ACPI: thinkpad-acpi: add compatibility MODULE_ALIAS entry
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / hugetlb.c
blob7c07eb22ed1e99d427a1f17eba994c5cafa40c25
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
22 #include "internal.h"
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 unsigned long max_huge_pages;
27 static struct list_head hugepage_freelists[MAX_NUMNODES];
28 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
33 static DEFINE_SPINLOCK(hugetlb_lock);
35 static void clear_huge_page(struct page *page, unsigned long addr)
37 int i;
39 might_sleep();
40 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
41 cond_resched();
42 clear_user_highpage(page + i, addr);
46 static void copy_huge_page(struct page *dst, struct page *src,
47 unsigned long addr, struct vm_area_struct *vma)
49 int i;
51 might_sleep();
52 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
53 cond_resched();
54 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
58 static void enqueue_huge_page(struct page *page)
60 int nid = page_to_nid(page);
61 list_add(&page->lru, &hugepage_freelists[nid]);
62 free_huge_pages++;
63 free_huge_pages_node[nid]++;
66 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
67 unsigned long address)
69 int nid = numa_node_id();
70 struct page *page = NULL;
71 struct zonelist *zonelist = huge_zonelist(vma, address);
72 struct zone **z;
74 for (z = zonelist->zones; *z; z++) {
75 nid = zone_to_nid(*z);
76 if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) &&
77 !list_empty(&hugepage_freelists[nid]))
78 break;
81 if (*z) {
82 page = list_entry(hugepage_freelists[nid].next,
83 struct page, lru);
84 list_del(&page->lru);
85 free_huge_pages--;
86 free_huge_pages_node[nid]--;
88 return page;
91 static void free_huge_page(struct page *page)
93 BUG_ON(page_count(page));
95 INIT_LIST_HEAD(&page->lru);
97 spin_lock(&hugetlb_lock);
98 enqueue_huge_page(page);
99 spin_unlock(&hugetlb_lock);
102 static int alloc_fresh_huge_page(void)
104 static int prev_nid;
105 struct page *page;
106 static DEFINE_SPINLOCK(nid_lock);
107 int nid;
109 spin_lock(&nid_lock);
110 nid = next_node(prev_nid, node_online_map);
111 if (nid == MAX_NUMNODES)
112 nid = first_node(node_online_map);
113 prev_nid = nid;
114 spin_unlock(&nid_lock);
116 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
117 HUGETLB_PAGE_ORDER);
118 if (page) {
119 set_compound_page_dtor(page, free_huge_page);
120 spin_lock(&hugetlb_lock);
121 nr_huge_pages++;
122 nr_huge_pages_node[page_to_nid(page)]++;
123 spin_unlock(&hugetlb_lock);
124 put_page(page); /* free it into the hugepage allocator */
125 return 1;
127 return 0;
130 static struct page *alloc_huge_page(struct vm_area_struct *vma,
131 unsigned long addr)
133 struct page *page;
135 spin_lock(&hugetlb_lock);
136 if (vma->vm_flags & VM_MAYSHARE)
137 resv_huge_pages--;
138 else if (free_huge_pages <= resv_huge_pages)
139 goto fail;
141 page = dequeue_huge_page(vma, addr);
142 if (!page)
143 goto fail;
145 spin_unlock(&hugetlb_lock);
146 set_page_refcounted(page);
147 return page;
149 fail:
150 spin_unlock(&hugetlb_lock);
151 return NULL;
154 static int __init hugetlb_init(void)
156 unsigned long i;
158 if (HPAGE_SHIFT == 0)
159 return 0;
161 for (i = 0; i < MAX_NUMNODES; ++i)
162 INIT_LIST_HEAD(&hugepage_freelists[i]);
164 for (i = 0; i < max_huge_pages; ++i) {
165 if (!alloc_fresh_huge_page())
166 break;
168 max_huge_pages = free_huge_pages = nr_huge_pages = i;
169 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
170 return 0;
172 module_init(hugetlb_init);
174 static int __init hugetlb_setup(char *s)
176 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
177 max_huge_pages = 0;
178 return 1;
180 __setup("hugepages=", hugetlb_setup);
182 #ifdef CONFIG_SYSCTL
183 static void update_and_free_page(struct page *page)
185 int i;
186 nr_huge_pages--;
187 nr_huge_pages_node[page_to_nid(page)]--;
188 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
189 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
190 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
191 1 << PG_private | 1<< PG_writeback);
193 page[1].lru.next = NULL;
194 set_page_refcounted(page);
195 __free_pages(page, HUGETLB_PAGE_ORDER);
198 #ifdef CONFIG_HIGHMEM
199 static void try_to_free_low(unsigned long count)
201 int i;
203 for (i = 0; i < MAX_NUMNODES; ++i) {
204 struct page *page, *next;
205 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
206 if (PageHighMem(page))
207 continue;
208 list_del(&page->lru);
209 update_and_free_page(page);
210 free_huge_pages--;
211 free_huge_pages_node[page_to_nid(page)]--;
212 if (count >= nr_huge_pages)
213 return;
217 #else
218 static inline void try_to_free_low(unsigned long count)
221 #endif
223 static unsigned long set_max_huge_pages(unsigned long count)
225 while (count > nr_huge_pages) {
226 if (!alloc_fresh_huge_page())
227 return nr_huge_pages;
229 if (count >= nr_huge_pages)
230 return nr_huge_pages;
232 spin_lock(&hugetlb_lock);
233 count = max(count, resv_huge_pages);
234 try_to_free_low(count);
235 while (count < nr_huge_pages) {
236 struct page *page = dequeue_huge_page(NULL, 0);
237 if (!page)
238 break;
239 update_and_free_page(page);
241 spin_unlock(&hugetlb_lock);
242 return nr_huge_pages;
245 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
246 struct file *file, void __user *buffer,
247 size_t *length, loff_t *ppos)
249 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
250 max_huge_pages = set_max_huge_pages(max_huge_pages);
251 return 0;
253 #endif /* CONFIG_SYSCTL */
255 int hugetlb_report_meminfo(char *buf)
257 return sprintf(buf,
258 "HugePages_Total: %5lu\n"
259 "HugePages_Free: %5lu\n"
260 "HugePages_Rsvd: %5lu\n"
261 "Hugepagesize: %5lu kB\n",
262 nr_huge_pages,
263 free_huge_pages,
264 resv_huge_pages,
265 HPAGE_SIZE/1024);
268 int hugetlb_report_node_meminfo(int nid, char *buf)
270 return sprintf(buf,
271 "Node %d HugePages_Total: %5u\n"
272 "Node %d HugePages_Free: %5u\n",
273 nid, nr_huge_pages_node[nid],
274 nid, free_huge_pages_node[nid]);
277 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
278 unsigned long hugetlb_total_pages(void)
280 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
284 * We cannot handle pagefaults against hugetlb pages at all. They cause
285 * handle_mm_fault() to try to instantiate regular-sized pages in the
286 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
287 * this far.
289 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
290 unsigned long address, int *unused)
292 BUG();
293 return NULL;
296 struct vm_operations_struct hugetlb_vm_ops = {
297 .nopage = hugetlb_nopage,
300 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
301 int writable)
303 pte_t entry;
305 if (writable) {
306 entry =
307 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
308 } else {
309 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
311 entry = pte_mkyoung(entry);
312 entry = pte_mkhuge(entry);
314 return entry;
317 static void set_huge_ptep_writable(struct vm_area_struct *vma,
318 unsigned long address, pte_t *ptep)
320 pte_t entry;
322 entry = pte_mkwrite(pte_mkdirty(*ptep));
323 ptep_set_access_flags(vma, address, ptep, entry, 1);
324 update_mmu_cache(vma, address, entry);
325 lazy_mmu_prot_update(entry);
329 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
330 struct vm_area_struct *vma)
332 pte_t *src_pte, *dst_pte, entry;
333 struct page *ptepage;
334 unsigned long addr;
335 int cow;
337 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
339 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
340 src_pte = huge_pte_offset(src, addr);
341 if (!src_pte)
342 continue;
343 dst_pte = huge_pte_alloc(dst, addr);
344 if (!dst_pte)
345 goto nomem;
346 spin_lock(&dst->page_table_lock);
347 spin_lock(&src->page_table_lock);
348 if (!pte_none(*src_pte)) {
349 if (cow)
350 ptep_set_wrprotect(src, addr, src_pte);
351 entry = *src_pte;
352 ptepage = pte_page(entry);
353 get_page(ptepage);
354 set_huge_pte_at(dst, addr, dst_pte, entry);
356 spin_unlock(&src->page_table_lock);
357 spin_unlock(&dst->page_table_lock);
359 return 0;
361 nomem:
362 return -ENOMEM;
365 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
366 unsigned long end)
368 struct mm_struct *mm = vma->vm_mm;
369 unsigned long address;
370 pte_t *ptep;
371 pte_t pte;
372 struct page *page;
373 struct page *tmp;
375 * A page gathering list, protected by per file i_mmap_lock. The
376 * lock is used to avoid list corruption from multiple unmapping
377 * of the same page since we are using page->lru.
379 LIST_HEAD(page_list);
381 WARN_ON(!is_vm_hugetlb_page(vma));
382 BUG_ON(start & ~HPAGE_MASK);
383 BUG_ON(end & ~HPAGE_MASK);
385 spin_lock(&mm->page_table_lock);
386 for (address = start; address < end; address += HPAGE_SIZE) {
387 ptep = huge_pte_offset(mm, address);
388 if (!ptep)
389 continue;
391 if (huge_pmd_unshare(mm, &address, ptep))
392 continue;
394 pte = huge_ptep_get_and_clear(mm, address, ptep);
395 if (pte_none(pte))
396 continue;
398 page = pte_page(pte);
399 if (pte_dirty(pte))
400 set_page_dirty(page);
401 list_add(&page->lru, &page_list);
403 spin_unlock(&mm->page_table_lock);
404 flush_tlb_range(vma, start, end);
405 list_for_each_entry_safe(page, tmp, &page_list, lru) {
406 list_del(&page->lru);
407 put_page(page);
411 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
412 unsigned long end)
415 * It is undesirable to test vma->vm_file as it should be non-null
416 * for valid hugetlb area. However, vm_file will be NULL in the error
417 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
418 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
419 * to clean up. Since no pte has actually been setup, it is safe to
420 * do nothing in this case.
422 if (vma->vm_file) {
423 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
424 __unmap_hugepage_range(vma, start, end);
425 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
429 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
430 unsigned long address, pte_t *ptep, pte_t pte)
432 struct page *old_page, *new_page;
433 int avoidcopy;
435 old_page = pte_page(pte);
437 /* If no-one else is actually using this page, avoid the copy
438 * and just make the page writable */
439 avoidcopy = (page_count(old_page) == 1);
440 if (avoidcopy) {
441 set_huge_ptep_writable(vma, address, ptep);
442 return VM_FAULT_MINOR;
445 page_cache_get(old_page);
446 new_page = alloc_huge_page(vma, address);
448 if (!new_page) {
449 page_cache_release(old_page);
450 return VM_FAULT_OOM;
453 spin_unlock(&mm->page_table_lock);
454 copy_huge_page(new_page, old_page, address, vma);
455 spin_lock(&mm->page_table_lock);
457 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
458 if (likely(pte_same(*ptep, pte))) {
459 /* Break COW */
460 set_huge_pte_at(mm, address, ptep,
461 make_huge_pte(vma, new_page, 1));
462 /* Make the old page be freed below */
463 new_page = old_page;
465 page_cache_release(new_page);
466 page_cache_release(old_page);
467 return VM_FAULT_MINOR;
470 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
471 unsigned long address, pte_t *ptep, int write_access)
473 int ret = VM_FAULT_SIGBUS;
474 unsigned long idx;
475 unsigned long size;
476 struct page *page;
477 struct address_space *mapping;
478 pte_t new_pte;
480 mapping = vma->vm_file->f_mapping;
481 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
482 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
485 * Use page lock to guard against racing truncation
486 * before we get page_table_lock.
488 retry:
489 page = find_lock_page(mapping, idx);
490 if (!page) {
491 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
492 if (idx >= size)
493 goto out;
494 if (hugetlb_get_quota(mapping))
495 goto out;
496 page = alloc_huge_page(vma, address);
497 if (!page) {
498 hugetlb_put_quota(mapping);
499 ret = VM_FAULT_OOM;
500 goto out;
502 clear_huge_page(page, address);
504 if (vma->vm_flags & VM_SHARED) {
505 int err;
507 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
508 if (err) {
509 put_page(page);
510 hugetlb_put_quota(mapping);
511 if (err == -EEXIST)
512 goto retry;
513 goto out;
515 } else
516 lock_page(page);
519 spin_lock(&mm->page_table_lock);
520 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
521 if (idx >= size)
522 goto backout;
524 ret = VM_FAULT_MINOR;
525 if (!pte_none(*ptep))
526 goto backout;
528 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
529 && (vma->vm_flags & VM_SHARED)));
530 set_huge_pte_at(mm, address, ptep, new_pte);
532 if (write_access && !(vma->vm_flags & VM_SHARED)) {
533 /* Optimization, do the COW without a second fault */
534 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
537 spin_unlock(&mm->page_table_lock);
538 unlock_page(page);
539 out:
540 return ret;
542 backout:
543 spin_unlock(&mm->page_table_lock);
544 hugetlb_put_quota(mapping);
545 unlock_page(page);
546 put_page(page);
547 goto out;
550 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
551 unsigned long address, int write_access)
553 pte_t *ptep;
554 pte_t entry;
555 int ret;
556 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
558 ptep = huge_pte_alloc(mm, address);
559 if (!ptep)
560 return VM_FAULT_OOM;
563 * Serialize hugepage allocation and instantiation, so that we don't
564 * get spurious allocation failures if two CPUs race to instantiate
565 * the same page in the page cache.
567 mutex_lock(&hugetlb_instantiation_mutex);
568 entry = *ptep;
569 if (pte_none(entry)) {
570 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
571 mutex_unlock(&hugetlb_instantiation_mutex);
572 return ret;
575 ret = VM_FAULT_MINOR;
577 spin_lock(&mm->page_table_lock);
578 /* Check for a racing update before calling hugetlb_cow */
579 if (likely(pte_same(entry, *ptep)))
580 if (write_access && !pte_write(entry))
581 ret = hugetlb_cow(mm, vma, address, ptep, entry);
582 spin_unlock(&mm->page_table_lock);
583 mutex_unlock(&hugetlb_instantiation_mutex);
585 return ret;
588 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
589 struct page **pages, struct vm_area_struct **vmas,
590 unsigned long *position, int *length, int i)
592 unsigned long pfn_offset;
593 unsigned long vaddr = *position;
594 int remainder = *length;
596 spin_lock(&mm->page_table_lock);
597 while (vaddr < vma->vm_end && remainder) {
598 pte_t *pte;
599 struct page *page;
602 * Some archs (sparc64, sh*) have multiple pte_ts to
603 * each hugepage. We have to make * sure we get the
604 * first, for the page indexing below to work.
606 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
608 if (!pte || pte_none(*pte)) {
609 int ret;
611 spin_unlock(&mm->page_table_lock);
612 ret = hugetlb_fault(mm, vma, vaddr, 0);
613 spin_lock(&mm->page_table_lock);
614 if (ret == VM_FAULT_MINOR)
615 continue;
617 remainder = 0;
618 if (!i)
619 i = -EFAULT;
620 break;
623 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
624 page = pte_page(*pte);
625 same_page:
626 if (pages) {
627 get_page(page);
628 pages[i] = page + pfn_offset;
631 if (vmas)
632 vmas[i] = vma;
634 vaddr += PAGE_SIZE;
635 ++pfn_offset;
636 --remainder;
637 ++i;
638 if (vaddr < vma->vm_end && remainder &&
639 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
641 * We use pfn_offset to avoid touching the pageframes
642 * of this compound page.
644 goto same_page;
647 spin_unlock(&mm->page_table_lock);
648 *length = remainder;
649 *position = vaddr;
651 return i;
654 void hugetlb_change_protection(struct vm_area_struct *vma,
655 unsigned long address, unsigned long end, pgprot_t newprot)
657 struct mm_struct *mm = vma->vm_mm;
658 unsigned long start = address;
659 pte_t *ptep;
660 pte_t pte;
662 BUG_ON(address >= end);
663 flush_cache_range(vma, address, end);
665 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
666 spin_lock(&mm->page_table_lock);
667 for (; address < end; address += HPAGE_SIZE) {
668 ptep = huge_pte_offset(mm, address);
669 if (!ptep)
670 continue;
671 if (huge_pmd_unshare(mm, &address, ptep))
672 continue;
673 if (!pte_none(*ptep)) {
674 pte = huge_ptep_get_and_clear(mm, address, ptep);
675 pte = pte_mkhuge(pte_modify(pte, newprot));
676 set_huge_pte_at(mm, address, ptep, pte);
677 lazy_mmu_prot_update(pte);
680 spin_unlock(&mm->page_table_lock);
681 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
683 flush_tlb_range(vma, start, end);
686 struct file_region {
687 struct list_head link;
688 long from;
689 long to;
692 static long region_add(struct list_head *head, long f, long t)
694 struct file_region *rg, *nrg, *trg;
696 /* Locate the region we are either in or before. */
697 list_for_each_entry(rg, head, link)
698 if (f <= rg->to)
699 break;
701 /* Round our left edge to the current segment if it encloses us. */
702 if (f > rg->from)
703 f = rg->from;
705 /* Check for and consume any regions we now overlap with. */
706 nrg = rg;
707 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
708 if (&rg->link == head)
709 break;
710 if (rg->from > t)
711 break;
713 /* If this area reaches higher then extend our area to
714 * include it completely. If this is not the first area
715 * which we intend to reuse, free it. */
716 if (rg->to > t)
717 t = rg->to;
718 if (rg != nrg) {
719 list_del(&rg->link);
720 kfree(rg);
723 nrg->from = f;
724 nrg->to = t;
725 return 0;
728 static long region_chg(struct list_head *head, long f, long t)
730 struct file_region *rg, *nrg;
731 long chg = 0;
733 /* Locate the region we are before or in. */
734 list_for_each_entry(rg, head, link)
735 if (f <= rg->to)
736 break;
738 /* If we are below the current region then a new region is required.
739 * Subtle, allocate a new region at the position but make it zero
740 * size such that we can guarentee to record the reservation. */
741 if (&rg->link == head || t < rg->from) {
742 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
743 if (nrg == 0)
744 return -ENOMEM;
745 nrg->from = f;
746 nrg->to = f;
747 INIT_LIST_HEAD(&nrg->link);
748 list_add(&nrg->link, rg->link.prev);
750 return t - f;
753 /* Round our left edge to the current segment if it encloses us. */
754 if (f > rg->from)
755 f = rg->from;
756 chg = t - f;
758 /* Check for and consume any regions we now overlap with. */
759 list_for_each_entry(rg, rg->link.prev, link) {
760 if (&rg->link == head)
761 break;
762 if (rg->from > t)
763 return chg;
765 /* We overlap with this area, if it extends futher than
766 * us then we must extend ourselves. Account for its
767 * existing reservation. */
768 if (rg->to > t) {
769 chg += rg->to - t;
770 t = rg->to;
772 chg -= rg->to - rg->from;
774 return chg;
777 static long region_truncate(struct list_head *head, long end)
779 struct file_region *rg, *trg;
780 long chg = 0;
782 /* Locate the region we are either in or before. */
783 list_for_each_entry(rg, head, link)
784 if (end <= rg->to)
785 break;
786 if (&rg->link == head)
787 return 0;
789 /* If we are in the middle of a region then adjust it. */
790 if (end > rg->from) {
791 chg = rg->to - end;
792 rg->to = end;
793 rg = list_entry(rg->link.next, typeof(*rg), link);
796 /* Drop any remaining regions. */
797 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
798 if (&rg->link == head)
799 break;
800 chg += rg->to - rg->from;
801 list_del(&rg->link);
802 kfree(rg);
804 return chg;
807 static int hugetlb_acct_memory(long delta)
809 int ret = -ENOMEM;
811 spin_lock(&hugetlb_lock);
812 if ((delta + resv_huge_pages) <= free_huge_pages) {
813 resv_huge_pages += delta;
814 ret = 0;
816 spin_unlock(&hugetlb_lock);
817 return ret;
820 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
822 long ret, chg;
824 chg = region_chg(&inode->i_mapping->private_list, from, to);
825 if (chg < 0)
826 return chg;
827 ret = hugetlb_acct_memory(chg);
828 if (ret < 0)
829 return ret;
830 region_add(&inode->i_mapping->private_list, from, to);
831 return 0;
834 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
836 long chg = region_truncate(&inode->i_mapping->private_list, offset);
837 hugetlb_acct_memory(freed - chg);