Btrfs: don't allocate dip->csums when doing writes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / inode.c
blob570cd44fe91bca6dec151402b7c44f3801ec75fb
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96 struct inode *inode, struct inode *dir)
98 int err;
100 err = btrfs_init_acl(trans, inode, dir);
101 if (!err)
102 err = btrfs_xattr_security_init(trans, inode, dir);
103 return err;
107 * this does all the hard work for inserting an inline extent into
108 * the btree. The caller should have done a btrfs_drop_extents so that
109 * no overlapping inline items exist in the btree
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root, struct inode *inode,
113 u64 start, size_t size, size_t compressed_size,
114 struct page **compressed_pages)
116 struct btrfs_key key;
117 struct btrfs_path *path;
118 struct extent_buffer *leaf;
119 struct page *page = NULL;
120 char *kaddr;
121 unsigned long ptr;
122 struct btrfs_file_extent_item *ei;
123 int err = 0;
124 int ret;
125 size_t cur_size = size;
126 size_t datasize;
127 unsigned long offset;
128 int compress_type = BTRFS_COMPRESS_NONE;
130 if (compressed_size && compressed_pages) {
131 compress_type = root->fs_info->compress_type;
132 cur_size = compressed_size;
135 path = btrfs_alloc_path();
136 if (!path)
137 return -ENOMEM;
139 path->leave_spinning = 1;
140 btrfs_set_trans_block_group(trans, inode);
142 key.objectid = inode->i_ino;
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
153 goto fail;
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
165 if (compress_type != BTRFS_COMPRESS_NONE) {
166 struct page *cpage;
167 int i = 0;
168 while (compressed_size > 0) {
169 cpage = compressed_pages[i];
170 cur_size = min_t(unsigned long, compressed_size,
171 PAGE_CACHE_SIZE);
173 kaddr = kmap_atomic(cpage, KM_USER0);
174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
175 kunmap_atomic(kaddr, KM_USER0);
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
181 btrfs_set_file_extent_compression(leaf, ei,
182 compress_type);
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
208 return 0;
209 fail:
210 btrfs_free_path(path);
211 return err;
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
223 size_t compressed_size,
224 struct page **compressed_pages)
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
235 if (compressed_size)
236 data_len = compressed_size;
238 if (start > 0 ||
239 actual_end >= PAGE_CACHE_SIZE ||
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249 &hint_byte, 1);
250 BUG_ON(ret);
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compressed_pages);
257 BUG_ON(ret);
258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260 return 0;
263 struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
269 int compress_type;
270 struct list_head list;
273 struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
283 static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
287 unsigned long nr_pages,
288 int compress_type)
290 struct async_extent *async_extent;
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293 async_extent->start = start;
294 async_extent->ram_size = ram_size;
295 async_extent->compressed_size = compressed_size;
296 async_extent->pages = pages;
297 async_extent->nr_pages = nr_pages;
298 async_extent->compress_type = compress_type;
299 list_add_tail(&async_extent->list, &cow->extents);
300 return 0;
304 * we create compressed extents in two phases. The first
305 * phase compresses a range of pages that have already been
306 * locked (both pages and state bits are locked).
308 * This is done inside an ordered work queue, and the compression
309 * is spread across many cpus. The actual IO submission is step
310 * two, and the ordered work queue takes care of making sure that
311 * happens in the same order things were put onto the queue by
312 * writepages and friends.
314 * If this code finds it can't get good compression, it puts an
315 * entry onto the work queue to write the uncompressed bytes. This
316 * makes sure that both compressed inodes and uncompressed inodes
317 * are written in the same order that pdflush sent them down.
319 static noinline int compress_file_range(struct inode *inode,
320 struct page *locked_page,
321 u64 start, u64 end,
322 struct async_cow *async_cow,
323 int *num_added)
325 struct btrfs_root *root = BTRFS_I(inode)->root;
326 struct btrfs_trans_handle *trans;
327 u64 num_bytes;
328 u64 blocksize = root->sectorsize;
329 u64 actual_end;
330 u64 isize = i_size_read(inode);
331 int ret = 0;
332 struct page **pages = NULL;
333 unsigned long nr_pages;
334 unsigned long nr_pages_ret = 0;
335 unsigned long total_compressed = 0;
336 unsigned long total_in = 0;
337 unsigned long max_compressed = 128 * 1024;
338 unsigned long max_uncompressed = 128 * 1024;
339 int i;
340 int will_compress;
341 int compress_type = root->fs_info->compress_type;
343 actual_end = min_t(u64, isize, end + 1);
344 again:
345 will_compress = 0;
346 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
347 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
350 * we don't want to send crud past the end of i_size through
351 * compression, that's just a waste of CPU time. So, if the
352 * end of the file is before the start of our current
353 * requested range of bytes, we bail out to the uncompressed
354 * cleanup code that can deal with all of this.
356 * It isn't really the fastest way to fix things, but this is a
357 * very uncommon corner.
359 if (actual_end <= start)
360 goto cleanup_and_bail_uncompressed;
362 total_compressed = actual_end - start;
364 /* we want to make sure that amount of ram required to uncompress
365 * an extent is reasonable, so we limit the total size in ram
366 * of a compressed extent to 128k. This is a crucial number
367 * because it also controls how easily we can spread reads across
368 * cpus for decompression.
370 * We also want to make sure the amount of IO required to do
371 * a random read is reasonably small, so we limit the size of
372 * a compressed extent to 128k.
374 total_compressed = min(total_compressed, max_uncompressed);
375 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
376 num_bytes = max(blocksize, num_bytes);
377 total_in = 0;
378 ret = 0;
381 * we do compression for mount -o compress and when the
382 * inode has not been flagged as nocompress. This flag can
383 * change at any time if we discover bad compression ratios.
385 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
386 (btrfs_test_opt(root, COMPRESS) ||
387 (BTRFS_I(inode)->force_compress))) {
388 WARN_ON(pages);
389 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
391 if (BTRFS_I(inode)->force_compress)
392 compress_type = BTRFS_I(inode)->force_compress;
394 ret = btrfs_compress_pages(compress_type,
395 inode->i_mapping, start,
396 total_compressed, pages,
397 nr_pages, &nr_pages_ret,
398 &total_in,
399 &total_compressed,
400 max_compressed);
402 if (!ret) {
403 unsigned long offset = total_compressed &
404 (PAGE_CACHE_SIZE - 1);
405 struct page *page = pages[nr_pages_ret - 1];
406 char *kaddr;
408 /* zero the tail end of the last page, we might be
409 * sending it down to disk
411 if (offset) {
412 kaddr = kmap_atomic(page, KM_USER0);
413 memset(kaddr + offset, 0,
414 PAGE_CACHE_SIZE - offset);
415 kunmap_atomic(kaddr, KM_USER0);
417 will_compress = 1;
420 if (start == 0) {
421 trans = btrfs_join_transaction(root, 1);
422 BUG_ON(IS_ERR(trans));
423 btrfs_set_trans_block_group(trans, inode);
424 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
426 /* lets try to make an inline extent */
427 if (ret || total_in < (actual_end - start)) {
428 /* we didn't compress the entire range, try
429 * to make an uncompressed inline extent.
431 ret = cow_file_range_inline(trans, root, inode,
432 start, end, 0, NULL);
433 } else {
434 /* try making a compressed inline extent */
435 ret = cow_file_range_inline(trans, root, inode,
436 start, end,
437 total_compressed, pages);
439 if (ret == 0) {
441 * inline extent creation worked, we don't need
442 * to create any more async work items. Unlock
443 * and free up our temp pages.
445 extent_clear_unlock_delalloc(inode,
446 &BTRFS_I(inode)->io_tree,
447 start, end, NULL,
448 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
449 EXTENT_CLEAR_DELALLOC |
450 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
452 btrfs_end_transaction(trans, root);
453 goto free_pages_out;
455 btrfs_end_transaction(trans, root);
458 if (will_compress) {
460 * we aren't doing an inline extent round the compressed size
461 * up to a block size boundary so the allocator does sane
462 * things
464 total_compressed = (total_compressed + blocksize - 1) &
465 ~(blocksize - 1);
468 * one last check to make sure the compression is really a
469 * win, compare the page count read with the blocks on disk
471 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
472 ~(PAGE_CACHE_SIZE - 1);
473 if (total_compressed >= total_in) {
474 will_compress = 0;
475 } else {
476 num_bytes = total_in;
479 if (!will_compress && pages) {
481 * the compression code ran but failed to make things smaller,
482 * free any pages it allocated and our page pointer array
484 for (i = 0; i < nr_pages_ret; i++) {
485 WARN_ON(pages[i]->mapping);
486 page_cache_release(pages[i]);
488 kfree(pages);
489 pages = NULL;
490 total_compressed = 0;
491 nr_pages_ret = 0;
493 /* flag the file so we don't compress in the future */
494 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
495 !(BTRFS_I(inode)->force_compress)) {
496 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
499 if (will_compress) {
500 *num_added += 1;
502 /* the async work queues will take care of doing actual
503 * allocation on disk for these compressed pages,
504 * and will submit them to the elevator.
506 add_async_extent(async_cow, start, num_bytes,
507 total_compressed, pages, nr_pages_ret,
508 compress_type);
510 if (start + num_bytes < end) {
511 start += num_bytes;
512 pages = NULL;
513 cond_resched();
514 goto again;
516 } else {
517 cleanup_and_bail_uncompressed:
519 * No compression, but we still need to write the pages in
520 * the file we've been given so far. redirty the locked
521 * page if it corresponds to our extent and set things up
522 * for the async work queue to run cow_file_range to do
523 * the normal delalloc dance
525 if (page_offset(locked_page) >= start &&
526 page_offset(locked_page) <= end) {
527 __set_page_dirty_nobuffers(locked_page);
528 /* unlocked later on in the async handlers */
530 add_async_extent(async_cow, start, end - start + 1,
531 0, NULL, 0, BTRFS_COMPRESS_NONE);
532 *num_added += 1;
535 out:
536 return 0;
538 free_pages_out:
539 for (i = 0; i < nr_pages_ret; i++) {
540 WARN_ON(pages[i]->mapping);
541 page_cache_release(pages[i]);
543 kfree(pages);
545 goto out;
549 * phase two of compressed writeback. This is the ordered portion
550 * of the code, which only gets called in the order the work was
551 * queued. We walk all the async extents created by compress_file_range
552 * and send them down to the disk.
554 static noinline int submit_compressed_extents(struct inode *inode,
555 struct async_cow *async_cow)
557 struct async_extent *async_extent;
558 u64 alloc_hint = 0;
559 struct btrfs_trans_handle *trans;
560 struct btrfs_key ins;
561 struct extent_map *em;
562 struct btrfs_root *root = BTRFS_I(inode)->root;
563 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
564 struct extent_io_tree *io_tree;
565 int ret = 0;
567 if (list_empty(&async_cow->extents))
568 return 0;
571 while (!list_empty(&async_cow->extents)) {
572 async_extent = list_entry(async_cow->extents.next,
573 struct async_extent, list);
574 list_del(&async_extent->list);
576 io_tree = &BTRFS_I(inode)->io_tree;
578 retry:
579 /* did the compression code fall back to uncompressed IO? */
580 if (!async_extent->pages) {
581 int page_started = 0;
582 unsigned long nr_written = 0;
584 lock_extent(io_tree, async_extent->start,
585 async_extent->start +
586 async_extent->ram_size - 1, GFP_NOFS);
588 /* allocate blocks */
589 ret = cow_file_range(inode, async_cow->locked_page,
590 async_extent->start,
591 async_extent->start +
592 async_extent->ram_size - 1,
593 &page_started, &nr_written, 0);
596 * if page_started, cow_file_range inserted an
597 * inline extent and took care of all the unlocking
598 * and IO for us. Otherwise, we need to submit
599 * all those pages down to the drive.
601 if (!page_started && !ret)
602 extent_write_locked_range(io_tree,
603 inode, async_extent->start,
604 async_extent->start +
605 async_extent->ram_size - 1,
606 btrfs_get_extent,
607 WB_SYNC_ALL);
608 kfree(async_extent);
609 cond_resched();
610 continue;
613 lock_extent(io_tree, async_extent->start,
614 async_extent->start + async_extent->ram_size - 1,
615 GFP_NOFS);
617 trans = btrfs_join_transaction(root, 1);
618 BUG_ON(IS_ERR(trans));
619 ret = btrfs_reserve_extent(trans, root,
620 async_extent->compressed_size,
621 async_extent->compressed_size,
622 0, alloc_hint,
623 (u64)-1, &ins, 1);
624 btrfs_end_transaction(trans, root);
626 if (ret) {
627 int i;
628 for (i = 0; i < async_extent->nr_pages; i++) {
629 WARN_ON(async_extent->pages[i]->mapping);
630 page_cache_release(async_extent->pages[i]);
632 kfree(async_extent->pages);
633 async_extent->nr_pages = 0;
634 async_extent->pages = NULL;
635 unlock_extent(io_tree, async_extent->start,
636 async_extent->start +
637 async_extent->ram_size - 1, GFP_NOFS);
638 goto retry;
642 * here we're doing allocation and writeback of the
643 * compressed pages
645 btrfs_drop_extent_cache(inode, async_extent->start,
646 async_extent->start +
647 async_extent->ram_size - 1, 0);
649 em = alloc_extent_map(GFP_NOFS);
650 BUG_ON(!em);
651 em->start = async_extent->start;
652 em->len = async_extent->ram_size;
653 em->orig_start = em->start;
655 em->block_start = ins.objectid;
656 em->block_len = ins.offset;
657 em->bdev = root->fs_info->fs_devices->latest_bdev;
658 em->compress_type = async_extent->compress_type;
659 set_bit(EXTENT_FLAG_PINNED, &em->flags);
660 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
662 while (1) {
663 write_lock(&em_tree->lock);
664 ret = add_extent_mapping(em_tree, em);
665 write_unlock(&em_tree->lock);
666 if (ret != -EEXIST) {
667 free_extent_map(em);
668 break;
670 btrfs_drop_extent_cache(inode, async_extent->start,
671 async_extent->start +
672 async_extent->ram_size - 1, 0);
675 ret = btrfs_add_ordered_extent_compress(inode,
676 async_extent->start,
677 ins.objectid,
678 async_extent->ram_size,
679 ins.offset,
680 BTRFS_ORDERED_COMPRESSED,
681 async_extent->compress_type);
682 BUG_ON(ret);
685 * clear dirty, set writeback and unlock the pages.
687 extent_clear_unlock_delalloc(inode,
688 &BTRFS_I(inode)->io_tree,
689 async_extent->start,
690 async_extent->start +
691 async_extent->ram_size - 1,
692 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
693 EXTENT_CLEAR_UNLOCK |
694 EXTENT_CLEAR_DELALLOC |
695 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
697 ret = btrfs_submit_compressed_write(inode,
698 async_extent->start,
699 async_extent->ram_size,
700 ins.objectid,
701 ins.offset, async_extent->pages,
702 async_extent->nr_pages);
704 BUG_ON(ret);
705 alloc_hint = ins.objectid + ins.offset;
706 kfree(async_extent);
707 cond_resched();
710 return 0;
713 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
714 u64 num_bytes)
716 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
717 struct extent_map *em;
718 u64 alloc_hint = 0;
720 read_lock(&em_tree->lock);
721 em = search_extent_mapping(em_tree, start, num_bytes);
722 if (em) {
724 * if block start isn't an actual block number then find the
725 * first block in this inode and use that as a hint. If that
726 * block is also bogus then just don't worry about it.
728 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
729 free_extent_map(em);
730 em = search_extent_mapping(em_tree, 0, 0);
731 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
732 alloc_hint = em->block_start;
733 if (em)
734 free_extent_map(em);
735 } else {
736 alloc_hint = em->block_start;
737 free_extent_map(em);
740 read_unlock(&em_tree->lock);
742 return alloc_hint;
746 * when extent_io.c finds a delayed allocation range in the file,
747 * the call backs end up in this code. The basic idea is to
748 * allocate extents on disk for the range, and create ordered data structs
749 * in ram to track those extents.
751 * locked_page is the page that writepage had locked already. We use
752 * it to make sure we don't do extra locks or unlocks.
754 * *page_started is set to one if we unlock locked_page and do everything
755 * required to start IO on it. It may be clean and already done with
756 * IO when we return.
758 static noinline int cow_file_range(struct inode *inode,
759 struct page *locked_page,
760 u64 start, u64 end, int *page_started,
761 unsigned long *nr_written,
762 int unlock)
764 struct btrfs_root *root = BTRFS_I(inode)->root;
765 struct btrfs_trans_handle *trans;
766 u64 alloc_hint = 0;
767 u64 num_bytes;
768 unsigned long ram_size;
769 u64 disk_num_bytes;
770 u64 cur_alloc_size;
771 u64 blocksize = root->sectorsize;
772 struct btrfs_key ins;
773 struct extent_map *em;
774 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
775 int ret = 0;
777 BUG_ON(root == root->fs_info->tree_root);
778 trans = btrfs_join_transaction(root, 1);
779 BUG_ON(IS_ERR(trans));
780 btrfs_set_trans_block_group(trans, inode);
781 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
783 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
784 num_bytes = max(blocksize, num_bytes);
785 disk_num_bytes = num_bytes;
786 ret = 0;
788 if (start == 0) {
789 /* lets try to make an inline extent */
790 ret = cow_file_range_inline(trans, root, inode,
791 start, end, 0, NULL);
792 if (ret == 0) {
793 extent_clear_unlock_delalloc(inode,
794 &BTRFS_I(inode)->io_tree,
795 start, end, NULL,
796 EXTENT_CLEAR_UNLOCK_PAGE |
797 EXTENT_CLEAR_UNLOCK |
798 EXTENT_CLEAR_DELALLOC |
799 EXTENT_CLEAR_DIRTY |
800 EXTENT_SET_WRITEBACK |
801 EXTENT_END_WRITEBACK);
803 *nr_written = *nr_written +
804 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
805 *page_started = 1;
806 ret = 0;
807 goto out;
811 BUG_ON(disk_num_bytes >
812 btrfs_super_total_bytes(&root->fs_info->super_copy));
814 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
815 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
817 while (disk_num_bytes > 0) {
818 unsigned long op;
820 cur_alloc_size = disk_num_bytes;
821 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
822 root->sectorsize, 0, alloc_hint,
823 (u64)-1, &ins, 1);
824 BUG_ON(ret);
826 em = alloc_extent_map(GFP_NOFS);
827 BUG_ON(!em);
828 em->start = start;
829 em->orig_start = em->start;
830 ram_size = ins.offset;
831 em->len = ins.offset;
833 em->block_start = ins.objectid;
834 em->block_len = ins.offset;
835 em->bdev = root->fs_info->fs_devices->latest_bdev;
836 set_bit(EXTENT_FLAG_PINNED, &em->flags);
838 while (1) {
839 write_lock(&em_tree->lock);
840 ret = add_extent_mapping(em_tree, em);
841 write_unlock(&em_tree->lock);
842 if (ret != -EEXIST) {
843 free_extent_map(em);
844 break;
846 btrfs_drop_extent_cache(inode, start,
847 start + ram_size - 1, 0);
850 cur_alloc_size = ins.offset;
851 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
852 ram_size, cur_alloc_size, 0);
853 BUG_ON(ret);
855 if (root->root_key.objectid ==
856 BTRFS_DATA_RELOC_TREE_OBJECTID) {
857 ret = btrfs_reloc_clone_csums(inode, start,
858 cur_alloc_size);
859 BUG_ON(ret);
862 if (disk_num_bytes < cur_alloc_size)
863 break;
865 /* we're not doing compressed IO, don't unlock the first
866 * page (which the caller expects to stay locked), don't
867 * clear any dirty bits and don't set any writeback bits
869 * Do set the Private2 bit so we know this page was properly
870 * setup for writepage
872 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
873 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
874 EXTENT_SET_PRIVATE2;
876 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
877 start, start + ram_size - 1,
878 locked_page, op);
879 disk_num_bytes -= cur_alloc_size;
880 num_bytes -= cur_alloc_size;
881 alloc_hint = ins.objectid + ins.offset;
882 start += cur_alloc_size;
884 out:
885 ret = 0;
886 btrfs_end_transaction(trans, root);
888 return ret;
892 * work queue call back to started compression on a file and pages
894 static noinline void async_cow_start(struct btrfs_work *work)
896 struct async_cow *async_cow;
897 int num_added = 0;
898 async_cow = container_of(work, struct async_cow, work);
900 compress_file_range(async_cow->inode, async_cow->locked_page,
901 async_cow->start, async_cow->end, async_cow,
902 &num_added);
903 if (num_added == 0)
904 async_cow->inode = NULL;
908 * work queue call back to submit previously compressed pages
910 static noinline void async_cow_submit(struct btrfs_work *work)
912 struct async_cow *async_cow;
913 struct btrfs_root *root;
914 unsigned long nr_pages;
916 async_cow = container_of(work, struct async_cow, work);
918 root = async_cow->root;
919 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
920 PAGE_CACHE_SHIFT;
922 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
924 if (atomic_read(&root->fs_info->async_delalloc_pages) <
925 5 * 1042 * 1024 &&
926 waitqueue_active(&root->fs_info->async_submit_wait))
927 wake_up(&root->fs_info->async_submit_wait);
929 if (async_cow->inode)
930 submit_compressed_extents(async_cow->inode, async_cow);
933 static noinline void async_cow_free(struct btrfs_work *work)
935 struct async_cow *async_cow;
936 async_cow = container_of(work, struct async_cow, work);
937 kfree(async_cow);
940 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
941 u64 start, u64 end, int *page_started,
942 unsigned long *nr_written)
944 struct async_cow *async_cow;
945 struct btrfs_root *root = BTRFS_I(inode)->root;
946 unsigned long nr_pages;
947 u64 cur_end;
948 int limit = 10 * 1024 * 1042;
950 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
951 1, 0, NULL, GFP_NOFS);
952 while (start < end) {
953 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
954 async_cow->inode = inode;
955 async_cow->root = root;
956 async_cow->locked_page = locked_page;
957 async_cow->start = start;
959 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
960 cur_end = end;
961 else
962 cur_end = min(end, start + 512 * 1024 - 1);
964 async_cow->end = cur_end;
965 INIT_LIST_HEAD(&async_cow->extents);
967 async_cow->work.func = async_cow_start;
968 async_cow->work.ordered_func = async_cow_submit;
969 async_cow->work.ordered_free = async_cow_free;
970 async_cow->work.flags = 0;
972 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
973 PAGE_CACHE_SHIFT;
974 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
976 btrfs_queue_worker(&root->fs_info->delalloc_workers,
977 &async_cow->work);
979 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
980 wait_event(root->fs_info->async_submit_wait,
981 (atomic_read(&root->fs_info->async_delalloc_pages) <
982 limit));
985 while (atomic_read(&root->fs_info->async_submit_draining) &&
986 atomic_read(&root->fs_info->async_delalloc_pages)) {
987 wait_event(root->fs_info->async_submit_wait,
988 (atomic_read(&root->fs_info->async_delalloc_pages) ==
989 0));
992 *nr_written += nr_pages;
993 start = cur_end + 1;
995 *page_started = 1;
996 return 0;
999 static noinline int csum_exist_in_range(struct btrfs_root *root,
1000 u64 bytenr, u64 num_bytes)
1002 int ret;
1003 struct btrfs_ordered_sum *sums;
1004 LIST_HEAD(list);
1006 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1007 bytenr + num_bytes - 1, &list);
1008 if (ret == 0 && list_empty(&list))
1009 return 0;
1011 while (!list_empty(&list)) {
1012 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1013 list_del(&sums->list);
1014 kfree(sums);
1016 return 1;
1020 * when nowcow writeback call back. This checks for snapshots or COW copies
1021 * of the extents that exist in the file, and COWs the file as required.
1023 * If no cow copies or snapshots exist, we write directly to the existing
1024 * blocks on disk
1026 static noinline int run_delalloc_nocow(struct inode *inode,
1027 struct page *locked_page,
1028 u64 start, u64 end, int *page_started, int force,
1029 unsigned long *nr_written)
1031 struct btrfs_root *root = BTRFS_I(inode)->root;
1032 struct btrfs_trans_handle *trans;
1033 struct extent_buffer *leaf;
1034 struct btrfs_path *path;
1035 struct btrfs_file_extent_item *fi;
1036 struct btrfs_key found_key;
1037 u64 cow_start;
1038 u64 cur_offset;
1039 u64 extent_end;
1040 u64 extent_offset;
1041 u64 disk_bytenr;
1042 u64 num_bytes;
1043 int extent_type;
1044 int ret;
1045 int type;
1046 int nocow;
1047 int check_prev = 1;
1048 bool nolock = false;
1050 path = btrfs_alloc_path();
1051 BUG_ON(!path);
1052 if (root == root->fs_info->tree_root) {
1053 nolock = true;
1054 trans = btrfs_join_transaction_nolock(root, 1);
1055 } else {
1056 trans = btrfs_join_transaction(root, 1);
1058 BUG_ON(IS_ERR(trans));
1060 cow_start = (u64)-1;
1061 cur_offset = start;
1062 while (1) {
1063 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1064 cur_offset, 0);
1065 BUG_ON(ret < 0);
1066 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1067 leaf = path->nodes[0];
1068 btrfs_item_key_to_cpu(leaf, &found_key,
1069 path->slots[0] - 1);
1070 if (found_key.objectid == inode->i_ino &&
1071 found_key.type == BTRFS_EXTENT_DATA_KEY)
1072 path->slots[0]--;
1074 check_prev = 0;
1075 next_slot:
1076 leaf = path->nodes[0];
1077 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1078 ret = btrfs_next_leaf(root, path);
1079 if (ret < 0)
1080 BUG_ON(1);
1081 if (ret > 0)
1082 break;
1083 leaf = path->nodes[0];
1086 nocow = 0;
1087 disk_bytenr = 0;
1088 num_bytes = 0;
1089 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1091 if (found_key.objectid > inode->i_ino ||
1092 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1093 found_key.offset > end)
1094 break;
1096 if (found_key.offset > cur_offset) {
1097 extent_end = found_key.offset;
1098 extent_type = 0;
1099 goto out_check;
1102 fi = btrfs_item_ptr(leaf, path->slots[0],
1103 struct btrfs_file_extent_item);
1104 extent_type = btrfs_file_extent_type(leaf, fi);
1106 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1107 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1108 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1109 extent_offset = btrfs_file_extent_offset(leaf, fi);
1110 extent_end = found_key.offset +
1111 btrfs_file_extent_num_bytes(leaf, fi);
1112 if (extent_end <= start) {
1113 path->slots[0]++;
1114 goto next_slot;
1116 if (disk_bytenr == 0)
1117 goto out_check;
1118 if (btrfs_file_extent_compression(leaf, fi) ||
1119 btrfs_file_extent_encryption(leaf, fi) ||
1120 btrfs_file_extent_other_encoding(leaf, fi))
1121 goto out_check;
1122 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1123 goto out_check;
1124 if (btrfs_extent_readonly(root, disk_bytenr))
1125 goto out_check;
1126 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1127 found_key.offset -
1128 extent_offset, disk_bytenr))
1129 goto out_check;
1130 disk_bytenr += extent_offset;
1131 disk_bytenr += cur_offset - found_key.offset;
1132 num_bytes = min(end + 1, extent_end) - cur_offset;
1134 * force cow if csum exists in the range.
1135 * this ensure that csum for a given extent are
1136 * either valid or do not exist.
1138 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1139 goto out_check;
1140 nocow = 1;
1141 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1142 extent_end = found_key.offset +
1143 btrfs_file_extent_inline_len(leaf, fi);
1144 extent_end = ALIGN(extent_end, root->sectorsize);
1145 } else {
1146 BUG_ON(1);
1148 out_check:
1149 if (extent_end <= start) {
1150 path->slots[0]++;
1151 goto next_slot;
1153 if (!nocow) {
1154 if (cow_start == (u64)-1)
1155 cow_start = cur_offset;
1156 cur_offset = extent_end;
1157 if (cur_offset > end)
1158 break;
1159 path->slots[0]++;
1160 goto next_slot;
1163 btrfs_release_path(root, path);
1164 if (cow_start != (u64)-1) {
1165 ret = cow_file_range(inode, locked_page, cow_start,
1166 found_key.offset - 1, page_started,
1167 nr_written, 1);
1168 BUG_ON(ret);
1169 cow_start = (u64)-1;
1172 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1173 struct extent_map *em;
1174 struct extent_map_tree *em_tree;
1175 em_tree = &BTRFS_I(inode)->extent_tree;
1176 em = alloc_extent_map(GFP_NOFS);
1177 BUG_ON(!em);
1178 em->start = cur_offset;
1179 em->orig_start = em->start;
1180 em->len = num_bytes;
1181 em->block_len = num_bytes;
1182 em->block_start = disk_bytenr;
1183 em->bdev = root->fs_info->fs_devices->latest_bdev;
1184 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1185 while (1) {
1186 write_lock(&em_tree->lock);
1187 ret = add_extent_mapping(em_tree, em);
1188 write_unlock(&em_tree->lock);
1189 if (ret != -EEXIST) {
1190 free_extent_map(em);
1191 break;
1193 btrfs_drop_extent_cache(inode, em->start,
1194 em->start + em->len - 1, 0);
1196 type = BTRFS_ORDERED_PREALLOC;
1197 } else {
1198 type = BTRFS_ORDERED_NOCOW;
1201 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1202 num_bytes, num_bytes, type);
1203 BUG_ON(ret);
1205 if (root->root_key.objectid ==
1206 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1207 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1208 num_bytes);
1209 BUG_ON(ret);
1212 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1213 cur_offset, cur_offset + num_bytes - 1,
1214 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1215 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1216 EXTENT_SET_PRIVATE2);
1217 cur_offset = extent_end;
1218 if (cur_offset > end)
1219 break;
1221 btrfs_release_path(root, path);
1223 if (cur_offset <= end && cow_start == (u64)-1)
1224 cow_start = cur_offset;
1225 if (cow_start != (u64)-1) {
1226 ret = cow_file_range(inode, locked_page, cow_start, end,
1227 page_started, nr_written, 1);
1228 BUG_ON(ret);
1231 if (nolock) {
1232 ret = btrfs_end_transaction_nolock(trans, root);
1233 BUG_ON(ret);
1234 } else {
1235 ret = btrfs_end_transaction(trans, root);
1236 BUG_ON(ret);
1238 btrfs_free_path(path);
1239 return 0;
1243 * extent_io.c call back to do delayed allocation processing
1245 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1246 u64 start, u64 end, int *page_started,
1247 unsigned long *nr_written)
1249 int ret;
1250 struct btrfs_root *root = BTRFS_I(inode)->root;
1252 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1253 ret = run_delalloc_nocow(inode, locked_page, start, end,
1254 page_started, 1, nr_written);
1255 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1256 ret = run_delalloc_nocow(inode, locked_page, start, end,
1257 page_started, 0, nr_written);
1258 else if (!btrfs_test_opt(root, COMPRESS) &&
1259 !(BTRFS_I(inode)->force_compress))
1260 ret = cow_file_range(inode, locked_page, start, end,
1261 page_started, nr_written, 1);
1262 else
1263 ret = cow_file_range_async(inode, locked_page, start, end,
1264 page_started, nr_written);
1265 return ret;
1268 static int btrfs_split_extent_hook(struct inode *inode,
1269 struct extent_state *orig, u64 split)
1271 /* not delalloc, ignore it */
1272 if (!(orig->state & EXTENT_DELALLOC))
1273 return 0;
1275 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1276 return 0;
1280 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1281 * extents so we can keep track of new extents that are just merged onto old
1282 * extents, such as when we are doing sequential writes, so we can properly
1283 * account for the metadata space we'll need.
1285 static int btrfs_merge_extent_hook(struct inode *inode,
1286 struct extent_state *new,
1287 struct extent_state *other)
1289 /* not delalloc, ignore it */
1290 if (!(other->state & EXTENT_DELALLOC))
1291 return 0;
1293 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1294 return 0;
1298 * extent_io.c set_bit_hook, used to track delayed allocation
1299 * bytes in this file, and to maintain the list of inodes that
1300 * have pending delalloc work to be done.
1302 static int btrfs_set_bit_hook(struct inode *inode,
1303 struct extent_state *state, int *bits)
1307 * set_bit and clear bit hooks normally require _irqsave/restore
1308 * but in this case, we are only testeing for the DELALLOC
1309 * bit, which is only set or cleared with irqs on
1311 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1312 struct btrfs_root *root = BTRFS_I(inode)->root;
1313 u64 len = state->end + 1 - state->start;
1314 int do_list = (root->root_key.objectid !=
1315 BTRFS_ROOT_TREE_OBJECTID);
1317 if (*bits & EXTENT_FIRST_DELALLOC)
1318 *bits &= ~EXTENT_FIRST_DELALLOC;
1319 else
1320 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1322 spin_lock(&root->fs_info->delalloc_lock);
1323 BTRFS_I(inode)->delalloc_bytes += len;
1324 root->fs_info->delalloc_bytes += len;
1325 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1326 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1327 &root->fs_info->delalloc_inodes);
1329 spin_unlock(&root->fs_info->delalloc_lock);
1331 return 0;
1335 * extent_io.c clear_bit_hook, see set_bit_hook for why
1337 static int btrfs_clear_bit_hook(struct inode *inode,
1338 struct extent_state *state, int *bits)
1341 * set_bit and clear bit hooks normally require _irqsave/restore
1342 * but in this case, we are only testeing for the DELALLOC
1343 * bit, which is only set or cleared with irqs on
1345 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1346 struct btrfs_root *root = BTRFS_I(inode)->root;
1347 u64 len = state->end + 1 - state->start;
1348 int do_list = (root->root_key.objectid !=
1349 BTRFS_ROOT_TREE_OBJECTID);
1351 if (*bits & EXTENT_FIRST_DELALLOC)
1352 *bits &= ~EXTENT_FIRST_DELALLOC;
1353 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1354 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1356 if (*bits & EXTENT_DO_ACCOUNTING)
1357 btrfs_delalloc_release_metadata(inode, len);
1359 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1360 && do_list)
1361 btrfs_free_reserved_data_space(inode, len);
1363 spin_lock(&root->fs_info->delalloc_lock);
1364 root->fs_info->delalloc_bytes -= len;
1365 BTRFS_I(inode)->delalloc_bytes -= len;
1367 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1368 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1369 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1371 spin_unlock(&root->fs_info->delalloc_lock);
1373 return 0;
1377 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1378 * we don't create bios that span stripes or chunks
1380 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1381 size_t size, struct bio *bio,
1382 unsigned long bio_flags)
1384 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1385 struct btrfs_mapping_tree *map_tree;
1386 u64 logical = (u64)bio->bi_sector << 9;
1387 u64 length = 0;
1388 u64 map_length;
1389 int ret;
1391 if (bio_flags & EXTENT_BIO_COMPRESSED)
1392 return 0;
1394 length = bio->bi_size;
1395 map_tree = &root->fs_info->mapping_tree;
1396 map_length = length;
1397 ret = btrfs_map_block(map_tree, READ, logical,
1398 &map_length, NULL, 0);
1400 if (map_length < length + size)
1401 return 1;
1402 return ret;
1406 * in order to insert checksums into the metadata in large chunks,
1407 * we wait until bio submission time. All the pages in the bio are
1408 * checksummed and sums are attached onto the ordered extent record.
1410 * At IO completion time the cums attached on the ordered extent record
1411 * are inserted into the btree
1413 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1414 struct bio *bio, int mirror_num,
1415 unsigned long bio_flags,
1416 u64 bio_offset)
1418 struct btrfs_root *root = BTRFS_I(inode)->root;
1419 int ret = 0;
1421 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1422 BUG_ON(ret);
1423 return 0;
1427 * in order to insert checksums into the metadata in large chunks,
1428 * we wait until bio submission time. All the pages in the bio are
1429 * checksummed and sums are attached onto the ordered extent record.
1431 * At IO completion time the cums attached on the ordered extent record
1432 * are inserted into the btree
1434 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1435 int mirror_num, unsigned long bio_flags,
1436 u64 bio_offset)
1438 struct btrfs_root *root = BTRFS_I(inode)->root;
1439 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1443 * extent_io.c submission hook. This does the right thing for csum calculation
1444 * on write, or reading the csums from the tree before a read
1446 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1447 int mirror_num, unsigned long bio_flags,
1448 u64 bio_offset)
1450 struct btrfs_root *root = BTRFS_I(inode)->root;
1451 int ret = 0;
1452 int skip_sum;
1454 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1456 if (root == root->fs_info->tree_root)
1457 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1458 else
1459 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1460 BUG_ON(ret);
1462 if (!(rw & REQ_WRITE)) {
1463 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1464 return btrfs_submit_compressed_read(inode, bio,
1465 mirror_num, bio_flags);
1466 } else if (!skip_sum)
1467 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1468 goto mapit;
1469 } else if (!skip_sum) {
1470 /* csum items have already been cloned */
1471 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1472 goto mapit;
1473 /* we're doing a write, do the async checksumming */
1474 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1475 inode, rw, bio, mirror_num,
1476 bio_flags, bio_offset,
1477 __btrfs_submit_bio_start,
1478 __btrfs_submit_bio_done);
1481 mapit:
1482 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1486 * given a list of ordered sums record them in the inode. This happens
1487 * at IO completion time based on sums calculated at bio submission time.
1489 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1490 struct inode *inode, u64 file_offset,
1491 struct list_head *list)
1493 struct btrfs_ordered_sum *sum;
1495 btrfs_set_trans_block_group(trans, inode);
1497 list_for_each_entry(sum, list, list) {
1498 btrfs_csum_file_blocks(trans,
1499 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1501 return 0;
1504 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1505 struct extent_state **cached_state)
1507 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1508 WARN_ON(1);
1509 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1510 cached_state, GFP_NOFS);
1513 /* see btrfs_writepage_start_hook for details on why this is required */
1514 struct btrfs_writepage_fixup {
1515 struct page *page;
1516 struct btrfs_work work;
1519 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1521 struct btrfs_writepage_fixup *fixup;
1522 struct btrfs_ordered_extent *ordered;
1523 struct extent_state *cached_state = NULL;
1524 struct page *page;
1525 struct inode *inode;
1526 u64 page_start;
1527 u64 page_end;
1529 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1530 page = fixup->page;
1531 again:
1532 lock_page(page);
1533 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1534 ClearPageChecked(page);
1535 goto out_page;
1538 inode = page->mapping->host;
1539 page_start = page_offset(page);
1540 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1542 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1543 &cached_state, GFP_NOFS);
1545 /* already ordered? We're done */
1546 if (PagePrivate2(page))
1547 goto out;
1549 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1550 if (ordered) {
1551 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1552 page_end, &cached_state, GFP_NOFS);
1553 unlock_page(page);
1554 btrfs_start_ordered_extent(inode, ordered, 1);
1555 goto again;
1558 BUG();
1559 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1560 ClearPageChecked(page);
1561 out:
1562 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1563 &cached_state, GFP_NOFS);
1564 out_page:
1565 unlock_page(page);
1566 page_cache_release(page);
1567 kfree(fixup);
1571 * There are a few paths in the higher layers of the kernel that directly
1572 * set the page dirty bit without asking the filesystem if it is a
1573 * good idea. This causes problems because we want to make sure COW
1574 * properly happens and the data=ordered rules are followed.
1576 * In our case any range that doesn't have the ORDERED bit set
1577 * hasn't been properly setup for IO. We kick off an async process
1578 * to fix it up. The async helper will wait for ordered extents, set
1579 * the delalloc bit and make it safe to write the page.
1581 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1583 struct inode *inode = page->mapping->host;
1584 struct btrfs_writepage_fixup *fixup;
1585 struct btrfs_root *root = BTRFS_I(inode)->root;
1587 /* this page is properly in the ordered list */
1588 if (TestClearPagePrivate2(page))
1589 return 0;
1591 if (PageChecked(page))
1592 return -EAGAIN;
1594 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1595 if (!fixup)
1596 return -EAGAIN;
1598 SetPageChecked(page);
1599 page_cache_get(page);
1600 fixup->work.func = btrfs_writepage_fixup_worker;
1601 fixup->page = page;
1602 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1603 return -EAGAIN;
1606 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1607 struct inode *inode, u64 file_pos,
1608 u64 disk_bytenr, u64 disk_num_bytes,
1609 u64 num_bytes, u64 ram_bytes,
1610 u8 compression, u8 encryption,
1611 u16 other_encoding, int extent_type)
1613 struct btrfs_root *root = BTRFS_I(inode)->root;
1614 struct btrfs_file_extent_item *fi;
1615 struct btrfs_path *path;
1616 struct extent_buffer *leaf;
1617 struct btrfs_key ins;
1618 u64 hint;
1619 int ret;
1621 path = btrfs_alloc_path();
1622 BUG_ON(!path);
1624 path->leave_spinning = 1;
1627 * we may be replacing one extent in the tree with another.
1628 * The new extent is pinned in the extent map, and we don't want
1629 * to drop it from the cache until it is completely in the btree.
1631 * So, tell btrfs_drop_extents to leave this extent in the cache.
1632 * the caller is expected to unpin it and allow it to be merged
1633 * with the others.
1635 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1636 &hint, 0);
1637 BUG_ON(ret);
1639 ins.objectid = inode->i_ino;
1640 ins.offset = file_pos;
1641 ins.type = BTRFS_EXTENT_DATA_KEY;
1642 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1643 BUG_ON(ret);
1644 leaf = path->nodes[0];
1645 fi = btrfs_item_ptr(leaf, path->slots[0],
1646 struct btrfs_file_extent_item);
1647 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1648 btrfs_set_file_extent_type(leaf, fi, extent_type);
1649 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1650 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1651 btrfs_set_file_extent_offset(leaf, fi, 0);
1652 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1653 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1654 btrfs_set_file_extent_compression(leaf, fi, compression);
1655 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1656 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1658 btrfs_unlock_up_safe(path, 1);
1659 btrfs_set_lock_blocking(leaf);
1661 btrfs_mark_buffer_dirty(leaf);
1663 inode_add_bytes(inode, num_bytes);
1665 ins.objectid = disk_bytenr;
1666 ins.offset = disk_num_bytes;
1667 ins.type = BTRFS_EXTENT_ITEM_KEY;
1668 ret = btrfs_alloc_reserved_file_extent(trans, root,
1669 root->root_key.objectid,
1670 inode->i_ino, file_pos, &ins);
1671 BUG_ON(ret);
1672 btrfs_free_path(path);
1674 return 0;
1678 * helper function for btrfs_finish_ordered_io, this
1679 * just reads in some of the csum leaves to prime them into ram
1680 * before we start the transaction. It limits the amount of btree
1681 * reads required while inside the transaction.
1683 /* as ordered data IO finishes, this gets called so we can finish
1684 * an ordered extent if the range of bytes in the file it covers are
1685 * fully written.
1687 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1689 struct btrfs_root *root = BTRFS_I(inode)->root;
1690 struct btrfs_trans_handle *trans = NULL;
1691 struct btrfs_ordered_extent *ordered_extent = NULL;
1692 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1693 struct extent_state *cached_state = NULL;
1694 int compress_type = 0;
1695 int ret;
1696 bool nolock = false;
1698 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1699 end - start + 1);
1700 if (!ret)
1701 return 0;
1702 BUG_ON(!ordered_extent);
1704 nolock = (root == root->fs_info->tree_root);
1706 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1707 BUG_ON(!list_empty(&ordered_extent->list));
1708 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1709 if (!ret) {
1710 if (nolock)
1711 trans = btrfs_join_transaction_nolock(root, 1);
1712 else
1713 trans = btrfs_join_transaction(root, 1);
1714 BUG_ON(IS_ERR(trans));
1715 btrfs_set_trans_block_group(trans, inode);
1716 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1717 ret = btrfs_update_inode(trans, root, inode);
1718 BUG_ON(ret);
1720 goto out;
1723 lock_extent_bits(io_tree, ordered_extent->file_offset,
1724 ordered_extent->file_offset + ordered_extent->len - 1,
1725 0, &cached_state, GFP_NOFS);
1727 if (nolock)
1728 trans = btrfs_join_transaction_nolock(root, 1);
1729 else
1730 trans = btrfs_join_transaction(root, 1);
1731 BUG_ON(IS_ERR(trans));
1732 btrfs_set_trans_block_group(trans, inode);
1733 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1735 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1736 compress_type = ordered_extent->compress_type;
1737 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1738 BUG_ON(compress_type);
1739 ret = btrfs_mark_extent_written(trans, inode,
1740 ordered_extent->file_offset,
1741 ordered_extent->file_offset +
1742 ordered_extent->len);
1743 BUG_ON(ret);
1744 } else {
1745 BUG_ON(root == root->fs_info->tree_root);
1746 ret = insert_reserved_file_extent(trans, inode,
1747 ordered_extent->file_offset,
1748 ordered_extent->start,
1749 ordered_extent->disk_len,
1750 ordered_extent->len,
1751 ordered_extent->len,
1752 compress_type, 0, 0,
1753 BTRFS_FILE_EXTENT_REG);
1754 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1755 ordered_extent->file_offset,
1756 ordered_extent->len);
1757 BUG_ON(ret);
1759 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1760 ordered_extent->file_offset +
1761 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1763 add_pending_csums(trans, inode, ordered_extent->file_offset,
1764 &ordered_extent->list);
1766 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1767 ret = btrfs_update_inode(trans, root, inode);
1768 BUG_ON(ret);
1769 out:
1770 if (nolock) {
1771 if (trans)
1772 btrfs_end_transaction_nolock(trans, root);
1773 } else {
1774 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1775 if (trans)
1776 btrfs_end_transaction(trans, root);
1779 /* once for us */
1780 btrfs_put_ordered_extent(ordered_extent);
1781 /* once for the tree */
1782 btrfs_put_ordered_extent(ordered_extent);
1784 return 0;
1787 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1788 struct extent_state *state, int uptodate)
1790 ClearPagePrivate2(page);
1791 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1795 * When IO fails, either with EIO or csum verification fails, we
1796 * try other mirrors that might have a good copy of the data. This
1797 * io_failure_record is used to record state as we go through all the
1798 * mirrors. If another mirror has good data, the page is set up to date
1799 * and things continue. If a good mirror can't be found, the original
1800 * bio end_io callback is called to indicate things have failed.
1802 struct io_failure_record {
1803 struct page *page;
1804 u64 start;
1805 u64 len;
1806 u64 logical;
1807 unsigned long bio_flags;
1808 int last_mirror;
1811 static int btrfs_io_failed_hook(struct bio *failed_bio,
1812 struct page *page, u64 start, u64 end,
1813 struct extent_state *state)
1815 struct io_failure_record *failrec = NULL;
1816 u64 private;
1817 struct extent_map *em;
1818 struct inode *inode = page->mapping->host;
1819 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1820 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1821 struct bio *bio;
1822 int num_copies;
1823 int ret;
1824 int rw;
1825 u64 logical;
1827 ret = get_state_private(failure_tree, start, &private);
1828 if (ret) {
1829 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1830 if (!failrec)
1831 return -ENOMEM;
1832 failrec->start = start;
1833 failrec->len = end - start + 1;
1834 failrec->last_mirror = 0;
1835 failrec->bio_flags = 0;
1837 read_lock(&em_tree->lock);
1838 em = lookup_extent_mapping(em_tree, start, failrec->len);
1839 if (em->start > start || em->start + em->len < start) {
1840 free_extent_map(em);
1841 em = NULL;
1843 read_unlock(&em_tree->lock);
1845 if (!em || IS_ERR(em)) {
1846 kfree(failrec);
1847 return -EIO;
1849 logical = start - em->start;
1850 logical = em->block_start + logical;
1851 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1852 logical = em->block_start;
1853 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1854 extent_set_compress_type(&failrec->bio_flags,
1855 em->compress_type);
1857 failrec->logical = logical;
1858 free_extent_map(em);
1859 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1860 EXTENT_DIRTY, GFP_NOFS);
1861 set_state_private(failure_tree, start,
1862 (u64)(unsigned long)failrec);
1863 } else {
1864 failrec = (struct io_failure_record *)(unsigned long)private;
1866 num_copies = btrfs_num_copies(
1867 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1868 failrec->logical, failrec->len);
1869 failrec->last_mirror++;
1870 if (!state) {
1871 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1872 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1873 failrec->start,
1874 EXTENT_LOCKED);
1875 if (state && state->start != failrec->start)
1876 state = NULL;
1877 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1879 if (!state || failrec->last_mirror > num_copies) {
1880 set_state_private(failure_tree, failrec->start, 0);
1881 clear_extent_bits(failure_tree, failrec->start,
1882 failrec->start + failrec->len - 1,
1883 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1884 kfree(failrec);
1885 return -EIO;
1887 bio = bio_alloc(GFP_NOFS, 1);
1888 bio->bi_private = state;
1889 bio->bi_end_io = failed_bio->bi_end_io;
1890 bio->bi_sector = failrec->logical >> 9;
1891 bio->bi_bdev = failed_bio->bi_bdev;
1892 bio->bi_size = 0;
1894 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1895 if (failed_bio->bi_rw & REQ_WRITE)
1896 rw = WRITE;
1897 else
1898 rw = READ;
1900 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1901 failrec->last_mirror,
1902 failrec->bio_flags, 0);
1903 return 0;
1907 * each time an IO finishes, we do a fast check in the IO failure tree
1908 * to see if we need to process or clean up an io_failure_record
1910 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1912 u64 private;
1913 u64 private_failure;
1914 struct io_failure_record *failure;
1915 int ret;
1917 private = 0;
1918 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1919 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1920 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1921 start, &private_failure);
1922 if (ret == 0) {
1923 failure = (struct io_failure_record *)(unsigned long)
1924 private_failure;
1925 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1926 failure->start, 0);
1927 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1928 failure->start,
1929 failure->start + failure->len - 1,
1930 EXTENT_DIRTY | EXTENT_LOCKED,
1931 GFP_NOFS);
1932 kfree(failure);
1935 return 0;
1939 * when reads are done, we need to check csums to verify the data is correct
1940 * if there's a match, we allow the bio to finish. If not, we go through
1941 * the io_failure_record routines to find good copies
1943 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1944 struct extent_state *state)
1946 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1947 struct inode *inode = page->mapping->host;
1948 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1949 char *kaddr;
1950 u64 private = ~(u32)0;
1951 int ret;
1952 struct btrfs_root *root = BTRFS_I(inode)->root;
1953 u32 csum = ~(u32)0;
1955 if (PageChecked(page)) {
1956 ClearPageChecked(page);
1957 goto good;
1960 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1961 return 0;
1963 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1964 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1965 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1966 GFP_NOFS);
1967 return 0;
1970 if (state && state->start == start) {
1971 private = state->private;
1972 ret = 0;
1973 } else {
1974 ret = get_state_private(io_tree, start, &private);
1976 kaddr = kmap_atomic(page, KM_USER0);
1977 if (ret)
1978 goto zeroit;
1980 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1981 btrfs_csum_final(csum, (char *)&csum);
1982 if (csum != private)
1983 goto zeroit;
1985 kunmap_atomic(kaddr, KM_USER0);
1986 good:
1987 /* if the io failure tree for this inode is non-empty,
1988 * check to see if we've recovered from a failed IO
1990 btrfs_clean_io_failures(inode, start);
1991 return 0;
1993 zeroit:
1994 if (printk_ratelimit()) {
1995 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1996 "private %llu\n", page->mapping->host->i_ino,
1997 (unsigned long long)start, csum,
1998 (unsigned long long)private);
2000 memset(kaddr + offset, 1, end - start + 1);
2001 flush_dcache_page(page);
2002 kunmap_atomic(kaddr, KM_USER0);
2003 if (private == 0)
2004 return 0;
2005 return -EIO;
2008 struct delayed_iput {
2009 struct list_head list;
2010 struct inode *inode;
2013 void btrfs_add_delayed_iput(struct inode *inode)
2015 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2016 struct delayed_iput *delayed;
2018 if (atomic_add_unless(&inode->i_count, -1, 1))
2019 return;
2021 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2022 delayed->inode = inode;
2024 spin_lock(&fs_info->delayed_iput_lock);
2025 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2026 spin_unlock(&fs_info->delayed_iput_lock);
2029 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2031 LIST_HEAD(list);
2032 struct btrfs_fs_info *fs_info = root->fs_info;
2033 struct delayed_iput *delayed;
2034 int empty;
2036 spin_lock(&fs_info->delayed_iput_lock);
2037 empty = list_empty(&fs_info->delayed_iputs);
2038 spin_unlock(&fs_info->delayed_iput_lock);
2039 if (empty)
2040 return;
2042 down_read(&root->fs_info->cleanup_work_sem);
2043 spin_lock(&fs_info->delayed_iput_lock);
2044 list_splice_init(&fs_info->delayed_iputs, &list);
2045 spin_unlock(&fs_info->delayed_iput_lock);
2047 while (!list_empty(&list)) {
2048 delayed = list_entry(list.next, struct delayed_iput, list);
2049 list_del(&delayed->list);
2050 iput(delayed->inode);
2051 kfree(delayed);
2053 up_read(&root->fs_info->cleanup_work_sem);
2057 * calculate extra metadata reservation when snapshotting a subvolume
2058 * contains orphan files.
2060 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2061 struct btrfs_pending_snapshot *pending,
2062 u64 *bytes_to_reserve)
2064 struct btrfs_root *root;
2065 struct btrfs_block_rsv *block_rsv;
2066 u64 num_bytes;
2067 int index;
2069 root = pending->root;
2070 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2071 return;
2073 block_rsv = root->orphan_block_rsv;
2075 /* orphan block reservation for the snapshot */
2076 num_bytes = block_rsv->size;
2079 * after the snapshot is created, COWing tree blocks may use more
2080 * space than it frees. So we should make sure there is enough
2081 * reserved space.
2083 index = trans->transid & 0x1;
2084 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2085 num_bytes += block_rsv->size -
2086 (block_rsv->reserved + block_rsv->freed[index]);
2089 *bytes_to_reserve += num_bytes;
2092 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2093 struct btrfs_pending_snapshot *pending)
2095 struct btrfs_root *root = pending->root;
2096 struct btrfs_root *snap = pending->snap;
2097 struct btrfs_block_rsv *block_rsv;
2098 u64 num_bytes;
2099 int index;
2100 int ret;
2102 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2103 return;
2105 /* refill source subvolume's orphan block reservation */
2106 block_rsv = root->orphan_block_rsv;
2107 index = trans->transid & 0x1;
2108 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2109 num_bytes = block_rsv->size -
2110 (block_rsv->reserved + block_rsv->freed[index]);
2111 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2112 root->orphan_block_rsv,
2113 num_bytes);
2114 BUG_ON(ret);
2117 /* setup orphan block reservation for the snapshot */
2118 block_rsv = btrfs_alloc_block_rsv(snap);
2119 BUG_ON(!block_rsv);
2121 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2122 snap->orphan_block_rsv = block_rsv;
2124 num_bytes = root->orphan_block_rsv->size;
2125 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2126 block_rsv, num_bytes);
2127 BUG_ON(ret);
2129 #if 0
2130 /* insert orphan item for the snapshot */
2131 WARN_ON(!root->orphan_item_inserted);
2132 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2133 snap->root_key.objectid);
2134 BUG_ON(ret);
2135 snap->orphan_item_inserted = 1;
2136 #endif
2139 enum btrfs_orphan_cleanup_state {
2140 ORPHAN_CLEANUP_STARTED = 1,
2141 ORPHAN_CLEANUP_DONE = 2,
2145 * This is called in transaction commmit time. If there are no orphan
2146 * files in the subvolume, it removes orphan item and frees block_rsv
2147 * structure.
2149 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2150 struct btrfs_root *root)
2152 int ret;
2154 if (!list_empty(&root->orphan_list) ||
2155 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2156 return;
2158 if (root->orphan_item_inserted &&
2159 btrfs_root_refs(&root->root_item) > 0) {
2160 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2161 root->root_key.objectid);
2162 BUG_ON(ret);
2163 root->orphan_item_inserted = 0;
2166 if (root->orphan_block_rsv) {
2167 WARN_ON(root->orphan_block_rsv->size > 0);
2168 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2169 root->orphan_block_rsv = NULL;
2174 * This creates an orphan entry for the given inode in case something goes
2175 * wrong in the middle of an unlink/truncate.
2177 * NOTE: caller of this function should reserve 5 units of metadata for
2178 * this function.
2180 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2182 struct btrfs_root *root = BTRFS_I(inode)->root;
2183 struct btrfs_block_rsv *block_rsv = NULL;
2184 int reserve = 0;
2185 int insert = 0;
2186 int ret;
2188 if (!root->orphan_block_rsv) {
2189 block_rsv = btrfs_alloc_block_rsv(root);
2190 BUG_ON(!block_rsv);
2193 spin_lock(&root->orphan_lock);
2194 if (!root->orphan_block_rsv) {
2195 root->orphan_block_rsv = block_rsv;
2196 } else if (block_rsv) {
2197 btrfs_free_block_rsv(root, block_rsv);
2198 block_rsv = NULL;
2201 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2202 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2203 #if 0
2205 * For proper ENOSPC handling, we should do orphan
2206 * cleanup when mounting. But this introduces backward
2207 * compatibility issue.
2209 if (!xchg(&root->orphan_item_inserted, 1))
2210 insert = 2;
2211 else
2212 insert = 1;
2213 #endif
2214 insert = 1;
2215 } else {
2216 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2219 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2220 BTRFS_I(inode)->orphan_meta_reserved = 1;
2221 reserve = 1;
2223 spin_unlock(&root->orphan_lock);
2225 if (block_rsv)
2226 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2228 /* grab metadata reservation from transaction handle */
2229 if (reserve) {
2230 ret = btrfs_orphan_reserve_metadata(trans, inode);
2231 BUG_ON(ret);
2234 /* insert an orphan item to track this unlinked/truncated file */
2235 if (insert >= 1) {
2236 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2237 BUG_ON(ret);
2240 /* insert an orphan item to track subvolume contains orphan files */
2241 if (insert >= 2) {
2242 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2243 root->root_key.objectid);
2244 BUG_ON(ret);
2246 return 0;
2250 * We have done the truncate/delete so we can go ahead and remove the orphan
2251 * item for this particular inode.
2253 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2255 struct btrfs_root *root = BTRFS_I(inode)->root;
2256 int delete_item = 0;
2257 int release_rsv = 0;
2258 int ret = 0;
2260 spin_lock(&root->orphan_lock);
2261 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2262 list_del_init(&BTRFS_I(inode)->i_orphan);
2263 delete_item = 1;
2266 if (BTRFS_I(inode)->orphan_meta_reserved) {
2267 BTRFS_I(inode)->orphan_meta_reserved = 0;
2268 release_rsv = 1;
2270 spin_unlock(&root->orphan_lock);
2272 if (trans && delete_item) {
2273 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2274 BUG_ON(ret);
2277 if (release_rsv)
2278 btrfs_orphan_release_metadata(inode);
2280 return 0;
2284 * this cleans up any orphans that may be left on the list from the last use
2285 * of this root.
2287 int btrfs_orphan_cleanup(struct btrfs_root *root)
2289 struct btrfs_path *path;
2290 struct extent_buffer *leaf;
2291 struct btrfs_key key, found_key;
2292 struct btrfs_trans_handle *trans;
2293 struct inode *inode;
2294 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2296 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2297 return 0;
2299 path = btrfs_alloc_path();
2300 if (!path) {
2301 ret = -ENOMEM;
2302 goto out;
2304 path->reada = -1;
2306 key.objectid = BTRFS_ORPHAN_OBJECTID;
2307 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2308 key.offset = (u64)-1;
2310 while (1) {
2311 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2312 if (ret < 0)
2313 goto out;
2316 * if ret == 0 means we found what we were searching for, which
2317 * is weird, but possible, so only screw with path if we didnt
2318 * find the key and see if we have stuff that matches
2320 if (ret > 0) {
2321 ret = 0;
2322 if (path->slots[0] == 0)
2323 break;
2324 path->slots[0]--;
2327 /* pull out the item */
2328 leaf = path->nodes[0];
2329 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2331 /* make sure the item matches what we want */
2332 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2333 break;
2334 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2335 break;
2337 /* release the path since we're done with it */
2338 btrfs_release_path(root, path);
2341 * this is where we are basically btrfs_lookup, without the
2342 * crossing root thing. we store the inode number in the
2343 * offset of the orphan item.
2345 found_key.objectid = found_key.offset;
2346 found_key.type = BTRFS_INODE_ITEM_KEY;
2347 found_key.offset = 0;
2348 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2349 if (IS_ERR(inode)) {
2350 ret = PTR_ERR(inode);
2351 goto out;
2355 * add this inode to the orphan list so btrfs_orphan_del does
2356 * the proper thing when we hit it
2358 spin_lock(&root->orphan_lock);
2359 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2360 spin_unlock(&root->orphan_lock);
2363 * if this is a bad inode, means we actually succeeded in
2364 * removing the inode, but not the orphan record, which means
2365 * we need to manually delete the orphan since iput will just
2366 * do a destroy_inode
2368 if (is_bad_inode(inode)) {
2369 trans = btrfs_start_transaction(root, 0);
2370 if (IS_ERR(trans)) {
2371 ret = PTR_ERR(trans);
2372 goto out;
2374 btrfs_orphan_del(trans, inode);
2375 btrfs_end_transaction(trans, root);
2376 iput(inode);
2377 continue;
2380 /* if we have links, this was a truncate, lets do that */
2381 if (inode->i_nlink) {
2382 if (!S_ISREG(inode->i_mode)) {
2383 WARN_ON(1);
2384 iput(inode);
2385 continue;
2387 nr_truncate++;
2388 ret = btrfs_truncate(inode);
2389 } else {
2390 nr_unlink++;
2393 /* this will do delete_inode and everything for us */
2394 iput(inode);
2395 if (ret)
2396 goto out;
2398 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2400 if (root->orphan_block_rsv)
2401 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2402 (u64)-1);
2404 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2405 trans = btrfs_join_transaction(root, 1);
2406 if (!IS_ERR(trans))
2407 btrfs_end_transaction(trans, root);
2410 if (nr_unlink)
2411 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2412 if (nr_truncate)
2413 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2415 out:
2416 if (ret)
2417 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2418 btrfs_free_path(path);
2419 return ret;
2423 * very simple check to peek ahead in the leaf looking for xattrs. If we
2424 * don't find any xattrs, we know there can't be any acls.
2426 * slot is the slot the inode is in, objectid is the objectid of the inode
2428 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2429 int slot, u64 objectid)
2431 u32 nritems = btrfs_header_nritems(leaf);
2432 struct btrfs_key found_key;
2433 int scanned = 0;
2435 slot++;
2436 while (slot < nritems) {
2437 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2439 /* we found a different objectid, there must not be acls */
2440 if (found_key.objectid != objectid)
2441 return 0;
2443 /* we found an xattr, assume we've got an acl */
2444 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2445 return 1;
2448 * we found a key greater than an xattr key, there can't
2449 * be any acls later on
2451 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2452 return 0;
2454 slot++;
2455 scanned++;
2458 * it goes inode, inode backrefs, xattrs, extents,
2459 * so if there are a ton of hard links to an inode there can
2460 * be a lot of backrefs. Don't waste time searching too hard,
2461 * this is just an optimization
2463 if (scanned >= 8)
2464 break;
2466 /* we hit the end of the leaf before we found an xattr or
2467 * something larger than an xattr. We have to assume the inode
2468 * has acls
2470 return 1;
2474 * read an inode from the btree into the in-memory inode
2476 static void btrfs_read_locked_inode(struct inode *inode)
2478 struct btrfs_path *path;
2479 struct extent_buffer *leaf;
2480 struct btrfs_inode_item *inode_item;
2481 struct btrfs_timespec *tspec;
2482 struct btrfs_root *root = BTRFS_I(inode)->root;
2483 struct btrfs_key location;
2484 int maybe_acls;
2485 u64 alloc_group_block;
2486 u32 rdev;
2487 int ret;
2489 path = btrfs_alloc_path();
2490 BUG_ON(!path);
2491 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2493 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2494 if (ret)
2495 goto make_bad;
2497 leaf = path->nodes[0];
2498 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2499 struct btrfs_inode_item);
2501 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2502 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2503 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2504 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2505 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2507 tspec = btrfs_inode_atime(inode_item);
2508 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2509 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2511 tspec = btrfs_inode_mtime(inode_item);
2512 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2513 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2515 tspec = btrfs_inode_ctime(inode_item);
2516 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2517 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2519 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2520 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2521 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2522 inode->i_generation = BTRFS_I(inode)->generation;
2523 inode->i_rdev = 0;
2524 rdev = btrfs_inode_rdev(leaf, inode_item);
2526 BTRFS_I(inode)->index_cnt = (u64)-1;
2527 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2529 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2532 * try to precache a NULL acl entry for files that don't have
2533 * any xattrs or acls
2535 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2536 if (!maybe_acls)
2537 cache_no_acl(inode);
2539 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2540 alloc_group_block, 0);
2541 btrfs_free_path(path);
2542 inode_item = NULL;
2544 switch (inode->i_mode & S_IFMT) {
2545 case S_IFREG:
2546 inode->i_mapping->a_ops = &btrfs_aops;
2547 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2548 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2549 inode->i_fop = &btrfs_file_operations;
2550 inode->i_op = &btrfs_file_inode_operations;
2551 break;
2552 case S_IFDIR:
2553 inode->i_fop = &btrfs_dir_file_operations;
2554 if (root == root->fs_info->tree_root)
2555 inode->i_op = &btrfs_dir_ro_inode_operations;
2556 else
2557 inode->i_op = &btrfs_dir_inode_operations;
2558 break;
2559 case S_IFLNK:
2560 inode->i_op = &btrfs_symlink_inode_operations;
2561 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2562 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2563 break;
2564 default:
2565 inode->i_op = &btrfs_special_inode_operations;
2566 init_special_inode(inode, inode->i_mode, rdev);
2567 break;
2570 btrfs_update_iflags(inode);
2571 return;
2573 make_bad:
2574 btrfs_free_path(path);
2575 make_bad_inode(inode);
2579 * given a leaf and an inode, copy the inode fields into the leaf
2581 static void fill_inode_item(struct btrfs_trans_handle *trans,
2582 struct extent_buffer *leaf,
2583 struct btrfs_inode_item *item,
2584 struct inode *inode)
2586 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2587 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2588 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2589 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2590 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2592 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2593 inode->i_atime.tv_sec);
2594 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2595 inode->i_atime.tv_nsec);
2597 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2598 inode->i_mtime.tv_sec);
2599 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2600 inode->i_mtime.tv_nsec);
2602 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2603 inode->i_ctime.tv_sec);
2604 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2605 inode->i_ctime.tv_nsec);
2607 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2608 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2609 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2610 btrfs_set_inode_transid(leaf, item, trans->transid);
2611 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2612 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2613 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2617 * copy everything in the in-memory inode into the btree.
2619 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2620 struct btrfs_root *root, struct inode *inode)
2622 struct btrfs_inode_item *inode_item;
2623 struct btrfs_path *path;
2624 struct extent_buffer *leaf;
2625 int ret;
2627 path = btrfs_alloc_path();
2628 BUG_ON(!path);
2629 path->leave_spinning = 1;
2630 ret = btrfs_lookup_inode(trans, root, path,
2631 &BTRFS_I(inode)->location, 1);
2632 if (ret) {
2633 if (ret > 0)
2634 ret = -ENOENT;
2635 goto failed;
2638 btrfs_unlock_up_safe(path, 1);
2639 leaf = path->nodes[0];
2640 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2641 struct btrfs_inode_item);
2643 fill_inode_item(trans, leaf, inode_item, inode);
2644 btrfs_mark_buffer_dirty(leaf);
2645 btrfs_set_inode_last_trans(trans, inode);
2646 ret = 0;
2647 failed:
2648 btrfs_free_path(path);
2649 return ret;
2654 * unlink helper that gets used here in inode.c and in the tree logging
2655 * recovery code. It remove a link in a directory with a given name, and
2656 * also drops the back refs in the inode to the directory
2658 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2659 struct btrfs_root *root,
2660 struct inode *dir, struct inode *inode,
2661 const char *name, int name_len)
2663 struct btrfs_path *path;
2664 int ret = 0;
2665 struct extent_buffer *leaf;
2666 struct btrfs_dir_item *di;
2667 struct btrfs_key key;
2668 u64 index;
2670 path = btrfs_alloc_path();
2671 if (!path) {
2672 ret = -ENOMEM;
2673 goto out;
2676 path->leave_spinning = 1;
2677 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2678 name, name_len, -1);
2679 if (IS_ERR(di)) {
2680 ret = PTR_ERR(di);
2681 goto err;
2683 if (!di) {
2684 ret = -ENOENT;
2685 goto err;
2687 leaf = path->nodes[0];
2688 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2689 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2690 if (ret)
2691 goto err;
2692 btrfs_release_path(root, path);
2694 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2695 inode->i_ino,
2696 dir->i_ino, &index);
2697 if (ret) {
2698 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2699 "inode %lu parent %lu\n", name_len, name,
2700 inode->i_ino, dir->i_ino);
2701 goto err;
2704 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2705 index, name, name_len, -1);
2706 if (IS_ERR(di)) {
2707 ret = PTR_ERR(di);
2708 goto err;
2710 if (!di) {
2711 ret = -ENOENT;
2712 goto err;
2714 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2715 btrfs_release_path(root, path);
2717 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2718 inode, dir->i_ino);
2719 BUG_ON(ret != 0 && ret != -ENOENT);
2721 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2722 dir, index);
2723 if (ret == -ENOENT)
2724 ret = 0;
2725 err:
2726 btrfs_free_path(path);
2727 if (ret)
2728 goto out;
2730 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2731 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2732 btrfs_update_inode(trans, root, dir);
2733 btrfs_drop_nlink(inode);
2734 ret = btrfs_update_inode(trans, root, inode);
2735 out:
2736 return ret;
2739 /* helper to check if there is any shared block in the path */
2740 static int check_path_shared(struct btrfs_root *root,
2741 struct btrfs_path *path)
2743 struct extent_buffer *eb;
2744 int level;
2745 u64 refs = 1;
2747 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2748 int ret;
2750 if (!path->nodes[level])
2751 break;
2752 eb = path->nodes[level];
2753 if (!btrfs_block_can_be_shared(root, eb))
2754 continue;
2755 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2756 &refs, NULL);
2757 if (refs > 1)
2758 return 1;
2760 return 0;
2764 * helper to start transaction for unlink and rmdir.
2766 * unlink and rmdir are special in btrfs, they do not always free space.
2767 * so in enospc case, we should make sure they will free space before
2768 * allowing them to use the global metadata reservation.
2770 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2771 struct dentry *dentry)
2773 struct btrfs_trans_handle *trans;
2774 struct btrfs_root *root = BTRFS_I(dir)->root;
2775 struct btrfs_path *path;
2776 struct btrfs_inode_ref *ref;
2777 struct btrfs_dir_item *di;
2778 struct inode *inode = dentry->d_inode;
2779 u64 index;
2780 int check_link = 1;
2781 int err = -ENOSPC;
2782 int ret;
2784 trans = btrfs_start_transaction(root, 10);
2785 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2786 return trans;
2788 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2789 return ERR_PTR(-ENOSPC);
2791 /* check if there is someone else holds reference */
2792 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2793 return ERR_PTR(-ENOSPC);
2795 if (atomic_read(&inode->i_count) > 2)
2796 return ERR_PTR(-ENOSPC);
2798 if (xchg(&root->fs_info->enospc_unlink, 1))
2799 return ERR_PTR(-ENOSPC);
2801 path = btrfs_alloc_path();
2802 if (!path) {
2803 root->fs_info->enospc_unlink = 0;
2804 return ERR_PTR(-ENOMEM);
2807 trans = btrfs_start_transaction(root, 0);
2808 if (IS_ERR(trans)) {
2809 btrfs_free_path(path);
2810 root->fs_info->enospc_unlink = 0;
2811 return trans;
2814 path->skip_locking = 1;
2815 path->search_commit_root = 1;
2817 ret = btrfs_lookup_inode(trans, root, path,
2818 &BTRFS_I(dir)->location, 0);
2819 if (ret < 0) {
2820 err = ret;
2821 goto out;
2823 if (ret == 0) {
2824 if (check_path_shared(root, path))
2825 goto out;
2826 } else {
2827 check_link = 0;
2829 btrfs_release_path(root, path);
2831 ret = btrfs_lookup_inode(trans, root, path,
2832 &BTRFS_I(inode)->location, 0);
2833 if (ret < 0) {
2834 err = ret;
2835 goto out;
2837 if (ret == 0) {
2838 if (check_path_shared(root, path))
2839 goto out;
2840 } else {
2841 check_link = 0;
2843 btrfs_release_path(root, path);
2845 if (ret == 0 && S_ISREG(inode->i_mode)) {
2846 ret = btrfs_lookup_file_extent(trans, root, path,
2847 inode->i_ino, (u64)-1, 0);
2848 if (ret < 0) {
2849 err = ret;
2850 goto out;
2852 BUG_ON(ret == 0);
2853 if (check_path_shared(root, path))
2854 goto out;
2855 btrfs_release_path(root, path);
2858 if (!check_link) {
2859 err = 0;
2860 goto out;
2863 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2864 dentry->d_name.name, dentry->d_name.len, 0);
2865 if (IS_ERR(di)) {
2866 err = PTR_ERR(di);
2867 goto out;
2869 if (di) {
2870 if (check_path_shared(root, path))
2871 goto out;
2872 } else {
2873 err = 0;
2874 goto out;
2876 btrfs_release_path(root, path);
2878 ref = btrfs_lookup_inode_ref(trans, root, path,
2879 dentry->d_name.name, dentry->d_name.len,
2880 inode->i_ino, dir->i_ino, 0);
2881 if (IS_ERR(ref)) {
2882 err = PTR_ERR(ref);
2883 goto out;
2885 BUG_ON(!ref);
2886 if (check_path_shared(root, path))
2887 goto out;
2888 index = btrfs_inode_ref_index(path->nodes[0], ref);
2889 btrfs_release_path(root, path);
2891 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2892 dentry->d_name.name, dentry->d_name.len, 0);
2893 if (IS_ERR(di)) {
2894 err = PTR_ERR(di);
2895 goto out;
2897 BUG_ON(ret == -ENOENT);
2898 if (check_path_shared(root, path))
2899 goto out;
2901 err = 0;
2902 out:
2903 btrfs_free_path(path);
2904 if (err) {
2905 btrfs_end_transaction(trans, root);
2906 root->fs_info->enospc_unlink = 0;
2907 return ERR_PTR(err);
2910 trans->block_rsv = &root->fs_info->global_block_rsv;
2911 return trans;
2914 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2915 struct btrfs_root *root)
2917 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2918 BUG_ON(!root->fs_info->enospc_unlink);
2919 root->fs_info->enospc_unlink = 0;
2921 btrfs_end_transaction_throttle(trans, root);
2924 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2926 struct btrfs_root *root = BTRFS_I(dir)->root;
2927 struct btrfs_trans_handle *trans;
2928 struct inode *inode = dentry->d_inode;
2929 int ret;
2930 unsigned long nr = 0;
2932 trans = __unlink_start_trans(dir, dentry);
2933 if (IS_ERR(trans))
2934 return PTR_ERR(trans);
2936 btrfs_set_trans_block_group(trans, dir);
2938 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2940 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2941 dentry->d_name.name, dentry->d_name.len);
2942 BUG_ON(ret);
2944 if (inode->i_nlink == 0) {
2945 ret = btrfs_orphan_add(trans, inode);
2946 BUG_ON(ret);
2949 nr = trans->blocks_used;
2950 __unlink_end_trans(trans, root);
2951 btrfs_btree_balance_dirty(root, nr);
2952 return ret;
2955 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2956 struct btrfs_root *root,
2957 struct inode *dir, u64 objectid,
2958 const char *name, int name_len)
2960 struct btrfs_path *path;
2961 struct extent_buffer *leaf;
2962 struct btrfs_dir_item *di;
2963 struct btrfs_key key;
2964 u64 index;
2965 int ret;
2967 path = btrfs_alloc_path();
2968 if (!path)
2969 return -ENOMEM;
2971 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2972 name, name_len, -1);
2973 BUG_ON(!di || IS_ERR(di));
2975 leaf = path->nodes[0];
2976 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2977 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2978 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2979 BUG_ON(ret);
2980 btrfs_release_path(root, path);
2982 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2983 objectid, root->root_key.objectid,
2984 dir->i_ino, &index, name, name_len);
2985 if (ret < 0) {
2986 BUG_ON(ret != -ENOENT);
2987 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2988 name, name_len);
2989 BUG_ON(!di || IS_ERR(di));
2991 leaf = path->nodes[0];
2992 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2993 btrfs_release_path(root, path);
2994 index = key.offset;
2997 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2998 index, name, name_len, -1);
2999 BUG_ON(!di || IS_ERR(di));
3001 leaf = path->nodes[0];
3002 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3003 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3004 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3005 BUG_ON(ret);
3006 btrfs_release_path(root, path);
3008 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3009 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3010 ret = btrfs_update_inode(trans, root, dir);
3011 BUG_ON(ret);
3013 btrfs_free_path(path);
3014 return 0;
3017 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3019 struct inode *inode = dentry->d_inode;
3020 int err = 0;
3021 struct btrfs_root *root = BTRFS_I(dir)->root;
3022 struct btrfs_trans_handle *trans;
3023 unsigned long nr = 0;
3025 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3026 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3027 return -ENOTEMPTY;
3029 trans = __unlink_start_trans(dir, dentry);
3030 if (IS_ERR(trans))
3031 return PTR_ERR(trans);
3033 btrfs_set_trans_block_group(trans, dir);
3035 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3036 err = btrfs_unlink_subvol(trans, root, dir,
3037 BTRFS_I(inode)->location.objectid,
3038 dentry->d_name.name,
3039 dentry->d_name.len);
3040 goto out;
3043 err = btrfs_orphan_add(trans, inode);
3044 if (err)
3045 goto out;
3047 /* now the directory is empty */
3048 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3049 dentry->d_name.name, dentry->d_name.len);
3050 if (!err)
3051 btrfs_i_size_write(inode, 0);
3052 out:
3053 nr = trans->blocks_used;
3054 __unlink_end_trans(trans, root);
3055 btrfs_btree_balance_dirty(root, nr);
3057 return err;
3060 #if 0
3062 * when truncating bytes in a file, it is possible to avoid reading
3063 * the leaves that contain only checksum items. This can be the
3064 * majority of the IO required to delete a large file, but it must
3065 * be done carefully.
3067 * The keys in the level just above the leaves are checked to make sure
3068 * the lowest key in a given leaf is a csum key, and starts at an offset
3069 * after the new size.
3071 * Then the key for the next leaf is checked to make sure it also has
3072 * a checksum item for the same file. If it does, we know our target leaf
3073 * contains only checksum items, and it can be safely freed without reading
3074 * it.
3076 * This is just an optimization targeted at large files. It may do
3077 * nothing. It will return 0 unless things went badly.
3079 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3080 struct btrfs_root *root,
3081 struct btrfs_path *path,
3082 struct inode *inode, u64 new_size)
3084 struct btrfs_key key;
3085 int ret;
3086 int nritems;
3087 struct btrfs_key found_key;
3088 struct btrfs_key other_key;
3089 struct btrfs_leaf_ref *ref;
3090 u64 leaf_gen;
3091 u64 leaf_start;
3093 path->lowest_level = 1;
3094 key.objectid = inode->i_ino;
3095 key.type = BTRFS_CSUM_ITEM_KEY;
3096 key.offset = new_size;
3097 again:
3098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3099 if (ret < 0)
3100 goto out;
3102 if (path->nodes[1] == NULL) {
3103 ret = 0;
3104 goto out;
3106 ret = 0;
3107 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3108 nritems = btrfs_header_nritems(path->nodes[1]);
3110 if (!nritems)
3111 goto out;
3113 if (path->slots[1] >= nritems)
3114 goto next_node;
3116 /* did we find a key greater than anything we want to delete? */
3117 if (found_key.objectid > inode->i_ino ||
3118 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3119 goto out;
3121 /* we check the next key in the node to make sure the leave contains
3122 * only checksum items. This comparison doesn't work if our
3123 * leaf is the last one in the node
3125 if (path->slots[1] + 1 >= nritems) {
3126 next_node:
3127 /* search forward from the last key in the node, this
3128 * will bring us into the next node in the tree
3130 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3132 /* unlikely, but we inc below, so check to be safe */
3133 if (found_key.offset == (u64)-1)
3134 goto out;
3136 /* search_forward needs a path with locks held, do the
3137 * search again for the original key. It is possible
3138 * this will race with a balance and return a path that
3139 * we could modify, but this drop is just an optimization
3140 * and is allowed to miss some leaves.
3142 btrfs_release_path(root, path);
3143 found_key.offset++;
3145 /* setup a max key for search_forward */
3146 other_key.offset = (u64)-1;
3147 other_key.type = key.type;
3148 other_key.objectid = key.objectid;
3150 path->keep_locks = 1;
3151 ret = btrfs_search_forward(root, &found_key, &other_key,
3152 path, 0, 0);
3153 path->keep_locks = 0;
3154 if (ret || found_key.objectid != key.objectid ||
3155 found_key.type != key.type) {
3156 ret = 0;
3157 goto out;
3160 key.offset = found_key.offset;
3161 btrfs_release_path(root, path);
3162 cond_resched();
3163 goto again;
3166 /* we know there's one more slot after us in the tree,
3167 * read that key so we can verify it is also a checksum item
3169 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3171 if (found_key.objectid < inode->i_ino)
3172 goto next_key;
3174 if (found_key.type != key.type || found_key.offset < new_size)
3175 goto next_key;
3178 * if the key for the next leaf isn't a csum key from this objectid,
3179 * we can't be sure there aren't good items inside this leaf.
3180 * Bail out
3182 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3183 goto out;
3185 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3186 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3188 * it is safe to delete this leaf, it contains only
3189 * csum items from this inode at an offset >= new_size
3191 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3192 BUG_ON(ret);
3194 if (root->ref_cows && leaf_gen < trans->transid) {
3195 ref = btrfs_alloc_leaf_ref(root, 0);
3196 if (ref) {
3197 ref->root_gen = root->root_key.offset;
3198 ref->bytenr = leaf_start;
3199 ref->owner = 0;
3200 ref->generation = leaf_gen;
3201 ref->nritems = 0;
3203 btrfs_sort_leaf_ref(ref);
3205 ret = btrfs_add_leaf_ref(root, ref, 0);
3206 WARN_ON(ret);
3207 btrfs_free_leaf_ref(root, ref);
3208 } else {
3209 WARN_ON(1);
3212 next_key:
3213 btrfs_release_path(root, path);
3215 if (other_key.objectid == inode->i_ino &&
3216 other_key.type == key.type && other_key.offset > key.offset) {
3217 key.offset = other_key.offset;
3218 cond_resched();
3219 goto again;
3221 ret = 0;
3222 out:
3223 /* fixup any changes we've made to the path */
3224 path->lowest_level = 0;
3225 path->keep_locks = 0;
3226 btrfs_release_path(root, path);
3227 return ret;
3230 #endif
3233 * this can truncate away extent items, csum items and directory items.
3234 * It starts at a high offset and removes keys until it can't find
3235 * any higher than new_size
3237 * csum items that cross the new i_size are truncated to the new size
3238 * as well.
3240 * min_type is the minimum key type to truncate down to. If set to 0, this
3241 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3243 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3244 struct btrfs_root *root,
3245 struct inode *inode,
3246 u64 new_size, u32 min_type)
3248 struct btrfs_path *path;
3249 struct extent_buffer *leaf;
3250 struct btrfs_file_extent_item *fi;
3251 struct btrfs_key key;
3252 struct btrfs_key found_key;
3253 u64 extent_start = 0;
3254 u64 extent_num_bytes = 0;
3255 u64 extent_offset = 0;
3256 u64 item_end = 0;
3257 u64 mask = root->sectorsize - 1;
3258 u32 found_type = (u8)-1;
3259 int found_extent;
3260 int del_item;
3261 int pending_del_nr = 0;
3262 int pending_del_slot = 0;
3263 int extent_type = -1;
3264 int encoding;
3265 int ret;
3266 int err = 0;
3268 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3270 if (root->ref_cows || root == root->fs_info->tree_root)
3271 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3273 path = btrfs_alloc_path();
3274 BUG_ON(!path);
3275 path->reada = -1;
3277 key.objectid = inode->i_ino;
3278 key.offset = (u64)-1;
3279 key.type = (u8)-1;
3281 search_again:
3282 path->leave_spinning = 1;
3283 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3284 if (ret < 0) {
3285 err = ret;
3286 goto out;
3289 if (ret > 0) {
3290 /* there are no items in the tree for us to truncate, we're
3291 * done
3293 if (path->slots[0] == 0)
3294 goto out;
3295 path->slots[0]--;
3298 while (1) {
3299 fi = NULL;
3300 leaf = path->nodes[0];
3301 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3302 found_type = btrfs_key_type(&found_key);
3303 encoding = 0;
3305 if (found_key.objectid != inode->i_ino)
3306 break;
3308 if (found_type < min_type)
3309 break;
3311 item_end = found_key.offset;
3312 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3313 fi = btrfs_item_ptr(leaf, path->slots[0],
3314 struct btrfs_file_extent_item);
3315 extent_type = btrfs_file_extent_type(leaf, fi);
3316 encoding = btrfs_file_extent_compression(leaf, fi);
3317 encoding |= btrfs_file_extent_encryption(leaf, fi);
3318 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3320 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3321 item_end +=
3322 btrfs_file_extent_num_bytes(leaf, fi);
3323 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3324 item_end += btrfs_file_extent_inline_len(leaf,
3325 fi);
3327 item_end--;
3329 if (found_type > min_type) {
3330 del_item = 1;
3331 } else {
3332 if (item_end < new_size)
3333 break;
3334 if (found_key.offset >= new_size)
3335 del_item = 1;
3336 else
3337 del_item = 0;
3339 found_extent = 0;
3340 /* FIXME, shrink the extent if the ref count is only 1 */
3341 if (found_type != BTRFS_EXTENT_DATA_KEY)
3342 goto delete;
3344 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3345 u64 num_dec;
3346 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3347 if (!del_item && !encoding) {
3348 u64 orig_num_bytes =
3349 btrfs_file_extent_num_bytes(leaf, fi);
3350 extent_num_bytes = new_size -
3351 found_key.offset + root->sectorsize - 1;
3352 extent_num_bytes = extent_num_bytes &
3353 ~((u64)root->sectorsize - 1);
3354 btrfs_set_file_extent_num_bytes(leaf, fi,
3355 extent_num_bytes);
3356 num_dec = (orig_num_bytes -
3357 extent_num_bytes);
3358 if (root->ref_cows && extent_start != 0)
3359 inode_sub_bytes(inode, num_dec);
3360 btrfs_mark_buffer_dirty(leaf);
3361 } else {
3362 extent_num_bytes =
3363 btrfs_file_extent_disk_num_bytes(leaf,
3364 fi);
3365 extent_offset = found_key.offset -
3366 btrfs_file_extent_offset(leaf, fi);
3368 /* FIXME blocksize != 4096 */
3369 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3370 if (extent_start != 0) {
3371 found_extent = 1;
3372 if (root->ref_cows)
3373 inode_sub_bytes(inode, num_dec);
3376 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3378 * we can't truncate inline items that have had
3379 * special encodings
3381 if (!del_item &&
3382 btrfs_file_extent_compression(leaf, fi) == 0 &&
3383 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3384 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3385 u32 size = new_size - found_key.offset;
3387 if (root->ref_cows) {
3388 inode_sub_bytes(inode, item_end + 1 -
3389 new_size);
3391 size =
3392 btrfs_file_extent_calc_inline_size(size);
3393 ret = btrfs_truncate_item(trans, root, path,
3394 size, 1);
3395 BUG_ON(ret);
3396 } else if (root->ref_cows) {
3397 inode_sub_bytes(inode, item_end + 1 -
3398 found_key.offset);
3401 delete:
3402 if (del_item) {
3403 if (!pending_del_nr) {
3404 /* no pending yet, add ourselves */
3405 pending_del_slot = path->slots[0];
3406 pending_del_nr = 1;
3407 } else if (pending_del_nr &&
3408 path->slots[0] + 1 == pending_del_slot) {
3409 /* hop on the pending chunk */
3410 pending_del_nr++;
3411 pending_del_slot = path->slots[0];
3412 } else {
3413 BUG();
3415 } else {
3416 break;
3418 if (found_extent && (root->ref_cows ||
3419 root == root->fs_info->tree_root)) {
3420 btrfs_set_path_blocking(path);
3421 ret = btrfs_free_extent(trans, root, extent_start,
3422 extent_num_bytes, 0,
3423 btrfs_header_owner(leaf),
3424 inode->i_ino, extent_offset);
3425 BUG_ON(ret);
3428 if (found_type == BTRFS_INODE_ITEM_KEY)
3429 break;
3431 if (path->slots[0] == 0 ||
3432 path->slots[0] != pending_del_slot) {
3433 if (root->ref_cows) {
3434 err = -EAGAIN;
3435 goto out;
3437 if (pending_del_nr) {
3438 ret = btrfs_del_items(trans, root, path,
3439 pending_del_slot,
3440 pending_del_nr);
3441 BUG_ON(ret);
3442 pending_del_nr = 0;
3444 btrfs_release_path(root, path);
3445 goto search_again;
3446 } else {
3447 path->slots[0]--;
3450 out:
3451 if (pending_del_nr) {
3452 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3453 pending_del_nr);
3454 BUG_ON(ret);
3456 btrfs_free_path(path);
3457 return err;
3461 * taken from block_truncate_page, but does cow as it zeros out
3462 * any bytes left in the last page in the file.
3464 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3466 struct inode *inode = mapping->host;
3467 struct btrfs_root *root = BTRFS_I(inode)->root;
3468 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3469 struct btrfs_ordered_extent *ordered;
3470 struct extent_state *cached_state = NULL;
3471 char *kaddr;
3472 u32 blocksize = root->sectorsize;
3473 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3474 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3475 struct page *page;
3476 int ret = 0;
3477 u64 page_start;
3478 u64 page_end;
3480 if ((offset & (blocksize - 1)) == 0)
3481 goto out;
3482 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3483 if (ret)
3484 goto out;
3486 ret = -ENOMEM;
3487 again:
3488 page = grab_cache_page(mapping, index);
3489 if (!page) {
3490 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3491 goto out;
3494 page_start = page_offset(page);
3495 page_end = page_start + PAGE_CACHE_SIZE - 1;
3497 if (!PageUptodate(page)) {
3498 ret = btrfs_readpage(NULL, page);
3499 lock_page(page);
3500 if (page->mapping != mapping) {
3501 unlock_page(page);
3502 page_cache_release(page);
3503 goto again;
3505 if (!PageUptodate(page)) {
3506 ret = -EIO;
3507 goto out_unlock;
3510 wait_on_page_writeback(page);
3512 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3513 GFP_NOFS);
3514 set_page_extent_mapped(page);
3516 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3517 if (ordered) {
3518 unlock_extent_cached(io_tree, page_start, page_end,
3519 &cached_state, GFP_NOFS);
3520 unlock_page(page);
3521 page_cache_release(page);
3522 btrfs_start_ordered_extent(inode, ordered, 1);
3523 btrfs_put_ordered_extent(ordered);
3524 goto again;
3527 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3528 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3529 0, 0, &cached_state, GFP_NOFS);
3531 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3532 &cached_state);
3533 if (ret) {
3534 unlock_extent_cached(io_tree, page_start, page_end,
3535 &cached_state, GFP_NOFS);
3536 goto out_unlock;
3539 ret = 0;
3540 if (offset != PAGE_CACHE_SIZE) {
3541 kaddr = kmap(page);
3542 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3543 flush_dcache_page(page);
3544 kunmap(page);
3546 ClearPageChecked(page);
3547 set_page_dirty(page);
3548 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3549 GFP_NOFS);
3551 out_unlock:
3552 if (ret)
3553 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3554 unlock_page(page);
3555 page_cache_release(page);
3556 out:
3557 return ret;
3561 * This function puts in dummy file extents for the area we're creating a hole
3562 * for. So if we are truncating this file to a larger size we need to insert
3563 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3564 * the range between oldsize and size
3566 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3568 struct btrfs_trans_handle *trans;
3569 struct btrfs_root *root = BTRFS_I(inode)->root;
3570 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3571 struct extent_map *em = NULL;
3572 struct extent_state *cached_state = NULL;
3573 u64 mask = root->sectorsize - 1;
3574 u64 hole_start = (oldsize + mask) & ~mask;
3575 u64 block_end = (size + mask) & ~mask;
3576 u64 last_byte;
3577 u64 cur_offset;
3578 u64 hole_size;
3579 int err = 0;
3581 if (size <= hole_start)
3582 return 0;
3584 while (1) {
3585 struct btrfs_ordered_extent *ordered;
3586 btrfs_wait_ordered_range(inode, hole_start,
3587 block_end - hole_start);
3588 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3589 &cached_state, GFP_NOFS);
3590 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3591 if (!ordered)
3592 break;
3593 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3594 &cached_state, GFP_NOFS);
3595 btrfs_put_ordered_extent(ordered);
3598 cur_offset = hole_start;
3599 while (1) {
3600 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3601 block_end - cur_offset, 0);
3602 BUG_ON(IS_ERR(em) || !em);
3603 last_byte = min(extent_map_end(em), block_end);
3604 last_byte = (last_byte + mask) & ~mask;
3605 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3606 u64 hint_byte = 0;
3607 hole_size = last_byte - cur_offset;
3609 trans = btrfs_start_transaction(root, 2);
3610 if (IS_ERR(trans)) {
3611 err = PTR_ERR(trans);
3612 break;
3614 btrfs_set_trans_block_group(trans, inode);
3616 err = btrfs_drop_extents(trans, inode, cur_offset,
3617 cur_offset + hole_size,
3618 &hint_byte, 1);
3619 if (err)
3620 break;
3622 err = btrfs_insert_file_extent(trans, root,
3623 inode->i_ino, cur_offset, 0,
3624 0, hole_size, 0, hole_size,
3625 0, 0, 0);
3626 if (err)
3627 break;
3629 btrfs_drop_extent_cache(inode, hole_start,
3630 last_byte - 1, 0);
3632 btrfs_end_transaction(trans, root);
3634 free_extent_map(em);
3635 em = NULL;
3636 cur_offset = last_byte;
3637 if (cur_offset >= block_end)
3638 break;
3641 free_extent_map(em);
3642 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3643 GFP_NOFS);
3644 return err;
3647 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3649 loff_t oldsize = i_size_read(inode);
3650 int ret;
3652 if (newsize == oldsize)
3653 return 0;
3655 if (newsize > oldsize) {
3656 i_size_write(inode, newsize);
3657 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3658 truncate_pagecache(inode, oldsize, newsize);
3659 ret = btrfs_cont_expand(inode, oldsize, newsize);
3660 if (ret) {
3661 btrfs_setsize(inode, oldsize);
3662 return ret;
3665 mark_inode_dirty(inode);
3666 } else {
3669 * We're truncating a file that used to have good data down to
3670 * zero. Make sure it gets into the ordered flush list so that
3671 * any new writes get down to disk quickly.
3673 if (newsize == 0)
3674 BTRFS_I(inode)->ordered_data_close = 1;
3676 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3677 truncate_setsize(inode, newsize);
3678 ret = btrfs_truncate(inode);
3681 return ret;
3684 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3686 struct inode *inode = dentry->d_inode;
3687 struct btrfs_root *root = BTRFS_I(inode)->root;
3688 int err;
3690 if (btrfs_root_readonly(root))
3691 return -EROFS;
3693 err = inode_change_ok(inode, attr);
3694 if (err)
3695 return err;
3697 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3698 err = btrfs_setsize(inode, attr->ia_size);
3699 if (err)
3700 return err;
3703 if (attr->ia_valid) {
3704 setattr_copy(inode, attr);
3705 mark_inode_dirty(inode);
3707 if (attr->ia_valid & ATTR_MODE)
3708 err = btrfs_acl_chmod(inode);
3711 return err;
3714 void btrfs_evict_inode(struct inode *inode)
3716 struct btrfs_trans_handle *trans;
3717 struct btrfs_root *root = BTRFS_I(inode)->root;
3718 unsigned long nr;
3719 int ret;
3721 truncate_inode_pages(&inode->i_data, 0);
3722 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3723 root == root->fs_info->tree_root))
3724 goto no_delete;
3726 if (is_bad_inode(inode)) {
3727 btrfs_orphan_del(NULL, inode);
3728 goto no_delete;
3730 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3731 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3733 if (root->fs_info->log_root_recovering) {
3734 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3735 goto no_delete;
3738 if (inode->i_nlink > 0) {
3739 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3740 goto no_delete;
3743 btrfs_i_size_write(inode, 0);
3745 while (1) {
3746 trans = btrfs_start_transaction(root, 0);
3747 BUG_ON(IS_ERR(trans));
3748 btrfs_set_trans_block_group(trans, inode);
3749 trans->block_rsv = root->orphan_block_rsv;
3751 ret = btrfs_block_rsv_check(trans, root,
3752 root->orphan_block_rsv, 0, 5);
3753 if (ret) {
3754 BUG_ON(ret != -EAGAIN);
3755 ret = btrfs_commit_transaction(trans, root);
3756 BUG_ON(ret);
3757 continue;
3760 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3761 if (ret != -EAGAIN)
3762 break;
3764 nr = trans->blocks_used;
3765 btrfs_end_transaction(trans, root);
3766 trans = NULL;
3767 btrfs_btree_balance_dirty(root, nr);
3771 if (ret == 0) {
3772 ret = btrfs_orphan_del(trans, inode);
3773 BUG_ON(ret);
3776 nr = trans->blocks_used;
3777 btrfs_end_transaction(trans, root);
3778 btrfs_btree_balance_dirty(root, nr);
3779 no_delete:
3780 end_writeback(inode);
3781 return;
3785 * this returns the key found in the dir entry in the location pointer.
3786 * If no dir entries were found, location->objectid is 0.
3788 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3789 struct btrfs_key *location)
3791 const char *name = dentry->d_name.name;
3792 int namelen = dentry->d_name.len;
3793 struct btrfs_dir_item *di;
3794 struct btrfs_path *path;
3795 struct btrfs_root *root = BTRFS_I(dir)->root;
3796 int ret = 0;
3798 path = btrfs_alloc_path();
3799 BUG_ON(!path);
3801 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3802 namelen, 0);
3803 if (IS_ERR(di))
3804 ret = PTR_ERR(di);
3806 if (!di || IS_ERR(di))
3807 goto out_err;
3809 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3810 out:
3811 btrfs_free_path(path);
3812 return ret;
3813 out_err:
3814 location->objectid = 0;
3815 goto out;
3819 * when we hit a tree root in a directory, the btrfs part of the inode
3820 * needs to be changed to reflect the root directory of the tree root. This
3821 * is kind of like crossing a mount point.
3823 static int fixup_tree_root_location(struct btrfs_root *root,
3824 struct inode *dir,
3825 struct dentry *dentry,
3826 struct btrfs_key *location,
3827 struct btrfs_root **sub_root)
3829 struct btrfs_path *path;
3830 struct btrfs_root *new_root;
3831 struct btrfs_root_ref *ref;
3832 struct extent_buffer *leaf;
3833 int ret;
3834 int err = 0;
3836 path = btrfs_alloc_path();
3837 if (!path) {
3838 err = -ENOMEM;
3839 goto out;
3842 err = -ENOENT;
3843 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3844 BTRFS_I(dir)->root->root_key.objectid,
3845 location->objectid);
3846 if (ret) {
3847 if (ret < 0)
3848 err = ret;
3849 goto out;
3852 leaf = path->nodes[0];
3853 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3854 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3855 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3856 goto out;
3858 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3859 (unsigned long)(ref + 1),
3860 dentry->d_name.len);
3861 if (ret)
3862 goto out;
3864 btrfs_release_path(root->fs_info->tree_root, path);
3866 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3867 if (IS_ERR(new_root)) {
3868 err = PTR_ERR(new_root);
3869 goto out;
3872 if (btrfs_root_refs(&new_root->root_item) == 0) {
3873 err = -ENOENT;
3874 goto out;
3877 *sub_root = new_root;
3878 location->objectid = btrfs_root_dirid(&new_root->root_item);
3879 location->type = BTRFS_INODE_ITEM_KEY;
3880 location->offset = 0;
3881 err = 0;
3882 out:
3883 btrfs_free_path(path);
3884 return err;
3887 static void inode_tree_add(struct inode *inode)
3889 struct btrfs_root *root = BTRFS_I(inode)->root;
3890 struct btrfs_inode *entry;
3891 struct rb_node **p;
3892 struct rb_node *parent;
3893 again:
3894 p = &root->inode_tree.rb_node;
3895 parent = NULL;
3897 if (inode_unhashed(inode))
3898 return;
3900 spin_lock(&root->inode_lock);
3901 while (*p) {
3902 parent = *p;
3903 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3905 if (inode->i_ino < entry->vfs_inode.i_ino)
3906 p = &parent->rb_left;
3907 else if (inode->i_ino > entry->vfs_inode.i_ino)
3908 p = &parent->rb_right;
3909 else {
3910 WARN_ON(!(entry->vfs_inode.i_state &
3911 (I_WILL_FREE | I_FREEING)));
3912 rb_erase(parent, &root->inode_tree);
3913 RB_CLEAR_NODE(parent);
3914 spin_unlock(&root->inode_lock);
3915 goto again;
3918 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3919 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3920 spin_unlock(&root->inode_lock);
3923 static void inode_tree_del(struct inode *inode)
3925 struct btrfs_root *root = BTRFS_I(inode)->root;
3926 int empty = 0;
3928 spin_lock(&root->inode_lock);
3929 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3930 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3931 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3932 empty = RB_EMPTY_ROOT(&root->inode_tree);
3934 spin_unlock(&root->inode_lock);
3937 * Free space cache has inodes in the tree root, but the tree root has a
3938 * root_refs of 0, so this could end up dropping the tree root as a
3939 * snapshot, so we need the extra !root->fs_info->tree_root check to
3940 * make sure we don't drop it.
3942 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3943 root != root->fs_info->tree_root) {
3944 synchronize_srcu(&root->fs_info->subvol_srcu);
3945 spin_lock(&root->inode_lock);
3946 empty = RB_EMPTY_ROOT(&root->inode_tree);
3947 spin_unlock(&root->inode_lock);
3948 if (empty)
3949 btrfs_add_dead_root(root);
3953 int btrfs_invalidate_inodes(struct btrfs_root *root)
3955 struct rb_node *node;
3956 struct rb_node *prev;
3957 struct btrfs_inode *entry;
3958 struct inode *inode;
3959 u64 objectid = 0;
3961 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3963 spin_lock(&root->inode_lock);
3964 again:
3965 node = root->inode_tree.rb_node;
3966 prev = NULL;
3967 while (node) {
3968 prev = node;
3969 entry = rb_entry(node, struct btrfs_inode, rb_node);
3971 if (objectid < entry->vfs_inode.i_ino)
3972 node = node->rb_left;
3973 else if (objectid > entry->vfs_inode.i_ino)
3974 node = node->rb_right;
3975 else
3976 break;
3978 if (!node) {
3979 while (prev) {
3980 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3981 if (objectid <= entry->vfs_inode.i_ino) {
3982 node = prev;
3983 break;
3985 prev = rb_next(prev);
3988 while (node) {
3989 entry = rb_entry(node, struct btrfs_inode, rb_node);
3990 objectid = entry->vfs_inode.i_ino + 1;
3991 inode = igrab(&entry->vfs_inode);
3992 if (inode) {
3993 spin_unlock(&root->inode_lock);
3994 if (atomic_read(&inode->i_count) > 1)
3995 d_prune_aliases(inode);
3997 * btrfs_drop_inode will have it removed from
3998 * the inode cache when its usage count
3999 * hits zero.
4001 iput(inode);
4002 cond_resched();
4003 spin_lock(&root->inode_lock);
4004 goto again;
4007 if (cond_resched_lock(&root->inode_lock))
4008 goto again;
4010 node = rb_next(node);
4012 spin_unlock(&root->inode_lock);
4013 return 0;
4016 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4018 struct btrfs_iget_args *args = p;
4019 inode->i_ino = args->ino;
4020 BTRFS_I(inode)->root = args->root;
4021 btrfs_set_inode_space_info(args->root, inode);
4022 return 0;
4025 static int btrfs_find_actor(struct inode *inode, void *opaque)
4027 struct btrfs_iget_args *args = opaque;
4028 return args->ino == inode->i_ino &&
4029 args->root == BTRFS_I(inode)->root;
4032 static struct inode *btrfs_iget_locked(struct super_block *s,
4033 u64 objectid,
4034 struct btrfs_root *root)
4036 struct inode *inode;
4037 struct btrfs_iget_args args;
4038 args.ino = objectid;
4039 args.root = root;
4041 inode = iget5_locked(s, objectid, btrfs_find_actor,
4042 btrfs_init_locked_inode,
4043 (void *)&args);
4044 return inode;
4047 /* Get an inode object given its location and corresponding root.
4048 * Returns in *is_new if the inode was read from disk
4050 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4051 struct btrfs_root *root, int *new)
4053 struct inode *inode;
4055 inode = btrfs_iget_locked(s, location->objectid, root);
4056 if (!inode)
4057 return ERR_PTR(-ENOMEM);
4059 if (inode->i_state & I_NEW) {
4060 BTRFS_I(inode)->root = root;
4061 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4062 btrfs_read_locked_inode(inode);
4064 inode_tree_add(inode);
4065 unlock_new_inode(inode);
4066 if (new)
4067 *new = 1;
4070 return inode;
4073 static struct inode *new_simple_dir(struct super_block *s,
4074 struct btrfs_key *key,
4075 struct btrfs_root *root)
4077 struct inode *inode = new_inode(s);
4079 if (!inode)
4080 return ERR_PTR(-ENOMEM);
4082 BTRFS_I(inode)->root = root;
4083 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4084 BTRFS_I(inode)->dummy_inode = 1;
4086 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4087 inode->i_op = &simple_dir_inode_operations;
4088 inode->i_fop = &simple_dir_operations;
4089 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4090 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4092 return inode;
4095 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4097 struct inode *inode;
4098 struct btrfs_root *root = BTRFS_I(dir)->root;
4099 struct btrfs_root *sub_root = root;
4100 struct btrfs_key location;
4101 int index;
4102 int ret;
4104 if (dentry->d_name.len > BTRFS_NAME_LEN)
4105 return ERR_PTR(-ENAMETOOLONG);
4107 ret = btrfs_inode_by_name(dir, dentry, &location);
4109 if (ret < 0)
4110 return ERR_PTR(ret);
4112 if (location.objectid == 0)
4113 return NULL;
4115 if (location.type == BTRFS_INODE_ITEM_KEY) {
4116 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4117 return inode;
4120 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4122 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4123 ret = fixup_tree_root_location(root, dir, dentry,
4124 &location, &sub_root);
4125 if (ret < 0) {
4126 if (ret != -ENOENT)
4127 inode = ERR_PTR(ret);
4128 else
4129 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4130 } else {
4131 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4133 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4135 if (!IS_ERR(inode) && root != sub_root) {
4136 down_read(&root->fs_info->cleanup_work_sem);
4137 if (!(inode->i_sb->s_flags & MS_RDONLY))
4138 ret = btrfs_orphan_cleanup(sub_root);
4139 up_read(&root->fs_info->cleanup_work_sem);
4140 if (ret)
4141 inode = ERR_PTR(ret);
4144 return inode;
4147 static int btrfs_dentry_delete(const struct dentry *dentry)
4149 struct btrfs_root *root;
4151 if (!dentry->d_inode && !IS_ROOT(dentry))
4152 dentry = dentry->d_parent;
4154 if (dentry->d_inode) {
4155 root = BTRFS_I(dentry->d_inode)->root;
4156 if (btrfs_root_refs(&root->root_item) == 0)
4157 return 1;
4159 return 0;
4162 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4163 struct nameidata *nd)
4165 struct inode *inode;
4167 inode = btrfs_lookup_dentry(dir, dentry);
4168 if (IS_ERR(inode))
4169 return ERR_CAST(inode);
4171 return d_splice_alias(inode, dentry);
4174 static unsigned char btrfs_filetype_table[] = {
4175 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4178 static int btrfs_real_readdir(struct file *filp, void *dirent,
4179 filldir_t filldir)
4181 struct inode *inode = filp->f_dentry->d_inode;
4182 struct btrfs_root *root = BTRFS_I(inode)->root;
4183 struct btrfs_item *item;
4184 struct btrfs_dir_item *di;
4185 struct btrfs_key key;
4186 struct btrfs_key found_key;
4187 struct btrfs_path *path;
4188 int ret;
4189 u32 nritems;
4190 struct extent_buffer *leaf;
4191 int slot;
4192 int advance;
4193 unsigned char d_type;
4194 int over = 0;
4195 u32 di_cur;
4196 u32 di_total;
4197 u32 di_len;
4198 int key_type = BTRFS_DIR_INDEX_KEY;
4199 char tmp_name[32];
4200 char *name_ptr;
4201 int name_len;
4203 /* FIXME, use a real flag for deciding about the key type */
4204 if (root->fs_info->tree_root == root)
4205 key_type = BTRFS_DIR_ITEM_KEY;
4207 /* special case for "." */
4208 if (filp->f_pos == 0) {
4209 over = filldir(dirent, ".", 1,
4210 1, inode->i_ino,
4211 DT_DIR);
4212 if (over)
4213 return 0;
4214 filp->f_pos = 1;
4216 /* special case for .., just use the back ref */
4217 if (filp->f_pos == 1) {
4218 u64 pino = parent_ino(filp->f_path.dentry);
4219 over = filldir(dirent, "..", 2,
4220 2, pino, DT_DIR);
4221 if (over)
4222 return 0;
4223 filp->f_pos = 2;
4225 path = btrfs_alloc_path();
4226 path->reada = 2;
4228 btrfs_set_key_type(&key, key_type);
4229 key.offset = filp->f_pos;
4230 key.objectid = inode->i_ino;
4232 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4233 if (ret < 0)
4234 goto err;
4235 advance = 0;
4237 while (1) {
4238 leaf = path->nodes[0];
4239 nritems = btrfs_header_nritems(leaf);
4240 slot = path->slots[0];
4241 if (advance || slot >= nritems) {
4242 if (slot >= nritems - 1) {
4243 ret = btrfs_next_leaf(root, path);
4244 if (ret)
4245 break;
4246 leaf = path->nodes[0];
4247 nritems = btrfs_header_nritems(leaf);
4248 slot = path->slots[0];
4249 } else {
4250 slot++;
4251 path->slots[0]++;
4255 advance = 1;
4256 item = btrfs_item_nr(leaf, slot);
4257 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4259 if (found_key.objectid != key.objectid)
4260 break;
4261 if (btrfs_key_type(&found_key) != key_type)
4262 break;
4263 if (found_key.offset < filp->f_pos)
4264 continue;
4266 filp->f_pos = found_key.offset;
4268 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4269 di_cur = 0;
4270 di_total = btrfs_item_size(leaf, item);
4272 while (di_cur < di_total) {
4273 struct btrfs_key location;
4275 if (verify_dir_item(root, leaf, di))
4276 break;
4278 name_len = btrfs_dir_name_len(leaf, di);
4279 if (name_len <= sizeof(tmp_name)) {
4280 name_ptr = tmp_name;
4281 } else {
4282 name_ptr = kmalloc(name_len, GFP_NOFS);
4283 if (!name_ptr) {
4284 ret = -ENOMEM;
4285 goto err;
4288 read_extent_buffer(leaf, name_ptr,
4289 (unsigned long)(di + 1), name_len);
4291 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4292 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4294 /* is this a reference to our own snapshot? If so
4295 * skip it
4297 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4298 location.objectid == root->root_key.objectid) {
4299 over = 0;
4300 goto skip;
4302 over = filldir(dirent, name_ptr, name_len,
4303 found_key.offset, location.objectid,
4304 d_type);
4306 skip:
4307 if (name_ptr != tmp_name)
4308 kfree(name_ptr);
4310 if (over)
4311 goto nopos;
4312 di_len = btrfs_dir_name_len(leaf, di) +
4313 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4314 di_cur += di_len;
4315 di = (struct btrfs_dir_item *)((char *)di + di_len);
4319 /* Reached end of directory/root. Bump pos past the last item. */
4320 if (key_type == BTRFS_DIR_INDEX_KEY)
4322 * 32-bit glibc will use getdents64, but then strtol -
4323 * so the last number we can serve is this.
4325 filp->f_pos = 0x7fffffff;
4326 else
4327 filp->f_pos++;
4328 nopos:
4329 ret = 0;
4330 err:
4331 btrfs_free_path(path);
4332 return ret;
4335 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4337 struct btrfs_root *root = BTRFS_I(inode)->root;
4338 struct btrfs_trans_handle *trans;
4339 int ret = 0;
4340 bool nolock = false;
4342 if (BTRFS_I(inode)->dummy_inode)
4343 return 0;
4345 smp_mb();
4346 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4348 if (wbc->sync_mode == WB_SYNC_ALL) {
4349 if (nolock)
4350 trans = btrfs_join_transaction_nolock(root, 1);
4351 else
4352 trans = btrfs_join_transaction(root, 1);
4353 if (IS_ERR(trans))
4354 return PTR_ERR(trans);
4355 btrfs_set_trans_block_group(trans, inode);
4356 if (nolock)
4357 ret = btrfs_end_transaction_nolock(trans, root);
4358 else
4359 ret = btrfs_commit_transaction(trans, root);
4361 return ret;
4365 * This is somewhat expensive, updating the tree every time the
4366 * inode changes. But, it is most likely to find the inode in cache.
4367 * FIXME, needs more benchmarking...there are no reasons other than performance
4368 * to keep or drop this code.
4370 void btrfs_dirty_inode(struct inode *inode)
4372 struct btrfs_root *root = BTRFS_I(inode)->root;
4373 struct btrfs_trans_handle *trans;
4374 int ret;
4376 if (BTRFS_I(inode)->dummy_inode)
4377 return;
4379 trans = btrfs_join_transaction(root, 1);
4380 BUG_ON(IS_ERR(trans));
4381 btrfs_set_trans_block_group(trans, inode);
4383 ret = btrfs_update_inode(trans, root, inode);
4384 if (ret && ret == -ENOSPC) {
4385 /* whoops, lets try again with the full transaction */
4386 btrfs_end_transaction(trans, root);
4387 trans = btrfs_start_transaction(root, 1);
4388 if (IS_ERR(trans)) {
4389 if (printk_ratelimit()) {
4390 printk(KERN_ERR "btrfs: fail to "
4391 "dirty inode %lu error %ld\n",
4392 inode->i_ino, PTR_ERR(trans));
4394 return;
4396 btrfs_set_trans_block_group(trans, inode);
4398 ret = btrfs_update_inode(trans, root, inode);
4399 if (ret) {
4400 if (printk_ratelimit()) {
4401 printk(KERN_ERR "btrfs: fail to "
4402 "dirty inode %lu error %d\n",
4403 inode->i_ino, ret);
4407 btrfs_end_transaction(trans, root);
4411 * find the highest existing sequence number in a directory
4412 * and then set the in-memory index_cnt variable to reflect
4413 * free sequence numbers
4415 static int btrfs_set_inode_index_count(struct inode *inode)
4417 struct btrfs_root *root = BTRFS_I(inode)->root;
4418 struct btrfs_key key, found_key;
4419 struct btrfs_path *path;
4420 struct extent_buffer *leaf;
4421 int ret;
4423 key.objectid = inode->i_ino;
4424 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4425 key.offset = (u64)-1;
4427 path = btrfs_alloc_path();
4428 if (!path)
4429 return -ENOMEM;
4431 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4432 if (ret < 0)
4433 goto out;
4434 /* FIXME: we should be able to handle this */
4435 if (ret == 0)
4436 goto out;
4437 ret = 0;
4440 * MAGIC NUMBER EXPLANATION:
4441 * since we search a directory based on f_pos we have to start at 2
4442 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4443 * else has to start at 2
4445 if (path->slots[0] == 0) {
4446 BTRFS_I(inode)->index_cnt = 2;
4447 goto out;
4450 path->slots[0]--;
4452 leaf = path->nodes[0];
4453 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4455 if (found_key.objectid != inode->i_ino ||
4456 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4457 BTRFS_I(inode)->index_cnt = 2;
4458 goto out;
4461 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4462 out:
4463 btrfs_free_path(path);
4464 return ret;
4468 * helper to find a free sequence number in a given directory. This current
4469 * code is very simple, later versions will do smarter things in the btree
4471 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4473 int ret = 0;
4475 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4476 ret = btrfs_set_inode_index_count(dir);
4477 if (ret)
4478 return ret;
4481 *index = BTRFS_I(dir)->index_cnt;
4482 BTRFS_I(dir)->index_cnt++;
4484 return ret;
4487 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4488 struct btrfs_root *root,
4489 struct inode *dir,
4490 const char *name, int name_len,
4491 u64 ref_objectid, u64 objectid,
4492 u64 alloc_hint, int mode, u64 *index)
4494 struct inode *inode;
4495 struct btrfs_inode_item *inode_item;
4496 struct btrfs_key *location;
4497 struct btrfs_path *path;
4498 struct btrfs_inode_ref *ref;
4499 struct btrfs_key key[2];
4500 u32 sizes[2];
4501 unsigned long ptr;
4502 int ret;
4503 int owner;
4505 path = btrfs_alloc_path();
4506 BUG_ON(!path);
4508 inode = new_inode(root->fs_info->sb);
4509 if (!inode)
4510 return ERR_PTR(-ENOMEM);
4512 if (dir) {
4513 ret = btrfs_set_inode_index(dir, index);
4514 if (ret) {
4515 iput(inode);
4516 return ERR_PTR(ret);
4520 * index_cnt is ignored for everything but a dir,
4521 * btrfs_get_inode_index_count has an explanation for the magic
4522 * number
4524 BTRFS_I(inode)->index_cnt = 2;
4525 BTRFS_I(inode)->root = root;
4526 BTRFS_I(inode)->generation = trans->transid;
4527 inode->i_generation = BTRFS_I(inode)->generation;
4528 btrfs_set_inode_space_info(root, inode);
4530 if (mode & S_IFDIR)
4531 owner = 0;
4532 else
4533 owner = 1;
4534 BTRFS_I(inode)->block_group =
4535 btrfs_find_block_group(root, 0, alloc_hint, owner);
4537 key[0].objectid = objectid;
4538 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4539 key[0].offset = 0;
4541 key[1].objectid = objectid;
4542 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4543 key[1].offset = ref_objectid;
4545 sizes[0] = sizeof(struct btrfs_inode_item);
4546 sizes[1] = name_len + sizeof(*ref);
4548 path->leave_spinning = 1;
4549 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4550 if (ret != 0)
4551 goto fail;
4553 inode_init_owner(inode, dir, mode);
4554 inode->i_ino = objectid;
4555 inode_set_bytes(inode, 0);
4556 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4557 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4558 struct btrfs_inode_item);
4559 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4561 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4562 struct btrfs_inode_ref);
4563 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4564 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4565 ptr = (unsigned long)(ref + 1);
4566 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4568 btrfs_mark_buffer_dirty(path->nodes[0]);
4569 btrfs_free_path(path);
4571 location = &BTRFS_I(inode)->location;
4572 location->objectid = objectid;
4573 location->offset = 0;
4574 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4576 btrfs_inherit_iflags(inode, dir);
4578 if ((mode & S_IFREG)) {
4579 if (btrfs_test_opt(root, NODATASUM))
4580 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4581 if (btrfs_test_opt(root, NODATACOW))
4582 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4585 insert_inode_hash(inode);
4586 inode_tree_add(inode);
4587 return inode;
4588 fail:
4589 if (dir)
4590 BTRFS_I(dir)->index_cnt--;
4591 btrfs_free_path(path);
4592 iput(inode);
4593 return ERR_PTR(ret);
4596 static inline u8 btrfs_inode_type(struct inode *inode)
4598 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4602 * utility function to add 'inode' into 'parent_inode' with
4603 * a give name and a given sequence number.
4604 * if 'add_backref' is true, also insert a backref from the
4605 * inode to the parent directory.
4607 int btrfs_add_link(struct btrfs_trans_handle *trans,
4608 struct inode *parent_inode, struct inode *inode,
4609 const char *name, int name_len, int add_backref, u64 index)
4611 int ret = 0;
4612 struct btrfs_key key;
4613 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4615 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4616 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4617 } else {
4618 key.objectid = inode->i_ino;
4619 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4620 key.offset = 0;
4623 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4624 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4625 key.objectid, root->root_key.objectid,
4626 parent_inode->i_ino,
4627 index, name, name_len);
4628 } else if (add_backref) {
4629 ret = btrfs_insert_inode_ref(trans, root,
4630 name, name_len, inode->i_ino,
4631 parent_inode->i_ino, index);
4634 if (ret == 0) {
4635 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4636 parent_inode->i_ino, &key,
4637 btrfs_inode_type(inode), index);
4638 BUG_ON(ret);
4640 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4641 name_len * 2);
4642 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4643 ret = btrfs_update_inode(trans, root, parent_inode);
4645 return ret;
4648 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4649 struct inode *dir, struct dentry *dentry,
4650 struct inode *inode, int backref, u64 index)
4652 int err = btrfs_add_link(trans, dir, inode,
4653 dentry->d_name.name, dentry->d_name.len,
4654 backref, index);
4655 if (!err) {
4656 d_instantiate(dentry, inode);
4657 return 0;
4659 if (err > 0)
4660 err = -EEXIST;
4661 return err;
4664 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4665 int mode, dev_t rdev)
4667 struct btrfs_trans_handle *trans;
4668 struct btrfs_root *root = BTRFS_I(dir)->root;
4669 struct inode *inode = NULL;
4670 int err;
4671 int drop_inode = 0;
4672 u64 objectid;
4673 unsigned long nr = 0;
4674 u64 index = 0;
4676 if (!new_valid_dev(rdev))
4677 return -EINVAL;
4679 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4680 if (err)
4681 return err;
4684 * 2 for inode item and ref
4685 * 2 for dir items
4686 * 1 for xattr if selinux is on
4688 trans = btrfs_start_transaction(root, 5);
4689 if (IS_ERR(trans))
4690 return PTR_ERR(trans);
4692 btrfs_set_trans_block_group(trans, dir);
4694 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4695 dentry->d_name.len, dir->i_ino, objectid,
4696 BTRFS_I(dir)->block_group, mode, &index);
4697 err = PTR_ERR(inode);
4698 if (IS_ERR(inode))
4699 goto out_unlock;
4701 err = btrfs_init_inode_security(trans, inode, dir);
4702 if (err) {
4703 drop_inode = 1;
4704 goto out_unlock;
4707 btrfs_set_trans_block_group(trans, inode);
4708 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4709 if (err)
4710 drop_inode = 1;
4711 else {
4712 inode->i_op = &btrfs_special_inode_operations;
4713 init_special_inode(inode, inode->i_mode, rdev);
4714 btrfs_update_inode(trans, root, inode);
4716 btrfs_update_inode_block_group(trans, inode);
4717 btrfs_update_inode_block_group(trans, dir);
4718 out_unlock:
4719 nr = trans->blocks_used;
4720 btrfs_end_transaction_throttle(trans, root);
4721 btrfs_btree_balance_dirty(root, nr);
4722 if (drop_inode) {
4723 inode_dec_link_count(inode);
4724 iput(inode);
4726 return err;
4729 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4730 int mode, struct nameidata *nd)
4732 struct btrfs_trans_handle *trans;
4733 struct btrfs_root *root = BTRFS_I(dir)->root;
4734 struct inode *inode = NULL;
4735 int drop_inode = 0;
4736 int err;
4737 unsigned long nr = 0;
4738 u64 objectid;
4739 u64 index = 0;
4741 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4742 if (err)
4743 return err;
4745 * 2 for inode item and ref
4746 * 2 for dir items
4747 * 1 for xattr if selinux is on
4749 trans = btrfs_start_transaction(root, 5);
4750 if (IS_ERR(trans))
4751 return PTR_ERR(trans);
4753 btrfs_set_trans_block_group(trans, dir);
4755 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4756 dentry->d_name.len, dir->i_ino, objectid,
4757 BTRFS_I(dir)->block_group, mode, &index);
4758 err = PTR_ERR(inode);
4759 if (IS_ERR(inode))
4760 goto out_unlock;
4762 err = btrfs_init_inode_security(trans, inode, dir);
4763 if (err) {
4764 drop_inode = 1;
4765 goto out_unlock;
4768 btrfs_set_trans_block_group(trans, inode);
4769 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4770 if (err)
4771 drop_inode = 1;
4772 else {
4773 inode->i_mapping->a_ops = &btrfs_aops;
4774 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4775 inode->i_fop = &btrfs_file_operations;
4776 inode->i_op = &btrfs_file_inode_operations;
4777 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4779 btrfs_update_inode_block_group(trans, inode);
4780 btrfs_update_inode_block_group(trans, dir);
4781 out_unlock:
4782 nr = trans->blocks_used;
4783 btrfs_end_transaction_throttle(trans, root);
4784 if (drop_inode) {
4785 inode_dec_link_count(inode);
4786 iput(inode);
4788 btrfs_btree_balance_dirty(root, nr);
4789 return err;
4792 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4793 struct dentry *dentry)
4795 struct btrfs_trans_handle *trans;
4796 struct btrfs_root *root = BTRFS_I(dir)->root;
4797 struct inode *inode = old_dentry->d_inode;
4798 u64 index;
4799 unsigned long nr = 0;
4800 int err;
4801 int drop_inode = 0;
4803 if (inode->i_nlink == 0)
4804 return -ENOENT;
4806 /* do not allow sys_link's with other subvols of the same device */
4807 if (root->objectid != BTRFS_I(inode)->root->objectid)
4808 return -EPERM;
4810 btrfs_inc_nlink(inode);
4811 inode->i_ctime = CURRENT_TIME;
4813 err = btrfs_set_inode_index(dir, &index);
4814 if (err)
4815 goto fail;
4818 * 2 items for inode and inode ref
4819 * 2 items for dir items
4820 * 1 item for parent inode
4822 trans = btrfs_start_transaction(root, 5);
4823 if (IS_ERR(trans)) {
4824 err = PTR_ERR(trans);
4825 goto fail;
4828 btrfs_set_trans_block_group(trans, dir);
4829 ihold(inode);
4831 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4833 if (err) {
4834 drop_inode = 1;
4835 } else {
4836 struct dentry *parent = dget_parent(dentry);
4837 btrfs_update_inode_block_group(trans, dir);
4838 err = btrfs_update_inode(trans, root, inode);
4839 BUG_ON(err);
4840 btrfs_log_new_name(trans, inode, NULL, parent);
4841 dput(parent);
4844 nr = trans->blocks_used;
4845 btrfs_end_transaction_throttle(trans, root);
4846 fail:
4847 if (drop_inode) {
4848 inode_dec_link_count(inode);
4849 iput(inode);
4851 btrfs_btree_balance_dirty(root, nr);
4852 return err;
4855 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4857 struct inode *inode = NULL;
4858 struct btrfs_trans_handle *trans;
4859 struct btrfs_root *root = BTRFS_I(dir)->root;
4860 int err = 0;
4861 int drop_on_err = 0;
4862 u64 objectid = 0;
4863 u64 index = 0;
4864 unsigned long nr = 1;
4866 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4867 if (err)
4868 return err;
4871 * 2 items for inode and ref
4872 * 2 items for dir items
4873 * 1 for xattr if selinux is on
4875 trans = btrfs_start_transaction(root, 5);
4876 if (IS_ERR(trans))
4877 return PTR_ERR(trans);
4878 btrfs_set_trans_block_group(trans, dir);
4880 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4881 dentry->d_name.len, dir->i_ino, objectid,
4882 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4883 &index);
4884 if (IS_ERR(inode)) {
4885 err = PTR_ERR(inode);
4886 goto out_fail;
4889 drop_on_err = 1;
4891 err = btrfs_init_inode_security(trans, inode, dir);
4892 if (err)
4893 goto out_fail;
4895 inode->i_op = &btrfs_dir_inode_operations;
4896 inode->i_fop = &btrfs_dir_file_operations;
4897 btrfs_set_trans_block_group(trans, inode);
4899 btrfs_i_size_write(inode, 0);
4900 err = btrfs_update_inode(trans, root, inode);
4901 if (err)
4902 goto out_fail;
4904 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4905 dentry->d_name.len, 0, index);
4906 if (err)
4907 goto out_fail;
4909 d_instantiate(dentry, inode);
4910 drop_on_err = 0;
4911 btrfs_update_inode_block_group(trans, inode);
4912 btrfs_update_inode_block_group(trans, dir);
4914 out_fail:
4915 nr = trans->blocks_used;
4916 btrfs_end_transaction_throttle(trans, root);
4917 if (drop_on_err)
4918 iput(inode);
4919 btrfs_btree_balance_dirty(root, nr);
4920 return err;
4923 /* helper for btfs_get_extent. Given an existing extent in the tree,
4924 * and an extent that you want to insert, deal with overlap and insert
4925 * the new extent into the tree.
4927 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4928 struct extent_map *existing,
4929 struct extent_map *em,
4930 u64 map_start, u64 map_len)
4932 u64 start_diff;
4934 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4935 start_diff = map_start - em->start;
4936 em->start = map_start;
4937 em->len = map_len;
4938 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4939 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4940 em->block_start += start_diff;
4941 em->block_len -= start_diff;
4943 return add_extent_mapping(em_tree, em);
4946 static noinline int uncompress_inline(struct btrfs_path *path,
4947 struct inode *inode, struct page *page,
4948 size_t pg_offset, u64 extent_offset,
4949 struct btrfs_file_extent_item *item)
4951 int ret;
4952 struct extent_buffer *leaf = path->nodes[0];
4953 char *tmp;
4954 size_t max_size;
4955 unsigned long inline_size;
4956 unsigned long ptr;
4957 int compress_type;
4959 WARN_ON(pg_offset != 0);
4960 compress_type = btrfs_file_extent_compression(leaf, item);
4961 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4962 inline_size = btrfs_file_extent_inline_item_len(leaf,
4963 btrfs_item_nr(leaf, path->slots[0]));
4964 tmp = kmalloc(inline_size, GFP_NOFS);
4965 ptr = btrfs_file_extent_inline_start(item);
4967 read_extent_buffer(leaf, tmp, ptr, inline_size);
4969 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4970 ret = btrfs_decompress(compress_type, tmp, page,
4971 extent_offset, inline_size, max_size);
4972 if (ret) {
4973 char *kaddr = kmap_atomic(page, KM_USER0);
4974 unsigned long copy_size = min_t(u64,
4975 PAGE_CACHE_SIZE - pg_offset,
4976 max_size - extent_offset);
4977 memset(kaddr + pg_offset, 0, copy_size);
4978 kunmap_atomic(kaddr, KM_USER0);
4980 kfree(tmp);
4981 return 0;
4985 * a bit scary, this does extent mapping from logical file offset to the disk.
4986 * the ugly parts come from merging extents from the disk with the in-ram
4987 * representation. This gets more complex because of the data=ordered code,
4988 * where the in-ram extents might be locked pending data=ordered completion.
4990 * This also copies inline extents directly into the page.
4993 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4994 size_t pg_offset, u64 start, u64 len,
4995 int create)
4997 int ret;
4998 int err = 0;
4999 u64 bytenr;
5000 u64 extent_start = 0;
5001 u64 extent_end = 0;
5002 u64 objectid = inode->i_ino;
5003 u32 found_type;
5004 struct btrfs_path *path = NULL;
5005 struct btrfs_root *root = BTRFS_I(inode)->root;
5006 struct btrfs_file_extent_item *item;
5007 struct extent_buffer *leaf;
5008 struct btrfs_key found_key;
5009 struct extent_map *em = NULL;
5010 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5011 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5012 struct btrfs_trans_handle *trans = NULL;
5013 int compress_type;
5015 again:
5016 read_lock(&em_tree->lock);
5017 em = lookup_extent_mapping(em_tree, start, len);
5018 if (em)
5019 em->bdev = root->fs_info->fs_devices->latest_bdev;
5020 read_unlock(&em_tree->lock);
5022 if (em) {
5023 if (em->start > start || em->start + em->len <= start)
5024 free_extent_map(em);
5025 else if (em->block_start == EXTENT_MAP_INLINE && page)
5026 free_extent_map(em);
5027 else
5028 goto out;
5030 em = alloc_extent_map(GFP_NOFS);
5031 if (!em) {
5032 err = -ENOMEM;
5033 goto out;
5035 em->bdev = root->fs_info->fs_devices->latest_bdev;
5036 em->start = EXTENT_MAP_HOLE;
5037 em->orig_start = EXTENT_MAP_HOLE;
5038 em->len = (u64)-1;
5039 em->block_len = (u64)-1;
5041 if (!path) {
5042 path = btrfs_alloc_path();
5043 BUG_ON(!path);
5046 ret = btrfs_lookup_file_extent(trans, root, path,
5047 objectid, start, trans != NULL);
5048 if (ret < 0) {
5049 err = ret;
5050 goto out;
5053 if (ret != 0) {
5054 if (path->slots[0] == 0)
5055 goto not_found;
5056 path->slots[0]--;
5059 leaf = path->nodes[0];
5060 item = btrfs_item_ptr(leaf, path->slots[0],
5061 struct btrfs_file_extent_item);
5062 /* are we inside the extent that was found? */
5063 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5064 found_type = btrfs_key_type(&found_key);
5065 if (found_key.objectid != objectid ||
5066 found_type != BTRFS_EXTENT_DATA_KEY) {
5067 goto not_found;
5070 found_type = btrfs_file_extent_type(leaf, item);
5071 extent_start = found_key.offset;
5072 compress_type = btrfs_file_extent_compression(leaf, item);
5073 if (found_type == BTRFS_FILE_EXTENT_REG ||
5074 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5075 extent_end = extent_start +
5076 btrfs_file_extent_num_bytes(leaf, item);
5077 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5078 size_t size;
5079 size = btrfs_file_extent_inline_len(leaf, item);
5080 extent_end = (extent_start + size + root->sectorsize - 1) &
5081 ~((u64)root->sectorsize - 1);
5084 if (start >= extent_end) {
5085 path->slots[0]++;
5086 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5087 ret = btrfs_next_leaf(root, path);
5088 if (ret < 0) {
5089 err = ret;
5090 goto out;
5092 if (ret > 0)
5093 goto not_found;
5094 leaf = path->nodes[0];
5096 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5097 if (found_key.objectid != objectid ||
5098 found_key.type != BTRFS_EXTENT_DATA_KEY)
5099 goto not_found;
5100 if (start + len <= found_key.offset)
5101 goto not_found;
5102 em->start = start;
5103 em->len = found_key.offset - start;
5104 goto not_found_em;
5107 if (found_type == BTRFS_FILE_EXTENT_REG ||
5108 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5109 em->start = extent_start;
5110 em->len = extent_end - extent_start;
5111 em->orig_start = extent_start -
5112 btrfs_file_extent_offset(leaf, item);
5113 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5114 if (bytenr == 0) {
5115 em->block_start = EXTENT_MAP_HOLE;
5116 goto insert;
5118 if (compress_type != BTRFS_COMPRESS_NONE) {
5119 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5120 em->compress_type = compress_type;
5121 em->block_start = bytenr;
5122 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5123 item);
5124 } else {
5125 bytenr += btrfs_file_extent_offset(leaf, item);
5126 em->block_start = bytenr;
5127 em->block_len = em->len;
5128 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5129 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5131 goto insert;
5132 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5133 unsigned long ptr;
5134 char *map;
5135 size_t size;
5136 size_t extent_offset;
5137 size_t copy_size;
5139 em->block_start = EXTENT_MAP_INLINE;
5140 if (!page || create) {
5141 em->start = extent_start;
5142 em->len = extent_end - extent_start;
5143 goto out;
5146 size = btrfs_file_extent_inline_len(leaf, item);
5147 extent_offset = page_offset(page) + pg_offset - extent_start;
5148 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5149 size - extent_offset);
5150 em->start = extent_start + extent_offset;
5151 em->len = (copy_size + root->sectorsize - 1) &
5152 ~((u64)root->sectorsize - 1);
5153 em->orig_start = EXTENT_MAP_INLINE;
5154 if (compress_type) {
5155 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5156 em->compress_type = compress_type;
5158 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5159 if (create == 0 && !PageUptodate(page)) {
5160 if (btrfs_file_extent_compression(leaf, item) !=
5161 BTRFS_COMPRESS_NONE) {
5162 ret = uncompress_inline(path, inode, page,
5163 pg_offset,
5164 extent_offset, item);
5165 BUG_ON(ret);
5166 } else {
5167 map = kmap(page);
5168 read_extent_buffer(leaf, map + pg_offset, ptr,
5169 copy_size);
5170 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5171 memset(map + pg_offset + copy_size, 0,
5172 PAGE_CACHE_SIZE - pg_offset -
5173 copy_size);
5175 kunmap(page);
5177 flush_dcache_page(page);
5178 } else if (create && PageUptodate(page)) {
5179 WARN_ON(1);
5180 if (!trans) {
5181 kunmap(page);
5182 free_extent_map(em);
5183 em = NULL;
5184 btrfs_release_path(root, path);
5185 trans = btrfs_join_transaction(root, 1);
5186 if (IS_ERR(trans))
5187 return ERR_CAST(trans);
5188 goto again;
5190 map = kmap(page);
5191 write_extent_buffer(leaf, map + pg_offset, ptr,
5192 copy_size);
5193 kunmap(page);
5194 btrfs_mark_buffer_dirty(leaf);
5196 set_extent_uptodate(io_tree, em->start,
5197 extent_map_end(em) - 1, GFP_NOFS);
5198 goto insert;
5199 } else {
5200 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5201 WARN_ON(1);
5203 not_found:
5204 em->start = start;
5205 em->len = len;
5206 not_found_em:
5207 em->block_start = EXTENT_MAP_HOLE;
5208 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5209 insert:
5210 btrfs_release_path(root, path);
5211 if (em->start > start || extent_map_end(em) <= start) {
5212 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5213 "[%llu %llu]\n", (unsigned long long)em->start,
5214 (unsigned long long)em->len,
5215 (unsigned long long)start,
5216 (unsigned long long)len);
5217 err = -EIO;
5218 goto out;
5221 err = 0;
5222 write_lock(&em_tree->lock);
5223 ret = add_extent_mapping(em_tree, em);
5224 /* it is possible that someone inserted the extent into the tree
5225 * while we had the lock dropped. It is also possible that
5226 * an overlapping map exists in the tree
5228 if (ret == -EEXIST) {
5229 struct extent_map *existing;
5231 ret = 0;
5233 existing = lookup_extent_mapping(em_tree, start, len);
5234 if (existing && (existing->start > start ||
5235 existing->start + existing->len <= start)) {
5236 free_extent_map(existing);
5237 existing = NULL;
5239 if (!existing) {
5240 existing = lookup_extent_mapping(em_tree, em->start,
5241 em->len);
5242 if (existing) {
5243 err = merge_extent_mapping(em_tree, existing,
5244 em, start,
5245 root->sectorsize);
5246 free_extent_map(existing);
5247 if (err) {
5248 free_extent_map(em);
5249 em = NULL;
5251 } else {
5252 err = -EIO;
5253 free_extent_map(em);
5254 em = NULL;
5256 } else {
5257 free_extent_map(em);
5258 em = existing;
5259 err = 0;
5262 write_unlock(&em_tree->lock);
5263 out:
5264 if (path)
5265 btrfs_free_path(path);
5266 if (trans) {
5267 ret = btrfs_end_transaction(trans, root);
5268 if (!err)
5269 err = ret;
5271 if (err) {
5272 free_extent_map(em);
5273 return ERR_PTR(err);
5275 return em;
5278 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5279 size_t pg_offset, u64 start, u64 len,
5280 int create)
5282 struct extent_map *em;
5283 struct extent_map *hole_em = NULL;
5284 u64 range_start = start;
5285 u64 end;
5286 u64 found;
5287 u64 found_end;
5288 int err = 0;
5290 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5291 if (IS_ERR(em))
5292 return em;
5293 if (em) {
5295 * if our em maps to a hole, there might
5296 * actually be delalloc bytes behind it
5298 if (em->block_start != EXTENT_MAP_HOLE)
5299 return em;
5300 else
5301 hole_em = em;
5304 /* check to see if we've wrapped (len == -1 or similar) */
5305 end = start + len;
5306 if (end < start)
5307 end = (u64)-1;
5308 else
5309 end -= 1;
5311 em = NULL;
5313 /* ok, we didn't find anything, lets look for delalloc */
5314 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5315 end, len, EXTENT_DELALLOC, 1);
5316 found_end = range_start + found;
5317 if (found_end < range_start)
5318 found_end = (u64)-1;
5321 * we didn't find anything useful, return
5322 * the original results from get_extent()
5324 if (range_start > end || found_end <= start) {
5325 em = hole_em;
5326 hole_em = NULL;
5327 goto out;
5330 /* adjust the range_start to make sure it doesn't
5331 * go backwards from the start they passed in
5333 range_start = max(start,range_start);
5334 found = found_end - range_start;
5336 if (found > 0) {
5337 u64 hole_start = start;
5338 u64 hole_len = len;
5340 em = alloc_extent_map(GFP_NOFS);
5341 if (!em) {
5342 err = -ENOMEM;
5343 goto out;
5346 * when btrfs_get_extent can't find anything it
5347 * returns one huge hole
5349 * make sure what it found really fits our range, and
5350 * adjust to make sure it is based on the start from
5351 * the caller
5353 if (hole_em) {
5354 u64 calc_end = extent_map_end(hole_em);
5356 if (calc_end <= start || (hole_em->start > end)) {
5357 free_extent_map(hole_em);
5358 hole_em = NULL;
5359 } else {
5360 hole_start = max(hole_em->start, start);
5361 hole_len = calc_end - hole_start;
5364 em->bdev = NULL;
5365 if (hole_em && range_start > hole_start) {
5366 /* our hole starts before our delalloc, so we
5367 * have to return just the parts of the hole
5368 * that go until the delalloc starts
5370 em->len = min(hole_len,
5371 range_start - hole_start);
5372 em->start = hole_start;
5373 em->orig_start = hole_start;
5375 * don't adjust block start at all,
5376 * it is fixed at EXTENT_MAP_HOLE
5378 em->block_start = hole_em->block_start;
5379 em->block_len = hole_len;
5380 } else {
5381 em->start = range_start;
5382 em->len = found;
5383 em->orig_start = range_start;
5384 em->block_start = EXTENT_MAP_DELALLOC;
5385 em->block_len = found;
5387 } else if (hole_em) {
5388 return hole_em;
5390 out:
5392 free_extent_map(hole_em);
5393 if (err) {
5394 free_extent_map(em);
5395 return ERR_PTR(err);
5397 return em;
5400 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5401 u64 start, u64 len)
5403 struct btrfs_root *root = BTRFS_I(inode)->root;
5404 struct btrfs_trans_handle *trans;
5405 struct extent_map *em;
5406 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5407 struct btrfs_key ins;
5408 u64 alloc_hint;
5409 int ret;
5411 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5413 trans = btrfs_join_transaction(root, 0);
5414 if (IS_ERR(trans))
5415 return ERR_CAST(trans);
5417 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5419 alloc_hint = get_extent_allocation_hint(inode, start, len);
5420 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5421 alloc_hint, (u64)-1, &ins, 1);
5422 if (ret) {
5423 em = ERR_PTR(ret);
5424 goto out;
5427 em = alloc_extent_map(GFP_NOFS);
5428 if (!em) {
5429 em = ERR_PTR(-ENOMEM);
5430 goto out;
5433 em->start = start;
5434 em->orig_start = em->start;
5435 em->len = ins.offset;
5437 em->block_start = ins.objectid;
5438 em->block_len = ins.offset;
5439 em->bdev = root->fs_info->fs_devices->latest_bdev;
5440 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5442 while (1) {
5443 write_lock(&em_tree->lock);
5444 ret = add_extent_mapping(em_tree, em);
5445 write_unlock(&em_tree->lock);
5446 if (ret != -EEXIST)
5447 break;
5448 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5451 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5452 ins.offset, ins.offset, 0);
5453 if (ret) {
5454 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5455 em = ERR_PTR(ret);
5457 out:
5458 btrfs_end_transaction(trans, root);
5459 return em;
5463 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5464 * block must be cow'd
5466 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5467 struct inode *inode, u64 offset, u64 len)
5469 struct btrfs_path *path;
5470 int ret;
5471 struct extent_buffer *leaf;
5472 struct btrfs_root *root = BTRFS_I(inode)->root;
5473 struct btrfs_file_extent_item *fi;
5474 struct btrfs_key key;
5475 u64 disk_bytenr;
5476 u64 backref_offset;
5477 u64 extent_end;
5478 u64 num_bytes;
5479 int slot;
5480 int found_type;
5482 path = btrfs_alloc_path();
5483 if (!path)
5484 return -ENOMEM;
5486 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5487 offset, 0);
5488 if (ret < 0)
5489 goto out;
5491 slot = path->slots[0];
5492 if (ret == 1) {
5493 if (slot == 0) {
5494 /* can't find the item, must cow */
5495 ret = 0;
5496 goto out;
5498 slot--;
5500 ret = 0;
5501 leaf = path->nodes[0];
5502 btrfs_item_key_to_cpu(leaf, &key, slot);
5503 if (key.objectid != inode->i_ino ||
5504 key.type != BTRFS_EXTENT_DATA_KEY) {
5505 /* not our file or wrong item type, must cow */
5506 goto out;
5509 if (key.offset > offset) {
5510 /* Wrong offset, must cow */
5511 goto out;
5514 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5515 found_type = btrfs_file_extent_type(leaf, fi);
5516 if (found_type != BTRFS_FILE_EXTENT_REG &&
5517 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5518 /* not a regular extent, must cow */
5519 goto out;
5521 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5522 backref_offset = btrfs_file_extent_offset(leaf, fi);
5524 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5525 if (extent_end < offset + len) {
5526 /* extent doesn't include our full range, must cow */
5527 goto out;
5530 if (btrfs_extent_readonly(root, disk_bytenr))
5531 goto out;
5534 * look for other files referencing this extent, if we
5535 * find any we must cow
5537 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5538 key.offset - backref_offset, disk_bytenr))
5539 goto out;
5542 * adjust disk_bytenr and num_bytes to cover just the bytes
5543 * in this extent we are about to write. If there
5544 * are any csums in that range we have to cow in order
5545 * to keep the csums correct
5547 disk_bytenr += backref_offset;
5548 disk_bytenr += offset - key.offset;
5549 num_bytes = min(offset + len, extent_end) - offset;
5550 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5551 goto out;
5553 * all of the above have passed, it is safe to overwrite this extent
5554 * without cow
5556 ret = 1;
5557 out:
5558 btrfs_free_path(path);
5559 return ret;
5562 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5563 struct buffer_head *bh_result, int create)
5565 struct extent_map *em;
5566 struct btrfs_root *root = BTRFS_I(inode)->root;
5567 u64 start = iblock << inode->i_blkbits;
5568 u64 len = bh_result->b_size;
5569 struct btrfs_trans_handle *trans;
5571 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5572 if (IS_ERR(em))
5573 return PTR_ERR(em);
5576 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5577 * io. INLINE is special, and we could probably kludge it in here, but
5578 * it's still buffered so for safety lets just fall back to the generic
5579 * buffered path.
5581 * For COMPRESSED we _have_ to read the entire extent in so we can
5582 * decompress it, so there will be buffering required no matter what we
5583 * do, so go ahead and fallback to buffered.
5585 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5586 * to buffered IO. Don't blame me, this is the price we pay for using
5587 * the generic code.
5589 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5590 em->block_start == EXTENT_MAP_INLINE) {
5591 free_extent_map(em);
5592 return -ENOTBLK;
5595 /* Just a good old fashioned hole, return */
5596 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5597 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5598 free_extent_map(em);
5599 /* DIO will do one hole at a time, so just unlock a sector */
5600 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5601 start + root->sectorsize - 1, GFP_NOFS);
5602 return 0;
5606 * We don't allocate a new extent in the following cases
5608 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5609 * existing extent.
5610 * 2) The extent is marked as PREALLOC. We're good to go here and can
5611 * just use the extent.
5614 if (!create) {
5615 len = em->len - (start - em->start);
5616 goto map;
5619 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5620 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5621 em->block_start != EXTENT_MAP_HOLE)) {
5622 int type;
5623 int ret;
5624 u64 block_start;
5626 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5627 type = BTRFS_ORDERED_PREALLOC;
5628 else
5629 type = BTRFS_ORDERED_NOCOW;
5630 len = min(len, em->len - (start - em->start));
5631 block_start = em->block_start + (start - em->start);
5634 * we're not going to log anything, but we do need
5635 * to make sure the current transaction stays open
5636 * while we look for nocow cross refs
5638 trans = btrfs_join_transaction(root, 0);
5639 if (IS_ERR(trans))
5640 goto must_cow;
5642 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5643 ret = btrfs_add_ordered_extent_dio(inode, start,
5644 block_start, len, len, type);
5645 btrfs_end_transaction(trans, root);
5646 if (ret) {
5647 free_extent_map(em);
5648 return ret;
5650 goto unlock;
5652 btrfs_end_transaction(trans, root);
5654 must_cow:
5656 * this will cow the extent, reset the len in case we changed
5657 * it above
5659 len = bh_result->b_size;
5660 free_extent_map(em);
5661 em = btrfs_new_extent_direct(inode, start, len);
5662 if (IS_ERR(em))
5663 return PTR_ERR(em);
5664 len = min(len, em->len - (start - em->start));
5665 unlock:
5666 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5667 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5668 0, NULL, GFP_NOFS);
5669 map:
5670 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5671 inode->i_blkbits;
5672 bh_result->b_size = len;
5673 bh_result->b_bdev = em->bdev;
5674 set_buffer_mapped(bh_result);
5675 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5676 set_buffer_new(bh_result);
5678 free_extent_map(em);
5680 return 0;
5683 struct btrfs_dio_private {
5684 struct inode *inode;
5685 u64 logical_offset;
5686 u64 disk_bytenr;
5687 u64 bytes;
5688 u32 *csums;
5689 void *private;
5691 /* number of bios pending for this dio */
5692 atomic_t pending_bios;
5694 /* IO errors */
5695 int errors;
5697 struct bio *orig_bio;
5700 static void btrfs_endio_direct_read(struct bio *bio, int err)
5702 struct btrfs_dio_private *dip = bio->bi_private;
5703 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5704 struct bio_vec *bvec = bio->bi_io_vec;
5705 struct inode *inode = dip->inode;
5706 struct btrfs_root *root = BTRFS_I(inode)->root;
5707 u64 start;
5708 u32 *private = dip->csums;
5710 start = dip->logical_offset;
5711 do {
5712 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5713 struct page *page = bvec->bv_page;
5714 char *kaddr;
5715 u32 csum = ~(u32)0;
5716 unsigned long flags;
5718 local_irq_save(flags);
5719 kaddr = kmap_atomic(page, KM_IRQ0);
5720 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5721 csum, bvec->bv_len);
5722 btrfs_csum_final(csum, (char *)&csum);
5723 kunmap_atomic(kaddr, KM_IRQ0);
5724 local_irq_restore(flags);
5726 flush_dcache_page(bvec->bv_page);
5727 if (csum != *private) {
5728 printk(KERN_ERR "btrfs csum failed ino %lu off"
5729 " %llu csum %u private %u\n",
5730 inode->i_ino, (unsigned long long)start,
5731 csum, *private);
5732 err = -EIO;
5736 start += bvec->bv_len;
5737 private++;
5738 bvec++;
5739 } while (bvec <= bvec_end);
5741 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5742 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5743 bio->bi_private = dip->private;
5745 kfree(dip->csums);
5746 kfree(dip);
5747 dio_end_io(bio, err);
5750 static void btrfs_endio_direct_write(struct bio *bio, int err)
5752 struct btrfs_dio_private *dip = bio->bi_private;
5753 struct inode *inode = dip->inode;
5754 struct btrfs_root *root = BTRFS_I(inode)->root;
5755 struct btrfs_trans_handle *trans;
5756 struct btrfs_ordered_extent *ordered = NULL;
5757 struct extent_state *cached_state = NULL;
5758 u64 ordered_offset = dip->logical_offset;
5759 u64 ordered_bytes = dip->bytes;
5760 int ret;
5762 if (err)
5763 goto out_done;
5764 again:
5765 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5766 &ordered_offset,
5767 ordered_bytes);
5768 if (!ret)
5769 goto out_test;
5771 BUG_ON(!ordered);
5773 trans = btrfs_join_transaction(root, 1);
5774 if (IS_ERR(trans)) {
5775 err = -ENOMEM;
5776 goto out;
5778 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5780 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5781 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5782 if (!ret)
5783 ret = btrfs_update_inode(trans, root, inode);
5784 err = ret;
5785 goto out;
5788 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5789 ordered->file_offset + ordered->len - 1, 0,
5790 &cached_state, GFP_NOFS);
5792 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5793 ret = btrfs_mark_extent_written(trans, inode,
5794 ordered->file_offset,
5795 ordered->file_offset +
5796 ordered->len);
5797 if (ret) {
5798 err = ret;
5799 goto out_unlock;
5801 } else {
5802 ret = insert_reserved_file_extent(trans, inode,
5803 ordered->file_offset,
5804 ordered->start,
5805 ordered->disk_len,
5806 ordered->len,
5807 ordered->len,
5808 0, 0, 0,
5809 BTRFS_FILE_EXTENT_REG);
5810 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5811 ordered->file_offset, ordered->len);
5812 if (ret) {
5813 err = ret;
5814 WARN_ON(1);
5815 goto out_unlock;
5819 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5820 btrfs_ordered_update_i_size(inode, 0, ordered);
5821 btrfs_update_inode(trans, root, inode);
5822 out_unlock:
5823 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5824 ordered->file_offset + ordered->len - 1,
5825 &cached_state, GFP_NOFS);
5826 out:
5827 btrfs_delalloc_release_metadata(inode, ordered->len);
5828 btrfs_end_transaction(trans, root);
5829 ordered_offset = ordered->file_offset + ordered->len;
5830 btrfs_put_ordered_extent(ordered);
5831 btrfs_put_ordered_extent(ordered);
5833 out_test:
5835 * our bio might span multiple ordered extents. If we haven't
5836 * completed the accounting for the whole dio, go back and try again
5838 if (ordered_offset < dip->logical_offset + dip->bytes) {
5839 ordered_bytes = dip->logical_offset + dip->bytes -
5840 ordered_offset;
5841 goto again;
5843 out_done:
5844 bio->bi_private = dip->private;
5846 kfree(dip->csums);
5847 kfree(dip);
5848 dio_end_io(bio, err);
5851 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5852 struct bio *bio, int mirror_num,
5853 unsigned long bio_flags, u64 offset)
5855 int ret;
5856 struct btrfs_root *root = BTRFS_I(inode)->root;
5857 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5858 BUG_ON(ret);
5859 return 0;
5862 static void btrfs_end_dio_bio(struct bio *bio, int err)
5864 struct btrfs_dio_private *dip = bio->bi_private;
5866 if (err) {
5867 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5868 "sector %#Lx len %u err no %d\n",
5869 dip->inode->i_ino, bio->bi_rw,
5870 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5871 dip->errors = 1;
5874 * before atomic variable goto zero, we must make sure
5875 * dip->errors is perceived to be set.
5877 smp_mb__before_atomic_dec();
5880 /* if there are more bios still pending for this dio, just exit */
5881 if (!atomic_dec_and_test(&dip->pending_bios))
5882 goto out;
5884 if (dip->errors)
5885 bio_io_error(dip->orig_bio);
5886 else {
5887 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5888 bio_endio(dip->orig_bio, 0);
5890 out:
5891 bio_put(bio);
5894 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5895 u64 first_sector, gfp_t gfp_flags)
5897 int nr_vecs = bio_get_nr_vecs(bdev);
5898 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5901 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5902 int rw, u64 file_offset, int skip_sum,
5903 u32 *csums)
5905 int write = rw & REQ_WRITE;
5906 struct btrfs_root *root = BTRFS_I(inode)->root;
5907 int ret;
5909 bio_get(bio);
5910 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5911 if (ret)
5912 goto err;
5914 if (write && !skip_sum) {
5915 ret = btrfs_wq_submit_bio(root->fs_info,
5916 inode, rw, bio, 0, 0,
5917 file_offset,
5918 __btrfs_submit_bio_start_direct_io,
5919 __btrfs_submit_bio_done);
5920 goto err;
5921 } else if (!skip_sum)
5922 btrfs_lookup_bio_sums_dio(root, inode, bio,
5923 file_offset, csums);
5925 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5926 err:
5927 bio_put(bio);
5928 return ret;
5931 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5932 int skip_sum)
5934 struct inode *inode = dip->inode;
5935 struct btrfs_root *root = BTRFS_I(inode)->root;
5936 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5937 struct bio *bio;
5938 struct bio *orig_bio = dip->orig_bio;
5939 struct bio_vec *bvec = orig_bio->bi_io_vec;
5940 u64 start_sector = orig_bio->bi_sector;
5941 u64 file_offset = dip->logical_offset;
5942 u64 submit_len = 0;
5943 u64 map_length;
5944 int nr_pages = 0;
5945 u32 *csums = dip->csums;
5946 int ret = 0;
5947 int write = rw & REQ_WRITE;
5949 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5950 if (!bio)
5951 return -ENOMEM;
5952 bio->bi_private = dip;
5953 bio->bi_end_io = btrfs_end_dio_bio;
5954 atomic_inc(&dip->pending_bios);
5956 map_length = orig_bio->bi_size;
5957 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5958 &map_length, NULL, 0);
5959 if (ret) {
5960 bio_put(bio);
5961 return -EIO;
5964 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5965 if (unlikely(map_length < submit_len + bvec->bv_len ||
5966 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5967 bvec->bv_offset) < bvec->bv_len)) {
5969 * inc the count before we submit the bio so
5970 * we know the end IO handler won't happen before
5971 * we inc the count. Otherwise, the dip might get freed
5972 * before we're done setting it up
5974 atomic_inc(&dip->pending_bios);
5975 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5976 file_offset, skip_sum,
5977 csums);
5978 if (ret) {
5979 bio_put(bio);
5980 atomic_dec(&dip->pending_bios);
5981 goto out_err;
5984 /* Write's use the ordered csums */
5985 if (!write && !skip_sum)
5986 csums = csums + nr_pages;
5987 start_sector += submit_len >> 9;
5988 file_offset += submit_len;
5990 submit_len = 0;
5991 nr_pages = 0;
5993 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5994 start_sector, GFP_NOFS);
5995 if (!bio)
5996 goto out_err;
5997 bio->bi_private = dip;
5998 bio->bi_end_io = btrfs_end_dio_bio;
6000 map_length = orig_bio->bi_size;
6001 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6002 &map_length, NULL, 0);
6003 if (ret) {
6004 bio_put(bio);
6005 goto out_err;
6007 } else {
6008 submit_len += bvec->bv_len;
6009 nr_pages ++;
6010 bvec++;
6014 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6015 csums);
6016 if (!ret)
6017 return 0;
6019 bio_put(bio);
6020 out_err:
6021 dip->errors = 1;
6023 * before atomic variable goto zero, we must
6024 * make sure dip->errors is perceived to be set.
6026 smp_mb__before_atomic_dec();
6027 if (atomic_dec_and_test(&dip->pending_bios))
6028 bio_io_error(dip->orig_bio);
6030 /* bio_end_io() will handle error, so we needn't return it */
6031 return 0;
6034 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6035 loff_t file_offset)
6037 struct btrfs_root *root = BTRFS_I(inode)->root;
6038 struct btrfs_dio_private *dip;
6039 struct bio_vec *bvec = bio->bi_io_vec;
6040 int skip_sum;
6041 int write = rw & REQ_WRITE;
6042 int ret = 0;
6044 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6046 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6047 if (!dip) {
6048 ret = -ENOMEM;
6049 goto free_ordered;
6051 dip->csums = NULL;
6053 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6054 if (!write && !skip_sum) {
6055 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6056 if (!dip->csums) {
6057 kfree(dip);
6058 ret = -ENOMEM;
6059 goto free_ordered;
6063 dip->private = bio->bi_private;
6064 dip->inode = inode;
6065 dip->logical_offset = file_offset;
6067 dip->bytes = 0;
6068 do {
6069 dip->bytes += bvec->bv_len;
6070 bvec++;
6071 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6073 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6074 bio->bi_private = dip;
6075 dip->errors = 0;
6076 dip->orig_bio = bio;
6077 atomic_set(&dip->pending_bios, 0);
6079 if (write)
6080 bio->bi_end_io = btrfs_endio_direct_write;
6081 else
6082 bio->bi_end_io = btrfs_endio_direct_read;
6084 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6085 if (!ret)
6086 return;
6087 free_ordered:
6089 * If this is a write, we need to clean up the reserved space and kill
6090 * the ordered extent.
6092 if (write) {
6093 struct btrfs_ordered_extent *ordered;
6094 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6095 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6096 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6097 btrfs_free_reserved_extent(root, ordered->start,
6098 ordered->disk_len);
6099 btrfs_put_ordered_extent(ordered);
6100 btrfs_put_ordered_extent(ordered);
6102 bio_endio(bio, ret);
6105 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6106 const struct iovec *iov, loff_t offset,
6107 unsigned long nr_segs)
6109 int seg;
6110 size_t size;
6111 unsigned long addr;
6112 unsigned blocksize_mask = root->sectorsize - 1;
6113 ssize_t retval = -EINVAL;
6114 loff_t end = offset;
6116 if (offset & blocksize_mask)
6117 goto out;
6119 /* Check the memory alignment. Blocks cannot straddle pages */
6120 for (seg = 0; seg < nr_segs; seg++) {
6121 addr = (unsigned long)iov[seg].iov_base;
6122 size = iov[seg].iov_len;
6123 end += size;
6124 if ((addr & blocksize_mask) || (size & blocksize_mask))
6125 goto out;
6127 retval = 0;
6128 out:
6129 return retval;
6131 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6132 const struct iovec *iov, loff_t offset,
6133 unsigned long nr_segs)
6135 struct file *file = iocb->ki_filp;
6136 struct inode *inode = file->f_mapping->host;
6137 struct btrfs_ordered_extent *ordered;
6138 struct extent_state *cached_state = NULL;
6139 u64 lockstart, lockend;
6140 ssize_t ret;
6141 int writing = rw & WRITE;
6142 int write_bits = 0;
6143 size_t count = iov_length(iov, nr_segs);
6145 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6146 offset, nr_segs)) {
6147 return 0;
6150 lockstart = offset;
6151 lockend = offset + count - 1;
6153 if (writing) {
6154 ret = btrfs_delalloc_reserve_space(inode, count);
6155 if (ret)
6156 goto out;
6159 while (1) {
6160 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6161 0, &cached_state, GFP_NOFS);
6163 * We're concerned with the entire range that we're going to be
6164 * doing DIO to, so we need to make sure theres no ordered
6165 * extents in this range.
6167 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6168 lockend - lockstart + 1);
6169 if (!ordered)
6170 break;
6171 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6172 &cached_state, GFP_NOFS);
6173 btrfs_start_ordered_extent(inode, ordered, 1);
6174 btrfs_put_ordered_extent(ordered);
6175 cond_resched();
6179 * we don't use btrfs_set_extent_delalloc because we don't want
6180 * the dirty or uptodate bits
6182 if (writing) {
6183 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6184 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6185 EXTENT_DELALLOC, 0, NULL, &cached_state,
6186 GFP_NOFS);
6187 if (ret) {
6188 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6189 lockend, EXTENT_LOCKED | write_bits,
6190 1, 0, &cached_state, GFP_NOFS);
6191 goto out;
6195 free_extent_state(cached_state);
6196 cached_state = NULL;
6198 ret = __blockdev_direct_IO(rw, iocb, inode,
6199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6200 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6201 btrfs_submit_direct, 0);
6203 if (ret < 0 && ret != -EIOCBQUEUED) {
6204 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6205 offset + iov_length(iov, nr_segs) - 1,
6206 EXTENT_LOCKED | write_bits, 1, 0,
6207 &cached_state, GFP_NOFS);
6208 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6210 * We're falling back to buffered, unlock the section we didn't
6211 * do IO on.
6213 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6214 offset + iov_length(iov, nr_segs) - 1,
6215 EXTENT_LOCKED | write_bits, 1, 0,
6216 &cached_state, GFP_NOFS);
6218 out:
6219 free_extent_state(cached_state);
6220 return ret;
6223 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6224 __u64 start, __u64 len)
6226 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6229 int btrfs_readpage(struct file *file, struct page *page)
6231 struct extent_io_tree *tree;
6232 tree = &BTRFS_I(page->mapping->host)->io_tree;
6233 return extent_read_full_page(tree, page, btrfs_get_extent);
6236 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6238 struct extent_io_tree *tree;
6241 if (current->flags & PF_MEMALLOC) {
6242 redirty_page_for_writepage(wbc, page);
6243 unlock_page(page);
6244 return 0;
6246 tree = &BTRFS_I(page->mapping->host)->io_tree;
6247 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6250 int btrfs_writepages(struct address_space *mapping,
6251 struct writeback_control *wbc)
6253 struct extent_io_tree *tree;
6255 tree = &BTRFS_I(mapping->host)->io_tree;
6256 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6259 static int
6260 btrfs_readpages(struct file *file, struct address_space *mapping,
6261 struct list_head *pages, unsigned nr_pages)
6263 struct extent_io_tree *tree;
6264 tree = &BTRFS_I(mapping->host)->io_tree;
6265 return extent_readpages(tree, mapping, pages, nr_pages,
6266 btrfs_get_extent);
6268 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6270 struct extent_io_tree *tree;
6271 struct extent_map_tree *map;
6272 int ret;
6274 tree = &BTRFS_I(page->mapping->host)->io_tree;
6275 map = &BTRFS_I(page->mapping->host)->extent_tree;
6276 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6277 if (ret == 1) {
6278 ClearPagePrivate(page);
6279 set_page_private(page, 0);
6280 page_cache_release(page);
6282 return ret;
6285 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6287 if (PageWriteback(page) || PageDirty(page))
6288 return 0;
6289 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6292 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6294 struct extent_io_tree *tree;
6295 struct btrfs_ordered_extent *ordered;
6296 struct extent_state *cached_state = NULL;
6297 u64 page_start = page_offset(page);
6298 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6302 * we have the page locked, so new writeback can't start,
6303 * and the dirty bit won't be cleared while we are here.
6305 * Wait for IO on this page so that we can safely clear
6306 * the PagePrivate2 bit and do ordered accounting
6308 wait_on_page_writeback(page);
6310 tree = &BTRFS_I(page->mapping->host)->io_tree;
6311 if (offset) {
6312 btrfs_releasepage(page, GFP_NOFS);
6313 return;
6315 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6316 GFP_NOFS);
6317 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6318 page_offset(page));
6319 if (ordered) {
6321 * IO on this page will never be started, so we need
6322 * to account for any ordered extents now
6324 clear_extent_bit(tree, page_start, page_end,
6325 EXTENT_DIRTY | EXTENT_DELALLOC |
6326 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6327 &cached_state, GFP_NOFS);
6329 * whoever cleared the private bit is responsible
6330 * for the finish_ordered_io
6332 if (TestClearPagePrivate2(page)) {
6333 btrfs_finish_ordered_io(page->mapping->host,
6334 page_start, page_end);
6336 btrfs_put_ordered_extent(ordered);
6337 cached_state = NULL;
6338 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6339 GFP_NOFS);
6341 clear_extent_bit(tree, page_start, page_end,
6342 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6343 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6344 __btrfs_releasepage(page, GFP_NOFS);
6346 ClearPageChecked(page);
6347 if (PagePrivate(page)) {
6348 ClearPagePrivate(page);
6349 set_page_private(page, 0);
6350 page_cache_release(page);
6355 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6356 * called from a page fault handler when a page is first dirtied. Hence we must
6357 * be careful to check for EOF conditions here. We set the page up correctly
6358 * for a written page which means we get ENOSPC checking when writing into
6359 * holes and correct delalloc and unwritten extent mapping on filesystems that
6360 * support these features.
6362 * We are not allowed to take the i_mutex here so we have to play games to
6363 * protect against truncate races as the page could now be beyond EOF. Because
6364 * vmtruncate() writes the inode size before removing pages, once we have the
6365 * page lock we can determine safely if the page is beyond EOF. If it is not
6366 * beyond EOF, then the page is guaranteed safe against truncation until we
6367 * unlock the page.
6369 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6371 struct page *page = vmf->page;
6372 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6373 struct btrfs_root *root = BTRFS_I(inode)->root;
6374 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6375 struct btrfs_ordered_extent *ordered;
6376 struct extent_state *cached_state = NULL;
6377 char *kaddr;
6378 unsigned long zero_start;
6379 loff_t size;
6380 int ret;
6381 u64 page_start;
6382 u64 page_end;
6384 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6385 if (ret) {
6386 if (ret == -ENOMEM)
6387 ret = VM_FAULT_OOM;
6388 else /* -ENOSPC, -EIO, etc */
6389 ret = VM_FAULT_SIGBUS;
6390 goto out;
6393 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6394 again:
6395 lock_page(page);
6396 size = i_size_read(inode);
6397 page_start = page_offset(page);
6398 page_end = page_start + PAGE_CACHE_SIZE - 1;
6400 if ((page->mapping != inode->i_mapping) ||
6401 (page_start >= size)) {
6402 /* page got truncated out from underneath us */
6403 goto out_unlock;
6405 wait_on_page_writeback(page);
6407 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6408 GFP_NOFS);
6409 set_page_extent_mapped(page);
6412 * we can't set the delalloc bits if there are pending ordered
6413 * extents. Drop our locks and wait for them to finish
6415 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6416 if (ordered) {
6417 unlock_extent_cached(io_tree, page_start, page_end,
6418 &cached_state, GFP_NOFS);
6419 unlock_page(page);
6420 btrfs_start_ordered_extent(inode, ordered, 1);
6421 btrfs_put_ordered_extent(ordered);
6422 goto again;
6426 * XXX - page_mkwrite gets called every time the page is dirtied, even
6427 * if it was already dirty, so for space accounting reasons we need to
6428 * clear any delalloc bits for the range we are fixing to save. There
6429 * is probably a better way to do this, but for now keep consistent with
6430 * prepare_pages in the normal write path.
6432 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6433 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6434 0, 0, &cached_state, GFP_NOFS);
6436 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6437 &cached_state);
6438 if (ret) {
6439 unlock_extent_cached(io_tree, page_start, page_end,
6440 &cached_state, GFP_NOFS);
6441 ret = VM_FAULT_SIGBUS;
6442 goto out_unlock;
6444 ret = 0;
6446 /* page is wholly or partially inside EOF */
6447 if (page_start + PAGE_CACHE_SIZE > size)
6448 zero_start = size & ~PAGE_CACHE_MASK;
6449 else
6450 zero_start = PAGE_CACHE_SIZE;
6452 if (zero_start != PAGE_CACHE_SIZE) {
6453 kaddr = kmap(page);
6454 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6455 flush_dcache_page(page);
6456 kunmap(page);
6458 ClearPageChecked(page);
6459 set_page_dirty(page);
6460 SetPageUptodate(page);
6462 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6463 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6465 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6467 out_unlock:
6468 if (!ret)
6469 return VM_FAULT_LOCKED;
6470 unlock_page(page);
6471 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6472 out:
6473 return ret;
6476 static int btrfs_truncate(struct inode *inode)
6478 struct btrfs_root *root = BTRFS_I(inode)->root;
6479 int ret;
6480 int err = 0;
6481 struct btrfs_trans_handle *trans;
6482 unsigned long nr;
6483 u64 mask = root->sectorsize - 1;
6485 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6486 if (ret)
6487 return ret;
6489 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6490 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6492 trans = btrfs_start_transaction(root, 5);
6493 if (IS_ERR(trans))
6494 return PTR_ERR(trans);
6496 btrfs_set_trans_block_group(trans, inode);
6498 ret = btrfs_orphan_add(trans, inode);
6499 if (ret) {
6500 btrfs_end_transaction(trans, root);
6501 return ret;
6504 nr = trans->blocks_used;
6505 btrfs_end_transaction(trans, root);
6506 btrfs_btree_balance_dirty(root, nr);
6508 /* Now start a transaction for the truncate */
6509 trans = btrfs_start_transaction(root, 0);
6510 if (IS_ERR(trans))
6511 return PTR_ERR(trans);
6512 btrfs_set_trans_block_group(trans, inode);
6513 trans->block_rsv = root->orphan_block_rsv;
6516 * setattr is responsible for setting the ordered_data_close flag,
6517 * but that is only tested during the last file release. That
6518 * could happen well after the next commit, leaving a great big
6519 * window where new writes may get lost if someone chooses to write
6520 * to this file after truncating to zero
6522 * The inode doesn't have any dirty data here, and so if we commit
6523 * this is a noop. If someone immediately starts writing to the inode
6524 * it is very likely we'll catch some of their writes in this
6525 * transaction, and the commit will find this file on the ordered
6526 * data list with good things to send down.
6528 * This is a best effort solution, there is still a window where
6529 * using truncate to replace the contents of the file will
6530 * end up with a zero length file after a crash.
6532 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6533 btrfs_add_ordered_operation(trans, root, inode);
6535 while (1) {
6536 if (!trans) {
6537 trans = btrfs_start_transaction(root, 0);
6538 if (IS_ERR(trans))
6539 return PTR_ERR(trans);
6540 btrfs_set_trans_block_group(trans, inode);
6541 trans->block_rsv = root->orphan_block_rsv;
6544 ret = btrfs_block_rsv_check(trans, root,
6545 root->orphan_block_rsv, 0, 5);
6546 if (ret == -EAGAIN) {
6547 ret = btrfs_commit_transaction(trans, root);
6548 if (ret)
6549 return ret;
6550 trans = NULL;
6551 continue;
6552 } else if (ret) {
6553 err = ret;
6554 break;
6557 ret = btrfs_truncate_inode_items(trans, root, inode,
6558 inode->i_size,
6559 BTRFS_EXTENT_DATA_KEY);
6560 if (ret != -EAGAIN) {
6561 err = ret;
6562 break;
6565 ret = btrfs_update_inode(trans, root, inode);
6566 if (ret) {
6567 err = ret;
6568 break;
6571 nr = trans->blocks_used;
6572 btrfs_end_transaction(trans, root);
6573 trans = NULL;
6574 btrfs_btree_balance_dirty(root, nr);
6577 if (ret == 0 && inode->i_nlink > 0) {
6578 ret = btrfs_orphan_del(trans, inode);
6579 if (ret)
6580 err = ret;
6581 } else if (ret && inode->i_nlink > 0) {
6583 * Failed to do the truncate, remove us from the in memory
6584 * orphan list.
6586 ret = btrfs_orphan_del(NULL, inode);
6589 ret = btrfs_update_inode(trans, root, inode);
6590 if (ret && !err)
6591 err = ret;
6593 nr = trans->blocks_used;
6594 ret = btrfs_end_transaction_throttle(trans, root);
6595 if (ret && !err)
6596 err = ret;
6597 btrfs_btree_balance_dirty(root, nr);
6599 return err;
6603 * create a new subvolume directory/inode (helper for the ioctl).
6605 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6606 struct btrfs_root *new_root,
6607 u64 new_dirid, u64 alloc_hint)
6609 struct inode *inode;
6610 int err;
6611 u64 index = 0;
6613 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6614 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6615 if (IS_ERR(inode))
6616 return PTR_ERR(inode);
6617 inode->i_op = &btrfs_dir_inode_operations;
6618 inode->i_fop = &btrfs_dir_file_operations;
6620 inode->i_nlink = 1;
6621 btrfs_i_size_write(inode, 0);
6623 err = btrfs_update_inode(trans, new_root, inode);
6624 BUG_ON(err);
6626 iput(inode);
6627 return 0;
6630 /* helper function for file defrag and space balancing. This
6631 * forces readahead on a given range of bytes in an inode
6633 unsigned long btrfs_force_ra(struct address_space *mapping,
6634 struct file_ra_state *ra, struct file *file,
6635 pgoff_t offset, pgoff_t last_index)
6637 pgoff_t req_size = last_index - offset + 1;
6639 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6640 return offset + req_size;
6643 struct inode *btrfs_alloc_inode(struct super_block *sb)
6645 struct btrfs_inode *ei;
6646 struct inode *inode;
6648 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6649 if (!ei)
6650 return NULL;
6652 ei->root = NULL;
6653 ei->space_info = NULL;
6654 ei->generation = 0;
6655 ei->sequence = 0;
6656 ei->last_trans = 0;
6657 ei->last_sub_trans = 0;
6658 ei->logged_trans = 0;
6659 ei->delalloc_bytes = 0;
6660 ei->reserved_bytes = 0;
6661 ei->disk_i_size = 0;
6662 ei->flags = 0;
6663 ei->index_cnt = (u64)-1;
6664 ei->last_unlink_trans = 0;
6666 atomic_set(&ei->outstanding_extents, 0);
6667 atomic_set(&ei->reserved_extents, 0);
6669 ei->ordered_data_close = 0;
6670 ei->orphan_meta_reserved = 0;
6671 ei->dummy_inode = 0;
6672 ei->force_compress = BTRFS_COMPRESS_NONE;
6674 inode = &ei->vfs_inode;
6675 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6676 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6677 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6678 mutex_init(&ei->log_mutex);
6679 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6680 INIT_LIST_HEAD(&ei->i_orphan);
6681 INIT_LIST_HEAD(&ei->delalloc_inodes);
6682 INIT_LIST_HEAD(&ei->ordered_operations);
6683 RB_CLEAR_NODE(&ei->rb_node);
6685 return inode;
6688 static void btrfs_i_callback(struct rcu_head *head)
6690 struct inode *inode = container_of(head, struct inode, i_rcu);
6691 INIT_LIST_HEAD(&inode->i_dentry);
6692 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6695 void btrfs_destroy_inode(struct inode *inode)
6697 struct btrfs_ordered_extent *ordered;
6698 struct btrfs_root *root = BTRFS_I(inode)->root;
6700 WARN_ON(!list_empty(&inode->i_dentry));
6701 WARN_ON(inode->i_data.nrpages);
6702 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6703 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6706 * This can happen where we create an inode, but somebody else also
6707 * created the same inode and we need to destroy the one we already
6708 * created.
6710 if (!root)
6711 goto free;
6714 * Make sure we're properly removed from the ordered operation
6715 * lists.
6717 smp_mb();
6718 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6719 spin_lock(&root->fs_info->ordered_extent_lock);
6720 list_del_init(&BTRFS_I(inode)->ordered_operations);
6721 spin_unlock(&root->fs_info->ordered_extent_lock);
6724 if (root == root->fs_info->tree_root) {
6725 struct btrfs_block_group_cache *block_group;
6727 block_group = btrfs_lookup_block_group(root->fs_info,
6728 BTRFS_I(inode)->block_group);
6729 if (block_group && block_group->inode == inode) {
6730 spin_lock(&block_group->lock);
6731 block_group->inode = NULL;
6732 spin_unlock(&block_group->lock);
6733 btrfs_put_block_group(block_group);
6734 } else if (block_group) {
6735 btrfs_put_block_group(block_group);
6739 spin_lock(&root->orphan_lock);
6740 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6741 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6742 inode->i_ino);
6743 list_del_init(&BTRFS_I(inode)->i_orphan);
6745 spin_unlock(&root->orphan_lock);
6747 while (1) {
6748 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6749 if (!ordered)
6750 break;
6751 else {
6752 printk(KERN_ERR "btrfs found ordered "
6753 "extent %llu %llu on inode cleanup\n",
6754 (unsigned long long)ordered->file_offset,
6755 (unsigned long long)ordered->len);
6756 btrfs_remove_ordered_extent(inode, ordered);
6757 btrfs_put_ordered_extent(ordered);
6758 btrfs_put_ordered_extent(ordered);
6761 inode_tree_del(inode);
6762 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6763 free:
6764 call_rcu(&inode->i_rcu, btrfs_i_callback);
6767 int btrfs_drop_inode(struct inode *inode)
6769 struct btrfs_root *root = BTRFS_I(inode)->root;
6771 if (btrfs_root_refs(&root->root_item) == 0 &&
6772 root != root->fs_info->tree_root)
6773 return 1;
6774 else
6775 return generic_drop_inode(inode);
6778 static void init_once(void *foo)
6780 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6782 inode_init_once(&ei->vfs_inode);
6785 void btrfs_destroy_cachep(void)
6787 if (btrfs_inode_cachep)
6788 kmem_cache_destroy(btrfs_inode_cachep);
6789 if (btrfs_trans_handle_cachep)
6790 kmem_cache_destroy(btrfs_trans_handle_cachep);
6791 if (btrfs_transaction_cachep)
6792 kmem_cache_destroy(btrfs_transaction_cachep);
6793 if (btrfs_path_cachep)
6794 kmem_cache_destroy(btrfs_path_cachep);
6795 if (btrfs_free_space_cachep)
6796 kmem_cache_destroy(btrfs_free_space_cachep);
6799 int btrfs_init_cachep(void)
6801 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6802 sizeof(struct btrfs_inode), 0,
6803 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6804 if (!btrfs_inode_cachep)
6805 goto fail;
6807 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6808 sizeof(struct btrfs_trans_handle), 0,
6809 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6810 if (!btrfs_trans_handle_cachep)
6811 goto fail;
6813 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6814 sizeof(struct btrfs_transaction), 0,
6815 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6816 if (!btrfs_transaction_cachep)
6817 goto fail;
6819 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6820 sizeof(struct btrfs_path), 0,
6821 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6822 if (!btrfs_path_cachep)
6823 goto fail;
6825 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6826 sizeof(struct btrfs_free_space), 0,
6827 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6828 if (!btrfs_free_space_cachep)
6829 goto fail;
6831 return 0;
6832 fail:
6833 btrfs_destroy_cachep();
6834 return -ENOMEM;
6837 static int btrfs_getattr(struct vfsmount *mnt,
6838 struct dentry *dentry, struct kstat *stat)
6840 struct inode *inode = dentry->d_inode;
6841 generic_fillattr(inode, stat);
6842 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6843 stat->blksize = PAGE_CACHE_SIZE;
6844 stat->blocks = (inode_get_bytes(inode) +
6845 BTRFS_I(inode)->delalloc_bytes) >> 9;
6846 return 0;
6849 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6850 struct inode *new_dir, struct dentry *new_dentry)
6852 struct btrfs_trans_handle *trans;
6853 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6854 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6855 struct inode *new_inode = new_dentry->d_inode;
6856 struct inode *old_inode = old_dentry->d_inode;
6857 struct timespec ctime = CURRENT_TIME;
6858 u64 index = 0;
6859 u64 root_objectid;
6860 int ret;
6862 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6863 return -EPERM;
6865 /* we only allow rename subvolume link between subvolumes */
6866 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6867 return -EXDEV;
6869 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6870 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6871 return -ENOTEMPTY;
6873 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6874 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6875 return -ENOTEMPTY;
6877 * we're using rename to replace one file with another.
6878 * and the replacement file is large. Start IO on it now so
6879 * we don't add too much work to the end of the transaction
6881 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6882 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6883 filemap_flush(old_inode->i_mapping);
6885 /* close the racy window with snapshot create/destroy ioctl */
6886 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6887 down_read(&root->fs_info->subvol_sem);
6889 * We want to reserve the absolute worst case amount of items. So if
6890 * both inodes are subvols and we need to unlink them then that would
6891 * require 4 item modifications, but if they are both normal inodes it
6892 * would require 5 item modifications, so we'll assume their normal
6893 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6894 * should cover the worst case number of items we'll modify.
6896 trans = btrfs_start_transaction(root, 20);
6897 if (IS_ERR(trans))
6898 return PTR_ERR(trans);
6900 btrfs_set_trans_block_group(trans, new_dir);
6902 if (dest != root)
6903 btrfs_record_root_in_trans(trans, dest);
6905 ret = btrfs_set_inode_index(new_dir, &index);
6906 if (ret)
6907 goto out_fail;
6909 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6910 /* force full log commit if subvolume involved. */
6911 root->fs_info->last_trans_log_full_commit = trans->transid;
6912 } else {
6913 ret = btrfs_insert_inode_ref(trans, dest,
6914 new_dentry->d_name.name,
6915 new_dentry->d_name.len,
6916 old_inode->i_ino,
6917 new_dir->i_ino, index);
6918 if (ret)
6919 goto out_fail;
6921 * this is an ugly little race, but the rename is required
6922 * to make sure that if we crash, the inode is either at the
6923 * old name or the new one. pinning the log transaction lets
6924 * us make sure we don't allow a log commit to come in after
6925 * we unlink the name but before we add the new name back in.
6927 btrfs_pin_log_trans(root);
6930 * make sure the inode gets flushed if it is replacing
6931 * something.
6933 if (new_inode && new_inode->i_size &&
6934 old_inode && S_ISREG(old_inode->i_mode)) {
6935 btrfs_add_ordered_operation(trans, root, old_inode);
6938 old_dir->i_ctime = old_dir->i_mtime = ctime;
6939 new_dir->i_ctime = new_dir->i_mtime = ctime;
6940 old_inode->i_ctime = ctime;
6942 if (old_dentry->d_parent != new_dentry->d_parent)
6943 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6945 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6946 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6947 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6948 old_dentry->d_name.name,
6949 old_dentry->d_name.len);
6950 } else {
6951 btrfs_inc_nlink(old_dentry->d_inode);
6952 ret = btrfs_unlink_inode(trans, root, old_dir,
6953 old_dentry->d_inode,
6954 old_dentry->d_name.name,
6955 old_dentry->d_name.len);
6957 BUG_ON(ret);
6959 if (new_inode) {
6960 new_inode->i_ctime = CURRENT_TIME;
6961 if (unlikely(new_inode->i_ino ==
6962 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6963 root_objectid = BTRFS_I(new_inode)->location.objectid;
6964 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6965 root_objectid,
6966 new_dentry->d_name.name,
6967 new_dentry->d_name.len);
6968 BUG_ON(new_inode->i_nlink == 0);
6969 } else {
6970 ret = btrfs_unlink_inode(trans, dest, new_dir,
6971 new_dentry->d_inode,
6972 new_dentry->d_name.name,
6973 new_dentry->d_name.len);
6975 BUG_ON(ret);
6976 if (new_inode->i_nlink == 0) {
6977 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6978 BUG_ON(ret);
6982 ret = btrfs_add_link(trans, new_dir, old_inode,
6983 new_dentry->d_name.name,
6984 new_dentry->d_name.len, 0, index);
6985 BUG_ON(ret);
6987 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6988 struct dentry *parent = dget_parent(new_dentry);
6989 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6990 dput(parent);
6991 btrfs_end_log_trans(root);
6993 out_fail:
6994 btrfs_end_transaction_throttle(trans, root);
6996 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6997 up_read(&root->fs_info->subvol_sem);
6999 return ret;
7003 * some fairly slow code that needs optimization. This walks the list
7004 * of all the inodes with pending delalloc and forces them to disk.
7006 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7008 struct list_head *head = &root->fs_info->delalloc_inodes;
7009 struct btrfs_inode *binode;
7010 struct inode *inode;
7012 if (root->fs_info->sb->s_flags & MS_RDONLY)
7013 return -EROFS;
7015 spin_lock(&root->fs_info->delalloc_lock);
7016 while (!list_empty(head)) {
7017 binode = list_entry(head->next, struct btrfs_inode,
7018 delalloc_inodes);
7019 inode = igrab(&binode->vfs_inode);
7020 if (!inode)
7021 list_del_init(&binode->delalloc_inodes);
7022 spin_unlock(&root->fs_info->delalloc_lock);
7023 if (inode) {
7024 filemap_flush(inode->i_mapping);
7025 if (delay_iput)
7026 btrfs_add_delayed_iput(inode);
7027 else
7028 iput(inode);
7030 cond_resched();
7031 spin_lock(&root->fs_info->delalloc_lock);
7033 spin_unlock(&root->fs_info->delalloc_lock);
7035 /* the filemap_flush will queue IO into the worker threads, but
7036 * we have to make sure the IO is actually started and that
7037 * ordered extents get created before we return
7039 atomic_inc(&root->fs_info->async_submit_draining);
7040 while (atomic_read(&root->fs_info->nr_async_submits) ||
7041 atomic_read(&root->fs_info->async_delalloc_pages)) {
7042 wait_event(root->fs_info->async_submit_wait,
7043 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7044 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7046 atomic_dec(&root->fs_info->async_submit_draining);
7047 return 0;
7050 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7051 int sync)
7053 struct btrfs_inode *binode;
7054 struct inode *inode = NULL;
7056 spin_lock(&root->fs_info->delalloc_lock);
7057 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7058 binode = list_entry(root->fs_info->delalloc_inodes.next,
7059 struct btrfs_inode, delalloc_inodes);
7060 inode = igrab(&binode->vfs_inode);
7061 if (inode) {
7062 list_move_tail(&binode->delalloc_inodes,
7063 &root->fs_info->delalloc_inodes);
7064 break;
7067 list_del_init(&binode->delalloc_inodes);
7068 cond_resched_lock(&root->fs_info->delalloc_lock);
7070 spin_unlock(&root->fs_info->delalloc_lock);
7072 if (inode) {
7073 if (sync) {
7074 filemap_write_and_wait(inode->i_mapping);
7076 * We have to do this because compression doesn't
7077 * actually set PG_writeback until it submits the pages
7078 * for IO, which happens in an async thread, so we could
7079 * race and not actually wait for any writeback pages
7080 * because they've not been submitted yet. Technically
7081 * this could still be the case for the ordered stuff
7082 * since the async thread may not have started to do its
7083 * work yet. If this becomes the case then we need to
7084 * figure out a way to make sure that in writepage we
7085 * wait for any async pages to be submitted before
7086 * returning so that fdatawait does what its supposed to
7087 * do.
7089 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7090 } else {
7091 filemap_flush(inode->i_mapping);
7093 if (delay_iput)
7094 btrfs_add_delayed_iput(inode);
7095 else
7096 iput(inode);
7097 return 1;
7099 return 0;
7102 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7103 const char *symname)
7105 struct btrfs_trans_handle *trans;
7106 struct btrfs_root *root = BTRFS_I(dir)->root;
7107 struct btrfs_path *path;
7108 struct btrfs_key key;
7109 struct inode *inode = NULL;
7110 int err;
7111 int drop_inode = 0;
7112 u64 objectid;
7113 u64 index = 0 ;
7114 int name_len;
7115 int datasize;
7116 unsigned long ptr;
7117 struct btrfs_file_extent_item *ei;
7118 struct extent_buffer *leaf;
7119 unsigned long nr = 0;
7121 name_len = strlen(symname) + 1;
7122 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7123 return -ENAMETOOLONG;
7125 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7126 if (err)
7127 return err;
7129 * 2 items for inode item and ref
7130 * 2 items for dir items
7131 * 1 item for xattr if selinux is on
7133 trans = btrfs_start_transaction(root, 5);
7134 if (IS_ERR(trans))
7135 return PTR_ERR(trans);
7137 btrfs_set_trans_block_group(trans, dir);
7139 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7140 dentry->d_name.len, dir->i_ino, objectid,
7141 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7142 &index);
7143 err = PTR_ERR(inode);
7144 if (IS_ERR(inode))
7145 goto out_unlock;
7147 err = btrfs_init_inode_security(trans, inode, dir);
7148 if (err) {
7149 drop_inode = 1;
7150 goto out_unlock;
7153 btrfs_set_trans_block_group(trans, inode);
7154 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7155 if (err)
7156 drop_inode = 1;
7157 else {
7158 inode->i_mapping->a_ops = &btrfs_aops;
7159 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7160 inode->i_fop = &btrfs_file_operations;
7161 inode->i_op = &btrfs_file_inode_operations;
7162 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7164 btrfs_update_inode_block_group(trans, inode);
7165 btrfs_update_inode_block_group(trans, dir);
7166 if (drop_inode)
7167 goto out_unlock;
7169 path = btrfs_alloc_path();
7170 BUG_ON(!path);
7171 key.objectid = inode->i_ino;
7172 key.offset = 0;
7173 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7174 datasize = btrfs_file_extent_calc_inline_size(name_len);
7175 err = btrfs_insert_empty_item(trans, root, path, &key,
7176 datasize);
7177 if (err) {
7178 drop_inode = 1;
7179 goto out_unlock;
7181 leaf = path->nodes[0];
7182 ei = btrfs_item_ptr(leaf, path->slots[0],
7183 struct btrfs_file_extent_item);
7184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7185 btrfs_set_file_extent_type(leaf, ei,
7186 BTRFS_FILE_EXTENT_INLINE);
7187 btrfs_set_file_extent_encryption(leaf, ei, 0);
7188 btrfs_set_file_extent_compression(leaf, ei, 0);
7189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7190 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7192 ptr = btrfs_file_extent_inline_start(ei);
7193 write_extent_buffer(leaf, symname, ptr, name_len);
7194 btrfs_mark_buffer_dirty(leaf);
7195 btrfs_free_path(path);
7197 inode->i_op = &btrfs_symlink_inode_operations;
7198 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7199 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7200 inode_set_bytes(inode, name_len);
7201 btrfs_i_size_write(inode, name_len - 1);
7202 err = btrfs_update_inode(trans, root, inode);
7203 if (err)
7204 drop_inode = 1;
7206 out_unlock:
7207 nr = trans->blocks_used;
7208 btrfs_end_transaction_throttle(trans, root);
7209 if (drop_inode) {
7210 inode_dec_link_count(inode);
7211 iput(inode);
7213 btrfs_btree_balance_dirty(root, nr);
7214 return err;
7217 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7218 u64 start, u64 num_bytes, u64 min_size,
7219 loff_t actual_len, u64 *alloc_hint,
7220 struct btrfs_trans_handle *trans)
7222 struct btrfs_root *root = BTRFS_I(inode)->root;
7223 struct btrfs_key ins;
7224 u64 cur_offset = start;
7225 u64 i_size;
7226 int ret = 0;
7227 bool own_trans = true;
7229 if (trans)
7230 own_trans = false;
7231 while (num_bytes > 0) {
7232 if (own_trans) {
7233 trans = btrfs_start_transaction(root, 3);
7234 if (IS_ERR(trans)) {
7235 ret = PTR_ERR(trans);
7236 break;
7240 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7241 0, *alloc_hint, (u64)-1, &ins, 1);
7242 if (ret) {
7243 if (own_trans)
7244 btrfs_end_transaction(trans, root);
7245 break;
7248 ret = insert_reserved_file_extent(trans, inode,
7249 cur_offset, ins.objectid,
7250 ins.offset, ins.offset,
7251 ins.offset, 0, 0, 0,
7252 BTRFS_FILE_EXTENT_PREALLOC);
7253 BUG_ON(ret);
7254 btrfs_drop_extent_cache(inode, cur_offset,
7255 cur_offset + ins.offset -1, 0);
7257 num_bytes -= ins.offset;
7258 cur_offset += ins.offset;
7259 *alloc_hint = ins.objectid + ins.offset;
7261 inode->i_ctime = CURRENT_TIME;
7262 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7263 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7264 (actual_len > inode->i_size) &&
7265 (cur_offset > inode->i_size)) {
7266 if (cur_offset > actual_len)
7267 i_size = actual_len;
7268 else
7269 i_size = cur_offset;
7270 i_size_write(inode, i_size);
7271 btrfs_ordered_update_i_size(inode, i_size, NULL);
7274 ret = btrfs_update_inode(trans, root, inode);
7275 BUG_ON(ret);
7277 if (own_trans)
7278 btrfs_end_transaction(trans, root);
7280 return ret;
7283 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7284 u64 start, u64 num_bytes, u64 min_size,
7285 loff_t actual_len, u64 *alloc_hint)
7287 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7288 min_size, actual_len, alloc_hint,
7289 NULL);
7292 int btrfs_prealloc_file_range_trans(struct inode *inode,
7293 struct btrfs_trans_handle *trans, int mode,
7294 u64 start, u64 num_bytes, u64 min_size,
7295 loff_t actual_len, u64 *alloc_hint)
7297 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7298 min_size, actual_len, alloc_hint, trans);
7301 static int btrfs_set_page_dirty(struct page *page)
7303 return __set_page_dirty_nobuffers(page);
7306 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7308 struct btrfs_root *root = BTRFS_I(inode)->root;
7310 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7311 return -EROFS;
7312 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7313 return -EACCES;
7314 return generic_permission(inode, mask, flags, btrfs_check_acl);
7317 static const struct inode_operations btrfs_dir_inode_operations = {
7318 .getattr = btrfs_getattr,
7319 .lookup = btrfs_lookup,
7320 .create = btrfs_create,
7321 .unlink = btrfs_unlink,
7322 .link = btrfs_link,
7323 .mkdir = btrfs_mkdir,
7324 .rmdir = btrfs_rmdir,
7325 .rename = btrfs_rename,
7326 .symlink = btrfs_symlink,
7327 .setattr = btrfs_setattr,
7328 .mknod = btrfs_mknod,
7329 .setxattr = btrfs_setxattr,
7330 .getxattr = btrfs_getxattr,
7331 .listxattr = btrfs_listxattr,
7332 .removexattr = btrfs_removexattr,
7333 .permission = btrfs_permission,
7335 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7336 .lookup = btrfs_lookup,
7337 .permission = btrfs_permission,
7340 static const struct file_operations btrfs_dir_file_operations = {
7341 .llseek = generic_file_llseek,
7342 .read = generic_read_dir,
7343 .readdir = btrfs_real_readdir,
7344 .unlocked_ioctl = btrfs_ioctl,
7345 #ifdef CONFIG_COMPAT
7346 .compat_ioctl = btrfs_ioctl,
7347 #endif
7348 .release = btrfs_release_file,
7349 .fsync = btrfs_sync_file,
7352 static struct extent_io_ops btrfs_extent_io_ops = {
7353 .fill_delalloc = run_delalloc_range,
7354 .submit_bio_hook = btrfs_submit_bio_hook,
7355 .merge_bio_hook = btrfs_merge_bio_hook,
7356 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7357 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7358 .writepage_start_hook = btrfs_writepage_start_hook,
7359 .readpage_io_failed_hook = btrfs_io_failed_hook,
7360 .set_bit_hook = btrfs_set_bit_hook,
7361 .clear_bit_hook = btrfs_clear_bit_hook,
7362 .merge_extent_hook = btrfs_merge_extent_hook,
7363 .split_extent_hook = btrfs_split_extent_hook,
7367 * btrfs doesn't support the bmap operation because swapfiles
7368 * use bmap to make a mapping of extents in the file. They assume
7369 * these extents won't change over the life of the file and they
7370 * use the bmap result to do IO directly to the drive.
7372 * the btrfs bmap call would return logical addresses that aren't
7373 * suitable for IO and they also will change frequently as COW
7374 * operations happen. So, swapfile + btrfs == corruption.
7376 * For now we're avoiding this by dropping bmap.
7378 static const struct address_space_operations btrfs_aops = {
7379 .readpage = btrfs_readpage,
7380 .writepage = btrfs_writepage,
7381 .writepages = btrfs_writepages,
7382 .readpages = btrfs_readpages,
7383 .sync_page = block_sync_page,
7384 .direct_IO = btrfs_direct_IO,
7385 .invalidatepage = btrfs_invalidatepage,
7386 .releasepage = btrfs_releasepage,
7387 .set_page_dirty = btrfs_set_page_dirty,
7388 .error_remove_page = generic_error_remove_page,
7391 static const struct address_space_operations btrfs_symlink_aops = {
7392 .readpage = btrfs_readpage,
7393 .writepage = btrfs_writepage,
7394 .invalidatepage = btrfs_invalidatepage,
7395 .releasepage = btrfs_releasepage,
7398 static const struct inode_operations btrfs_file_inode_operations = {
7399 .getattr = btrfs_getattr,
7400 .setattr = btrfs_setattr,
7401 .setxattr = btrfs_setxattr,
7402 .getxattr = btrfs_getxattr,
7403 .listxattr = btrfs_listxattr,
7404 .removexattr = btrfs_removexattr,
7405 .permission = btrfs_permission,
7406 .fiemap = btrfs_fiemap,
7408 static const struct inode_operations btrfs_special_inode_operations = {
7409 .getattr = btrfs_getattr,
7410 .setattr = btrfs_setattr,
7411 .permission = btrfs_permission,
7412 .setxattr = btrfs_setxattr,
7413 .getxattr = btrfs_getxattr,
7414 .listxattr = btrfs_listxattr,
7415 .removexattr = btrfs_removexattr,
7417 static const struct inode_operations btrfs_symlink_inode_operations = {
7418 .readlink = generic_readlink,
7419 .follow_link = page_follow_link_light,
7420 .put_link = page_put_link,
7421 .getattr = btrfs_getattr,
7422 .permission = btrfs_permission,
7423 .setxattr = btrfs_setxattr,
7424 .getxattr = btrfs_getxattr,
7425 .listxattr = btrfs_listxattr,
7426 .removexattr = btrfs_removexattr,
7429 const struct dentry_operations btrfs_dentry_operations = {
7430 .d_delete = btrfs_dentry_delete,