sparc: Implement of_iomap().
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sys.c
blob1ad48b3b9068ff7454d753c7e36e844ab507afd8
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
42 #include <linux/compat.h>
43 #include <linux/syscalls.h>
44 #include <linux/kprobes.h>
45 #include <linux/user_namespace.h>
47 #include <linux/kmsg_dump.h>
49 #include <asm/uaccess.h>
50 #include <asm/io.h>
51 #include <asm/unistd.h>
53 #ifndef SET_UNALIGN_CTL
54 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
55 #endif
56 #ifndef GET_UNALIGN_CTL
57 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
58 #endif
59 #ifndef SET_FPEMU_CTL
60 # define SET_FPEMU_CTL(a,b) (-EINVAL)
61 #endif
62 #ifndef GET_FPEMU_CTL
63 # define GET_FPEMU_CTL(a,b) (-EINVAL)
64 #endif
65 #ifndef SET_FPEXC_CTL
66 # define SET_FPEXC_CTL(a,b) (-EINVAL)
67 #endif
68 #ifndef GET_FPEXC_CTL
69 # define GET_FPEXC_CTL(a,b) (-EINVAL)
70 #endif
71 #ifndef GET_ENDIAN
72 # define GET_ENDIAN(a,b) (-EINVAL)
73 #endif
74 #ifndef SET_ENDIAN
75 # define SET_ENDIAN(a,b) (-EINVAL)
76 #endif
77 #ifndef GET_TSC_CTL
78 # define GET_TSC_CTL(a) (-EINVAL)
79 #endif
80 #ifndef SET_TSC_CTL
81 # define SET_TSC_CTL(a) (-EINVAL)
82 #endif
85 * this is where the system-wide overflow UID and GID are defined, for
86 * architectures that now have 32-bit UID/GID but didn't in the past
89 int overflowuid = DEFAULT_OVERFLOWUID;
90 int overflowgid = DEFAULT_OVERFLOWGID;
92 #ifdef CONFIG_UID16
93 EXPORT_SYMBOL(overflowuid);
94 EXPORT_SYMBOL(overflowgid);
95 #endif
98 * the same as above, but for filesystems which can only store a 16-bit
99 * UID and GID. as such, this is needed on all architectures
102 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
103 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
105 EXPORT_SYMBOL(fs_overflowuid);
106 EXPORT_SYMBOL(fs_overflowgid);
109 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
112 int C_A_D = 1;
113 struct pid *cad_pid;
114 EXPORT_SYMBOL(cad_pid);
117 * If set, this is used for preparing the system to power off.
120 void (*pm_power_off_prepare)(void);
123 * set the priority of a task
124 * - the caller must hold the RCU read lock
126 static int set_one_prio(struct task_struct *p, int niceval, int error)
128 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
129 int no_nice;
131 if (pcred->uid != cred->euid &&
132 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
133 error = -EPERM;
134 goto out;
136 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
137 error = -EACCES;
138 goto out;
140 no_nice = security_task_setnice(p, niceval);
141 if (no_nice) {
142 error = no_nice;
143 goto out;
145 if (error == -ESRCH)
146 error = 0;
147 set_user_nice(p, niceval);
148 out:
149 return error;
152 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
154 struct task_struct *g, *p;
155 struct user_struct *user;
156 const struct cred *cred = current_cred();
157 int error = -EINVAL;
158 struct pid *pgrp;
160 if (which > PRIO_USER || which < PRIO_PROCESS)
161 goto out;
163 /* normalize: avoid signed division (rounding problems) */
164 error = -ESRCH;
165 if (niceval < -20)
166 niceval = -20;
167 if (niceval > 19)
168 niceval = 19;
170 rcu_read_lock();
171 read_lock(&tasklist_lock);
172 switch (which) {
173 case PRIO_PROCESS:
174 if (who)
175 p = find_task_by_vpid(who);
176 else
177 p = current;
178 if (p)
179 error = set_one_prio(p, niceval, error);
180 break;
181 case PRIO_PGRP:
182 if (who)
183 pgrp = find_vpid(who);
184 else
185 pgrp = task_pgrp(current);
186 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
187 error = set_one_prio(p, niceval, error);
188 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
189 break;
190 case PRIO_USER:
191 user = (struct user_struct *) cred->user;
192 if (!who)
193 who = cred->uid;
194 else if ((who != cred->uid) &&
195 !(user = find_user(who)))
196 goto out_unlock; /* No processes for this user */
198 do_each_thread(g, p) {
199 if (__task_cred(p)->uid == who)
200 error = set_one_prio(p, niceval, error);
201 } while_each_thread(g, p);
202 if (who != cred->uid)
203 free_uid(user); /* For find_user() */
204 break;
206 out_unlock:
207 read_unlock(&tasklist_lock);
208 rcu_read_unlock();
209 out:
210 return error;
214 * Ugh. To avoid negative return values, "getpriority()" will
215 * not return the normal nice-value, but a negated value that
216 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
217 * to stay compatible.
219 SYSCALL_DEFINE2(getpriority, int, which, int, who)
221 struct task_struct *g, *p;
222 struct user_struct *user;
223 const struct cred *cred = current_cred();
224 long niceval, retval = -ESRCH;
225 struct pid *pgrp;
227 if (which > PRIO_USER || which < PRIO_PROCESS)
228 return -EINVAL;
230 rcu_read_lock();
231 read_lock(&tasklist_lock);
232 switch (which) {
233 case PRIO_PROCESS:
234 if (who)
235 p = find_task_by_vpid(who);
236 else
237 p = current;
238 if (p) {
239 niceval = 20 - task_nice(p);
240 if (niceval > retval)
241 retval = niceval;
243 break;
244 case PRIO_PGRP:
245 if (who)
246 pgrp = find_vpid(who);
247 else
248 pgrp = task_pgrp(current);
249 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
250 niceval = 20 - task_nice(p);
251 if (niceval > retval)
252 retval = niceval;
253 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
254 break;
255 case PRIO_USER:
256 user = (struct user_struct *) cred->user;
257 if (!who)
258 who = cred->uid;
259 else if ((who != cred->uid) &&
260 !(user = find_user(who)))
261 goto out_unlock; /* No processes for this user */
263 do_each_thread(g, p) {
264 if (__task_cred(p)->uid == who) {
265 niceval = 20 - task_nice(p);
266 if (niceval > retval)
267 retval = niceval;
269 } while_each_thread(g, p);
270 if (who != cred->uid)
271 free_uid(user); /* for find_user() */
272 break;
274 out_unlock:
275 read_unlock(&tasklist_lock);
276 rcu_read_unlock();
278 return retval;
282 * emergency_restart - reboot the system
284 * Without shutting down any hardware or taking any locks
285 * reboot the system. This is called when we know we are in
286 * trouble so this is our best effort to reboot. This is
287 * safe to call in interrupt context.
289 void emergency_restart(void)
291 kmsg_dump(KMSG_DUMP_EMERG);
292 machine_emergency_restart();
294 EXPORT_SYMBOL_GPL(emergency_restart);
296 void kernel_restart_prepare(char *cmd)
298 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
299 system_state = SYSTEM_RESTART;
300 device_shutdown();
301 sysdev_shutdown();
302 syscore_shutdown();
306 * kernel_restart - reboot the system
307 * @cmd: pointer to buffer containing command to execute for restart
308 * or %NULL
310 * Shutdown everything and perform a clean reboot.
311 * This is not safe to call in interrupt context.
313 void kernel_restart(char *cmd)
315 kernel_restart_prepare(cmd);
316 if (!cmd)
317 printk(KERN_EMERG "Restarting system.\n");
318 else
319 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
320 kmsg_dump(KMSG_DUMP_RESTART);
321 machine_restart(cmd);
323 EXPORT_SYMBOL_GPL(kernel_restart);
325 static void kernel_shutdown_prepare(enum system_states state)
327 blocking_notifier_call_chain(&reboot_notifier_list,
328 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
329 system_state = state;
330 device_shutdown();
333 * kernel_halt - halt the system
335 * Shutdown everything and perform a clean system halt.
337 void kernel_halt(void)
339 kernel_shutdown_prepare(SYSTEM_HALT);
340 sysdev_shutdown();
341 syscore_shutdown();
342 printk(KERN_EMERG "System halted.\n");
343 kmsg_dump(KMSG_DUMP_HALT);
344 machine_halt();
347 EXPORT_SYMBOL_GPL(kernel_halt);
350 * kernel_power_off - power_off the system
352 * Shutdown everything and perform a clean system power_off.
354 void kernel_power_off(void)
356 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
357 if (pm_power_off_prepare)
358 pm_power_off_prepare();
359 disable_nonboot_cpus();
360 sysdev_shutdown();
361 syscore_shutdown();
362 printk(KERN_EMERG "Power down.\n");
363 kmsg_dump(KMSG_DUMP_POWEROFF);
364 machine_power_off();
366 EXPORT_SYMBOL_GPL(kernel_power_off);
368 static DEFINE_MUTEX(reboot_mutex);
371 * Reboot system call: for obvious reasons only root may call it,
372 * and even root needs to set up some magic numbers in the registers
373 * so that some mistake won't make this reboot the whole machine.
374 * You can also set the meaning of the ctrl-alt-del-key here.
376 * reboot doesn't sync: do that yourself before calling this.
378 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
379 void __user *, arg)
381 char buffer[256];
382 int ret = 0;
384 /* We only trust the superuser with rebooting the system. */
385 if (!capable(CAP_SYS_BOOT))
386 return -EPERM;
388 /* For safety, we require "magic" arguments. */
389 if (magic1 != LINUX_REBOOT_MAGIC1 ||
390 (magic2 != LINUX_REBOOT_MAGIC2 &&
391 magic2 != LINUX_REBOOT_MAGIC2A &&
392 magic2 != LINUX_REBOOT_MAGIC2B &&
393 magic2 != LINUX_REBOOT_MAGIC2C))
394 return -EINVAL;
396 /* Instead of trying to make the power_off code look like
397 * halt when pm_power_off is not set do it the easy way.
399 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
400 cmd = LINUX_REBOOT_CMD_HALT;
402 mutex_lock(&reboot_mutex);
403 switch (cmd) {
404 case LINUX_REBOOT_CMD_RESTART:
405 kernel_restart(NULL);
406 break;
408 case LINUX_REBOOT_CMD_CAD_ON:
409 C_A_D = 1;
410 break;
412 case LINUX_REBOOT_CMD_CAD_OFF:
413 C_A_D = 0;
414 break;
416 case LINUX_REBOOT_CMD_HALT:
417 kernel_halt();
418 do_exit(0);
419 panic("cannot halt");
421 case LINUX_REBOOT_CMD_POWER_OFF:
422 kernel_power_off();
423 do_exit(0);
424 break;
426 case LINUX_REBOOT_CMD_RESTART2:
427 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
428 ret = -EFAULT;
429 break;
431 buffer[sizeof(buffer) - 1] = '\0';
433 kernel_restart(buffer);
434 break;
436 #ifdef CONFIG_KEXEC
437 case LINUX_REBOOT_CMD_KEXEC:
438 ret = kernel_kexec();
439 break;
440 #endif
442 #ifdef CONFIG_HIBERNATION
443 case LINUX_REBOOT_CMD_SW_SUSPEND:
444 ret = hibernate();
445 break;
446 #endif
448 default:
449 ret = -EINVAL;
450 break;
452 mutex_unlock(&reboot_mutex);
453 return ret;
456 static void deferred_cad(struct work_struct *dummy)
458 kernel_restart(NULL);
462 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
463 * As it's called within an interrupt, it may NOT sync: the only choice
464 * is whether to reboot at once, or just ignore the ctrl-alt-del.
466 void ctrl_alt_del(void)
468 static DECLARE_WORK(cad_work, deferred_cad);
470 if (C_A_D)
471 schedule_work(&cad_work);
472 else
473 kill_cad_pid(SIGINT, 1);
477 * Unprivileged users may change the real gid to the effective gid
478 * or vice versa. (BSD-style)
480 * If you set the real gid at all, or set the effective gid to a value not
481 * equal to the real gid, then the saved gid is set to the new effective gid.
483 * This makes it possible for a setgid program to completely drop its
484 * privileges, which is often a useful assertion to make when you are doing
485 * a security audit over a program.
487 * The general idea is that a program which uses just setregid() will be
488 * 100% compatible with BSD. A program which uses just setgid() will be
489 * 100% compatible with POSIX with saved IDs.
491 * SMP: There are not races, the GIDs are checked only by filesystem
492 * operations (as far as semantic preservation is concerned).
494 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
496 const struct cred *old;
497 struct cred *new;
498 int retval;
500 new = prepare_creds();
501 if (!new)
502 return -ENOMEM;
503 old = current_cred();
505 retval = -EPERM;
506 if (rgid != (gid_t) -1) {
507 if (old->gid == rgid ||
508 old->egid == rgid ||
509 capable(CAP_SETGID))
510 new->gid = rgid;
511 else
512 goto error;
514 if (egid != (gid_t) -1) {
515 if (old->gid == egid ||
516 old->egid == egid ||
517 old->sgid == egid ||
518 capable(CAP_SETGID))
519 new->egid = egid;
520 else
521 goto error;
524 if (rgid != (gid_t) -1 ||
525 (egid != (gid_t) -1 && egid != old->gid))
526 new->sgid = new->egid;
527 new->fsgid = new->egid;
529 return commit_creds(new);
531 error:
532 abort_creds(new);
533 return retval;
537 * setgid() is implemented like SysV w/ SAVED_IDS
539 * SMP: Same implicit races as above.
541 SYSCALL_DEFINE1(setgid, gid_t, gid)
543 const struct cred *old;
544 struct cred *new;
545 int retval;
547 new = prepare_creds();
548 if (!new)
549 return -ENOMEM;
550 old = current_cred();
552 retval = -EPERM;
553 if (capable(CAP_SETGID))
554 new->gid = new->egid = new->sgid = new->fsgid = gid;
555 else if (gid == old->gid || gid == old->sgid)
556 new->egid = new->fsgid = gid;
557 else
558 goto error;
560 return commit_creds(new);
562 error:
563 abort_creds(new);
564 return retval;
568 * change the user struct in a credentials set to match the new UID
570 static int set_user(struct cred *new)
572 struct user_struct *new_user;
574 new_user = alloc_uid(current_user_ns(), new->uid);
575 if (!new_user)
576 return -EAGAIN;
578 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
579 new_user != INIT_USER) {
580 free_uid(new_user);
581 return -EAGAIN;
584 free_uid(new->user);
585 new->user = new_user;
586 return 0;
590 * Unprivileged users may change the real uid to the effective uid
591 * or vice versa. (BSD-style)
593 * If you set the real uid at all, or set the effective uid to a value not
594 * equal to the real uid, then the saved uid is set to the new effective uid.
596 * This makes it possible for a setuid program to completely drop its
597 * privileges, which is often a useful assertion to make when you are doing
598 * a security audit over a program.
600 * The general idea is that a program which uses just setreuid() will be
601 * 100% compatible with BSD. A program which uses just setuid() will be
602 * 100% compatible with POSIX with saved IDs.
604 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
606 const struct cred *old;
607 struct cred *new;
608 int retval;
610 new = prepare_creds();
611 if (!new)
612 return -ENOMEM;
613 old = current_cred();
615 retval = -EPERM;
616 if (ruid != (uid_t) -1) {
617 new->uid = ruid;
618 if (old->uid != ruid &&
619 old->euid != ruid &&
620 !capable(CAP_SETUID))
621 goto error;
624 if (euid != (uid_t) -1) {
625 new->euid = euid;
626 if (old->uid != euid &&
627 old->euid != euid &&
628 old->suid != euid &&
629 !capable(CAP_SETUID))
630 goto error;
633 if (new->uid != old->uid) {
634 retval = set_user(new);
635 if (retval < 0)
636 goto error;
638 if (ruid != (uid_t) -1 ||
639 (euid != (uid_t) -1 && euid != old->uid))
640 new->suid = new->euid;
641 new->fsuid = new->euid;
643 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
644 if (retval < 0)
645 goto error;
647 return commit_creds(new);
649 error:
650 abort_creds(new);
651 return retval;
655 * setuid() is implemented like SysV with SAVED_IDS
657 * Note that SAVED_ID's is deficient in that a setuid root program
658 * like sendmail, for example, cannot set its uid to be a normal
659 * user and then switch back, because if you're root, setuid() sets
660 * the saved uid too. If you don't like this, blame the bright people
661 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
662 * will allow a root program to temporarily drop privileges and be able to
663 * regain them by swapping the real and effective uid.
665 SYSCALL_DEFINE1(setuid, uid_t, uid)
667 const struct cred *old;
668 struct cred *new;
669 int retval;
671 new = prepare_creds();
672 if (!new)
673 return -ENOMEM;
674 old = current_cred();
676 retval = -EPERM;
677 if (capable(CAP_SETUID)) {
678 new->suid = new->uid = uid;
679 if (uid != old->uid) {
680 retval = set_user(new);
681 if (retval < 0)
682 goto error;
684 } else if (uid != old->uid && uid != new->suid) {
685 goto error;
688 new->fsuid = new->euid = uid;
690 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
691 if (retval < 0)
692 goto error;
694 return commit_creds(new);
696 error:
697 abort_creds(new);
698 return retval;
703 * This function implements a generic ability to update ruid, euid,
704 * and suid. This allows you to implement the 4.4 compatible seteuid().
706 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
708 const struct cred *old;
709 struct cred *new;
710 int retval;
712 new = prepare_creds();
713 if (!new)
714 return -ENOMEM;
716 old = current_cred();
718 retval = -EPERM;
719 if (!capable(CAP_SETUID)) {
720 if (ruid != (uid_t) -1 && ruid != old->uid &&
721 ruid != old->euid && ruid != old->suid)
722 goto error;
723 if (euid != (uid_t) -1 && euid != old->uid &&
724 euid != old->euid && euid != old->suid)
725 goto error;
726 if (suid != (uid_t) -1 && suid != old->uid &&
727 suid != old->euid && suid != old->suid)
728 goto error;
731 if (ruid != (uid_t) -1) {
732 new->uid = ruid;
733 if (ruid != old->uid) {
734 retval = set_user(new);
735 if (retval < 0)
736 goto error;
739 if (euid != (uid_t) -1)
740 new->euid = euid;
741 if (suid != (uid_t) -1)
742 new->suid = suid;
743 new->fsuid = new->euid;
745 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
746 if (retval < 0)
747 goto error;
749 return commit_creds(new);
751 error:
752 abort_creds(new);
753 return retval;
756 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
758 const struct cred *cred = current_cred();
759 int retval;
761 if (!(retval = put_user(cred->uid, ruid)) &&
762 !(retval = put_user(cred->euid, euid)))
763 retval = put_user(cred->suid, suid);
765 return retval;
769 * Same as above, but for rgid, egid, sgid.
771 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
773 const struct cred *old;
774 struct cred *new;
775 int retval;
777 new = prepare_creds();
778 if (!new)
779 return -ENOMEM;
780 old = current_cred();
782 retval = -EPERM;
783 if (!capable(CAP_SETGID)) {
784 if (rgid != (gid_t) -1 && rgid != old->gid &&
785 rgid != old->egid && rgid != old->sgid)
786 goto error;
787 if (egid != (gid_t) -1 && egid != old->gid &&
788 egid != old->egid && egid != old->sgid)
789 goto error;
790 if (sgid != (gid_t) -1 && sgid != old->gid &&
791 sgid != old->egid && sgid != old->sgid)
792 goto error;
795 if (rgid != (gid_t) -1)
796 new->gid = rgid;
797 if (egid != (gid_t) -1)
798 new->egid = egid;
799 if (sgid != (gid_t) -1)
800 new->sgid = sgid;
801 new->fsgid = new->egid;
803 return commit_creds(new);
805 error:
806 abort_creds(new);
807 return retval;
810 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
812 const struct cred *cred = current_cred();
813 int retval;
815 if (!(retval = put_user(cred->gid, rgid)) &&
816 !(retval = put_user(cred->egid, egid)))
817 retval = put_user(cred->sgid, sgid);
819 return retval;
824 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
825 * is used for "access()" and for the NFS daemon (letting nfsd stay at
826 * whatever uid it wants to). It normally shadows "euid", except when
827 * explicitly set by setfsuid() or for access..
829 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
831 const struct cred *old;
832 struct cred *new;
833 uid_t old_fsuid;
835 new = prepare_creds();
836 if (!new)
837 return current_fsuid();
838 old = current_cred();
839 old_fsuid = old->fsuid;
841 if (uid == old->uid || uid == old->euid ||
842 uid == old->suid || uid == old->fsuid ||
843 capable(CAP_SETUID)) {
844 if (uid != old_fsuid) {
845 new->fsuid = uid;
846 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
847 goto change_okay;
851 abort_creds(new);
852 return old_fsuid;
854 change_okay:
855 commit_creds(new);
856 return old_fsuid;
860 * Samma på svenska..
862 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
864 const struct cred *old;
865 struct cred *new;
866 gid_t old_fsgid;
868 new = prepare_creds();
869 if (!new)
870 return current_fsgid();
871 old = current_cred();
872 old_fsgid = old->fsgid;
874 if (gid == old->gid || gid == old->egid ||
875 gid == old->sgid || gid == old->fsgid ||
876 capable(CAP_SETGID)) {
877 if (gid != old_fsgid) {
878 new->fsgid = gid;
879 goto change_okay;
883 abort_creds(new);
884 return old_fsgid;
886 change_okay:
887 commit_creds(new);
888 return old_fsgid;
891 void do_sys_times(struct tms *tms)
893 cputime_t tgutime, tgstime, cutime, cstime;
895 spin_lock_irq(&current->sighand->siglock);
896 thread_group_times(current, &tgutime, &tgstime);
897 cutime = current->signal->cutime;
898 cstime = current->signal->cstime;
899 spin_unlock_irq(&current->sighand->siglock);
900 tms->tms_utime = cputime_to_clock_t(tgutime);
901 tms->tms_stime = cputime_to_clock_t(tgstime);
902 tms->tms_cutime = cputime_to_clock_t(cutime);
903 tms->tms_cstime = cputime_to_clock_t(cstime);
906 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
908 if (tbuf) {
909 struct tms tmp;
911 do_sys_times(&tmp);
912 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
913 return -EFAULT;
915 force_successful_syscall_return();
916 return (long) jiffies_64_to_clock_t(get_jiffies_64());
920 * This needs some heavy checking ...
921 * I just haven't the stomach for it. I also don't fully
922 * understand sessions/pgrp etc. Let somebody who does explain it.
924 * OK, I think I have the protection semantics right.... this is really
925 * only important on a multi-user system anyway, to make sure one user
926 * can't send a signal to a process owned by another. -TYT, 12/12/91
928 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
929 * LBT 04.03.94
931 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
933 struct task_struct *p;
934 struct task_struct *group_leader = current->group_leader;
935 struct pid *pgrp;
936 int err;
938 if (!pid)
939 pid = task_pid_vnr(group_leader);
940 if (!pgid)
941 pgid = pid;
942 if (pgid < 0)
943 return -EINVAL;
944 rcu_read_lock();
946 /* From this point forward we keep holding onto the tasklist lock
947 * so that our parent does not change from under us. -DaveM
949 write_lock_irq(&tasklist_lock);
951 err = -ESRCH;
952 p = find_task_by_vpid(pid);
953 if (!p)
954 goto out;
956 err = -EINVAL;
957 if (!thread_group_leader(p))
958 goto out;
960 if (same_thread_group(p->real_parent, group_leader)) {
961 err = -EPERM;
962 if (task_session(p) != task_session(group_leader))
963 goto out;
964 err = -EACCES;
965 if (p->did_exec)
966 goto out;
967 } else {
968 err = -ESRCH;
969 if (p != group_leader)
970 goto out;
973 err = -EPERM;
974 if (p->signal->leader)
975 goto out;
977 pgrp = task_pid(p);
978 if (pgid != pid) {
979 struct task_struct *g;
981 pgrp = find_vpid(pgid);
982 g = pid_task(pgrp, PIDTYPE_PGID);
983 if (!g || task_session(g) != task_session(group_leader))
984 goto out;
987 err = security_task_setpgid(p, pgid);
988 if (err)
989 goto out;
991 if (task_pgrp(p) != pgrp)
992 change_pid(p, PIDTYPE_PGID, pgrp);
994 err = 0;
995 out:
996 /* All paths lead to here, thus we are safe. -DaveM */
997 write_unlock_irq(&tasklist_lock);
998 rcu_read_unlock();
999 return err;
1002 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1004 struct task_struct *p;
1005 struct pid *grp;
1006 int retval;
1008 rcu_read_lock();
1009 if (!pid)
1010 grp = task_pgrp(current);
1011 else {
1012 retval = -ESRCH;
1013 p = find_task_by_vpid(pid);
1014 if (!p)
1015 goto out;
1016 grp = task_pgrp(p);
1017 if (!grp)
1018 goto out;
1020 retval = security_task_getpgid(p);
1021 if (retval)
1022 goto out;
1024 retval = pid_vnr(grp);
1025 out:
1026 rcu_read_unlock();
1027 return retval;
1030 #ifdef __ARCH_WANT_SYS_GETPGRP
1032 SYSCALL_DEFINE0(getpgrp)
1034 return sys_getpgid(0);
1037 #endif
1039 SYSCALL_DEFINE1(getsid, pid_t, pid)
1041 struct task_struct *p;
1042 struct pid *sid;
1043 int retval;
1045 rcu_read_lock();
1046 if (!pid)
1047 sid = task_session(current);
1048 else {
1049 retval = -ESRCH;
1050 p = find_task_by_vpid(pid);
1051 if (!p)
1052 goto out;
1053 sid = task_session(p);
1054 if (!sid)
1055 goto out;
1057 retval = security_task_getsid(p);
1058 if (retval)
1059 goto out;
1061 retval = pid_vnr(sid);
1062 out:
1063 rcu_read_unlock();
1064 return retval;
1067 SYSCALL_DEFINE0(setsid)
1069 struct task_struct *group_leader = current->group_leader;
1070 struct pid *sid = task_pid(group_leader);
1071 pid_t session = pid_vnr(sid);
1072 int err = -EPERM;
1074 write_lock_irq(&tasklist_lock);
1075 /* Fail if I am already a session leader */
1076 if (group_leader->signal->leader)
1077 goto out;
1079 /* Fail if a process group id already exists that equals the
1080 * proposed session id.
1082 if (pid_task(sid, PIDTYPE_PGID))
1083 goto out;
1085 group_leader->signal->leader = 1;
1086 __set_special_pids(sid);
1088 proc_clear_tty(group_leader);
1090 err = session;
1091 out:
1092 write_unlock_irq(&tasklist_lock);
1093 if (err > 0) {
1094 proc_sid_connector(group_leader);
1095 sched_autogroup_create_attach(group_leader);
1097 return err;
1100 DECLARE_RWSEM(uts_sem);
1102 #ifdef COMPAT_UTS_MACHINE
1103 #define override_architecture(name) \
1104 (personality(current->personality) == PER_LINUX32 && \
1105 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1106 sizeof(COMPAT_UTS_MACHINE)))
1107 #else
1108 #define override_architecture(name) 0
1109 #endif
1111 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1113 int errno = 0;
1115 down_read(&uts_sem);
1116 if (copy_to_user(name, utsname(), sizeof *name))
1117 errno = -EFAULT;
1118 up_read(&uts_sem);
1120 if (!errno && override_architecture(name))
1121 errno = -EFAULT;
1122 return errno;
1125 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1127 * Old cruft
1129 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1131 int error = 0;
1133 if (!name)
1134 return -EFAULT;
1136 down_read(&uts_sem);
1137 if (copy_to_user(name, utsname(), sizeof(*name)))
1138 error = -EFAULT;
1139 up_read(&uts_sem);
1141 if (!error && override_architecture(name))
1142 error = -EFAULT;
1143 return error;
1146 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1148 int error;
1150 if (!name)
1151 return -EFAULT;
1152 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1153 return -EFAULT;
1155 down_read(&uts_sem);
1156 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1157 __OLD_UTS_LEN);
1158 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1159 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1160 __OLD_UTS_LEN);
1161 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1162 error |= __copy_to_user(&name->release, &utsname()->release,
1163 __OLD_UTS_LEN);
1164 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1165 error |= __copy_to_user(&name->version, &utsname()->version,
1166 __OLD_UTS_LEN);
1167 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1168 error |= __copy_to_user(&name->machine, &utsname()->machine,
1169 __OLD_UTS_LEN);
1170 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1171 up_read(&uts_sem);
1173 if (!error && override_architecture(name))
1174 error = -EFAULT;
1175 return error ? -EFAULT : 0;
1177 #endif
1179 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1181 int errno;
1182 char tmp[__NEW_UTS_LEN];
1184 if (!capable(CAP_SYS_ADMIN))
1185 return -EPERM;
1186 if (len < 0 || len > __NEW_UTS_LEN)
1187 return -EINVAL;
1188 down_write(&uts_sem);
1189 errno = -EFAULT;
1190 if (!copy_from_user(tmp, name, len)) {
1191 struct new_utsname *u = utsname();
1193 memcpy(u->nodename, tmp, len);
1194 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1195 errno = 0;
1197 up_write(&uts_sem);
1198 return errno;
1201 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1203 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1205 int i, errno;
1206 struct new_utsname *u;
1208 if (len < 0)
1209 return -EINVAL;
1210 down_read(&uts_sem);
1211 u = utsname();
1212 i = 1 + strlen(u->nodename);
1213 if (i > len)
1214 i = len;
1215 errno = 0;
1216 if (copy_to_user(name, u->nodename, i))
1217 errno = -EFAULT;
1218 up_read(&uts_sem);
1219 return errno;
1222 #endif
1225 * Only setdomainname; getdomainname can be implemented by calling
1226 * uname()
1228 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1230 int errno;
1231 char tmp[__NEW_UTS_LEN];
1233 if (!capable(CAP_SYS_ADMIN))
1234 return -EPERM;
1235 if (len < 0 || len > __NEW_UTS_LEN)
1236 return -EINVAL;
1238 down_write(&uts_sem);
1239 errno = -EFAULT;
1240 if (!copy_from_user(tmp, name, len)) {
1241 struct new_utsname *u = utsname();
1243 memcpy(u->domainname, tmp, len);
1244 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1245 errno = 0;
1247 up_write(&uts_sem);
1248 return errno;
1251 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1253 struct rlimit value;
1254 int ret;
1256 ret = do_prlimit(current, resource, NULL, &value);
1257 if (!ret)
1258 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1260 return ret;
1263 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1266 * Back compatibility for getrlimit. Needed for some apps.
1269 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1270 struct rlimit __user *, rlim)
1272 struct rlimit x;
1273 if (resource >= RLIM_NLIMITS)
1274 return -EINVAL;
1276 task_lock(current->group_leader);
1277 x = current->signal->rlim[resource];
1278 task_unlock(current->group_leader);
1279 if (x.rlim_cur > 0x7FFFFFFF)
1280 x.rlim_cur = 0x7FFFFFFF;
1281 if (x.rlim_max > 0x7FFFFFFF)
1282 x.rlim_max = 0x7FFFFFFF;
1283 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1286 #endif
1288 static inline bool rlim64_is_infinity(__u64 rlim64)
1290 #if BITS_PER_LONG < 64
1291 return rlim64 >= ULONG_MAX;
1292 #else
1293 return rlim64 == RLIM64_INFINITY;
1294 #endif
1297 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1299 if (rlim->rlim_cur == RLIM_INFINITY)
1300 rlim64->rlim_cur = RLIM64_INFINITY;
1301 else
1302 rlim64->rlim_cur = rlim->rlim_cur;
1303 if (rlim->rlim_max == RLIM_INFINITY)
1304 rlim64->rlim_max = RLIM64_INFINITY;
1305 else
1306 rlim64->rlim_max = rlim->rlim_max;
1309 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1311 if (rlim64_is_infinity(rlim64->rlim_cur))
1312 rlim->rlim_cur = RLIM_INFINITY;
1313 else
1314 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1315 if (rlim64_is_infinity(rlim64->rlim_max))
1316 rlim->rlim_max = RLIM_INFINITY;
1317 else
1318 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1321 /* make sure you are allowed to change @tsk limits before calling this */
1322 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1323 struct rlimit *new_rlim, struct rlimit *old_rlim)
1325 struct rlimit *rlim;
1326 int retval = 0;
1328 if (resource >= RLIM_NLIMITS)
1329 return -EINVAL;
1330 if (new_rlim) {
1331 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1332 return -EINVAL;
1333 if (resource == RLIMIT_NOFILE &&
1334 new_rlim->rlim_max > sysctl_nr_open)
1335 return -EPERM;
1338 /* protect tsk->signal and tsk->sighand from disappearing */
1339 read_lock(&tasklist_lock);
1340 if (!tsk->sighand) {
1341 retval = -ESRCH;
1342 goto out;
1345 rlim = tsk->signal->rlim + resource;
1346 task_lock(tsk->group_leader);
1347 if (new_rlim) {
1348 if (new_rlim->rlim_max > rlim->rlim_max &&
1349 !capable(CAP_SYS_RESOURCE))
1350 retval = -EPERM;
1351 if (!retval)
1352 retval = security_task_setrlimit(tsk->group_leader,
1353 resource, new_rlim);
1354 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1356 * The caller is asking for an immediate RLIMIT_CPU
1357 * expiry. But we use the zero value to mean "it was
1358 * never set". So let's cheat and make it one second
1359 * instead
1361 new_rlim->rlim_cur = 1;
1364 if (!retval) {
1365 if (old_rlim)
1366 *old_rlim = *rlim;
1367 if (new_rlim)
1368 *rlim = *new_rlim;
1370 task_unlock(tsk->group_leader);
1373 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1374 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1375 * very long-standing error, and fixing it now risks breakage of
1376 * applications, so we live with it
1378 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1379 new_rlim->rlim_cur != RLIM_INFINITY)
1380 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1381 out:
1382 read_unlock(&tasklist_lock);
1383 return retval;
1386 /* rcu lock must be held */
1387 static int check_prlimit_permission(struct task_struct *task)
1389 const struct cred *cred = current_cred(), *tcred;
1391 tcred = __task_cred(task);
1392 if (current != task &&
1393 (cred->uid != tcred->euid ||
1394 cred->uid != tcred->suid ||
1395 cred->uid != tcred->uid ||
1396 cred->gid != tcred->egid ||
1397 cred->gid != tcred->sgid ||
1398 cred->gid != tcred->gid) &&
1399 !capable(CAP_SYS_RESOURCE)) {
1400 return -EPERM;
1403 return 0;
1406 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1407 const struct rlimit64 __user *, new_rlim,
1408 struct rlimit64 __user *, old_rlim)
1410 struct rlimit64 old64, new64;
1411 struct rlimit old, new;
1412 struct task_struct *tsk;
1413 int ret;
1415 if (new_rlim) {
1416 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1417 return -EFAULT;
1418 rlim64_to_rlim(&new64, &new);
1421 rcu_read_lock();
1422 tsk = pid ? find_task_by_vpid(pid) : current;
1423 if (!tsk) {
1424 rcu_read_unlock();
1425 return -ESRCH;
1427 ret = check_prlimit_permission(tsk);
1428 if (ret) {
1429 rcu_read_unlock();
1430 return ret;
1432 get_task_struct(tsk);
1433 rcu_read_unlock();
1435 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1436 old_rlim ? &old : NULL);
1438 if (!ret && old_rlim) {
1439 rlim_to_rlim64(&old, &old64);
1440 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1441 ret = -EFAULT;
1444 put_task_struct(tsk);
1445 return ret;
1448 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1450 struct rlimit new_rlim;
1452 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1453 return -EFAULT;
1454 return do_prlimit(current, resource, &new_rlim, NULL);
1458 * It would make sense to put struct rusage in the task_struct,
1459 * except that would make the task_struct be *really big*. After
1460 * task_struct gets moved into malloc'ed memory, it would
1461 * make sense to do this. It will make moving the rest of the information
1462 * a lot simpler! (Which we're not doing right now because we're not
1463 * measuring them yet).
1465 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1466 * races with threads incrementing their own counters. But since word
1467 * reads are atomic, we either get new values or old values and we don't
1468 * care which for the sums. We always take the siglock to protect reading
1469 * the c* fields from p->signal from races with exit.c updating those
1470 * fields when reaping, so a sample either gets all the additions of a
1471 * given child after it's reaped, or none so this sample is before reaping.
1473 * Locking:
1474 * We need to take the siglock for CHILDEREN, SELF and BOTH
1475 * for the cases current multithreaded, non-current single threaded
1476 * non-current multithreaded. Thread traversal is now safe with
1477 * the siglock held.
1478 * Strictly speaking, we donot need to take the siglock if we are current and
1479 * single threaded, as no one else can take our signal_struct away, no one
1480 * else can reap the children to update signal->c* counters, and no one else
1481 * can race with the signal-> fields. If we do not take any lock, the
1482 * signal-> fields could be read out of order while another thread was just
1483 * exiting. So we should place a read memory barrier when we avoid the lock.
1484 * On the writer side, write memory barrier is implied in __exit_signal
1485 * as __exit_signal releases the siglock spinlock after updating the signal->
1486 * fields. But we don't do this yet to keep things simple.
1490 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1492 r->ru_nvcsw += t->nvcsw;
1493 r->ru_nivcsw += t->nivcsw;
1494 r->ru_minflt += t->min_flt;
1495 r->ru_majflt += t->maj_flt;
1496 r->ru_inblock += task_io_get_inblock(t);
1497 r->ru_oublock += task_io_get_oublock(t);
1500 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1502 struct task_struct *t;
1503 unsigned long flags;
1504 cputime_t tgutime, tgstime, utime, stime;
1505 unsigned long maxrss = 0;
1507 memset((char *) r, 0, sizeof *r);
1508 utime = stime = cputime_zero;
1510 if (who == RUSAGE_THREAD) {
1511 task_times(current, &utime, &stime);
1512 accumulate_thread_rusage(p, r);
1513 maxrss = p->signal->maxrss;
1514 goto out;
1517 if (!lock_task_sighand(p, &flags))
1518 return;
1520 switch (who) {
1521 case RUSAGE_BOTH:
1522 case RUSAGE_CHILDREN:
1523 utime = p->signal->cutime;
1524 stime = p->signal->cstime;
1525 r->ru_nvcsw = p->signal->cnvcsw;
1526 r->ru_nivcsw = p->signal->cnivcsw;
1527 r->ru_minflt = p->signal->cmin_flt;
1528 r->ru_majflt = p->signal->cmaj_flt;
1529 r->ru_inblock = p->signal->cinblock;
1530 r->ru_oublock = p->signal->coublock;
1531 maxrss = p->signal->cmaxrss;
1533 if (who == RUSAGE_CHILDREN)
1534 break;
1536 case RUSAGE_SELF:
1537 thread_group_times(p, &tgutime, &tgstime);
1538 utime = cputime_add(utime, tgutime);
1539 stime = cputime_add(stime, tgstime);
1540 r->ru_nvcsw += p->signal->nvcsw;
1541 r->ru_nivcsw += p->signal->nivcsw;
1542 r->ru_minflt += p->signal->min_flt;
1543 r->ru_majflt += p->signal->maj_flt;
1544 r->ru_inblock += p->signal->inblock;
1545 r->ru_oublock += p->signal->oublock;
1546 if (maxrss < p->signal->maxrss)
1547 maxrss = p->signal->maxrss;
1548 t = p;
1549 do {
1550 accumulate_thread_rusage(t, r);
1551 t = next_thread(t);
1552 } while (t != p);
1553 break;
1555 default:
1556 BUG();
1558 unlock_task_sighand(p, &flags);
1560 out:
1561 cputime_to_timeval(utime, &r->ru_utime);
1562 cputime_to_timeval(stime, &r->ru_stime);
1564 if (who != RUSAGE_CHILDREN) {
1565 struct mm_struct *mm = get_task_mm(p);
1566 if (mm) {
1567 setmax_mm_hiwater_rss(&maxrss, mm);
1568 mmput(mm);
1571 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1574 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1576 struct rusage r;
1577 k_getrusage(p, who, &r);
1578 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1581 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1583 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1584 who != RUSAGE_THREAD)
1585 return -EINVAL;
1586 return getrusage(current, who, ru);
1589 SYSCALL_DEFINE1(umask, int, mask)
1591 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1592 return mask;
1595 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1596 unsigned long, arg4, unsigned long, arg5)
1598 struct task_struct *me = current;
1599 unsigned char comm[sizeof(me->comm)];
1600 long error;
1602 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1603 if (error != -ENOSYS)
1604 return error;
1606 error = 0;
1607 switch (option) {
1608 case PR_SET_PDEATHSIG:
1609 if (!valid_signal(arg2)) {
1610 error = -EINVAL;
1611 break;
1613 me->pdeath_signal = arg2;
1614 error = 0;
1615 break;
1616 case PR_GET_PDEATHSIG:
1617 error = put_user(me->pdeath_signal, (int __user *)arg2);
1618 break;
1619 case PR_GET_DUMPABLE:
1620 error = get_dumpable(me->mm);
1621 break;
1622 case PR_SET_DUMPABLE:
1623 if (arg2 < 0 || arg2 > 1) {
1624 error = -EINVAL;
1625 break;
1627 set_dumpable(me->mm, arg2);
1628 error = 0;
1629 break;
1631 case PR_SET_UNALIGN:
1632 error = SET_UNALIGN_CTL(me, arg2);
1633 break;
1634 case PR_GET_UNALIGN:
1635 error = GET_UNALIGN_CTL(me, arg2);
1636 break;
1637 case PR_SET_FPEMU:
1638 error = SET_FPEMU_CTL(me, arg2);
1639 break;
1640 case PR_GET_FPEMU:
1641 error = GET_FPEMU_CTL(me, arg2);
1642 break;
1643 case PR_SET_FPEXC:
1644 error = SET_FPEXC_CTL(me, arg2);
1645 break;
1646 case PR_GET_FPEXC:
1647 error = GET_FPEXC_CTL(me, arg2);
1648 break;
1649 case PR_GET_TIMING:
1650 error = PR_TIMING_STATISTICAL;
1651 break;
1652 case PR_SET_TIMING:
1653 if (arg2 != PR_TIMING_STATISTICAL)
1654 error = -EINVAL;
1655 else
1656 error = 0;
1657 break;
1659 case PR_SET_NAME:
1660 comm[sizeof(me->comm)-1] = 0;
1661 if (strncpy_from_user(comm, (char __user *)arg2,
1662 sizeof(me->comm) - 1) < 0)
1663 return -EFAULT;
1664 set_task_comm(me, comm);
1665 return 0;
1666 case PR_GET_NAME:
1667 get_task_comm(comm, me);
1668 if (copy_to_user((char __user *)arg2, comm,
1669 sizeof(comm)))
1670 return -EFAULT;
1671 return 0;
1672 case PR_GET_ENDIAN:
1673 error = GET_ENDIAN(me, arg2);
1674 break;
1675 case PR_SET_ENDIAN:
1676 error = SET_ENDIAN(me, arg2);
1677 break;
1679 case PR_GET_SECCOMP:
1680 error = prctl_get_seccomp();
1681 break;
1682 case PR_SET_SECCOMP:
1683 error = prctl_set_seccomp(arg2);
1684 break;
1685 case PR_GET_TSC:
1686 error = GET_TSC_CTL(arg2);
1687 break;
1688 case PR_SET_TSC:
1689 error = SET_TSC_CTL(arg2);
1690 break;
1691 case PR_TASK_PERF_EVENTS_DISABLE:
1692 error = perf_event_task_disable();
1693 break;
1694 case PR_TASK_PERF_EVENTS_ENABLE:
1695 error = perf_event_task_enable();
1696 break;
1697 case PR_GET_TIMERSLACK:
1698 error = current->timer_slack_ns;
1699 break;
1700 case PR_SET_TIMERSLACK:
1701 if (arg2 <= 0)
1702 current->timer_slack_ns =
1703 current->default_timer_slack_ns;
1704 else
1705 current->timer_slack_ns = arg2;
1706 error = 0;
1707 break;
1708 case PR_MCE_KILL:
1709 if (arg4 | arg5)
1710 return -EINVAL;
1711 switch (arg2) {
1712 case PR_MCE_KILL_CLEAR:
1713 if (arg3 != 0)
1714 return -EINVAL;
1715 current->flags &= ~PF_MCE_PROCESS;
1716 break;
1717 case PR_MCE_KILL_SET:
1718 current->flags |= PF_MCE_PROCESS;
1719 if (arg3 == PR_MCE_KILL_EARLY)
1720 current->flags |= PF_MCE_EARLY;
1721 else if (arg3 == PR_MCE_KILL_LATE)
1722 current->flags &= ~PF_MCE_EARLY;
1723 else if (arg3 == PR_MCE_KILL_DEFAULT)
1724 current->flags &=
1725 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1726 else
1727 return -EINVAL;
1728 break;
1729 default:
1730 return -EINVAL;
1732 error = 0;
1733 break;
1734 case PR_MCE_KILL_GET:
1735 if (arg2 | arg3 | arg4 | arg5)
1736 return -EINVAL;
1737 if (current->flags & PF_MCE_PROCESS)
1738 error = (current->flags & PF_MCE_EARLY) ?
1739 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1740 else
1741 error = PR_MCE_KILL_DEFAULT;
1742 break;
1743 default:
1744 error = -EINVAL;
1745 break;
1747 return error;
1750 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1751 struct getcpu_cache __user *, unused)
1753 int err = 0;
1754 int cpu = raw_smp_processor_id();
1755 if (cpup)
1756 err |= put_user(cpu, cpup);
1757 if (nodep)
1758 err |= put_user(cpu_to_node(cpu), nodep);
1759 return err ? -EFAULT : 0;
1762 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1764 static void argv_cleanup(struct subprocess_info *info)
1766 argv_free(info->argv);
1770 * orderly_poweroff - Trigger an orderly system poweroff
1771 * @force: force poweroff if command execution fails
1773 * This may be called from any context to trigger a system shutdown.
1774 * If the orderly shutdown fails, it will force an immediate shutdown.
1776 int orderly_poweroff(bool force)
1778 int argc;
1779 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1780 static char *envp[] = {
1781 "HOME=/",
1782 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1783 NULL
1785 int ret = -ENOMEM;
1786 struct subprocess_info *info;
1788 if (argv == NULL) {
1789 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1790 __func__, poweroff_cmd);
1791 goto out;
1794 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1795 if (info == NULL) {
1796 argv_free(argv);
1797 goto out;
1800 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1802 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1804 out:
1805 if (ret && force) {
1806 printk(KERN_WARNING "Failed to start orderly shutdown: "
1807 "forcing the issue\n");
1809 /* I guess this should try to kick off some daemon to
1810 sync and poweroff asap. Or not even bother syncing
1811 if we're doing an emergency shutdown? */
1812 emergency_sync();
1813 kernel_power_off();
1816 return ret;
1818 EXPORT_SYMBOL_GPL(orderly_poweroff);