size = 0;
2506 cgroup_iter_start(scan->cg, &it);
2507 while ((p = cgroup_iter_next(scan->cg, &it))) {
2509 * Only affect tasks that qualify per the caller's callback,
2510 * if he provided one
2512 if (scan->test_task && !scan->test_task(p, scan))
2513 continue;
2515 * Only process tasks that started after the last task
2516 * we processed
2518 if (!started_after_time(p, &latest_time, latest_task))
2519 continue;
2520 dropped = heap_insert(heap, p);
2521 if (dropped == NULL) {
2523 * The new task was inserted; the heap wasn't
2524 * previously full
2526 get_task_struct(p);
2527 } else if (dropped != p) {
2529 * The new task was inserted, and pushed out a
2530 * different task
2532 get_task_struct(p);
2533 put_task_struct(dropped);
2536 * Else the new task was newer than anything already in
2537 * the heap and wasn't inserted
2540 cgroup_iter_end(scan->cg, &it);
2542 if (heap->size) {
2543 for (i = 0; i < heap->size; i++) {
2544 struct task_struct *q = heap->ptrs[i];
2545 if (i == 0) {
2546 latest_time = q->start_time;
2547 latest_task = q;
2549 /* Process the task per the caller's callback */
2550 scan->process_task(q, scan);
2551 put_task_struct(q);
2554 * If we had to process any tasks at all, scan again
2555 * in case some of them were in the middle of forking
2556 * children that didn't get processed.
2557 * Not the most efficient way to do it, but it avoids
2558 * having to take callback_mutex in the fork path
2560 goto again;
2562 if (heap == &tmp_heap)
2563 heap_free(&tmp_heap);
2564 return 0;
2568 * Stuff for reading the 'tasks'/'procs' files.
2570 * Reading this file can return large amounts of data if a cgroup has
2571 * *lots* of attached tasks. So it may need several calls to read(),
2572 * but we cannot guarantee that the information we produce is correct
2573 * unless we produce it entirely atomically.
2578 * The following two functions "fix" the issue where there are more pids
2579 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2580 * TODO: replace with a kernel-wide solution to this problem
2582 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2583 static void *pidlist_allocate(int count)
2585 if (PIDLIST_TOO_LARGE(count))
2586 return vmalloc(count * sizeof(pid_t));
2587 else
2588 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2590 static void pidlist_free(void *p)
2592 if (is_vmalloc_addr(p))
2593 vfree(p);
2594 else
2595 kfree(p);
2597 static void *pidlist_resize(void *p, int newcount)
2599 void *newlist;
2600 /* note: if new alloc fails, old p will still be valid either way */
2601 if (is_vmalloc_addr(p)) {
2602 newlist = vmalloc(newcount * sizeof(pid_t));
2603 if (!newlist)
2604 return NULL;
2605 memcpy(newlist, p, newcount * sizeof(pid_t));
2606 vfree(p);
2607 } else {
2608 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2610 return newlist;
2614 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2615 * If the new stripped list is sufficiently smaller and there's enough memory
2616 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2617 * number of unique elements.
2619 /* is the size difference enough that we should re-allocate the array? */
2620 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2621 static int pidlist_uniq(pid_t **p, int length)
2623 int src, dest = 1;
2624 pid_t *list = *p;
2625 pid_t *newlist;
2628 * we presume the 0th element is unique, so i starts at 1. trivial
2629 * edge cases first; no work needs to be done for either
2631 if (length == 0 || length == 1)
2632 return length;
2633 /* src and dest walk down the list; dest counts unique elements */
2634 for (src = 1; src < length; src++) {
2635 /* find next unique element */
2636 while (list[src] == list[src-1]) {
2637 src++;
2638 if (src == length)
2639 goto after;
2641 /* dest always points to where the next unique element goes */
2642 list[dest] = list[src];
2643 dest++;
2645 after:
2647 * if the length difference is large enough, we want to allocate a
2648 * smaller buffer to save memory. if this fails due to out of memory,
2649 * we'll just stay with what we've got.
2651 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2652 newlist = pidlist_resize(list, dest);
2653 if (newlist)
2654 *p = newlist;
2656 return dest;
2659 static int cmppid(const void *a, const void *b)
2661 return *(pid_t *)a - *(pid_t *)b;
2665 * find the appropriate pidlist for our purpose (given procs vs tasks)
2666 * returns with the lock on that pidlist already held, and takes care
2667 * of the use count, or returns NULL with no locks held if we're out of
2668 * memory.
2670 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2671 enum cgroup_filetype type)
2673 struct cgroup_pidlist *l;
2674 /* don't need task_nsproxy() if we're looking at ourself */
2675 struct pid_namespace *ns = current->nsproxy->pid_ns;
2678 * We can't drop the pidlist_mutex before taking the l->mutex in case
2679 * the last ref-holder is trying to remove l from the list at the same
2680 * time. Holding the pidlist_mutex precludes somebody taking whichever
2681 * list we find out from under us - compare release_pid_array().
2683 mutex_lock(&cgrp->pidlist_mutex);
2684 list_for_each_entry(l, &cgrp->pidlists, links) {
2685 if (l->key.type == type && l->key.ns == ns) {
2686 /* make sure l doesn't vanish out from under us */
2687 down_write(&l->mutex);
2688 mutex_unlock(&cgrp->pidlist_mutex);
2689 return l;
2692 /* entry not found; create a new one */
2693 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2694 if (!l) {
2695 mutex_unlock(&cgrp->pidlist_mutex);
2696 return l;
2698 init_rwsem(&l->mutex);
2699 down_write(&l->mutex);
2700 l->key.type = type;
2701 l->key.ns = get_pid_ns(ns);
2702 l->use_count = 0; /* don't increment here */
2703 l->list = NULL;
2704 l->owner = cgrp;
2705 list_add(&l->links, &cgrp->pidlists);
2706 mutex_unlock(&cgrp->pidlist_mutex);
2707 return l;
2711 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2713 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2714 struct cgroup_pidlist **lp)
2716 pid_t *array;
2717 int length;
2718 int pid, n = 0; /* used for populating the array */
2719 struct cgroup_iter it;
2720 struct task_struct *tsk;
2721 struct cgroup_pidlist *l;
2724 * If cgroup gets more users after we read count, we won't have
2725 * enough space - tough. This race is indistinguishable to the
2726 * caller from the case that the additional cgroup users didn't
2727 * show up until sometime later on.
2729 length = cgroup_task_count(cgrp);
2730 array = pidlist_allocate(length);
2731 if (!array)
2732 return -ENOMEM;
2733 /* now, populate the array */
2734 cgroup_iter_start(cgrp, &it);
2735 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2736 if (unlikely(n == length))
2737 break;
2738 /* get tgid or pid for procs or tasks file respectively */
2739 if (type == CGROUP_FILE_PROCS)
2740 pid = task_tgid_vnr(tsk);
2741 else
2742 pid = task_pid_vnr(tsk);
2743 if (pid > 0) /* make sure to only use valid results */
2744 array[n++] = pid;
2746 cgroup_iter_end(cgrp, &it);
2747 length = n;
2748 /* now sort & (if procs) strip out duplicates */
2749 sort(array, length, sizeof(pid_t), cmppid, NULL);
2750 if (type == CGROUP_FILE_PROCS)
2751 length = pidlist_uniq(&array, length);
2752 l = cgroup_pidlist_find(cgrp, type);
2753 if (!l) {
2754 pidlist_free(array);
2755 return -ENOMEM;
2757 /* store array, freeing old if necessary - lock already held */
2758 pidlist_free(l->list);
2759 l->list = array;
2760 l->length = length;
2761 l->use_count++;
2762 up_write(&l->mutex);
2763 *lp = l;
2764 return 0;
2768 * cgroupstats_build - build and fill cgroupstats
2769 * @stats: cgroupstats to fill information into
2770 * @dentry: A dentry entry belonging to the cgroup for which stats have
2771 * been requested.
2773 * Build and fill cgroupstats so that taskstats can export it to user
2774 * space.
2776 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2778 int ret = -EINVAL;
2779 struct cgroup *cgrp;
2780 struct cgroup_iter it;
2781 struct task_struct *tsk;
2784 * Validate dentry by checking the superblock operations,
2785 * and make sure it's a directory.
2787 if (dentry->d_sb->s_op != &cgroup_ops ||
2788 !S_ISDIR(dentry->d_inode->i_mode))
2789 goto err;
2791 ret = 0;
2792 cgrp = dentry->d_fsdata;
2794 cgroup_iter_start(cgrp, &it);
2795 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2796 switch (tsk->state) {
2797 case TASK_RUNNING:
2798 stats->nr_running++;
2799 break;
2800 case TASK_INTERRUPTIBLE:
2801 stats->nr_sleeping++;
2802 break;
2803 case TASK_UNINTERRUPTIBLE:
2804 stats->nr_uninterruptible++;
2805 break;
2806 case TASK_STOPPED:
2807 stats->nr_stopped++;
2808 break;
2809 default:
2810 if (delayacct_is_task_waiting_on_io(tsk))
2811 stats->nr_io_wait++;
2812 break;
2815 cgroup_iter_end(cgrp, &it);
2817 err:
2818 return ret;
2823 * seq_file methods for the tasks/procs files. The seq_file position is the
2824 * next pid to display; the seq_file iterator is a pointer to the pid
2825 * in the cgroup->l->list array.
2828 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2831 * Initially we receive a position value that corresponds to
2832 * one more than the last pid shown (or 0 on the first call or
2833 * after a seek to the start). Use a binary-search to find the
2834 * next pid to display, if any
2836 struct cgroup_pidlist *l = s->private;
2837 int index = 0, pid = *pos;
2838 int *iter;
2840 down_read(&l->mutex);
2841 if (pid) {
2842 int end = l->length;
2844 while (index < end) {
2845 int mid = (index + end) / 2;
2846 if (l->list[mid] == pid) {
2847 index = mid;
2848 break;
2849 } else if (l->list[mid] <= pid)
2850 index = mid + 1;
2851 else
2852 end = mid;
2855 /* If we're off the end of the array, we're done */
2856 if (index >= l->length)
2857 return NULL;
2858 /* Update the abstract position to be the actual pid that we found */
2859 iter = l->list + index;
2860 *pos = *iter;
2861 return iter;
2864 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2866 struct cgroup_pidlist *l = s->private;
2867 up_read(&l->mutex);
2870 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2872 struct cgroup_pidlist *l = s->private;
2873 pid_t *p = v;
2874 pid_t *end = l->list + l->length;
2876 * Advance to the next pid in the array. If this goes off the
2877 * end, we're done
2879 p++;
2880 if (p >= end) {
2881 return NULL;
2882 } else {
2883 *pos = *p;
2884 return p;
2888 static int cgroup_pidlist_show(struct seq_file *s, void *v)
2890 return seq_printf(s, "%d\n", *(int *)v);
2894 * seq_operations functions for iterating on pidlists through seq_file -
2895 * independent of whether it's tasks or procs
2897 static const struct seq_operations cgroup_pidlist_seq_operations = {
2898 .start = cgroup_pidlist_start,
2899 .stop = cgroup_pidlist_stop,
2900 .next = cgroup_pidlist_next,
2901 .show = cgroup_pidlist_show,
2904 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2907 * the case where we're the last user of this particular pidlist will
2908 * have us remove it from the cgroup's list, which entails taking the
2909 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2910 * pidlist_mutex, we have to take pidlist_mutex first.
2912 mutex_lock(&l->owner->pidlist_mutex);
2913 down_write(&l->mutex);
2914 BUG_ON(!l->use_count);
2915 if (!--l->use_count) {
2916 /* we're the last user if refcount is 0; remove and free */
2917 list_del(&l->links);
2918 mutex_unlock(&l->owner->pidlist_mutex);
2919 pidlist_free(l->list);
2920 put_pid_ns(l->key.ns);
2921 up_write(&l->mutex);
2922 kfree(l);
2923 return;
2925 mutex_unlock(&l->owner->pidlist_mutex);
2926 up_write(&l->mutex);
2929 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2931 struct cgroup_pidlist *l;
2932 if (!(file->f_mode & FMODE_READ))
2933 return 0;
2935 * the seq_file will only be initialized if the file was opened for
2936 * reading; hence we check if it's not null only in that case.
2938 l = ((struct seq_file *)file->private_data)->private;
2939 cgroup_release_pid_array(l);
2940 return seq_release(inode, file);
2943 static const struct file_operations cgroup_pidlist_operations = {
2944 .read = seq_read,
2945 .llseek = seq_lseek,
2946 .write = cgroup_file_write,
2947 .release = cgroup_pidlist_release,
2951 * The following functions handle opens on a file that displays a pidlist
2952 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2953 * in the cgroup.
2955 /* helper function for the two below it */
2956 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
2958 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2959 struct cgroup_pidlist *l;
2960 int retval;
2962 /* Nothing to do for write-only files */
2963 if (!(file->f_mode & FMODE_READ))
2964 return 0;
2966 /* have the array populated */
2967 retval = pidlist_array_load(cgrp, type, &l);
2968 if (retval)
2969 return retval;
2970 /* configure file information */
2971 file->f_op = &cgroup_pidlist_operations;
2973 retval = seq_open(file, &cgroup_pidlist_seq_operations);
2974 if (retval) {
2975 cgroup_release_pid_array(l);
2976 return retval;
2978 ((struct seq_file *)file->private_data)->private = l;
2979 return 0;
2981 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2983 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
2985 static int cgroup_procs_open(struct inode *unused, struct file *file)
2987 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
2990 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2991 struct cftype *cft)
2993 return notify_on_release(cgrp);
2996 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2997 struct cftype *cft,
2998 u64 val)
3000 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3001 if (val)
3002 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3003 else
3004 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3005 return 0;
3009 * Unregister event and free resources.
3011 * Gets called from workqueue.
3013 static void cgroup_event_remove(struct work_struct *work)
3015 struct cgroup_event *event = container_of(work, struct cgroup_event,
3016 remove);
3017 struct cgroup *cgrp = event->cgrp;
3019 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3021 eventfd_ctx_put(event->eventfd);
3022 kfree(event);
3023 dput(cgrp->dentry);
3027 * Gets called on POLLHUP on eventfd when user closes it.
3029 * Called with wqh->lock held and interrupts disabled.
3031 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3032 int sync, void *key)
3034 struct cgroup_event *event = container_of(wait,
3035 struct cgroup_event, wait);
3036 struct cgroup *cgrp = event->cgrp;
3037 unsigned long flags = (unsigned long)key;
3039 if (flags & POLLHUP) {
3040 __remove_wait_queue(event->wqh, &event->wait);
3041 spin_lock(&cgrp->event_list_lock);
3042 list_del(&event->list);
3043 spin_unlock(&cgrp->event_list_lock);
3045 * We are in atomic context, but cgroup_event_remove() may
3046 * sleep, so we have to call it in workqueue.
3048 schedule_work(&event->remove);
3051 return 0;
3054 static void cgroup_event_ptable_queue_proc(struct file *file,
3055 wait_queue_head_t *wqh, poll_table *pt)
3057 struct cgroup_event *event = container_of(pt,
3058 struct cgroup_event, pt);
3060 event->wqh = wqh;
3061 add_wait_queue(wqh, &event->wait);
3065 * Parse input and register new cgroup event handler.
3067 * Input must be in format '<event_fd> <control_fd> <args>'.
3068 * Interpretation of args is defined by control file implementation.
3070 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3071 const char *buffer)
3073 struct cgroup_event *event = NULL;
3074 unsigned int efd, cfd;
3075 struct file *efile = NULL;
3076 struct file *cfile = NULL;
3077 char *endp;
3078 int ret;
3080 efd = simple_strtoul(buffer, &endp, 10);
3081 if (*endp != ' ')
3082 return -EINVAL;
3083 buffer = endp + 1;
3085 cfd = simple_strtoul(buffer, &endp, 10);
3086 if ((*endp != ' ') && (*endp != '\0'))
3087 return -EINVAL;
3088 buffer = endp + 1;
3090 event = kzalloc(sizeof(*event), GFP_KERNEL);
3091 if (!event)
3092 return -ENOMEM;
3093 event->cgrp = cgrp;
3094 INIT_LIST_HEAD(&event->list);
3095 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3096 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3097 INIT_WORK(&event->remove, cgroup_event_remove);
3099 efile = eventfd_fget(efd);
3100 if (IS_ERR(efile)) {
3101 ret = PTR_ERR(efile);
3102 goto fail;
3105 event->eventfd = eventfd_ctx_fileget(efile);
3106 if (IS_ERR(event->eventfd)) {
3107 ret = PTR_ERR(event->eventfd);
3108 goto fail;
3111 cfile = fget(cfd);
3112 if (!cfile) {
3113 ret = -EBADF;
3114 goto fail;
3117 /* the process need read permission on control file */
3118 ret = file_permission(cfile, MAY_READ);
3119 if (ret < 0)
3120 goto fail;
3122 event->cft = __file_cft(cfile);
3123 if (IS_ERR(event->cft)) {
3124 ret = PTR_ERR(event->cft);
3125 goto fail;
3128 if (!event->cft->register_event || !event->cft->unregister_event) {
3129 ret = -EINVAL;
3130 goto fail;
3133 ret = event->cft->register_event(cgrp, event->cft,
3134 event->eventfd, buffer);
3135 if (ret)
3136 goto fail;
3138 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3139 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3140 ret = 0;
3141 goto fail;
3145 * Events should be removed after rmdir of cgroup directory, but before
3146 * destroying subsystem state objects. Let's take reference to cgroup
3147 * directory dentry to do that.
3149 dget(cgrp->dentry);
3151 spin_lock(&cgrp->event_list_lock);
3152 list_add(&event->list, &cgrp->event_list);
3153 spin_unlock(&cgrp->event_list_lock);
3155 fput(cfile);
3156 fput(efile);
3158 return 0;
3160 fail:
3161 if (cfile)
3162 fput(cfile);
3164 if (event && event->eventfd && !IS_ERR(event->eventfd))
3165 eventfd_ctx_put(event->eventfd);
3167 if (!IS_ERR_OR_NULL(efile))
3168 fput(efile);
3170 kfree(event);
3172 return ret;
3176 * for the common functions, 'private' gives the type of file
3178 /* for hysterical raisins, we can't put this on the older files */
3179 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3180 static struct cftype files[] = {
3182 .name = "tasks",
3183 .open = cgroup_tasks_open,
3184 .write_u64 = cgroup_tasks_write,
3185 .release = cgroup_pidlist_release,
3186 .mode = S_IRUGO | S_IWUSR,
3189 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3190 .open = cgroup_procs_open,
3191 /* .write_u64 = cgroup_procs_write, TODO */
3192 .release = cgroup_pidlist_release,
3193 .mode = S_IRUGO,
3196 .name = "notify_on_release",
3197 .read_u64 = cgroup_read_notify_on_release,
3198 .write_u64 = cgroup_write_notify_on_release,
3201 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3202 .write_string = cgroup_write_event_control,
3203 .mode = S_IWUGO,
3207 static struct cftype cft_release_agent = {
3208 .name = "release_agent",
3209 .read_seq_string = cgroup_release_agent_show,
3210 .write_string = cgroup_release_agent_write,
3211 .max_write_len = PATH_MAX,
3214 static int cgroup_populate_dir(struct cgroup *cgrp)
3216 int err;
3217 struct cgroup_subsys *ss;
3219 /* First clear out any existing files */
3220 cgroup_clear_directory(cgrp->dentry);
3222 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3223 if (err < 0)
3224 return err;
3226 if (cgrp == cgrp->top_cgroup) {
3227 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3228 return err;
3231 for_each_subsys(cgrp->root, ss) {
3232 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3233 return err;
3235 /* This cgroup is ready now */
3236 for_each_subsys(cgrp->root, ss) {
3237 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3239 * Update id->css pointer and make this css visible from
3240 * CSS ID functions. This pointer will be dereferened
3241 * from RCU-read-side without locks.
3243 if (css->id)
3244 rcu_assign_pointer(css->id->css, css);
3247 return 0;
3250 static void init_cgroup_css(struct cgroup_subsys_state *css,
3251 struct cgroup_subsys *ss,
3252 struct cgroup *cgrp)
3254 css->cgroup = cgrp;
3255 atomic_set(&css->refcnt, 1);
3256 css->flags = 0;
3257 css->id = NULL;
3258 if (cgrp == dummytop)
3259 set_bit(CSS_ROOT, &css->flags);
3260 BUG_ON(cgrp->subsys[ss->subsys_id]);
3261 cgrp->subsys[ss->subsys_id] = css;
3264 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3266 /* We need to take each hierarchy_mutex in a consistent order */
3267 int i;
3270 * No worry about a race with rebind_subsystems that might mess up the
3271 * locking order, since both parties are under cgroup_mutex.
3273 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3274 struct cgroup_subsys *ss = subsys[i];
3275 if (ss == NULL)
3276 continue;
3277 if (ss->root == root)
3278 mutex_lock(&ss->hierarchy_mutex);
3282 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3284 int i;
3286 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3287 struct cgroup_subsys *ss = subsys[i];
3288 if (ss == NULL)
3289 continue;
3290 if (ss->root == root)
3291 mutex_unlock(&ss->hierarchy_mutex);
3296 * cgroup_create - create a cgroup
3297 * @parent: cgroup that will be parent of the new cgroup
3298 * @dentry: dentry of the new cgroup
3299 * @mode: mode to set on new inode
3301 * Must be called with the mutex on the parent inode held
3303 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3304 mode_t mode)
3306 struct cgroup *cgrp;
3307 struct cgroupfs_root *root = parent->root;
3308 int err = 0;
3309 struct cgroup_subsys *ss;
3310 struct super_block *sb = root->sb;
3312 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3313 if (!cgrp)
3314 return -ENOMEM;
3316 /* Grab a reference on the superblock so the hierarchy doesn't
3317 * get deleted on unmount if there are child cgroups. This
3318 * can be done outside cgroup_mutex, since the sb can't
3319 * disappear while someone has an open control file on the
3320 * fs */
3321 atomic_inc(&sb->s_active);
3323 mutex_lock(&cgroup_mutex);
3325 init_cgroup_housekeeping(cgrp);
3327 cgrp->parent = parent;
3328 cgrp->root = parent->root;
3329 cgrp->top_cgroup = parent->top_cgroup;
3331 if (notify_on_release(parent))
3332 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3334 for_each_subsys(root, ss) {
3335 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3337 if (IS_ERR(css)) {
3338 err = PTR_ERR(css);
3339 goto err_destroy;
3341 init_cgroup_css(css, ss, cgrp);
3342 if (ss->use_id) {
3343 err = alloc_css_id(ss, parent, cgrp);
3344 if (err)
3345 goto err_destroy;
3347 /* At error, ->destroy() callback has to free assigned ID. */
3350 cgroup_lock_hierarchy(root);
3351 list_add(&cgrp->sibling, &cgrp->parent->children);
3352 cgroup_unlock_hierarchy(root);
3353 root->number_of_cgroups++;
3355 err = cgroup_create_dir(cgrp, dentry, mode);
3356 if (err < 0)
3357 goto err_remove;
3359 /* The cgroup directory was pre-locked for us */
3360 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3362 err = cgroup_populate_dir(cgrp);
3363 /* If err < 0, we have a half-filled directory - oh well ;) */
3365 mutex_unlock(&cgroup_mutex);
3366 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3368 return 0;
3370 err_remove:
3372 cgroup_lock_hierarchy(root);
3373 list_del(&cgrp->sibling);
3374 cgroup_unlock_hierarchy(root);
3375 root->number_of_cgroups--;
3377 err_destroy:
3379 for_each_subsys(root, ss) {
3380 if (cgrp->subsys[ss->subsys_id])
3381 ss->destroy(ss, cgrp);
3384 mutex_unlock(&cgroup_mutex);
3386 /* Release the reference count that we took on the superblock */
3387 deactivate_super(sb);
3389 kfree(cgrp);
3390 return err;
3393 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3395 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3397 /* the vfs holds inode->i_mutex already */
3398 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3401 static int cgroup_has_css_refs(struct cgroup *cgrp)
3403 /* Check the reference count on each subsystem. Since we
3404 * already established that there are no tasks in the
3405 * cgroup, if the css refcount is also 1, then there should
3406 * be no outstanding references, so the subsystem is safe to
3407 * destroy. We scan across all subsystems rather than using
3408 * the per-hierarchy linked list of mounted subsystems since
3409 * we can be called via check_for_release() with no
3410 * synchronization other than RCU, and the subsystem linked
3411 * list isn't RCU-safe */
3412 int i;
3414 * We won't need to lock the subsys array, because the subsystems
3415 * we're concerned about aren't going anywhere since our cgroup root
3416 * has a reference on them.
3418 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3419 struct cgroup_subsys *ss = subsys[i];
3420 struct cgroup_subsys_state *css;
3421 /* Skip subsystems not present or not in this hierarchy */
3422 if (ss == NULL || ss->root != cgrp->root)
3423 continue;
3424 css = cgrp->subsys[ss->subsys_id];
3425 /* When called from check_for_release() it's possible
3426 * that by this point the cgroup has been removed
3427 * and the css deleted. But a false-positive doesn't
3428 * matter, since it can only happen if the cgroup
3429 * has been deleted and hence no longer needs the
3430 * release agent to be called anyway. */
3431 if (css && (atomic_read(&css->refcnt) > 1))
3432 return 1;
3434 return 0;
3438 * Atomically mark all (or else none) of the cgroup's CSS objects as
3439 * CSS_REMOVED. Return true on success, or false if the cgroup has
3440 * busy subsystems. Call with cgroup_mutex held
3443 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3445 struct cgroup_subsys *ss;
3446 unsigned long flags;
3447 bool failed = false;
3448 local_irq_save(flags);
3449 for_each_subsys(cgrp->root, ss) {
3450 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3451 int refcnt;
3452 while (1) {
3453 /* We can only remove a CSS with a refcnt==1 */
3454 refcnt = atomic_read(&css->refcnt);
3455 if (refcnt > 1) {
3456 failed = true;
3457 goto done;
3459 BUG_ON(!refcnt);
3461 * Drop the refcnt to 0 while we check other
3462 * subsystems. This will cause any racing
3463 * css_tryget() to spin until we set the
3464 * CSS_REMOVED bits or abort
3466 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3467 break;
3468 cpu_relax();
3471 done:
3472 for_each_subsys(cgrp->root, ss) {
3473 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3474 if (failed) {
3476 * Restore old refcnt if we previously managed
3477 * to clear it from 1 to 0
3479 if (!atomic_read(&css->refcnt))
3480 atomic_set(&css->refcnt, 1);
3481 } else {
3482 /* Commit the fact that the CSS is removed */
3483 set_bit(CSS_REMOVED, &css->flags);
3486 local_irq_restore(flags);
3487 return !failed;
3490 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3492 struct cgroup *cgrp = dentry->d_fsdata;
3493 struct dentry *d;
3494 struct cgroup *parent;
3495 DEFINE_WAIT(wait);
3496 struct cgroup_event *event, *tmp;
3497 int ret;
3499 /* the vfs holds both inode->i_mutex already */
3500 again:
3501 mutex_lock(&cgroup_mutex);
3502 if (atomic_read(&cgrp->count) != 0) {
3503 mutex_unlock(&cgroup_mutex);
3504 return -EBUSY;
3506 if (!list_empty(&cgrp->children)) {
3507 mutex_unlock(&cgroup_mutex);
3508 return -EBUSY;
3510 mutex_unlock(&cgroup_mutex);
3513 * In general, subsystem has no css->refcnt after pre_destroy(). But
3514 * in racy cases, subsystem may have to get css->refcnt after
3515 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3516 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3517 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3518 * and subsystem's reference count handling. Please see css_get/put
3519 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3521 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3524 * Call pre_destroy handlers of subsys. Notify subsystems
3525 * that rmdir() request comes.
3527 ret = cgroup_call_pre_destroy(cgrp);
3528 if (ret) {
3529 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3530 return ret;
3533 mutex_lock(&cgroup_mutex);
3534 parent = cgrp->parent;
3535 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3536 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3537 mutex_unlock(&cgroup_mutex);
3538 return -EBUSY;
3540 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3541 if (!cgroup_clear_css_refs(cgrp)) {
3542 mutex_unlock(&cgroup_mutex);
3544 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3545 * prepare_to_wait(), we need to check this flag.
3547 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3548 schedule();
3549 finish_wait(&cgroup_rmdir_waitq, &wait);
3550 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3551 if (signal_pending(current))
3552 return -EINTR;
3553 goto again;
3555 /* NO css_tryget() can success after here. */
3556 finish_wait(&cgroup_rmdir_waitq, &wait);
3557 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3559 spin_lock(&release_list_lock);
3560 set_bit(CGRP_REMOVED, &cgrp->flags);
3561 if (!list_empty(&cgrp->release_list))
3562 list_del(&cgrp->release_list);
3563 spin_unlock(&release_list_lock);
3565 cgroup_lock_hierarchy(cgrp->root);
3566 /* delete this cgroup from parent->children */
3567 list_del(&cgrp->sibling);
3568 cgroup_unlock_hierarchy(cgrp->root);
3570 spin_lock(&cgrp->dentry->d_lock);
3571 d = dget(cgrp->dentry);
3572 spin_unlock(&d->d_lock);
3574 cgroup_d_remove_dir(d);
3575 dput(d);
3577 set_bit(CGRP_RELEASABLE, &parent->flags);
3578 check_for_release(parent);
3581 * Unregister events and notify userspace.
3582 * Notify userspace about cgroup removing only after rmdir of cgroup
3583 * directory to avoid race between userspace and kernelspace
3585 spin_lock(&cgrp->event_list_lock);
3586 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3587 list_del(&event->list);
3588 remove_wait_queue(event->wqh, &event->wait);
3589 eventfd_signal(event->eventfd, 1);
3590 schedule_work(&event->remove);
3592 spin_unlock(&cgrp->event_list_lock);
3594 mutex_unlock(&cgroup_mutex);
3595 return 0;
3598 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3600 struct cgroup_subsys_state *css;
3602 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3604 /* Create the top cgroup state for this subsystem */
3605 list_add(&ss->sibling, &rootnode.subsys_list);
3606 ss->root = &rootnode;
3607 css = ss->create(ss, dummytop);
3608 /* We don't handle early failures gracefully */
3609 BUG_ON(IS_ERR(css));
3610 init_cgroup_css(css, ss, dummytop);
3612 /* Update the init_css_set to contain a subsys
3613 * pointer to this state - since the subsystem is
3614 * newly registered, all tasks and hence the
3615 * init_css_set is in the subsystem's top cgroup. */
3616 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3618 need_forkexit_callback |= ss->fork || ss->exit;
3620 /* At system boot, before all subsystems have been
3621 * registered, no tasks have been forked, so we don't
3622 * need to invoke fork callbacks here. */
3623 BUG_ON(!list_empty(&init_task.tasks));
3625 mutex_init(&ss->hierarchy_mutex);
3626 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3627 ss->active = 1;
3629 /* this function shouldn't be used with modular subsystems, since they
3630 * need to register a subsys_id, among other things */
3631 BUG_ON(ss->module);
3635 * cgroup_load_subsys: load and register a modular subsystem at runtime
3636 * @ss: the subsystem to load
3638 * This function should be called in a modular subsystem's initcall. If the
3639 * subsystem is built as a module, it will be assigned a new subsys_id and set
3640 * up for use. If the subsystem is built-in anyway, work is delegated to the
3641 * simpler cgroup_init_subsys.
3643 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3645 int i;
3646 struct cgroup_subsys_state *css;
3648 /* check name and function validity */
3649 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3650 ss->create == NULL || ss->destroy == NULL)
3651 return -EINVAL;
3654 * we don't support callbacks in modular subsystems. this check is
3655 * before the ss->module check for consistency; a subsystem that could
3656 * be a module should still have no callbacks even if the user isn't
3657 * compiling it as one.
3659 if (ss->fork || ss->exit)
3660 return -EINVAL;
3663 * an optionally modular subsystem is built-in: we want to do nothing,
3664 * since cgroup_init_subsys will have already taken care of it.
3666 if (ss->module == NULL) {
3667 /* a few sanity checks */
3668 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3669 BUG_ON(subsys[ss->subsys_id] != ss);
3670 return 0;
3674 * need to register a subsys id before anything else - for example,
3675 * init_cgroup_css needs it.
3677 mutex_lock(&cgroup_mutex);
3678 /* find the first empty slot in the array */
3679 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3680 if (subsys[i] == NULL)
3681 break;
3683 if (i == CGROUP_SUBSYS_COUNT) {
3684 /* maximum number of subsystems already registered! */
3685 mutex_unlock(&cgroup_mutex);
3686 return -EBUSY;
3688 /* assign ourselves the subsys_id */
3689 ss->subsys_id = i;
3690 subsys[i] = ss;
3693 * no ss->create seems to need anything important in the ss struct, so
3694 * this can happen first (i.e. before the rootnode attachment).
3696 css = ss->create(ss, dummytop);
3697 if (IS_ERR(css)) {
3698 /* failure case - need to deassign the subsys[] slot. */
3699 subsys[i] = NULL;
3700 mutex_unlock(&cgroup_mutex);
3701 return PTR_ERR(css);
3704 list_add(&ss->sibling, &rootnode.subsys_list);
3705 ss->root = &rootnode;
3707 /* our new subsystem will be attached to the dummy hierarchy. */
3708 init_cgroup_css(css, ss, dummytop);
3709 /* init_idr must be after init_cgroup_css because it sets css->id. */
3710 if (ss->use_id) {
3711 int ret = cgroup_init_idr(ss, css);
3712 if (ret) {
3713 dummytop->subsys[ss->subsys_id] = NULL;
3714 ss->destroy(ss, dummytop);
3715 subsys[i] = NULL;
3716 mutex_unlock(&cgroup_mutex);
3717 return ret;
3722 * Now we need to entangle the css into the existing css_sets. unlike
3723 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3724 * will need a new pointer to it; done by iterating the css_set_table.
3725 * furthermore, modifying the existing css_sets will corrupt the hash
3726 * table state, so each changed css_set will need its hash recomputed.
3727 * this is all done under the css_set_lock.
3729 write_lock(&css_set_lock);
3730 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3731 struct css_set *cg;
3732 struct hlist_node *node, *tmp;
3733 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3735 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3736 /* skip entries that we already rehashed */
3737 if (cg->subsys[ss->subsys_id])
3738 continue;
3739 /* remove existing entry */
3740 hlist_del(&cg->hlist);
3741 /* set new value */
3742 cg->subsys[ss->subsys_id] = css;
3743 /* recompute hash and restore entry */
3744 new_bucket = css_set_hash(cg->subsys);
3745 hlist_add_head(&cg->hlist, new_bucket);
3748 write_unlock(&css_set_lock);
3750 mutex_init(&ss->hierarchy_mutex);
3751 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3752 ss->active = 1;
3754 /* success! */
3755 mutex_unlock(&cgroup_mutex);
3756 return 0;
3758 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3761 * cgroup_unload_subsys: unload a modular subsystem
3762 * @ss: the subsystem to unload
3764 * This function should be called in a modular subsystem's exitcall. When this
3765 * function is invoked, the refcount on the subsystem's module will be 0, so
3766 * the subsystem will not be attached to any hierarchy.
3768 void cgroup_unload_subsys(struct cgroup_subsys *ss)
3770 struct cg_cgroup_link *link;
3771 struct hlist_head *hhead;
3773 BUG_ON(ss->module == NULL);
3776 * we shouldn't be called if the subsystem is in use, and the use of
3777 * try_module_get in parse_cgroupfs_options should ensure that it
3778 * doesn't start being used while we're killing it off.
3780 BUG_ON(ss->root != &rootnode);
3782 mutex_lock(&cgroup_mutex);
3783 /* deassign the subsys_id */
3784 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3785 subsys[ss->subsys_id] = NULL;
3787 /* remove subsystem from rootnode's list of subsystems */
3788 list_del(&ss->sibling);
3791 * disentangle the css from all css_sets attached to the dummytop. as
3792 * in loading, we need to pay our respects to the hashtable gods.
3794 write_lock(&css_set_lock);
3795 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3796 struct css_set *cg = link->cg;
3798 hlist_del(&cg->hlist);
3799 BUG_ON(!cg->subsys[ss->subsys_id]);
3800 cg->subsys[ss->subsys_id] = NULL;
3801 hhead = css_set_hash(cg->subsys);
3802 hlist_add_head(&cg->hlist, hhead);
3804 write_unlock(&css_set_lock);
3807 * remove subsystem's css from the dummytop and free it - need to free
3808 * before marking as null because ss->destroy needs the cgrp->subsys
3809 * pointer to find their state. note that this also takes care of
3810 * freeing the css_id.
3812 ss->destroy(ss, dummytop);
3813 dummytop->subsys[ss->subsys_id] = NULL;
3815 mutex_unlock(&cgroup_mutex);
3817 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3820 * cgroup_init_early - cgroup initialization at system boot
3822 * Initialize cgroups at system boot, and initialize any
3823 * subsystems that request early init.
3825 int __init cgroup_init_early(void)
3827 int i;
3828 atomic_set(&init_css_set.refcount, 1);
3829 INIT_LIST_HEAD(&init_css_set.cg_links);
3830 INIT_LIST_HEAD(&init_css_set.tasks);
3831 INIT_HLIST_NODE(&init_css_set.hlist);
3832 css_set_count = 1;
3833 init_cgroup_root(&rootnode);
3834 root_count = 1;
3835 init_task.cgroups = &init_css_set;
3837 init_css_set_link.cg = &init_css_set;
3838 init_css_set_link.cgrp = dummytop;
3839 list_add(&init_css_set_link.cgrp_link_list,
3840 &rootnode.top_cgroup.css_sets);
3841 list_add(&init_css_set_link.cg_link_list,
3842 &init_css_set.cg_links);
3844 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3845 INIT_HLIST_HEAD(&css_set_table[i]);
3847 /* at bootup time, we don't worry about modular subsystems */
3848 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3849 struct cgroup_subsys *ss = subsys[i];
3851 BUG_ON(!ss->name);
3852 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3853 BUG_ON(!ss->create);
3854 BUG_ON(!ss->destroy);
3855 if (ss->subsys_id != i) {
3856 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3857 ss->name, ss->subsys_id);
3858 BUG();
3861 if (ss->early_init)
3862 cgroup_init_subsys(ss);
3864 return 0;
3868 * cgroup_init - cgroup initialization
3870 * Register cgroup filesystem and /proc file, and initialize
3871 * any subsystems that didn't request early init.
3873 int __init cgroup_init(void)
3875 int err;
3876 int i;
3877 struct hlist_head *hhead;
3879 err = bdi_init(&cgroup_backing_dev_info);
3880 if (err)
3881 return err;
3883 /* at bootup time, we don't worry about modular subsystems */
3884 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3885 struct cgroup_subsys *ss = subsys[i];
3886 if (!ss->early_init)
3887 cgroup_init_subsys(ss);
3888 if (ss->use_id)
3889 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3892 /* Add init_css_set to the hash table */
3893 hhead = css_set_hash(init_css_set.subsys);
3894 hlist_add_head(&init_css_set.hlist, hhead);
3895 BUG_ON(!init_root_id(&rootnode));
3897 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3898 if (!cgroup_kobj) {
3899 err = -ENOMEM;
3900 goto out;
3903 err = register_filesystem(&cgroup_fs_type);
3904 if (err < 0) {
3905 kobject_put(cgroup_kobj);
3906 goto out;
3909 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3911 out:
3912 if (err)
3913 bdi_destroy(&cgroup_backing_dev_info);
3915 return err;
3919 * proc_cgroup_show()
3920 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3921 * - Used for /proc/<pid>/cgroup.
3922 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3923 * doesn't really matter if tsk->cgroup changes after we read it,
3924 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3925 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3926 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3927 * cgroup to top_cgroup.
3930 /* TODO: Use a proper seq_file iterator */
3931 static int proc_cgroup_show(struct seq_file *m, void *v)
3933 struct pid *pid;
3934 struct task_struct *tsk;
3935 char *buf;
3936 int retval;
3937 struct cgroupfs_root *root;
3939 retval = -ENOMEM;
3940 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3941 if (!buf)
3942 goto out;
3944 retval = -ESRCH;
3945 pid = m->private;
3946 tsk = get_pid_task(pid, PIDTYPE_PID);
3947 if (!tsk)
3948 goto out_free;
3950 retval = 0;
3952 mutex_lock(&cgroup_mutex);
3954 for_each_active_root(root) {
3955 struct cgroup_subsys *ss;
3956 struct cgroup *cgrp;
3957 int count = 0;
3959 seq_printf(m, "%d:", root->hierarchy_id);
3960 for_each_subsys(root, ss)
3961 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3962 if (strlen(root->name))
3963 seq_printf(m, "%sname=%s", count ? "," : "",
3964 root->name);
3965 seq_putc(m, ':');
3966 cgrp = task_cgroup_from_root(tsk, root);
3967 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3968 if (retval < 0)
3969 goto out_unlock;
3970 seq_puts(m, buf);
3971 seq_putc(m, '\n');
3974 out_unlock:
3975 mutex_unlock(&cgroup_mutex);
3976 put_task_struct(tsk);
3977 out_free:
3978 kfree(buf);
3979 out:
3980 return retval;
3983 static int cgroup_open(struct inode *inode, struct file *file)
3985 struct pid *pid = PROC_I(inode)->pid;
3986 return single_open(file, proc_cgroup_show, pid);
3989 const struct file_operations proc_cgroup_operations = {
3990 .open = cgroup_open,
3991 .read = seq_read,
3992 .llseek = seq_lseek,
3993 .release = single_release,
3996 /* Display information about each subsystem and each hierarchy */
3997 static int proc_cgroupstats_show(struct seq_file *m, void *v)
3999 int i;
4001 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4003 * ideally we don't want subsystems moving around while we do this.
4004 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4005 * subsys/hierarchy state.
4007 mutex_lock(&cgroup_mutex);
4008 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4009 struct cgroup_subsys *ss = subsys[i];
4010 if (ss == NULL)
4011 continue;
4012 seq_printf(m, "%s\t%d\t%d\t%d\n",
4013 ss->name, ss->root->hierarchy_id,
4014 ss->root->number_of_cgroups, !ss->disabled);
4016 mutex_unlock(&cgroup_mutex);
4017 return 0;
4020 static int cgroupstats_open(struct inode *inode, struct file *file)
4022 return single_open(file, proc_cgroupstats_show, NULL);
4025 static const struct file_operations proc_cgroupstats_operations = {
4026 .open = cgroupstats_open,
4027 .read = seq_read,
4028 .llseek = seq_lseek,
4029 .release = single_release,
4033 * cgroup_fork - attach newly forked task to its parents cgroup.
4034 * @child: pointer to task_struct of forking parent process.
4036 * Description: A task inherits its parent's cgroup at fork().
4038 * A pointer to the shared css_set was automatically copied in
4039 * fork.c by dup_task_struct(). However, we ignore that copy, since
4040 * it was not made under the protection of RCU or cgroup_mutex, so
4041 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4042 * have already changed current->cgroups, allowing the previously
4043 * referenced cgroup group to be removed and freed.
4045 * At the point that cgroup_fork() is called, 'current' is the parent
4046 * task, and the passed argument 'child' points to the child task.
4048 void cgroup_fork(struct task_struct *child)
4050 task_lock(current);
4051 child->cgroups = current->cgroups;
4052 get_css_set(child->cgroups);
4053 task_unlock(current);
4054 INIT_LIST_HEAD(&child->cg_list);
4058 * cgroup_fork_callbacks - run fork callbacks
4059 * @child: the new task
4061 * Called on a new task very soon before adding it to the
4062 * tasklist. No need to take any locks since no-one can
4063 * be operating on this task.
4065 void cgroup_fork_callbacks(struct task_struct *child)
4067 if (need_forkexit_callback) {
4068 int i;
4070 * forkexit callbacks are only supported for builtin
4071 * subsystems, and the builtin section of the subsys array is
4072 * immutable, so we don't need to lock the subsys array here.
4074 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4075 struct cgroup_subsys *ss = subsys[i];
4076 if (ss->fork)
4077 ss->fork(ss, child);
4083 * cgroup_post_fork - called on a new task after adding it to the task list
4084 * @child: the task in question
4086 * Adds the task to the list running through its css_set if necessary.
4087 * Has to be after the task is visible on the task list in case we race
4088 * with the first call to cgroup_iter_start() - to guarantee that the
4089 * new task ends up on its list.
4091 void cgroup_post_fork(struct task_struct *child)
4093 if (use_task_css_set_links) {
4094 write_lock(&css_set_lock);
4095 task_lock(child);
4096 if (list_empty(&child->cg_list))
4097 list_add(&child->cg_list, &child->cgroups->tasks);
4098 task_unlock(child);
4099 write_unlock(&css_set_lock);
4103 * cgroup_exit - detach cgroup from exiting task
4104 * @tsk: pointer to task_struct of exiting process
4105 * @run_callback: run exit callbacks?
4107 * Description: Detach cgroup from @tsk and release it.
4109 * Note that cgroups marked notify_on_release force every task in
4110 * them to take the global cgroup_mutex mutex when exiting.
4111 * This could impact scaling on very large systems. Be reluctant to
4112 * use notify_on_release cgroups where very high task exit scaling
4113 * is required on large systems.
4115 * the_top_cgroup_hack:
4117 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4119 * We call cgroup_exit() while the task is still competent to
4120 * handle notify_on_release(), then leave the task attached to the
4121 * root cgroup in each hierarchy for the remainder of its exit.
4123 * To do this properly, we would increment the reference count on
4124 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4125 * code we would add a second cgroup function call, to drop that
4126 * reference. This would just create an unnecessary hot spot on
4127 * the top_cgroup reference count, to no avail.
4129 * Normally, holding a reference to a cgroup without bumping its
4130 * count is unsafe. The cgroup could go away, or someone could
4131 * attach us to a different cgroup, decrementing the count on
4132 * the first cgroup that we never incremented. But in this case,
4133 * top_cgroup isn't going away, and either task has PF_EXITING set,
4134 * which wards off any cgroup_attach_task() attempts, or task is a failed
4135 * fork, never visible to cgroup_attach_task.
4137 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4139 int i;
4140 struct css_set *cg;
4142 if (run_callbacks && need_forkexit_callback) {
4144 * modular subsystems can't use callbacks, so no need to lock
4145 * the subsys array
4147 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4148 struct cgroup_subsys *ss = subsys[i];
4149 if (ss->exit)
4150 ss->exit(ss, tsk);
4155 * Unlink from the css_set task list if necessary.
4156 * Optimistically check cg_list before taking
4157 * css_set_lock
4159 if (!list_empty(&tsk->cg_list)) {
4160 write_lock(&css_set_lock);
4161 if (!list_empty(&tsk->cg_list))
4162 list_del(&tsk->cg_list);
4163 write_unlock(&css_set_lock);
4166 /* Reassign the task to the init_css_set. */
4167 task_lock(tsk);
4168 cg = tsk->cgroups;
4169 tsk->cgroups = &init_css_set;
4170 task_unlock(tsk);
4171 if (cg)
4172 put_css_set_taskexit(cg);
4176 * cgroup_clone - clone the cgroup the given subsystem is attached to
4177 * @tsk: the task to be moved
4178 * @subsys: the given subsystem
4179 * @nodename: the name for the new cgroup
4181 * Duplicate the current cgroup in the hierarchy that the given
4182 * subsystem is attached to, and move this task into the new
4183 * child.
4185 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4186 char *nodename)
4188 struct dentry *dentry;
4189 int ret = 0;
4190 struct cgroup *parent, *child;
4191 struct inode *inode;
4192 struct css_set *cg;
4193 struct cgroupfs_root *root;
4194 struct cgroup_subsys *ss;
4196 /* We shouldn't be called by an unregistered subsystem */
4197 BUG_ON(!subsys->active);
4199 /* First figure out what hierarchy and cgroup we're dealing
4200 * with, and pin them so we can drop cgroup_mutex */
4201 mutex_lock(&cgroup_mutex);
4202 again:
4203 root = subsys->root;
4204 if (root == &rootnode) {
4205 mutex_unlock(&cgroup_mutex);
4206 return 0;
4209 /* Pin the hierarchy */
4210 if (!atomic_inc_not_zero(&root->sb->s_active)) {
4211 /* We race with the final deactivate_super() */
4212 mutex_unlock(&cgroup_mutex);
4213 return 0;
4216 /* Keep the cgroup alive */
4217 task_lock(tsk);
4218 parent = task_cgroup(tsk, subsys->subsys_id);
4219 cg = tsk->cgroups;
4220 get_css_set(cg);
4221 task_unlock(tsk);
4223 mutex_unlock(&cgroup_mutex);
4225 /* Now do the VFS work to create a cgroup */
4226 inode = parent->dentry->d_inode;
4228 /* Hold the parent directory mutex across this operation to
4229 * stop anyone else deleting the new cgroup */
4230 mutex_lock(&inode->i_mutex);
4231 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4232 if (IS_ERR(dentry)) {
4233 printk(KERN_INFO
4234 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4235 PTR_ERR(dentry));
4236 ret = PTR_ERR(dentry);
4237 goto out_release;
4240 /* Create the cgroup directory, which also creates the cgroup */
4241 ret = vfs_mkdir(inode, dentry, 0755);
4242 child = __d_cgrp(dentry);
4243 dput(dentry);
4244 if (ret) {
4245 printk(KERN_INFO
4246 "Failed to create cgroup %s: %d\n", nodename,
4247 ret);
4248 goto out_release;
4251 /* The cgroup now exists. Retake cgroup_mutex and check
4252 * that we're still in the same state that we thought we
4253 * were. */
4254 mutex_lock(&cgroup_mutex);
4255 if ((root != subsys->root) ||
4256 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4257 /* Aargh, we raced ... */
4258 mutex_unlock(&inode->i_mutex);
4259 put_css_set(cg);
4261 deactivate_super(root->sb);
4262 /* The cgroup is still accessible in the VFS, but
4263 * we're not going to try to rmdir() it at this
4264 * point. */
4265 printk(KERN_INFO
4266 "Race in cgroup_clone() - leaking cgroup %s\n",
4267 nodename);
4268 goto again;
4271 /* do any required auto-setup */
4272 for_each_subsys(root, ss) {
4273 if (ss->post_clone)
4274 ss->post_clone(ss, child);
4277 /* All seems fine. Finish by moving the task into the new cgroup */
4278 ret = cgroup_attach_task(child, tsk);
4279 mutex_unlock(&cgroup_mutex);
4281 out_release:
4282 mutex_unlock(&inode->i_mutex);
4284 mutex_lock(&cgroup_mutex);
4285 put_css_set(cg);
4286 mutex_unlock(&cgroup_mutex);
4287 deactivate_super(root->sb);
4288 return ret;
4292 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4293 * @cgrp: the cgroup in question
4294 * @task: the task in question
4296 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4297 * hierarchy.
4299 * If we are sending in dummytop, then presumably we are creating
4300 * the top cgroup in the subsystem.
4302 * Called only by the ns (nsproxy) cgroup.
4304 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4306 int ret;
4307 struct cgroup *target;
4309 if (cgrp == dummytop)
4310 return 1;
4312 target = task_cgroup_from_root(task, cgrp->root);
4313 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4314 cgrp = cgrp->parent;
4315 ret = (cgrp == target);
4316 return ret;
4319 static void check_for_release(struct cgroup *cgrp)
4321 /* All of these checks rely on RCU to keep the cgroup
4322 * structure alive */
4323 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4324 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4325 /* Control Group is currently removeable. If it's not
4326 * already queued for a userspace notification, queue
4327 * it now */
4328 int need_schedule_work = 0;
4329 spin_lock(&release_list_lock);
4330 if (!cgroup_is_removed(cgrp) &&
4331 list_empty(&cgrp->release_list)) {
4332 list_add(&cgrp->release_list, &release_list);
4333 need_schedule_work = 1;
4335 spin_unlock(&release_list_lock);
4336 if (need_schedule_work)
4337 schedule_work(&release_agent_work);
4341 /* Caller must verify that the css is not for root cgroup */
4342 void __css_put(struct cgroup_subsys_state *css, int count)
4344 struct cgroup *cgrp = css->cgroup;
4345 int val;
4346 rcu_read_lock();
4347 val = atomic_sub_return(count, &css->refcnt);
4348 if (val == 1) {
4349 if (notify_on_release(cgrp)) {
4350 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4351 check_for_release(cgrp);
4353 cgroup_wakeup_rmdir_waiter(cgrp);
4355 rcu_read_unlock();
4356 WARN_ON_ONCE(val < 1);
4358 EXPORT_SYMBOL_GPL(__css_put);
4361 * Notify userspace when a cgroup is released, by running the
4362 * configured release agent with the name of the cgroup (path
4363 * relative to the root of cgroup file system) as the argument.
4365 * Most likely, this user command will try to rmdir this cgroup.
4367 * This races with the possibility that some other task will be
4368 * attached to this cgroup before it is removed, or that some other
4369 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4370 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4371 * unused, and this cgroup will be reprieved from its death sentence,
4372 * to continue to serve a useful existence. Next time it's released,
4373 * we will get notified again, if it still has 'notify_on_release' set.
4375 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4376 * means only wait until the task is successfully execve()'d. The
4377 * separate release agent task is forked by call_usermodehelper(),
4378 * then control in this thread returns here, without waiting for the
4379 * release agent task. We don't bother to wait because the caller of
4380 * this routine has no use for the exit status of the release agent
4381 * task, so no sense holding our caller up for that.
4383 static void cgroup_release_agent(struct work_struct *work)
4385 BUG_ON(work != &release_agent_work);
4386 mutex_lock(&cgroup_mutex);
4387 spin_lock(&release_list_lock);
4388 while (!list_empty(&release_list)) {
4389 char *argv[3], *envp[3];
4390 int i;
4391 char *pathbuf = NULL, *agentbuf = NULL;
4392 struct cgroup *cgrp = list_entry(release_list.next,
4393 struct cgroup,
4394 release_list);
4395 list_del_init(&cgrp->release_list);
4396 spin_unlock(&release_list_lock);
4397 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4398 if (!pathbuf)
4399 goto continue_free;
4400 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4401 goto continue_free;
4402 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4403 if (!agentbuf)
4404 goto continue_free;
4406 i = 0;
4407 argv[i++] = agentbuf;
4408 argv[i++] = pathbuf;
4409 argv[i] = NULL;
4411 i = 0;
4412 /* minimal command environment */
4413 envp[i++] = "HOME=/";
4414 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4415 envp[i] = NULL;
4417 /* Drop the lock while we invoke the usermode helper,
4418 * since the exec could involve hitting disk and hence
4419 * be a slow process */
4420 mutex_unlock(&cgroup_mutex);
4421 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4422 mutex_lock(&cgroup_mutex);
4423 continue_free:
4424 kfree(pathbuf);
4425 kfree(agentbuf);
4426 spin_lock(&release_list_lock);
4428 spin_unlock(&release_list_lock);
4429 mutex_unlock(&cgroup_mutex);
4432 static int __init cgroup_disable(char *str)
4434 int i;
4435 char *token;
4437 while ((token = strsep(&str, ",")) != NULL) {
4438 if (!*token)
4439 continue;
4441 * cgroup_disable, being at boot time, can't know about module
4442 * subsystems, so we don't worry about them.
4444 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4445 struct cgroup_subsys *ss = subsys[i];
4447 if (!strcmp(token, ss->name)) {
4448 ss->disabled = 1;
4449 printk(KERN_INFO "Disabling %s control group"
4450 " subsystem\n", ss->name);
4451 break;
4455 return 1;
4457 __setup("cgroup_disable=", cgroup_disable);
4460 * Functons for CSS ID.
4464 *To get ID other than 0, this should be called when !cgroup_is_removed().
4466 unsigned short css_id(struct cgroup_subsys_state *css)
4468 struct css_id *cssid;
4471 * This css_id() can return correct value when somone has refcnt
4472 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4473 * it's unchanged until freed.
4475 cssid = rcu_dereference_check(css->id,
4476 rcu_read_lock_held() || atomic_read(&css->refcnt));
4478 if (cssid)
4479 return cssid->id;
4480 return 0;
4482 EXPORT_SYMBOL_GPL(css_id);
4484 unsigned short css_depth(struct cgroup_subsys_state *css)
4486 struct css_id *cssid;
4488 cssid = rcu_dereference_check(css->id,
4489 rcu_read_lock_held() || atomic_read(&css->refcnt));
4491 if (cssid)
4492 return cssid->depth;
4493 return 0;
4495 EXPORT_SYMBOL_GPL(css_depth);
4498 * css_is_ancestor - test "root" css is an ancestor of "child"
4499 * @child: the css to be tested.
4500 * @root: the css supporsed to be an ancestor of the child.
4502 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4503 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4504 * But, considering usual usage, the csses should be valid objects after test.
4505 * Assuming that the caller will do some action to the child if this returns
4506 * returns true, the caller must take "child";s reference count.
4507 * If "child" is valid object and this returns true, "root" is valid, too.
4510 bool css_is_ancestor(struct cgroup_subsys_state *child,
4511 const struct cgroup_subsys_state *root)
4513 struct css_id *child_id;
4514 struct css_id *root_id;
4515 bool ret = true;
4517 rcu_read_lock();
4518 child_id = rcu_dereference(child->id);
4519 root_id = rcu_dereference(root->id);
4520 if (!child_id
4521 || !root_id
4522 || (child_id->depth < root_id->depth)
4523 || (child_id->stack[root_id->depth] != root_id->id))
4524 ret = false;
4525 rcu_read_unlock();
4526 return ret;
4529 static void __free_css_id_cb(struct rcu_head *head)
4531 struct css_id *id;
4533 id = container_of(head, struct css_id, rcu_head);
4534 kfree(id);
4537 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4539 struct css_id *id = css->id;
4540 /* When this is called before css_id initialization, id can be NULL */
4541 if (!id)
4542 return;
4544 BUG_ON(!ss->use_id);
4546 rcu_assign_pointer(id->css, NULL);
4547 rcu_assign_pointer(css->id, NULL);
4548 spin_lock(&ss->id_lock);
4549 idr_remove(&ss->idr, id->id);
4550 spin_unlock(&ss->id_lock);
4551 call_rcu(&id->rcu_head, __free_css_id_cb);
4553 EXPORT_SYMBOL_GPL(free_css_id);
4556 * This is called by init or create(). Then, calls to this function are
4557 * always serialized (By cgroup_mutex() at create()).
4560 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4562 struct css_id *newid;
4563 int myid, error, size;
4565 BUG_ON(!ss->use_id);
4567 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4568 newid = kzalloc(size, GFP_KERNEL);
4569 if (!newid)
4570 return ERR_PTR(-ENOMEM);
4571 /* get id */
4572 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4573 error = -ENOMEM;
4574 goto err_out;
4576 spin_lock(&ss->id_lock);
4577 /* Don't use 0. allocates an ID of 1-65535 */
4578 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4579 spin_unlock(&ss->id_lock);
4581 /* Returns error when there are no free spaces for new ID.*/
4582 if (error) {
4583 error = -ENOSPC;
4584 goto err_out;
4586 if (myid > CSS_ID_MAX)
4587 goto remove_idr;
4589 newid->id = myid;
4590 newid->depth = depth;
4591 return newid;
4592 remove_idr:
4593 error = -ENOSPC;
4594 spin_lock(&ss->id_lock);
4595 idr_remove(&ss->idr, myid);
4596 spin_unlock(&ss->id_lock);
4597 err_out:
4598 kfree(newid);
4599 return ERR_PTR(error);
4603 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4604 struct cgroup_subsys_state *rootcss)
4606 struct css_id *newid;
4608 spin_lock_init(&ss->id_lock);
4609 idr_init(&ss->idr);
4611 newid = get_new_cssid(ss, 0);
4612 if (IS_ERR(newid))
4613 return PTR_ERR(newid);
4615 newid->stack[0] = newid->id;
4616 newid->css = rootcss;
4617 rootcss->id = newid;
4618 return 0;
4621 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4622 struct cgroup *child)
4624 int subsys_id, i, depth = 0;
4625 struct cgroup_subsys_state *parent_css, *child_css;
4626 struct css_id *child_id, *parent_id;
4628 subsys_id = ss->subsys_id;
4629 parent_css = parent->subsys[subsys_id];
4630 child_css = child->subsys[subsys_id];
4631 parent_id = parent_css->id;
4632 depth = parent_id->depth + 1;
4634 child_id = get_new_cssid(ss, depth);
4635 if (IS_ERR(child_id))
4636 return PTR_ERR(child_id);
4638 for (i = 0; i < depth; i++)
4639 child_id->stack[i] = parent_id->stack[i];
4640 child_id->stack[depth] = child_id->id;
4642 * child_id->css pointer will be set after this cgroup is available
4643 * see cgroup_populate_dir()
4645 rcu_assign_pointer(child_css->id, child_id);
4647 return 0;
4651 * css_lookup - lookup css by id
4652 * @ss: cgroup subsys to be looked into.
4653 * @id: the id
4655 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4656 * NULL if not. Should be called under rcu_read_lock()
4658 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4660 struct css_id *cssid = NULL;
4662 BUG_ON(!ss->use_id);
4663 cssid = idr_find(&ss->idr, id);
4665 if (unlikely(!cssid))
4666 return NULL;
4668 return rcu_dereference(cssid->css);
4670 EXPORT_SYMBOL_GPL(css_lookup);
4673 * css_get_next - lookup next cgroup under specified hierarchy.
4674 * @ss: pointer to subsystem
4675 * @id: current position of iteration.
4676 * @root: pointer to css. search tree under this.
4677 * @foundid: position of found object.
4679 * Search next css under the specified hierarchy of rootid. Calling under
4680 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4682 struct cgroup_subsys_state *
4683 css_get_next(struct cgroup_subsys *ss, int id,
4684 struct cgroup_subsys_state *root, int *foundid)
4686 struct cgroup_subsys_state *ret = NULL;
4687 struct css_id *tmp;
4688 int tmpid;
4689 int rootid = css_id(root);
4690 int depth = css_depth(root);
4692 if (!rootid)
4693 return NULL;
4695 BUG_ON(!ss->use_id);
4696 /* fill start point for scan */
4697 tmpid = id;
4698 while (1) {
4700 * scan next entry from bitmap(tree), tmpid is updated after
4701 * idr_get_next().
4703 spin_lock(&ss->id_lock);
4704 tmp = idr_get_next(&ss->idr, &tmpid);
4705 spin_unlock(&ss->id_lock);
4707 if (!tmp)
4708 break;
4709 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4710 ret = rcu_dereference(tmp->css);
4711 if (ret) {
4712 *foundid = tmpid;
4713 break;
4716 /* continue to scan from next id */
4717 tmpid = tmpid + 1;
4719 return ret;
4722 #ifdef CONFIG_CGROUP_DEBUG
4723 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4724 struct cgroup *cont)
4726 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4728 if (!css)
4729 return ERR_PTR(-ENOMEM);
4731 return css;
4734 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4736 kfree(cont->subsys[debug_subsys_id]);
4739 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4741 return atomic_read(&cont->count);
4744 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4746 return cgroup_task_count(cont);
4749 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4751 return (u64)(unsigned long)current->cgroups;
4754 static u64 current_css_set_refcount_read(struct cgroup *cont,
4755 struct cftype *cft)
4757 u64 count;
4759 rcu_read_lock();
4760 count = atomic_read(&current->cgroups->refcount);
4761 rcu_read_unlock();
4762 return count;
4765 static int current_css_set_cg_links_read(struct cgroup *cont,
4766 struct cftype *cft,
4767 struct seq_file *seq)
4769 struct cg_cgroup_link *link;
4770 struct css_set *cg;
4772 read_lock(&css_set_lock);
4773 rcu_read_lock();
4774 cg = rcu_dereference(current->cgroups);
4775 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4776 struct cgroup *c = link->cgrp;
4777 const char *name;
4779 if (c->dentry)
4780 name = c->dentry->d_name.name;
4781 else
4782 name = "?";
4783 seq_printf(seq, "Root %d group %s\n",
4784 c->root->hierarchy_id, name);
4786 rcu_read_unlock();
4787 read_unlock(&css_set_lock);
4788 return 0;
4791 #define MAX_TASKS_SHOWN_PER_CSS 25
4792 static int cgroup_css_links_read(struct cgroup *cont,
4793 struct cftype *cft,
4794 struct seq_file *seq)
4796 struct cg_cgroup_link *link;
4798 read_lock(&css_set_lock);
4799 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4800 struct css_set *cg = link->cg;
4801 struct task_struct *task;
4802 int count = 0;
4803 seq_printf(seq, "css_set %p\n", cg);
4804 list_for_each_entry(task, &cg->tasks, cg_list) {
4805 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4806 seq_puts(seq, " ...\n");
4807 break;
4808 } else {
4809 seq_printf(seq, " task %d\n",
4810 task_pid_vnr(task));
4814 read_unlock(&css_set_lock);
4815 return 0;
4818 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4820 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4823 static struct cftype debug_files[] = {
4825 .name = "cgroup_refcount",
4826 .read_u64 = cgroup_refcount_read,
4829 .name = "taskcount",
4830 .read_u64 = debug_taskcount_read,
4834 .name = "current_css_set",
4835 .read_u64 = current_css_set_read,
4839 .name = "current_css_set_refcount",
4840 .read_u64 = current_css_set_refcount_read,
4844 .name = "current_css_set_cg_links",
4845 .read_seq_string = current_css_set_cg_links_read,
4849 .name = "cgroup_css_links",
4850 .read_seq_string = cgroup_css_links_read,
4854 .name = "releasable",
4855 .read_u64 = releasable_read,
4859 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4861 return cgroup_add_files(cont, ss, debug_files,
4862 ARRAY_SIZE(debug_files));
4865 struct cgroup_subsys debug_subsys = {
4866 .name = "debug",
4867 .create = debug_create,
4868 .destroy = debug_destroy,
4869 .populate = debug_populate,
4870 .subsys_id = debug_subsys_id,
4872 #endif /* CONFIG_CGROUP_DEBUG */