4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
42 #include <linux/compat.h>
43 #include <linux/syscalls.h>
44 #include <linux/kprobes.h>
45 #include <linux/user_namespace.h>
47 #include <linux/kmsg_dump.h>
49 #include <asm/uaccess.h>
51 #include <asm/unistd.h>
53 #ifndef SET_UNALIGN_CTL
54 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
56 #ifndef GET_UNALIGN_CTL
57 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
60 # define SET_FPEMU_CTL(a,b) (-EINVAL)
63 # define GET_FPEMU_CTL(a,b) (-EINVAL)
66 # define SET_FPEXC_CTL(a,b) (-EINVAL)
69 # define GET_FPEXC_CTL(a,b) (-EINVAL)
72 # define GET_ENDIAN(a,b) (-EINVAL)
75 # define SET_ENDIAN(a,b) (-EINVAL)
78 # define GET_TSC_CTL(a) (-EINVAL)
81 # define SET_TSC_CTL(a) (-EINVAL)
85 * this is where the system-wide overflow UID and GID are defined, for
86 * architectures that now have 32-bit UID/GID but didn't in the past
89 int overflowuid
= DEFAULT_OVERFLOWUID
;
90 int overflowgid
= DEFAULT_OVERFLOWGID
;
93 EXPORT_SYMBOL(overflowuid
);
94 EXPORT_SYMBOL(overflowgid
);
98 * the same as above, but for filesystems which can only store a 16-bit
99 * UID and GID. as such, this is needed on all architectures
102 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
103 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
105 EXPORT_SYMBOL(fs_overflowuid
);
106 EXPORT_SYMBOL(fs_overflowgid
);
109 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
114 EXPORT_SYMBOL(cad_pid
);
117 * If set, this is used for preparing the system to power off.
120 void (*pm_power_off_prepare
)(void);
123 * set the priority of a task
124 * - the caller must hold the RCU read lock
126 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
128 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
131 if (pcred
->uid
!= cred
->euid
&&
132 pcred
->euid
!= cred
->euid
&& !capable(CAP_SYS_NICE
)) {
136 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
140 no_nice
= security_task_setnice(p
, niceval
);
147 set_user_nice(p
, niceval
);
152 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
154 struct task_struct
*g
, *p
;
155 struct user_struct
*user
;
156 const struct cred
*cred
= current_cred();
160 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
163 /* normalize: avoid signed division (rounding problems) */
171 read_lock(&tasklist_lock
);
175 p
= find_task_by_vpid(who
);
179 error
= set_one_prio(p
, niceval
, error
);
183 pgrp
= find_vpid(who
);
185 pgrp
= task_pgrp(current
);
186 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
187 error
= set_one_prio(p
, niceval
, error
);
188 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
191 user
= (struct user_struct
*) cred
->user
;
194 else if ((who
!= cred
->uid
) &&
195 !(user
= find_user(who
)))
196 goto out_unlock
; /* No processes for this user */
198 do_each_thread(g
, p
) {
199 if (__task_cred(p
)->uid
== who
)
200 error
= set_one_prio(p
, niceval
, error
);
201 } while_each_thread(g
, p
);
202 if (who
!= cred
->uid
)
203 free_uid(user
); /* For find_user() */
207 read_unlock(&tasklist_lock
);
214 * Ugh. To avoid negative return values, "getpriority()" will
215 * not return the normal nice-value, but a negated value that
216 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
217 * to stay compatible.
219 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
221 struct task_struct
*g
, *p
;
222 struct user_struct
*user
;
223 const struct cred
*cred
= current_cred();
224 long niceval
, retval
= -ESRCH
;
227 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
231 read_lock(&tasklist_lock
);
235 p
= find_task_by_vpid(who
);
239 niceval
= 20 - task_nice(p
);
240 if (niceval
> retval
)
246 pgrp
= find_vpid(who
);
248 pgrp
= task_pgrp(current
);
249 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
250 niceval
= 20 - task_nice(p
);
251 if (niceval
> retval
)
253 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
256 user
= (struct user_struct
*) cred
->user
;
259 else if ((who
!= cred
->uid
) &&
260 !(user
= find_user(who
)))
261 goto out_unlock
; /* No processes for this user */
263 do_each_thread(g
, p
) {
264 if (__task_cred(p
)->uid
== who
) {
265 niceval
= 20 - task_nice(p
);
266 if (niceval
> retval
)
269 } while_each_thread(g
, p
);
270 if (who
!= cred
->uid
)
271 free_uid(user
); /* for find_user() */
275 read_unlock(&tasklist_lock
);
282 * emergency_restart - reboot the system
284 * Without shutting down any hardware or taking any locks
285 * reboot the system. This is called when we know we are in
286 * trouble so this is our best effort to reboot. This is
287 * safe to call in interrupt context.
289 void emergency_restart(void)
291 kmsg_dump(KMSG_DUMP_EMERG
);
292 machine_emergency_restart();
294 EXPORT_SYMBOL_GPL(emergency_restart
);
296 void kernel_restart_prepare(char *cmd
)
298 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
299 system_state
= SYSTEM_RESTART
;
306 * kernel_restart - reboot the system
307 * @cmd: pointer to buffer containing command to execute for restart
310 * Shutdown everything and perform a clean reboot.
311 * This is not safe to call in interrupt context.
313 void kernel_restart(char *cmd
)
315 kernel_restart_prepare(cmd
);
317 printk(KERN_EMERG
"Restarting system.\n");
319 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
320 kmsg_dump(KMSG_DUMP_RESTART
);
321 machine_restart(cmd
);
323 EXPORT_SYMBOL_GPL(kernel_restart
);
325 static void kernel_shutdown_prepare(enum system_states state
)
327 blocking_notifier_call_chain(&reboot_notifier_list
,
328 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
329 system_state
= state
;
333 * kernel_halt - halt the system
335 * Shutdown everything and perform a clean system halt.
337 void kernel_halt(void)
339 kernel_shutdown_prepare(SYSTEM_HALT
);
342 printk(KERN_EMERG
"System halted.\n");
343 kmsg_dump(KMSG_DUMP_HALT
);
347 EXPORT_SYMBOL_GPL(kernel_halt
);
350 * kernel_power_off - power_off the system
352 * Shutdown everything and perform a clean system power_off.
354 void kernel_power_off(void)
356 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
357 if (pm_power_off_prepare
)
358 pm_power_off_prepare();
359 disable_nonboot_cpus();
362 printk(KERN_EMERG
"Power down.\n");
363 kmsg_dump(KMSG_DUMP_POWEROFF
);
366 EXPORT_SYMBOL_GPL(kernel_power_off
);
368 static DEFINE_MUTEX(reboot_mutex
);
371 * Reboot system call: for obvious reasons only root may call it,
372 * and even root needs to set up some magic numbers in the registers
373 * so that some mistake won't make this reboot the whole machine.
374 * You can also set the meaning of the ctrl-alt-del-key here.
376 * reboot doesn't sync: do that yourself before calling this.
378 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
384 /* We only trust the superuser with rebooting the system. */
385 if (!capable(CAP_SYS_BOOT
))
388 /* For safety, we require "magic" arguments. */
389 if (magic1
!= LINUX_REBOOT_MAGIC1
||
390 (magic2
!= LINUX_REBOOT_MAGIC2
&&
391 magic2
!= LINUX_REBOOT_MAGIC2A
&&
392 magic2
!= LINUX_REBOOT_MAGIC2B
&&
393 magic2
!= LINUX_REBOOT_MAGIC2C
))
396 /* Instead of trying to make the power_off code look like
397 * halt when pm_power_off is not set do it the easy way.
399 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
400 cmd
= LINUX_REBOOT_CMD_HALT
;
402 mutex_lock(&reboot_mutex
);
404 case LINUX_REBOOT_CMD_RESTART
:
405 kernel_restart(NULL
);
408 case LINUX_REBOOT_CMD_CAD_ON
:
412 case LINUX_REBOOT_CMD_CAD_OFF
:
416 case LINUX_REBOOT_CMD_HALT
:
419 panic("cannot halt");
421 case LINUX_REBOOT_CMD_POWER_OFF
:
426 case LINUX_REBOOT_CMD_RESTART2
:
427 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
431 buffer
[sizeof(buffer
) - 1] = '\0';
433 kernel_restart(buffer
);
437 case LINUX_REBOOT_CMD_KEXEC
:
438 ret
= kernel_kexec();
442 #ifdef CONFIG_HIBERNATION
443 case LINUX_REBOOT_CMD_SW_SUSPEND
:
452 mutex_unlock(&reboot_mutex
);
456 static void deferred_cad(struct work_struct
*dummy
)
458 kernel_restart(NULL
);
462 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
463 * As it's called within an interrupt, it may NOT sync: the only choice
464 * is whether to reboot at once, or just ignore the ctrl-alt-del.
466 void ctrl_alt_del(void)
468 static DECLARE_WORK(cad_work
, deferred_cad
);
471 schedule_work(&cad_work
);
473 kill_cad_pid(SIGINT
, 1);
477 * Unprivileged users may change the real gid to the effective gid
478 * or vice versa. (BSD-style)
480 * If you set the real gid at all, or set the effective gid to a value not
481 * equal to the real gid, then the saved gid is set to the new effective gid.
483 * This makes it possible for a setgid program to completely drop its
484 * privileges, which is often a useful assertion to make when you are doing
485 * a security audit over a program.
487 * The general idea is that a program which uses just setregid() will be
488 * 100% compatible with BSD. A program which uses just setgid() will be
489 * 100% compatible with POSIX with saved IDs.
491 * SMP: There are not races, the GIDs are checked only by filesystem
492 * operations (as far as semantic preservation is concerned).
494 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
496 const struct cred
*old
;
500 new = prepare_creds();
503 old
= current_cred();
506 if (rgid
!= (gid_t
) -1) {
507 if (old
->gid
== rgid
||
514 if (egid
!= (gid_t
) -1) {
515 if (old
->gid
== egid
||
524 if (rgid
!= (gid_t
) -1 ||
525 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
526 new->sgid
= new->egid
;
527 new->fsgid
= new->egid
;
529 return commit_creds(new);
537 * setgid() is implemented like SysV w/ SAVED_IDS
539 * SMP: Same implicit races as above.
541 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
543 const struct cred
*old
;
547 new = prepare_creds();
550 old
= current_cred();
553 if (capable(CAP_SETGID
))
554 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
555 else if (gid
== old
->gid
|| gid
== old
->sgid
)
556 new->egid
= new->fsgid
= gid
;
560 return commit_creds(new);
568 * change the user struct in a credentials set to match the new UID
570 static int set_user(struct cred
*new)
572 struct user_struct
*new_user
;
574 new_user
= alloc_uid(current_user_ns(), new->uid
);
578 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
579 new_user
!= INIT_USER
) {
585 new->user
= new_user
;
590 * Unprivileged users may change the real uid to the effective uid
591 * or vice versa. (BSD-style)
593 * If you set the real uid at all, or set the effective uid to a value not
594 * equal to the real uid, then the saved uid is set to the new effective uid.
596 * This makes it possible for a setuid program to completely drop its
597 * privileges, which is often a useful assertion to make when you are doing
598 * a security audit over a program.
600 * The general idea is that a program which uses just setreuid() will be
601 * 100% compatible with BSD. A program which uses just setuid() will be
602 * 100% compatible with POSIX with saved IDs.
604 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
606 const struct cred
*old
;
610 new = prepare_creds();
613 old
= current_cred();
616 if (ruid
!= (uid_t
) -1) {
618 if (old
->uid
!= ruid
&&
620 !capable(CAP_SETUID
))
624 if (euid
!= (uid_t
) -1) {
626 if (old
->uid
!= euid
&&
629 !capable(CAP_SETUID
))
633 if (new->uid
!= old
->uid
) {
634 retval
= set_user(new);
638 if (ruid
!= (uid_t
) -1 ||
639 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
640 new->suid
= new->euid
;
641 new->fsuid
= new->euid
;
643 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
647 return commit_creds(new);
655 * setuid() is implemented like SysV with SAVED_IDS
657 * Note that SAVED_ID's is deficient in that a setuid root program
658 * like sendmail, for example, cannot set its uid to be a normal
659 * user and then switch back, because if you're root, setuid() sets
660 * the saved uid too. If you don't like this, blame the bright people
661 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
662 * will allow a root program to temporarily drop privileges and be able to
663 * regain them by swapping the real and effective uid.
665 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
667 const struct cred
*old
;
671 new = prepare_creds();
674 old
= current_cred();
677 if (capable(CAP_SETUID
)) {
678 new->suid
= new->uid
= uid
;
679 if (uid
!= old
->uid
) {
680 retval
= set_user(new);
684 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
688 new->fsuid
= new->euid
= uid
;
690 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
694 return commit_creds(new);
703 * This function implements a generic ability to update ruid, euid,
704 * and suid. This allows you to implement the 4.4 compatible seteuid().
706 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
708 const struct cred
*old
;
712 new = prepare_creds();
716 old
= current_cred();
719 if (!capable(CAP_SETUID
)) {
720 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
721 ruid
!= old
->euid
&& ruid
!= old
->suid
)
723 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
724 euid
!= old
->euid
&& euid
!= old
->suid
)
726 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
727 suid
!= old
->euid
&& suid
!= old
->suid
)
731 if (ruid
!= (uid_t
) -1) {
733 if (ruid
!= old
->uid
) {
734 retval
= set_user(new);
739 if (euid
!= (uid_t
) -1)
741 if (suid
!= (uid_t
) -1)
743 new->fsuid
= new->euid
;
745 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
749 return commit_creds(new);
756 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
758 const struct cred
*cred
= current_cred();
761 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
762 !(retval
= put_user(cred
->euid
, euid
)))
763 retval
= put_user(cred
->suid
, suid
);
769 * Same as above, but for rgid, egid, sgid.
771 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
773 const struct cred
*old
;
777 new = prepare_creds();
780 old
= current_cred();
783 if (!capable(CAP_SETGID
)) {
784 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
785 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
787 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
788 egid
!= old
->egid
&& egid
!= old
->sgid
)
790 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
791 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
795 if (rgid
!= (gid_t
) -1)
797 if (egid
!= (gid_t
) -1)
799 if (sgid
!= (gid_t
) -1)
801 new->fsgid
= new->egid
;
803 return commit_creds(new);
810 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
812 const struct cred
*cred
= current_cred();
815 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
816 !(retval
= put_user(cred
->egid
, egid
)))
817 retval
= put_user(cred
->sgid
, sgid
);
824 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
825 * is used for "access()" and for the NFS daemon (letting nfsd stay at
826 * whatever uid it wants to). It normally shadows "euid", except when
827 * explicitly set by setfsuid() or for access..
829 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
831 const struct cred
*old
;
835 new = prepare_creds();
837 return current_fsuid();
838 old
= current_cred();
839 old_fsuid
= old
->fsuid
;
841 if (uid
== old
->uid
|| uid
== old
->euid
||
842 uid
== old
->suid
|| uid
== old
->fsuid
||
843 capable(CAP_SETUID
)) {
844 if (uid
!= old_fsuid
) {
846 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
860 * Samma på svenska..
862 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
864 const struct cred
*old
;
868 new = prepare_creds();
870 return current_fsgid();
871 old
= current_cred();
872 old_fsgid
= old
->fsgid
;
874 if (gid
== old
->gid
|| gid
== old
->egid
||
875 gid
== old
->sgid
|| gid
== old
->fsgid
||
876 capable(CAP_SETGID
)) {
877 if (gid
!= old_fsgid
) {
891 void do_sys_times(struct tms
*tms
)
893 cputime_t tgutime
, tgstime
, cutime
, cstime
;
895 spin_lock_irq(¤t
->sighand
->siglock
);
896 thread_group_times(current
, &tgutime
, &tgstime
);
897 cutime
= current
->signal
->cutime
;
898 cstime
= current
->signal
->cstime
;
899 spin_unlock_irq(¤t
->sighand
->siglock
);
900 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
901 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
902 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
903 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
906 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
912 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
915 force_successful_syscall_return();
916 return (long) jiffies_64_to_clock_t(get_jiffies_64());
920 * This needs some heavy checking ...
921 * I just haven't the stomach for it. I also don't fully
922 * understand sessions/pgrp etc. Let somebody who does explain it.
924 * OK, I think I have the protection semantics right.... this is really
925 * only important on a multi-user system anyway, to make sure one user
926 * can't send a signal to a process owned by another. -TYT, 12/12/91
928 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
931 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
933 struct task_struct
*p
;
934 struct task_struct
*group_leader
= current
->group_leader
;
939 pid
= task_pid_vnr(group_leader
);
946 /* From this point forward we keep holding onto the tasklist lock
947 * so that our parent does not change from under us. -DaveM
949 write_lock_irq(&tasklist_lock
);
952 p
= find_task_by_vpid(pid
);
957 if (!thread_group_leader(p
))
960 if (same_thread_group(p
->real_parent
, group_leader
)) {
962 if (task_session(p
) != task_session(group_leader
))
969 if (p
!= group_leader
)
974 if (p
->signal
->leader
)
979 struct task_struct
*g
;
981 pgrp
= find_vpid(pgid
);
982 g
= pid_task(pgrp
, PIDTYPE_PGID
);
983 if (!g
|| task_session(g
) != task_session(group_leader
))
987 err
= security_task_setpgid(p
, pgid
);
991 if (task_pgrp(p
) != pgrp
)
992 change_pid(p
, PIDTYPE_PGID
, pgrp
);
996 /* All paths lead to here, thus we are safe. -DaveM */
997 write_unlock_irq(&tasklist_lock
);
1002 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1004 struct task_struct
*p
;
1010 grp
= task_pgrp(current
);
1013 p
= find_task_by_vpid(pid
);
1020 retval
= security_task_getpgid(p
);
1024 retval
= pid_vnr(grp
);
1030 #ifdef __ARCH_WANT_SYS_GETPGRP
1032 SYSCALL_DEFINE0(getpgrp
)
1034 return sys_getpgid(0);
1039 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1041 struct task_struct
*p
;
1047 sid
= task_session(current
);
1050 p
= find_task_by_vpid(pid
);
1053 sid
= task_session(p
);
1057 retval
= security_task_getsid(p
);
1061 retval
= pid_vnr(sid
);
1067 SYSCALL_DEFINE0(setsid
)
1069 struct task_struct
*group_leader
= current
->group_leader
;
1070 struct pid
*sid
= task_pid(group_leader
);
1071 pid_t session
= pid_vnr(sid
);
1074 write_lock_irq(&tasklist_lock
);
1075 /* Fail if I am already a session leader */
1076 if (group_leader
->signal
->leader
)
1079 /* Fail if a process group id already exists that equals the
1080 * proposed session id.
1082 if (pid_task(sid
, PIDTYPE_PGID
))
1085 group_leader
->signal
->leader
= 1;
1086 __set_special_pids(sid
);
1088 proc_clear_tty(group_leader
);
1092 write_unlock_irq(&tasklist_lock
);
1094 proc_sid_connector(group_leader
);
1095 sched_autogroup_create_attach(group_leader
);
1100 DECLARE_RWSEM(uts_sem
);
1102 #ifdef COMPAT_UTS_MACHINE
1103 #define override_architecture(name) \
1104 (personality(current->personality) == PER_LINUX32 && \
1105 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1106 sizeof(COMPAT_UTS_MACHINE)))
1108 #define override_architecture(name) 0
1111 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1115 down_read(&uts_sem
);
1116 if (copy_to_user(name
, utsname(), sizeof *name
))
1120 if (!errno
&& override_architecture(name
))
1125 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1129 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1136 down_read(&uts_sem
);
1137 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1141 if (!error
&& override_architecture(name
))
1146 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1152 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1155 down_read(&uts_sem
);
1156 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1158 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1159 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1161 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1162 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1164 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1165 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1167 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1168 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1170 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1173 if (!error
&& override_architecture(name
))
1175 return error
? -EFAULT
: 0;
1179 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1182 char tmp
[__NEW_UTS_LEN
];
1184 if (!capable(CAP_SYS_ADMIN
))
1186 if (len
< 0 || len
> __NEW_UTS_LEN
)
1188 down_write(&uts_sem
);
1190 if (!copy_from_user(tmp
, name
, len
)) {
1191 struct new_utsname
*u
= utsname();
1193 memcpy(u
->nodename
, tmp
, len
);
1194 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1201 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1203 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1206 struct new_utsname
*u
;
1210 down_read(&uts_sem
);
1212 i
= 1 + strlen(u
->nodename
);
1216 if (copy_to_user(name
, u
->nodename
, i
))
1225 * Only setdomainname; getdomainname can be implemented by calling
1228 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1231 char tmp
[__NEW_UTS_LEN
];
1233 if (!capable(CAP_SYS_ADMIN
))
1235 if (len
< 0 || len
> __NEW_UTS_LEN
)
1238 down_write(&uts_sem
);
1240 if (!copy_from_user(tmp
, name
, len
)) {
1241 struct new_utsname
*u
= utsname();
1243 memcpy(u
->domainname
, tmp
, len
);
1244 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1251 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1253 struct rlimit value
;
1256 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1258 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1263 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1266 * Back compatibility for getrlimit. Needed for some apps.
1269 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1270 struct rlimit __user
*, rlim
)
1273 if (resource
>= RLIM_NLIMITS
)
1276 task_lock(current
->group_leader
);
1277 x
= current
->signal
->rlim
[resource
];
1278 task_unlock(current
->group_leader
);
1279 if (x
.rlim_cur
> 0x7FFFFFFF)
1280 x
.rlim_cur
= 0x7FFFFFFF;
1281 if (x
.rlim_max
> 0x7FFFFFFF)
1282 x
.rlim_max
= 0x7FFFFFFF;
1283 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1288 static inline bool rlim64_is_infinity(__u64 rlim64
)
1290 #if BITS_PER_LONG < 64
1291 return rlim64
>= ULONG_MAX
;
1293 return rlim64
== RLIM64_INFINITY
;
1297 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1299 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1300 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1302 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1303 if (rlim
->rlim_max
== RLIM_INFINITY
)
1304 rlim64
->rlim_max
= RLIM64_INFINITY
;
1306 rlim64
->rlim_max
= rlim
->rlim_max
;
1309 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1311 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1312 rlim
->rlim_cur
= RLIM_INFINITY
;
1314 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1315 if (rlim64_is_infinity(rlim64
->rlim_max
))
1316 rlim
->rlim_max
= RLIM_INFINITY
;
1318 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1321 /* make sure you are allowed to change @tsk limits before calling this */
1322 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1323 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1325 struct rlimit
*rlim
;
1328 if (resource
>= RLIM_NLIMITS
)
1331 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1333 if (resource
== RLIMIT_NOFILE
&&
1334 new_rlim
->rlim_max
> sysctl_nr_open
)
1338 /* protect tsk->signal and tsk->sighand from disappearing */
1339 read_lock(&tasklist_lock
);
1340 if (!tsk
->sighand
) {
1345 rlim
= tsk
->signal
->rlim
+ resource
;
1346 task_lock(tsk
->group_leader
);
1348 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1349 !capable(CAP_SYS_RESOURCE
))
1352 retval
= security_task_setrlimit(tsk
->group_leader
,
1353 resource
, new_rlim
);
1354 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1356 * The caller is asking for an immediate RLIMIT_CPU
1357 * expiry. But we use the zero value to mean "it was
1358 * never set". So let's cheat and make it one second
1361 new_rlim
->rlim_cur
= 1;
1370 task_unlock(tsk
->group_leader
);
1373 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1374 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1375 * very long-standing error, and fixing it now risks breakage of
1376 * applications, so we live with it
1378 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1379 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1380 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1382 read_unlock(&tasklist_lock
);
1386 /* rcu lock must be held */
1387 static int check_prlimit_permission(struct task_struct
*task
)
1389 const struct cred
*cred
= current_cred(), *tcred
;
1391 tcred
= __task_cred(task
);
1392 if (current
!= task
&&
1393 (cred
->uid
!= tcred
->euid
||
1394 cred
->uid
!= tcred
->suid
||
1395 cred
->uid
!= tcred
->uid
||
1396 cred
->gid
!= tcred
->egid
||
1397 cred
->gid
!= tcred
->sgid
||
1398 cred
->gid
!= tcred
->gid
) &&
1399 !capable(CAP_SYS_RESOURCE
)) {
1406 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1407 const struct rlimit64 __user
*, new_rlim
,
1408 struct rlimit64 __user
*, old_rlim
)
1410 struct rlimit64 old64
, new64
;
1411 struct rlimit old
, new;
1412 struct task_struct
*tsk
;
1416 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1418 rlim64_to_rlim(&new64
, &new);
1422 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1427 ret
= check_prlimit_permission(tsk
);
1432 get_task_struct(tsk
);
1435 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1436 old_rlim
? &old
: NULL
);
1438 if (!ret
&& old_rlim
) {
1439 rlim_to_rlim64(&old
, &old64
);
1440 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1444 put_task_struct(tsk
);
1448 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1450 struct rlimit new_rlim
;
1452 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1454 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1458 * It would make sense to put struct rusage in the task_struct,
1459 * except that would make the task_struct be *really big*. After
1460 * task_struct gets moved into malloc'ed memory, it would
1461 * make sense to do this. It will make moving the rest of the information
1462 * a lot simpler! (Which we're not doing right now because we're not
1463 * measuring them yet).
1465 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1466 * races with threads incrementing their own counters. But since word
1467 * reads are atomic, we either get new values or old values and we don't
1468 * care which for the sums. We always take the siglock to protect reading
1469 * the c* fields from p->signal from races with exit.c updating those
1470 * fields when reaping, so a sample either gets all the additions of a
1471 * given child after it's reaped, or none so this sample is before reaping.
1474 * We need to take the siglock for CHILDEREN, SELF and BOTH
1475 * for the cases current multithreaded, non-current single threaded
1476 * non-current multithreaded. Thread traversal is now safe with
1478 * Strictly speaking, we donot need to take the siglock if we are current and
1479 * single threaded, as no one else can take our signal_struct away, no one
1480 * else can reap the children to update signal->c* counters, and no one else
1481 * can race with the signal-> fields. If we do not take any lock, the
1482 * signal-> fields could be read out of order while another thread was just
1483 * exiting. So we should place a read memory barrier when we avoid the lock.
1484 * On the writer side, write memory barrier is implied in __exit_signal
1485 * as __exit_signal releases the siglock spinlock after updating the signal->
1486 * fields. But we don't do this yet to keep things simple.
1490 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1492 r
->ru_nvcsw
+= t
->nvcsw
;
1493 r
->ru_nivcsw
+= t
->nivcsw
;
1494 r
->ru_minflt
+= t
->min_flt
;
1495 r
->ru_majflt
+= t
->maj_flt
;
1496 r
->ru_inblock
+= task_io_get_inblock(t
);
1497 r
->ru_oublock
+= task_io_get_oublock(t
);
1500 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1502 struct task_struct
*t
;
1503 unsigned long flags
;
1504 cputime_t tgutime
, tgstime
, utime
, stime
;
1505 unsigned long maxrss
= 0;
1507 memset((char *) r
, 0, sizeof *r
);
1508 utime
= stime
= cputime_zero
;
1510 if (who
== RUSAGE_THREAD
) {
1511 task_times(current
, &utime
, &stime
);
1512 accumulate_thread_rusage(p
, r
);
1513 maxrss
= p
->signal
->maxrss
;
1517 if (!lock_task_sighand(p
, &flags
))
1522 case RUSAGE_CHILDREN
:
1523 utime
= p
->signal
->cutime
;
1524 stime
= p
->signal
->cstime
;
1525 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1526 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1527 r
->ru_minflt
= p
->signal
->cmin_flt
;
1528 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1529 r
->ru_inblock
= p
->signal
->cinblock
;
1530 r
->ru_oublock
= p
->signal
->coublock
;
1531 maxrss
= p
->signal
->cmaxrss
;
1533 if (who
== RUSAGE_CHILDREN
)
1537 thread_group_times(p
, &tgutime
, &tgstime
);
1538 utime
= cputime_add(utime
, tgutime
);
1539 stime
= cputime_add(stime
, tgstime
);
1540 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1541 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1542 r
->ru_minflt
+= p
->signal
->min_flt
;
1543 r
->ru_majflt
+= p
->signal
->maj_flt
;
1544 r
->ru_inblock
+= p
->signal
->inblock
;
1545 r
->ru_oublock
+= p
->signal
->oublock
;
1546 if (maxrss
< p
->signal
->maxrss
)
1547 maxrss
= p
->signal
->maxrss
;
1550 accumulate_thread_rusage(t
, r
);
1558 unlock_task_sighand(p
, &flags
);
1561 cputime_to_timeval(utime
, &r
->ru_utime
);
1562 cputime_to_timeval(stime
, &r
->ru_stime
);
1564 if (who
!= RUSAGE_CHILDREN
) {
1565 struct mm_struct
*mm
= get_task_mm(p
);
1567 setmax_mm_hiwater_rss(&maxrss
, mm
);
1571 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1574 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1577 k_getrusage(p
, who
, &r
);
1578 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1581 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1583 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1584 who
!= RUSAGE_THREAD
)
1586 return getrusage(current
, who
, ru
);
1589 SYSCALL_DEFINE1(umask
, int, mask
)
1591 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1595 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1596 unsigned long, arg4
, unsigned long, arg5
)
1598 struct task_struct
*me
= current
;
1599 unsigned char comm
[sizeof(me
->comm
)];
1602 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1603 if (error
!= -ENOSYS
)
1608 case PR_SET_PDEATHSIG
:
1609 if (!valid_signal(arg2
)) {
1613 me
->pdeath_signal
= arg2
;
1616 case PR_GET_PDEATHSIG
:
1617 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1619 case PR_GET_DUMPABLE
:
1620 error
= get_dumpable(me
->mm
);
1622 case PR_SET_DUMPABLE
:
1623 if (arg2
< 0 || arg2
> 1) {
1627 set_dumpable(me
->mm
, arg2
);
1631 case PR_SET_UNALIGN
:
1632 error
= SET_UNALIGN_CTL(me
, arg2
);
1634 case PR_GET_UNALIGN
:
1635 error
= GET_UNALIGN_CTL(me
, arg2
);
1638 error
= SET_FPEMU_CTL(me
, arg2
);
1641 error
= GET_FPEMU_CTL(me
, arg2
);
1644 error
= SET_FPEXC_CTL(me
, arg2
);
1647 error
= GET_FPEXC_CTL(me
, arg2
);
1650 error
= PR_TIMING_STATISTICAL
;
1653 if (arg2
!= PR_TIMING_STATISTICAL
)
1660 comm
[sizeof(me
->comm
)-1] = 0;
1661 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1662 sizeof(me
->comm
) - 1) < 0)
1664 set_task_comm(me
, comm
);
1667 get_task_comm(comm
, me
);
1668 if (copy_to_user((char __user
*)arg2
, comm
,
1673 error
= GET_ENDIAN(me
, arg2
);
1676 error
= SET_ENDIAN(me
, arg2
);
1679 case PR_GET_SECCOMP
:
1680 error
= prctl_get_seccomp();
1682 case PR_SET_SECCOMP
:
1683 error
= prctl_set_seccomp(arg2
);
1686 error
= GET_TSC_CTL(arg2
);
1689 error
= SET_TSC_CTL(arg2
);
1691 case PR_TASK_PERF_EVENTS_DISABLE
:
1692 error
= perf_event_task_disable();
1694 case PR_TASK_PERF_EVENTS_ENABLE
:
1695 error
= perf_event_task_enable();
1697 case PR_GET_TIMERSLACK
:
1698 error
= current
->timer_slack_ns
;
1700 case PR_SET_TIMERSLACK
:
1702 current
->timer_slack_ns
=
1703 current
->default_timer_slack_ns
;
1705 current
->timer_slack_ns
= arg2
;
1712 case PR_MCE_KILL_CLEAR
:
1715 current
->flags
&= ~PF_MCE_PROCESS
;
1717 case PR_MCE_KILL_SET
:
1718 current
->flags
|= PF_MCE_PROCESS
;
1719 if (arg3
== PR_MCE_KILL_EARLY
)
1720 current
->flags
|= PF_MCE_EARLY
;
1721 else if (arg3
== PR_MCE_KILL_LATE
)
1722 current
->flags
&= ~PF_MCE_EARLY
;
1723 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1725 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1734 case PR_MCE_KILL_GET
:
1735 if (arg2
| arg3
| arg4
| arg5
)
1737 if (current
->flags
& PF_MCE_PROCESS
)
1738 error
= (current
->flags
& PF_MCE_EARLY
) ?
1739 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1741 error
= PR_MCE_KILL_DEFAULT
;
1750 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1751 struct getcpu_cache __user
*, unused
)
1754 int cpu
= raw_smp_processor_id();
1756 err
|= put_user(cpu
, cpup
);
1758 err
|= put_user(cpu_to_node(cpu
), nodep
);
1759 return err
? -EFAULT
: 0;
1762 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1764 static void argv_cleanup(struct subprocess_info
*info
)
1766 argv_free(info
->argv
);
1770 * orderly_poweroff - Trigger an orderly system poweroff
1771 * @force: force poweroff if command execution fails
1773 * This may be called from any context to trigger a system shutdown.
1774 * If the orderly shutdown fails, it will force an immediate shutdown.
1776 int orderly_poweroff(bool force
)
1779 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1780 static char *envp
[] = {
1782 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1786 struct subprocess_info
*info
;
1789 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1790 __func__
, poweroff_cmd
);
1794 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1800 call_usermodehelper_setfns(info
, NULL
, argv_cleanup
, NULL
);
1802 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1806 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1807 "forcing the issue\n");
1809 /* I guess this should try to kick off some daemon to
1810 sync and poweroff asap. Or not even bother syncing
1811 if we're doing an emergency shutdown? */
1818 EXPORT_SYMBOL_GPL(orderly_poweroff
);