x86, acpi/irq: Handle isa irqs that are not identity mapped to gsi's.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
blob2f3fbf84215a940cc40eccef9c8304964d10906f
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/sysfs.h>
20 #include <linux/dcache.h>
21 #include <linux/percpu.h>
22 #include <linux/ptrace.h>
23 #include <linux/vmstat.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hardirq.h>
26 #include <linux/rculist.h>
27 #include <linux/uaccess.h>
28 #include <linux/syscalls.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/perf_event.h>
32 #include <linux/ftrace_event.h>
33 #include <linux/hw_breakpoint.h>
35 #include <asm/irq_regs.h>
38 * Each CPU has a list of per CPU events:
40 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42 int perf_max_events __read_mostly = 1;
43 static int perf_reserved_percpu __read_mostly;
44 static int perf_overcommit __read_mostly = 1;
46 static atomic_t nr_events __read_mostly;
47 static atomic_t nr_mmap_events __read_mostly;
48 static atomic_t nr_comm_events __read_mostly;
49 static atomic_t nr_task_events __read_mostly;
52 * perf event paranoia level:
53 * -1 - not paranoid at all
54 * 0 - disallow raw tracepoint access for unpriv
55 * 1 - disallow cpu events for unpriv
56 * 2 - disallow kernel profiling for unpriv
58 int sysctl_perf_event_paranoid __read_mostly = 1;
60 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
63 * max perf event sample rate
65 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67 static atomic64_t perf_event_id;
70 * Lock for (sysadmin-configurable) event reservations:
72 static DEFINE_SPINLOCK(perf_resource_lock);
75 * Architecture provided APIs - weak aliases:
77 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 return NULL;
82 void __weak hw_perf_disable(void) { barrier(); }
83 void __weak hw_perf_enable(void) { barrier(); }
85 int __weak
86 hw_perf_group_sched_in(struct perf_event *group_leader,
87 struct perf_cpu_context *cpuctx,
88 struct perf_event_context *ctx)
90 return 0;
93 void __weak perf_event_print_debug(void) { }
95 static DEFINE_PER_CPU(int, perf_disable_count);
97 void perf_disable(void)
99 if (!__get_cpu_var(perf_disable_count)++)
100 hw_perf_disable();
103 void perf_enable(void)
105 if (!--__get_cpu_var(perf_disable_count))
106 hw_perf_enable();
109 static void get_ctx(struct perf_event_context *ctx)
111 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
114 static void free_ctx(struct rcu_head *head)
116 struct perf_event_context *ctx;
118 ctx = container_of(head, struct perf_event_context, rcu_head);
119 kfree(ctx);
122 static void put_ctx(struct perf_event_context *ctx)
124 if (atomic_dec_and_test(&ctx->refcount)) {
125 if (ctx->parent_ctx)
126 put_ctx(ctx->parent_ctx);
127 if (ctx->task)
128 put_task_struct(ctx->task);
129 call_rcu(&ctx->rcu_head, free_ctx);
133 static void unclone_ctx(struct perf_event_context *ctx)
135 if (ctx->parent_ctx) {
136 put_ctx(ctx->parent_ctx);
137 ctx->parent_ctx = NULL;
142 * If we inherit events we want to return the parent event id
143 * to userspace.
145 static u64 primary_event_id(struct perf_event *event)
147 u64 id = event->id;
149 if (event->parent)
150 id = event->parent->id;
152 return id;
156 * Get the perf_event_context for a task and lock it.
157 * This has to cope with with the fact that until it is locked,
158 * the context could get moved to another task.
160 static struct perf_event_context *
161 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
163 struct perf_event_context *ctx;
165 rcu_read_lock();
166 retry:
167 ctx = rcu_dereference(task->perf_event_ctxp);
168 if (ctx) {
170 * If this context is a clone of another, it might
171 * get swapped for another underneath us by
172 * perf_event_task_sched_out, though the
173 * rcu_read_lock() protects us from any context
174 * getting freed. Lock the context and check if it
175 * got swapped before we could get the lock, and retry
176 * if so. If we locked the right context, then it
177 * can't get swapped on us any more.
179 raw_spin_lock_irqsave(&ctx->lock, *flags);
180 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
181 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182 goto retry;
185 if (!atomic_inc_not_zero(&ctx->refcount)) {
186 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
187 ctx = NULL;
190 rcu_read_unlock();
191 return ctx;
195 * Get the context for a task and increment its pin_count so it
196 * can't get swapped to another task. This also increments its
197 * reference count so that the context can't get freed.
199 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
201 struct perf_event_context *ctx;
202 unsigned long flags;
204 ctx = perf_lock_task_context(task, &flags);
205 if (ctx) {
206 ++ctx->pin_count;
207 raw_spin_unlock_irqrestore(&ctx->lock, flags);
209 return ctx;
212 static void perf_unpin_context(struct perf_event_context *ctx)
214 unsigned long flags;
216 raw_spin_lock_irqsave(&ctx->lock, flags);
217 --ctx->pin_count;
218 raw_spin_unlock_irqrestore(&ctx->lock, flags);
219 put_ctx(ctx);
222 static inline u64 perf_clock(void)
224 return cpu_clock(raw_smp_processor_id());
228 * Update the record of the current time in a context.
230 static void update_context_time(struct perf_event_context *ctx)
232 u64 now = perf_clock();
234 ctx->time += now - ctx->timestamp;
235 ctx->timestamp = now;
239 * Update the total_time_enabled and total_time_running fields for a event.
241 static void update_event_times(struct perf_event *event)
243 struct perf_event_context *ctx = event->ctx;
244 u64 run_end;
246 if (event->state < PERF_EVENT_STATE_INACTIVE ||
247 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
248 return;
250 if (ctx->is_active)
251 run_end = ctx->time;
252 else
253 run_end = event->tstamp_stopped;
255 event->total_time_enabled = run_end - event->tstamp_enabled;
257 if (event->state == PERF_EVENT_STATE_INACTIVE)
258 run_end = event->tstamp_stopped;
259 else
260 run_end = ctx->time;
262 event->total_time_running = run_end - event->tstamp_running;
265 static struct list_head *
266 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
268 if (event->attr.pinned)
269 return &ctx->pinned_groups;
270 else
271 return &ctx->flexible_groups;
275 * Add a event from the lists for its context.
276 * Must be called with ctx->mutex and ctx->lock held.
278 static void
279 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
281 struct perf_event *group_leader = event->group_leader;
284 * Depending on whether it is a standalone or sibling event,
285 * add it straight to the context's event list, or to the group
286 * leader's sibling list:
288 if (group_leader == event) {
289 struct list_head *list;
291 if (is_software_event(event))
292 event->group_flags |= PERF_GROUP_SOFTWARE;
294 list = ctx_group_list(event, ctx);
295 list_add_tail(&event->group_entry, list);
296 } else {
297 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
298 !is_software_event(event))
299 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
301 list_add_tail(&event->group_entry, &group_leader->sibling_list);
302 group_leader->nr_siblings++;
305 list_add_rcu(&event->event_entry, &ctx->event_list);
306 ctx->nr_events++;
307 if (event->attr.inherit_stat)
308 ctx->nr_stat++;
312 * Remove a event from the lists for its context.
313 * Must be called with ctx->mutex and ctx->lock held.
315 static void
316 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
318 struct perf_event *sibling, *tmp;
320 if (list_empty(&event->group_entry))
321 return;
322 ctx->nr_events--;
323 if (event->attr.inherit_stat)
324 ctx->nr_stat--;
326 list_del_init(&event->group_entry);
327 list_del_rcu(&event->event_entry);
329 if (event->group_leader != event)
330 event->group_leader->nr_siblings--;
332 update_event_times(event);
335 * If event was in error state, then keep it
336 * that way, otherwise bogus counts will be
337 * returned on read(). The only way to get out
338 * of error state is by explicit re-enabling
339 * of the event
341 if (event->state > PERF_EVENT_STATE_OFF)
342 event->state = PERF_EVENT_STATE_OFF;
345 * If this was a group event with sibling events then
346 * upgrade the siblings to singleton events by adding them
347 * to the context list directly:
349 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
350 struct list_head *list;
352 list = ctx_group_list(event, ctx);
353 list_move_tail(&sibling->group_entry, list);
354 sibling->group_leader = sibling;
356 /* Inherit group flags from the previous leader */
357 sibling->group_flags = event->group_flags;
361 static void
362 event_sched_out(struct perf_event *event,
363 struct perf_cpu_context *cpuctx,
364 struct perf_event_context *ctx)
366 if (event->state != PERF_EVENT_STATE_ACTIVE)
367 return;
369 event->state = PERF_EVENT_STATE_INACTIVE;
370 if (event->pending_disable) {
371 event->pending_disable = 0;
372 event->state = PERF_EVENT_STATE_OFF;
374 event->tstamp_stopped = ctx->time;
375 event->pmu->disable(event);
376 event->oncpu = -1;
378 if (!is_software_event(event))
379 cpuctx->active_oncpu--;
380 ctx->nr_active--;
381 if (event->attr.exclusive || !cpuctx->active_oncpu)
382 cpuctx->exclusive = 0;
385 static void
386 group_sched_out(struct perf_event *group_event,
387 struct perf_cpu_context *cpuctx,
388 struct perf_event_context *ctx)
390 struct perf_event *event;
392 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
393 return;
395 event_sched_out(group_event, cpuctx, ctx);
398 * Schedule out siblings (if any):
400 list_for_each_entry(event, &group_event->sibling_list, group_entry)
401 event_sched_out(event, cpuctx, ctx);
403 if (group_event->attr.exclusive)
404 cpuctx->exclusive = 0;
408 * Cross CPU call to remove a performance event
410 * We disable the event on the hardware level first. After that we
411 * remove it from the context list.
413 static void __perf_event_remove_from_context(void *info)
415 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
416 struct perf_event *event = info;
417 struct perf_event_context *ctx = event->ctx;
420 * If this is a task context, we need to check whether it is
421 * the current task context of this cpu. If not it has been
422 * scheduled out before the smp call arrived.
424 if (ctx->task && cpuctx->task_ctx != ctx)
425 return;
427 raw_spin_lock(&ctx->lock);
429 * Protect the list operation against NMI by disabling the
430 * events on a global level.
432 perf_disable();
434 event_sched_out(event, cpuctx, ctx);
436 list_del_event(event, ctx);
438 if (!ctx->task) {
440 * Allow more per task events with respect to the
441 * reservation:
443 cpuctx->max_pertask =
444 min(perf_max_events - ctx->nr_events,
445 perf_max_events - perf_reserved_percpu);
448 perf_enable();
449 raw_spin_unlock(&ctx->lock);
454 * Remove the event from a task's (or a CPU's) list of events.
456 * Must be called with ctx->mutex held.
458 * CPU events are removed with a smp call. For task events we only
459 * call when the task is on a CPU.
461 * If event->ctx is a cloned context, callers must make sure that
462 * every task struct that event->ctx->task could possibly point to
463 * remains valid. This is OK when called from perf_release since
464 * that only calls us on the top-level context, which can't be a clone.
465 * When called from perf_event_exit_task, it's OK because the
466 * context has been detached from its task.
468 static void perf_event_remove_from_context(struct perf_event *event)
470 struct perf_event_context *ctx = event->ctx;
471 struct task_struct *task = ctx->task;
473 if (!task) {
475 * Per cpu events are removed via an smp call and
476 * the removal is always successful.
478 smp_call_function_single(event->cpu,
479 __perf_event_remove_from_context,
480 event, 1);
481 return;
484 retry:
485 task_oncpu_function_call(task, __perf_event_remove_from_context,
486 event);
488 raw_spin_lock_irq(&ctx->lock);
490 * If the context is active we need to retry the smp call.
492 if (ctx->nr_active && !list_empty(&event->group_entry)) {
493 raw_spin_unlock_irq(&ctx->lock);
494 goto retry;
498 * The lock prevents that this context is scheduled in so we
499 * can remove the event safely, if the call above did not
500 * succeed.
502 if (!list_empty(&event->group_entry))
503 list_del_event(event, ctx);
504 raw_spin_unlock_irq(&ctx->lock);
508 * Update total_time_enabled and total_time_running for all events in a group.
510 static void update_group_times(struct perf_event *leader)
512 struct perf_event *event;
514 update_event_times(leader);
515 list_for_each_entry(event, &leader->sibling_list, group_entry)
516 update_event_times(event);
520 * Cross CPU call to disable a performance event
522 static void __perf_event_disable(void *info)
524 struct perf_event *event = info;
525 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
526 struct perf_event_context *ctx = event->ctx;
529 * If this is a per-task event, need to check whether this
530 * event's task is the current task on this cpu.
532 if (ctx->task && cpuctx->task_ctx != ctx)
533 return;
535 raw_spin_lock(&ctx->lock);
538 * If the event is on, turn it off.
539 * If it is in error state, leave it in error state.
541 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
542 update_context_time(ctx);
543 update_group_times(event);
544 if (event == event->group_leader)
545 group_sched_out(event, cpuctx, ctx);
546 else
547 event_sched_out(event, cpuctx, ctx);
548 event->state = PERF_EVENT_STATE_OFF;
551 raw_spin_unlock(&ctx->lock);
555 * Disable a event.
557 * If event->ctx is a cloned context, callers must make sure that
558 * every task struct that event->ctx->task could possibly point to
559 * remains valid. This condition is satisifed when called through
560 * perf_event_for_each_child or perf_event_for_each because they
561 * hold the top-level event's child_mutex, so any descendant that
562 * goes to exit will block in sync_child_event.
563 * When called from perf_pending_event it's OK because event->ctx
564 * is the current context on this CPU and preemption is disabled,
565 * hence we can't get into perf_event_task_sched_out for this context.
567 void perf_event_disable(struct perf_event *event)
569 struct perf_event_context *ctx = event->ctx;
570 struct task_struct *task = ctx->task;
572 if (!task) {
574 * Disable the event on the cpu that it's on
576 smp_call_function_single(event->cpu, __perf_event_disable,
577 event, 1);
578 return;
581 retry:
582 task_oncpu_function_call(task, __perf_event_disable, event);
584 raw_spin_lock_irq(&ctx->lock);
586 * If the event is still active, we need to retry the cross-call.
588 if (event->state == PERF_EVENT_STATE_ACTIVE) {
589 raw_spin_unlock_irq(&ctx->lock);
590 goto retry;
594 * Since we have the lock this context can't be scheduled
595 * in, so we can change the state safely.
597 if (event->state == PERF_EVENT_STATE_INACTIVE) {
598 update_group_times(event);
599 event->state = PERF_EVENT_STATE_OFF;
602 raw_spin_unlock_irq(&ctx->lock);
605 static int
606 event_sched_in(struct perf_event *event,
607 struct perf_cpu_context *cpuctx,
608 struct perf_event_context *ctx)
610 if (event->state <= PERF_EVENT_STATE_OFF)
611 return 0;
613 event->state = PERF_EVENT_STATE_ACTIVE;
614 event->oncpu = smp_processor_id();
616 * The new state must be visible before we turn it on in the hardware:
618 smp_wmb();
620 if (event->pmu->enable(event)) {
621 event->state = PERF_EVENT_STATE_INACTIVE;
622 event->oncpu = -1;
623 return -EAGAIN;
626 event->tstamp_running += ctx->time - event->tstamp_stopped;
628 if (!is_software_event(event))
629 cpuctx->active_oncpu++;
630 ctx->nr_active++;
632 if (event->attr.exclusive)
633 cpuctx->exclusive = 1;
635 return 0;
638 static int
639 group_sched_in(struct perf_event *group_event,
640 struct perf_cpu_context *cpuctx,
641 struct perf_event_context *ctx)
643 struct perf_event *event, *partial_group;
644 int ret;
646 if (group_event->state == PERF_EVENT_STATE_OFF)
647 return 0;
649 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
650 if (ret)
651 return ret < 0 ? ret : 0;
653 if (event_sched_in(group_event, cpuctx, ctx))
654 return -EAGAIN;
657 * Schedule in siblings as one group (if any):
659 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
660 if (event_sched_in(event, cpuctx, ctx)) {
661 partial_group = event;
662 goto group_error;
666 return 0;
668 group_error:
670 * Groups can be scheduled in as one unit only, so undo any
671 * partial group before returning:
673 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
674 if (event == partial_group)
675 break;
676 event_sched_out(event, cpuctx, ctx);
678 event_sched_out(group_event, cpuctx, ctx);
680 return -EAGAIN;
684 * Work out whether we can put this event group on the CPU now.
686 static int group_can_go_on(struct perf_event *event,
687 struct perf_cpu_context *cpuctx,
688 int can_add_hw)
691 * Groups consisting entirely of software events can always go on.
693 if (event->group_flags & PERF_GROUP_SOFTWARE)
694 return 1;
696 * If an exclusive group is already on, no other hardware
697 * events can go on.
699 if (cpuctx->exclusive)
700 return 0;
702 * If this group is exclusive and there are already
703 * events on the CPU, it can't go on.
705 if (event->attr.exclusive && cpuctx->active_oncpu)
706 return 0;
708 * Otherwise, try to add it if all previous groups were able
709 * to go on.
711 return can_add_hw;
714 static void add_event_to_ctx(struct perf_event *event,
715 struct perf_event_context *ctx)
717 list_add_event(event, ctx);
718 event->tstamp_enabled = ctx->time;
719 event->tstamp_running = ctx->time;
720 event->tstamp_stopped = ctx->time;
724 * Cross CPU call to install and enable a performance event
726 * Must be called with ctx->mutex held
728 static void __perf_install_in_context(void *info)
730 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
731 struct perf_event *event = info;
732 struct perf_event_context *ctx = event->ctx;
733 struct perf_event *leader = event->group_leader;
734 int err;
737 * If this is a task context, we need to check whether it is
738 * the current task context of this cpu. If not it has been
739 * scheduled out before the smp call arrived.
740 * Or possibly this is the right context but it isn't
741 * on this cpu because it had no events.
743 if (ctx->task && cpuctx->task_ctx != ctx) {
744 if (cpuctx->task_ctx || ctx->task != current)
745 return;
746 cpuctx->task_ctx = ctx;
749 raw_spin_lock(&ctx->lock);
750 ctx->is_active = 1;
751 update_context_time(ctx);
754 * Protect the list operation against NMI by disabling the
755 * events on a global level. NOP for non NMI based events.
757 perf_disable();
759 add_event_to_ctx(event, ctx);
761 if (event->cpu != -1 && event->cpu != smp_processor_id())
762 goto unlock;
765 * Don't put the event on if it is disabled or if
766 * it is in a group and the group isn't on.
768 if (event->state != PERF_EVENT_STATE_INACTIVE ||
769 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
770 goto unlock;
773 * An exclusive event can't go on if there are already active
774 * hardware events, and no hardware event can go on if there
775 * is already an exclusive event on.
777 if (!group_can_go_on(event, cpuctx, 1))
778 err = -EEXIST;
779 else
780 err = event_sched_in(event, cpuctx, ctx);
782 if (err) {
784 * This event couldn't go on. If it is in a group
785 * then we have to pull the whole group off.
786 * If the event group is pinned then put it in error state.
788 if (leader != event)
789 group_sched_out(leader, cpuctx, ctx);
790 if (leader->attr.pinned) {
791 update_group_times(leader);
792 leader->state = PERF_EVENT_STATE_ERROR;
796 if (!err && !ctx->task && cpuctx->max_pertask)
797 cpuctx->max_pertask--;
799 unlock:
800 perf_enable();
802 raw_spin_unlock(&ctx->lock);
806 * Attach a performance event to a context
808 * First we add the event to the list with the hardware enable bit
809 * in event->hw_config cleared.
811 * If the event is attached to a task which is on a CPU we use a smp
812 * call to enable it in the task context. The task might have been
813 * scheduled away, but we check this in the smp call again.
815 * Must be called with ctx->mutex held.
817 static void
818 perf_install_in_context(struct perf_event_context *ctx,
819 struct perf_event *event,
820 int cpu)
822 struct task_struct *task = ctx->task;
824 if (!task) {
826 * Per cpu events are installed via an smp call and
827 * the install is always successful.
829 smp_call_function_single(cpu, __perf_install_in_context,
830 event, 1);
831 return;
834 retry:
835 task_oncpu_function_call(task, __perf_install_in_context,
836 event);
838 raw_spin_lock_irq(&ctx->lock);
840 * we need to retry the smp call.
842 if (ctx->is_active && list_empty(&event->group_entry)) {
843 raw_spin_unlock_irq(&ctx->lock);
844 goto retry;
848 * The lock prevents that this context is scheduled in so we
849 * can add the event safely, if it the call above did not
850 * succeed.
852 if (list_empty(&event->group_entry))
853 add_event_to_ctx(event, ctx);
854 raw_spin_unlock_irq(&ctx->lock);
858 * Put a event into inactive state and update time fields.
859 * Enabling the leader of a group effectively enables all
860 * the group members that aren't explicitly disabled, so we
861 * have to update their ->tstamp_enabled also.
862 * Note: this works for group members as well as group leaders
863 * since the non-leader members' sibling_lists will be empty.
865 static void __perf_event_mark_enabled(struct perf_event *event,
866 struct perf_event_context *ctx)
868 struct perf_event *sub;
870 event->state = PERF_EVENT_STATE_INACTIVE;
871 event->tstamp_enabled = ctx->time - event->total_time_enabled;
872 list_for_each_entry(sub, &event->sibling_list, group_entry)
873 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
874 sub->tstamp_enabled =
875 ctx->time - sub->total_time_enabled;
879 * Cross CPU call to enable a performance event
881 static void __perf_event_enable(void *info)
883 struct perf_event *event = info;
884 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
885 struct perf_event_context *ctx = event->ctx;
886 struct perf_event *leader = event->group_leader;
887 int err;
890 * If this is a per-task event, need to check whether this
891 * event's task is the current task on this cpu.
893 if (ctx->task && cpuctx->task_ctx != ctx) {
894 if (cpuctx->task_ctx || ctx->task != current)
895 return;
896 cpuctx->task_ctx = ctx;
899 raw_spin_lock(&ctx->lock);
900 ctx->is_active = 1;
901 update_context_time(ctx);
903 if (event->state >= PERF_EVENT_STATE_INACTIVE)
904 goto unlock;
905 __perf_event_mark_enabled(event, ctx);
907 if (event->cpu != -1 && event->cpu != smp_processor_id())
908 goto unlock;
911 * If the event is in a group and isn't the group leader,
912 * then don't put it on unless the group is on.
914 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
915 goto unlock;
917 if (!group_can_go_on(event, cpuctx, 1)) {
918 err = -EEXIST;
919 } else {
920 perf_disable();
921 if (event == leader)
922 err = group_sched_in(event, cpuctx, ctx);
923 else
924 err = event_sched_in(event, cpuctx, ctx);
925 perf_enable();
928 if (err) {
930 * If this event can't go on and it's part of a
931 * group, then the whole group has to come off.
933 if (leader != event)
934 group_sched_out(leader, cpuctx, ctx);
935 if (leader->attr.pinned) {
936 update_group_times(leader);
937 leader->state = PERF_EVENT_STATE_ERROR;
941 unlock:
942 raw_spin_unlock(&ctx->lock);
946 * Enable a event.
948 * If event->ctx is a cloned context, callers must make sure that
949 * every task struct that event->ctx->task could possibly point to
950 * remains valid. This condition is satisfied when called through
951 * perf_event_for_each_child or perf_event_for_each as described
952 * for perf_event_disable.
954 void perf_event_enable(struct perf_event *event)
956 struct perf_event_context *ctx = event->ctx;
957 struct task_struct *task = ctx->task;
959 if (!task) {
961 * Enable the event on the cpu that it's on
963 smp_call_function_single(event->cpu, __perf_event_enable,
964 event, 1);
965 return;
968 raw_spin_lock_irq(&ctx->lock);
969 if (event->state >= PERF_EVENT_STATE_INACTIVE)
970 goto out;
973 * If the event is in error state, clear that first.
974 * That way, if we see the event in error state below, we
975 * know that it has gone back into error state, as distinct
976 * from the task having been scheduled away before the
977 * cross-call arrived.
979 if (event->state == PERF_EVENT_STATE_ERROR)
980 event->state = PERF_EVENT_STATE_OFF;
982 retry:
983 raw_spin_unlock_irq(&ctx->lock);
984 task_oncpu_function_call(task, __perf_event_enable, event);
986 raw_spin_lock_irq(&ctx->lock);
989 * If the context is active and the event is still off,
990 * we need to retry the cross-call.
992 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
993 goto retry;
996 * Since we have the lock this context can't be scheduled
997 * in, so we can change the state safely.
999 if (event->state == PERF_EVENT_STATE_OFF)
1000 __perf_event_mark_enabled(event, ctx);
1002 out:
1003 raw_spin_unlock_irq(&ctx->lock);
1006 static int perf_event_refresh(struct perf_event *event, int refresh)
1009 * not supported on inherited events
1011 if (event->attr.inherit)
1012 return -EINVAL;
1014 atomic_add(refresh, &event->event_limit);
1015 perf_event_enable(event);
1017 return 0;
1020 enum event_type_t {
1021 EVENT_FLEXIBLE = 0x1,
1022 EVENT_PINNED = 0x2,
1023 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1026 static void ctx_sched_out(struct perf_event_context *ctx,
1027 struct perf_cpu_context *cpuctx,
1028 enum event_type_t event_type)
1030 struct perf_event *event;
1032 raw_spin_lock(&ctx->lock);
1033 ctx->is_active = 0;
1034 if (likely(!ctx->nr_events))
1035 goto out;
1036 update_context_time(ctx);
1038 perf_disable();
1039 if (!ctx->nr_active)
1040 goto out_enable;
1042 if (event_type & EVENT_PINNED)
1043 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1044 group_sched_out(event, cpuctx, ctx);
1046 if (event_type & EVENT_FLEXIBLE)
1047 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1048 group_sched_out(event, cpuctx, ctx);
1050 out_enable:
1051 perf_enable();
1052 out:
1053 raw_spin_unlock(&ctx->lock);
1057 * Test whether two contexts are equivalent, i.e. whether they
1058 * have both been cloned from the same version of the same context
1059 * and they both have the same number of enabled events.
1060 * If the number of enabled events is the same, then the set
1061 * of enabled events should be the same, because these are both
1062 * inherited contexts, therefore we can't access individual events
1063 * in them directly with an fd; we can only enable/disable all
1064 * events via prctl, or enable/disable all events in a family
1065 * via ioctl, which will have the same effect on both contexts.
1067 static int context_equiv(struct perf_event_context *ctx1,
1068 struct perf_event_context *ctx2)
1070 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1071 && ctx1->parent_gen == ctx2->parent_gen
1072 && !ctx1->pin_count && !ctx2->pin_count;
1075 static void __perf_event_sync_stat(struct perf_event *event,
1076 struct perf_event *next_event)
1078 u64 value;
1080 if (!event->attr.inherit_stat)
1081 return;
1084 * Update the event value, we cannot use perf_event_read()
1085 * because we're in the middle of a context switch and have IRQs
1086 * disabled, which upsets smp_call_function_single(), however
1087 * we know the event must be on the current CPU, therefore we
1088 * don't need to use it.
1090 switch (event->state) {
1091 case PERF_EVENT_STATE_ACTIVE:
1092 event->pmu->read(event);
1093 /* fall-through */
1095 case PERF_EVENT_STATE_INACTIVE:
1096 update_event_times(event);
1097 break;
1099 default:
1100 break;
1104 * In order to keep per-task stats reliable we need to flip the event
1105 * values when we flip the contexts.
1107 value = atomic64_read(&next_event->count);
1108 value = atomic64_xchg(&event->count, value);
1109 atomic64_set(&next_event->count, value);
1111 swap(event->total_time_enabled, next_event->total_time_enabled);
1112 swap(event->total_time_running, next_event->total_time_running);
1115 * Since we swizzled the values, update the user visible data too.
1117 perf_event_update_userpage(event);
1118 perf_event_update_userpage(next_event);
1121 #define list_next_entry(pos, member) \
1122 list_entry(pos->member.next, typeof(*pos), member)
1124 static void perf_event_sync_stat(struct perf_event_context *ctx,
1125 struct perf_event_context *next_ctx)
1127 struct perf_event *event, *next_event;
1129 if (!ctx->nr_stat)
1130 return;
1132 update_context_time(ctx);
1134 event = list_first_entry(&ctx->event_list,
1135 struct perf_event, event_entry);
1137 next_event = list_first_entry(&next_ctx->event_list,
1138 struct perf_event, event_entry);
1140 while (&event->event_entry != &ctx->event_list &&
1141 &next_event->event_entry != &next_ctx->event_list) {
1143 __perf_event_sync_stat(event, next_event);
1145 event = list_next_entry(event, event_entry);
1146 next_event = list_next_entry(next_event, event_entry);
1151 * Called from scheduler to remove the events of the current task,
1152 * with interrupts disabled.
1154 * We stop each event and update the event value in event->count.
1156 * This does not protect us against NMI, but disable()
1157 * sets the disabled bit in the control field of event _before_
1158 * accessing the event control register. If a NMI hits, then it will
1159 * not restart the event.
1161 void perf_event_task_sched_out(struct task_struct *task,
1162 struct task_struct *next)
1164 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1165 struct perf_event_context *ctx = task->perf_event_ctxp;
1166 struct perf_event_context *next_ctx;
1167 struct perf_event_context *parent;
1168 int do_switch = 1;
1170 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1172 if (likely(!ctx || !cpuctx->task_ctx))
1173 return;
1175 rcu_read_lock();
1176 parent = rcu_dereference(ctx->parent_ctx);
1177 next_ctx = next->perf_event_ctxp;
1178 if (parent && next_ctx &&
1179 rcu_dereference(next_ctx->parent_ctx) == parent) {
1181 * Looks like the two contexts are clones, so we might be
1182 * able to optimize the context switch. We lock both
1183 * contexts and check that they are clones under the
1184 * lock (including re-checking that neither has been
1185 * uncloned in the meantime). It doesn't matter which
1186 * order we take the locks because no other cpu could
1187 * be trying to lock both of these tasks.
1189 raw_spin_lock(&ctx->lock);
1190 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1191 if (context_equiv(ctx, next_ctx)) {
1193 * XXX do we need a memory barrier of sorts
1194 * wrt to rcu_dereference() of perf_event_ctxp
1196 task->perf_event_ctxp = next_ctx;
1197 next->perf_event_ctxp = ctx;
1198 ctx->task = next;
1199 next_ctx->task = task;
1200 do_switch = 0;
1202 perf_event_sync_stat(ctx, next_ctx);
1204 raw_spin_unlock(&next_ctx->lock);
1205 raw_spin_unlock(&ctx->lock);
1207 rcu_read_unlock();
1209 if (do_switch) {
1210 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1211 cpuctx->task_ctx = NULL;
1215 static void task_ctx_sched_out(struct perf_event_context *ctx,
1216 enum event_type_t event_type)
1218 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1220 if (!cpuctx->task_ctx)
1221 return;
1223 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1224 return;
1226 ctx_sched_out(ctx, cpuctx, event_type);
1227 cpuctx->task_ctx = NULL;
1231 * Called with IRQs disabled
1233 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1235 task_ctx_sched_out(ctx, EVENT_ALL);
1239 * Called with IRQs disabled
1241 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1242 enum event_type_t event_type)
1244 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1247 static void
1248 ctx_pinned_sched_in(struct perf_event_context *ctx,
1249 struct perf_cpu_context *cpuctx)
1251 struct perf_event *event;
1253 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1254 if (event->state <= PERF_EVENT_STATE_OFF)
1255 continue;
1256 if (event->cpu != -1 && event->cpu != smp_processor_id())
1257 continue;
1259 if (group_can_go_on(event, cpuctx, 1))
1260 group_sched_in(event, cpuctx, ctx);
1263 * If this pinned group hasn't been scheduled,
1264 * put it in error state.
1266 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1267 update_group_times(event);
1268 event->state = PERF_EVENT_STATE_ERROR;
1273 static void
1274 ctx_flexible_sched_in(struct perf_event_context *ctx,
1275 struct perf_cpu_context *cpuctx)
1277 struct perf_event *event;
1278 int can_add_hw = 1;
1280 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1281 /* Ignore events in OFF or ERROR state */
1282 if (event->state <= PERF_EVENT_STATE_OFF)
1283 continue;
1285 * Listen to the 'cpu' scheduling filter constraint
1286 * of events:
1288 if (event->cpu != -1 && event->cpu != smp_processor_id())
1289 continue;
1291 if (group_can_go_on(event, cpuctx, can_add_hw))
1292 if (group_sched_in(event, cpuctx, ctx))
1293 can_add_hw = 0;
1297 static void
1298 ctx_sched_in(struct perf_event_context *ctx,
1299 struct perf_cpu_context *cpuctx,
1300 enum event_type_t event_type)
1302 raw_spin_lock(&ctx->lock);
1303 ctx->is_active = 1;
1304 if (likely(!ctx->nr_events))
1305 goto out;
1307 ctx->timestamp = perf_clock();
1309 perf_disable();
1312 * First go through the list and put on any pinned groups
1313 * in order to give them the best chance of going on.
1315 if (event_type & EVENT_PINNED)
1316 ctx_pinned_sched_in(ctx, cpuctx);
1318 /* Then walk through the lower prio flexible groups */
1319 if (event_type & EVENT_FLEXIBLE)
1320 ctx_flexible_sched_in(ctx, cpuctx);
1322 perf_enable();
1323 out:
1324 raw_spin_unlock(&ctx->lock);
1327 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1328 enum event_type_t event_type)
1330 struct perf_event_context *ctx = &cpuctx->ctx;
1332 ctx_sched_in(ctx, cpuctx, event_type);
1335 static void task_ctx_sched_in(struct task_struct *task,
1336 enum event_type_t event_type)
1338 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1339 struct perf_event_context *ctx = task->perf_event_ctxp;
1341 if (likely(!ctx))
1342 return;
1343 if (cpuctx->task_ctx == ctx)
1344 return;
1345 ctx_sched_in(ctx, cpuctx, event_type);
1346 cpuctx->task_ctx = ctx;
1349 * Called from scheduler to add the events of the current task
1350 * with interrupts disabled.
1352 * We restore the event value and then enable it.
1354 * This does not protect us against NMI, but enable()
1355 * sets the enabled bit in the control field of event _before_
1356 * accessing the event control register. If a NMI hits, then it will
1357 * keep the event running.
1359 void perf_event_task_sched_in(struct task_struct *task)
1361 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1362 struct perf_event_context *ctx = task->perf_event_ctxp;
1364 if (likely(!ctx))
1365 return;
1367 if (cpuctx->task_ctx == ctx)
1368 return;
1371 * We want to keep the following priority order:
1372 * cpu pinned (that don't need to move), task pinned,
1373 * cpu flexible, task flexible.
1375 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1377 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1378 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1379 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1381 cpuctx->task_ctx = ctx;
1384 #define MAX_INTERRUPTS (~0ULL)
1386 static void perf_log_throttle(struct perf_event *event, int enable);
1388 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1390 u64 frequency = event->attr.sample_freq;
1391 u64 sec = NSEC_PER_SEC;
1392 u64 divisor, dividend;
1394 int count_fls, nsec_fls, frequency_fls, sec_fls;
1396 count_fls = fls64(count);
1397 nsec_fls = fls64(nsec);
1398 frequency_fls = fls64(frequency);
1399 sec_fls = 30;
1402 * We got @count in @nsec, with a target of sample_freq HZ
1403 * the target period becomes:
1405 * @count * 10^9
1406 * period = -------------------
1407 * @nsec * sample_freq
1412 * Reduce accuracy by one bit such that @a and @b converge
1413 * to a similar magnitude.
1415 #define REDUCE_FLS(a, b) \
1416 do { \
1417 if (a##_fls > b##_fls) { \
1418 a >>= 1; \
1419 a##_fls--; \
1420 } else { \
1421 b >>= 1; \
1422 b##_fls--; \
1424 } while (0)
1427 * Reduce accuracy until either term fits in a u64, then proceed with
1428 * the other, so that finally we can do a u64/u64 division.
1430 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1431 REDUCE_FLS(nsec, frequency);
1432 REDUCE_FLS(sec, count);
1435 if (count_fls + sec_fls > 64) {
1436 divisor = nsec * frequency;
1438 while (count_fls + sec_fls > 64) {
1439 REDUCE_FLS(count, sec);
1440 divisor >>= 1;
1443 dividend = count * sec;
1444 } else {
1445 dividend = count * sec;
1447 while (nsec_fls + frequency_fls > 64) {
1448 REDUCE_FLS(nsec, frequency);
1449 dividend >>= 1;
1452 divisor = nsec * frequency;
1455 return div64_u64(dividend, divisor);
1458 static void perf_event_stop(struct perf_event *event)
1460 if (!event->pmu->stop)
1461 return event->pmu->disable(event);
1463 return event->pmu->stop(event);
1466 static int perf_event_start(struct perf_event *event)
1468 if (!event->pmu->start)
1469 return event->pmu->enable(event);
1471 return event->pmu->start(event);
1474 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1476 struct hw_perf_event *hwc = &event->hw;
1477 u64 period, sample_period;
1478 s64 delta;
1480 period = perf_calculate_period(event, nsec, count);
1482 delta = (s64)(period - hwc->sample_period);
1483 delta = (delta + 7) / 8; /* low pass filter */
1485 sample_period = hwc->sample_period + delta;
1487 if (!sample_period)
1488 sample_period = 1;
1490 hwc->sample_period = sample_period;
1492 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1493 perf_disable();
1494 perf_event_stop(event);
1495 atomic64_set(&hwc->period_left, 0);
1496 perf_event_start(event);
1497 perf_enable();
1501 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1503 struct perf_event *event;
1504 struct hw_perf_event *hwc;
1505 u64 interrupts, now;
1506 s64 delta;
1508 raw_spin_lock(&ctx->lock);
1509 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1510 if (event->state != PERF_EVENT_STATE_ACTIVE)
1511 continue;
1513 if (event->cpu != -1 && event->cpu != smp_processor_id())
1514 continue;
1516 hwc = &event->hw;
1518 interrupts = hwc->interrupts;
1519 hwc->interrupts = 0;
1522 * unthrottle events on the tick
1524 if (interrupts == MAX_INTERRUPTS) {
1525 perf_log_throttle(event, 1);
1526 perf_disable();
1527 event->pmu->unthrottle(event);
1528 perf_enable();
1531 if (!event->attr.freq || !event->attr.sample_freq)
1532 continue;
1534 perf_disable();
1535 event->pmu->read(event);
1536 now = atomic64_read(&event->count);
1537 delta = now - hwc->freq_count_stamp;
1538 hwc->freq_count_stamp = now;
1540 if (delta > 0)
1541 perf_adjust_period(event, TICK_NSEC, delta);
1542 perf_enable();
1544 raw_spin_unlock(&ctx->lock);
1548 * Round-robin a context's events:
1550 static void rotate_ctx(struct perf_event_context *ctx)
1552 raw_spin_lock(&ctx->lock);
1554 /* Rotate the first entry last of non-pinned groups */
1555 list_rotate_left(&ctx->flexible_groups);
1557 raw_spin_unlock(&ctx->lock);
1560 void perf_event_task_tick(struct task_struct *curr)
1562 struct perf_cpu_context *cpuctx;
1563 struct perf_event_context *ctx;
1564 int rotate = 0;
1566 if (!atomic_read(&nr_events))
1567 return;
1569 cpuctx = &__get_cpu_var(perf_cpu_context);
1570 if (cpuctx->ctx.nr_events &&
1571 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1572 rotate = 1;
1574 ctx = curr->perf_event_ctxp;
1575 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1576 rotate = 1;
1578 perf_ctx_adjust_freq(&cpuctx->ctx);
1579 if (ctx)
1580 perf_ctx_adjust_freq(ctx);
1582 if (!rotate)
1583 return;
1585 perf_disable();
1586 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1587 if (ctx)
1588 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1590 rotate_ctx(&cpuctx->ctx);
1591 if (ctx)
1592 rotate_ctx(ctx);
1594 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1595 if (ctx)
1596 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1597 perf_enable();
1600 static int event_enable_on_exec(struct perf_event *event,
1601 struct perf_event_context *ctx)
1603 if (!event->attr.enable_on_exec)
1604 return 0;
1606 event->attr.enable_on_exec = 0;
1607 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1608 return 0;
1610 __perf_event_mark_enabled(event, ctx);
1612 return 1;
1616 * Enable all of a task's events that have been marked enable-on-exec.
1617 * This expects task == current.
1619 static void perf_event_enable_on_exec(struct task_struct *task)
1621 struct perf_event_context *ctx;
1622 struct perf_event *event;
1623 unsigned long flags;
1624 int enabled = 0;
1625 int ret;
1627 local_irq_save(flags);
1628 ctx = task->perf_event_ctxp;
1629 if (!ctx || !ctx->nr_events)
1630 goto out;
1632 __perf_event_task_sched_out(ctx);
1634 raw_spin_lock(&ctx->lock);
1636 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1637 ret = event_enable_on_exec(event, ctx);
1638 if (ret)
1639 enabled = 1;
1642 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1643 ret = event_enable_on_exec(event, ctx);
1644 if (ret)
1645 enabled = 1;
1649 * Unclone this context if we enabled any event.
1651 if (enabled)
1652 unclone_ctx(ctx);
1654 raw_spin_unlock(&ctx->lock);
1656 perf_event_task_sched_in(task);
1657 out:
1658 local_irq_restore(flags);
1662 * Cross CPU call to read the hardware event
1664 static void __perf_event_read(void *info)
1666 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1667 struct perf_event *event = info;
1668 struct perf_event_context *ctx = event->ctx;
1671 * If this is a task context, we need to check whether it is
1672 * the current task context of this cpu. If not it has been
1673 * scheduled out before the smp call arrived. In that case
1674 * event->count would have been updated to a recent sample
1675 * when the event was scheduled out.
1677 if (ctx->task && cpuctx->task_ctx != ctx)
1678 return;
1680 raw_spin_lock(&ctx->lock);
1681 update_context_time(ctx);
1682 update_event_times(event);
1683 raw_spin_unlock(&ctx->lock);
1685 event->pmu->read(event);
1688 static u64 perf_event_read(struct perf_event *event)
1691 * If event is enabled and currently active on a CPU, update the
1692 * value in the event structure:
1694 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1695 smp_call_function_single(event->oncpu,
1696 __perf_event_read, event, 1);
1697 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1698 struct perf_event_context *ctx = event->ctx;
1699 unsigned long flags;
1701 raw_spin_lock_irqsave(&ctx->lock, flags);
1702 update_context_time(ctx);
1703 update_event_times(event);
1704 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1707 return atomic64_read(&event->count);
1711 * Initialize the perf_event context in a task_struct:
1713 static void
1714 __perf_event_init_context(struct perf_event_context *ctx,
1715 struct task_struct *task)
1717 raw_spin_lock_init(&ctx->lock);
1718 mutex_init(&ctx->mutex);
1719 INIT_LIST_HEAD(&ctx->pinned_groups);
1720 INIT_LIST_HEAD(&ctx->flexible_groups);
1721 INIT_LIST_HEAD(&ctx->event_list);
1722 atomic_set(&ctx->refcount, 1);
1723 ctx->task = task;
1726 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1728 struct perf_event_context *ctx;
1729 struct perf_cpu_context *cpuctx;
1730 struct task_struct *task;
1731 unsigned long flags;
1732 int err;
1734 if (pid == -1 && cpu != -1) {
1735 /* Must be root to operate on a CPU event: */
1736 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1737 return ERR_PTR(-EACCES);
1739 if (cpu < 0 || cpu >= nr_cpumask_bits)
1740 return ERR_PTR(-EINVAL);
1743 * We could be clever and allow to attach a event to an
1744 * offline CPU and activate it when the CPU comes up, but
1745 * that's for later.
1747 if (!cpu_online(cpu))
1748 return ERR_PTR(-ENODEV);
1750 cpuctx = &per_cpu(perf_cpu_context, cpu);
1751 ctx = &cpuctx->ctx;
1752 get_ctx(ctx);
1754 return ctx;
1757 rcu_read_lock();
1758 if (!pid)
1759 task = current;
1760 else
1761 task = find_task_by_vpid(pid);
1762 if (task)
1763 get_task_struct(task);
1764 rcu_read_unlock();
1766 if (!task)
1767 return ERR_PTR(-ESRCH);
1770 * Can't attach events to a dying task.
1772 err = -ESRCH;
1773 if (task->flags & PF_EXITING)
1774 goto errout;
1776 /* Reuse ptrace permission checks for now. */
1777 err = -EACCES;
1778 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1779 goto errout;
1781 retry:
1782 ctx = perf_lock_task_context(task, &flags);
1783 if (ctx) {
1784 unclone_ctx(ctx);
1785 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1788 if (!ctx) {
1789 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1790 err = -ENOMEM;
1791 if (!ctx)
1792 goto errout;
1793 __perf_event_init_context(ctx, task);
1794 get_ctx(ctx);
1795 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1797 * We raced with some other task; use
1798 * the context they set.
1800 kfree(ctx);
1801 goto retry;
1803 get_task_struct(task);
1806 put_task_struct(task);
1807 return ctx;
1809 errout:
1810 put_task_struct(task);
1811 return ERR_PTR(err);
1814 static void perf_event_free_filter(struct perf_event *event);
1816 static void free_event_rcu(struct rcu_head *head)
1818 struct perf_event *event;
1820 event = container_of(head, struct perf_event, rcu_head);
1821 if (event->ns)
1822 put_pid_ns(event->ns);
1823 perf_event_free_filter(event);
1824 kfree(event);
1827 static void perf_pending_sync(struct perf_event *event);
1829 static void free_event(struct perf_event *event)
1831 perf_pending_sync(event);
1833 if (!event->parent) {
1834 atomic_dec(&nr_events);
1835 if (event->attr.mmap)
1836 atomic_dec(&nr_mmap_events);
1837 if (event->attr.comm)
1838 atomic_dec(&nr_comm_events);
1839 if (event->attr.task)
1840 atomic_dec(&nr_task_events);
1843 if (event->output) {
1844 fput(event->output->filp);
1845 event->output = NULL;
1848 if (event->destroy)
1849 event->destroy(event);
1851 put_ctx(event->ctx);
1852 call_rcu(&event->rcu_head, free_event_rcu);
1855 int perf_event_release_kernel(struct perf_event *event)
1857 struct perf_event_context *ctx = event->ctx;
1859 WARN_ON_ONCE(ctx->parent_ctx);
1860 mutex_lock(&ctx->mutex);
1861 perf_event_remove_from_context(event);
1862 mutex_unlock(&ctx->mutex);
1864 mutex_lock(&event->owner->perf_event_mutex);
1865 list_del_init(&event->owner_entry);
1866 mutex_unlock(&event->owner->perf_event_mutex);
1867 put_task_struct(event->owner);
1869 free_event(event);
1871 return 0;
1873 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1876 * Called when the last reference to the file is gone.
1878 static int perf_release(struct inode *inode, struct file *file)
1880 struct perf_event *event = file->private_data;
1882 file->private_data = NULL;
1884 return perf_event_release_kernel(event);
1887 static int perf_event_read_size(struct perf_event *event)
1889 int entry = sizeof(u64); /* value */
1890 int size = 0;
1891 int nr = 1;
1893 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1894 size += sizeof(u64);
1896 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1897 size += sizeof(u64);
1899 if (event->attr.read_format & PERF_FORMAT_ID)
1900 entry += sizeof(u64);
1902 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1903 nr += event->group_leader->nr_siblings;
1904 size += sizeof(u64);
1907 size += entry * nr;
1909 return size;
1912 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1914 struct perf_event *child;
1915 u64 total = 0;
1917 *enabled = 0;
1918 *running = 0;
1920 mutex_lock(&event->child_mutex);
1921 total += perf_event_read(event);
1922 *enabled += event->total_time_enabled +
1923 atomic64_read(&event->child_total_time_enabled);
1924 *running += event->total_time_running +
1925 atomic64_read(&event->child_total_time_running);
1927 list_for_each_entry(child, &event->child_list, child_list) {
1928 total += perf_event_read(child);
1929 *enabled += child->total_time_enabled;
1930 *running += child->total_time_running;
1932 mutex_unlock(&event->child_mutex);
1934 return total;
1936 EXPORT_SYMBOL_GPL(perf_event_read_value);
1938 static int perf_event_read_group(struct perf_event *event,
1939 u64 read_format, char __user *buf)
1941 struct perf_event *leader = event->group_leader, *sub;
1942 int n = 0, size = 0, ret = -EFAULT;
1943 struct perf_event_context *ctx = leader->ctx;
1944 u64 values[5];
1945 u64 count, enabled, running;
1947 mutex_lock(&ctx->mutex);
1948 count = perf_event_read_value(leader, &enabled, &running);
1950 values[n++] = 1 + leader->nr_siblings;
1951 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1952 values[n++] = enabled;
1953 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1954 values[n++] = running;
1955 values[n++] = count;
1956 if (read_format & PERF_FORMAT_ID)
1957 values[n++] = primary_event_id(leader);
1959 size = n * sizeof(u64);
1961 if (copy_to_user(buf, values, size))
1962 goto unlock;
1964 ret = size;
1966 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1967 n = 0;
1969 values[n++] = perf_event_read_value(sub, &enabled, &running);
1970 if (read_format & PERF_FORMAT_ID)
1971 values[n++] = primary_event_id(sub);
1973 size = n * sizeof(u64);
1975 if (copy_to_user(buf + ret, values, size)) {
1976 ret = -EFAULT;
1977 goto unlock;
1980 ret += size;
1982 unlock:
1983 mutex_unlock(&ctx->mutex);
1985 return ret;
1988 static int perf_event_read_one(struct perf_event *event,
1989 u64 read_format, char __user *buf)
1991 u64 enabled, running;
1992 u64 values[4];
1993 int n = 0;
1995 values[n++] = perf_event_read_value(event, &enabled, &running);
1996 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1997 values[n++] = enabled;
1998 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1999 values[n++] = running;
2000 if (read_format & PERF_FORMAT_ID)
2001 values[n++] = primary_event_id(event);
2003 if (copy_to_user(buf, values, n * sizeof(u64)))
2004 return -EFAULT;
2006 return n * sizeof(u64);
2010 * Read the performance event - simple non blocking version for now
2012 static ssize_t
2013 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2015 u64 read_format = event->attr.read_format;
2016 int ret;
2019 * Return end-of-file for a read on a event that is in
2020 * error state (i.e. because it was pinned but it couldn't be
2021 * scheduled on to the CPU at some point).
2023 if (event->state == PERF_EVENT_STATE_ERROR)
2024 return 0;
2026 if (count < perf_event_read_size(event))
2027 return -ENOSPC;
2029 WARN_ON_ONCE(event->ctx->parent_ctx);
2030 if (read_format & PERF_FORMAT_GROUP)
2031 ret = perf_event_read_group(event, read_format, buf);
2032 else
2033 ret = perf_event_read_one(event, read_format, buf);
2035 return ret;
2038 static ssize_t
2039 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2041 struct perf_event *event = file->private_data;
2043 return perf_read_hw(event, buf, count);
2046 static unsigned int perf_poll(struct file *file, poll_table *wait)
2048 struct perf_event *event = file->private_data;
2049 struct perf_mmap_data *data;
2050 unsigned int events = POLL_HUP;
2052 rcu_read_lock();
2053 data = rcu_dereference(event->data);
2054 if (data)
2055 events = atomic_xchg(&data->poll, 0);
2056 rcu_read_unlock();
2058 poll_wait(file, &event->waitq, wait);
2060 return events;
2063 static void perf_event_reset(struct perf_event *event)
2065 (void)perf_event_read(event);
2066 atomic64_set(&event->count, 0);
2067 perf_event_update_userpage(event);
2071 * Holding the top-level event's child_mutex means that any
2072 * descendant process that has inherited this event will block
2073 * in sync_child_event if it goes to exit, thus satisfying the
2074 * task existence requirements of perf_event_enable/disable.
2076 static void perf_event_for_each_child(struct perf_event *event,
2077 void (*func)(struct perf_event *))
2079 struct perf_event *child;
2081 WARN_ON_ONCE(event->ctx->parent_ctx);
2082 mutex_lock(&event->child_mutex);
2083 func(event);
2084 list_for_each_entry(child, &event->child_list, child_list)
2085 func(child);
2086 mutex_unlock(&event->child_mutex);
2089 static void perf_event_for_each(struct perf_event *event,
2090 void (*func)(struct perf_event *))
2092 struct perf_event_context *ctx = event->ctx;
2093 struct perf_event *sibling;
2095 WARN_ON_ONCE(ctx->parent_ctx);
2096 mutex_lock(&ctx->mutex);
2097 event = event->group_leader;
2099 perf_event_for_each_child(event, func);
2100 func(event);
2101 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2102 perf_event_for_each_child(event, func);
2103 mutex_unlock(&ctx->mutex);
2106 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2108 struct perf_event_context *ctx = event->ctx;
2109 unsigned long size;
2110 int ret = 0;
2111 u64 value;
2113 if (!event->attr.sample_period)
2114 return -EINVAL;
2116 size = copy_from_user(&value, arg, sizeof(value));
2117 if (size != sizeof(value))
2118 return -EFAULT;
2120 if (!value)
2121 return -EINVAL;
2123 raw_spin_lock_irq(&ctx->lock);
2124 if (event->attr.freq) {
2125 if (value > sysctl_perf_event_sample_rate) {
2126 ret = -EINVAL;
2127 goto unlock;
2130 event->attr.sample_freq = value;
2131 } else {
2132 event->attr.sample_period = value;
2133 event->hw.sample_period = value;
2135 unlock:
2136 raw_spin_unlock_irq(&ctx->lock);
2138 return ret;
2141 static int perf_event_set_output(struct perf_event *event, int output_fd);
2142 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2144 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2146 struct perf_event *event = file->private_data;
2147 void (*func)(struct perf_event *);
2148 u32 flags = arg;
2150 switch (cmd) {
2151 case PERF_EVENT_IOC_ENABLE:
2152 func = perf_event_enable;
2153 break;
2154 case PERF_EVENT_IOC_DISABLE:
2155 func = perf_event_disable;
2156 break;
2157 case PERF_EVENT_IOC_RESET:
2158 func = perf_event_reset;
2159 break;
2161 case PERF_EVENT_IOC_REFRESH:
2162 return perf_event_refresh(event, arg);
2164 case PERF_EVENT_IOC_PERIOD:
2165 return perf_event_period(event, (u64 __user *)arg);
2167 case PERF_EVENT_IOC_SET_OUTPUT:
2168 return perf_event_set_output(event, arg);
2170 case PERF_EVENT_IOC_SET_FILTER:
2171 return perf_event_set_filter(event, (void __user *)arg);
2173 default:
2174 return -ENOTTY;
2177 if (flags & PERF_IOC_FLAG_GROUP)
2178 perf_event_for_each(event, func);
2179 else
2180 perf_event_for_each_child(event, func);
2182 return 0;
2185 int perf_event_task_enable(void)
2187 struct perf_event *event;
2189 mutex_lock(&current->perf_event_mutex);
2190 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2191 perf_event_for_each_child(event, perf_event_enable);
2192 mutex_unlock(&current->perf_event_mutex);
2194 return 0;
2197 int perf_event_task_disable(void)
2199 struct perf_event *event;
2201 mutex_lock(&current->perf_event_mutex);
2202 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2203 perf_event_for_each_child(event, perf_event_disable);
2204 mutex_unlock(&current->perf_event_mutex);
2206 return 0;
2209 #ifndef PERF_EVENT_INDEX_OFFSET
2210 # define PERF_EVENT_INDEX_OFFSET 0
2211 #endif
2213 static int perf_event_index(struct perf_event *event)
2215 if (event->state != PERF_EVENT_STATE_ACTIVE)
2216 return 0;
2218 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2222 * Callers need to ensure there can be no nesting of this function, otherwise
2223 * the seqlock logic goes bad. We can not serialize this because the arch
2224 * code calls this from NMI context.
2226 void perf_event_update_userpage(struct perf_event *event)
2228 struct perf_event_mmap_page *userpg;
2229 struct perf_mmap_data *data;
2231 rcu_read_lock();
2232 data = rcu_dereference(event->data);
2233 if (!data)
2234 goto unlock;
2236 userpg = data->user_page;
2239 * Disable preemption so as to not let the corresponding user-space
2240 * spin too long if we get preempted.
2242 preempt_disable();
2243 ++userpg->lock;
2244 barrier();
2245 userpg->index = perf_event_index(event);
2246 userpg->offset = atomic64_read(&event->count);
2247 if (event->state == PERF_EVENT_STATE_ACTIVE)
2248 userpg->offset -= atomic64_read(&event->hw.prev_count);
2250 userpg->time_enabled = event->total_time_enabled +
2251 atomic64_read(&event->child_total_time_enabled);
2253 userpg->time_running = event->total_time_running +
2254 atomic64_read(&event->child_total_time_running);
2256 barrier();
2257 ++userpg->lock;
2258 preempt_enable();
2259 unlock:
2260 rcu_read_unlock();
2263 static unsigned long perf_data_size(struct perf_mmap_data *data)
2265 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2268 #ifndef CONFIG_PERF_USE_VMALLOC
2271 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2274 static struct page *
2275 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2277 if (pgoff > data->nr_pages)
2278 return NULL;
2280 if (pgoff == 0)
2281 return virt_to_page(data->user_page);
2283 return virt_to_page(data->data_pages[pgoff - 1]);
2286 static struct perf_mmap_data *
2287 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2289 struct perf_mmap_data *data;
2290 unsigned long size;
2291 int i;
2293 WARN_ON(atomic_read(&event->mmap_count));
2295 size = sizeof(struct perf_mmap_data);
2296 size += nr_pages * sizeof(void *);
2298 data = kzalloc(size, GFP_KERNEL);
2299 if (!data)
2300 goto fail;
2302 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2303 if (!data->user_page)
2304 goto fail_user_page;
2306 for (i = 0; i < nr_pages; i++) {
2307 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2308 if (!data->data_pages[i])
2309 goto fail_data_pages;
2312 data->data_order = 0;
2313 data->nr_pages = nr_pages;
2315 return data;
2317 fail_data_pages:
2318 for (i--; i >= 0; i--)
2319 free_page((unsigned long)data->data_pages[i]);
2321 free_page((unsigned long)data->user_page);
2323 fail_user_page:
2324 kfree(data);
2326 fail:
2327 return NULL;
2330 static void perf_mmap_free_page(unsigned long addr)
2332 struct page *page = virt_to_page((void *)addr);
2334 page->mapping = NULL;
2335 __free_page(page);
2338 static void perf_mmap_data_free(struct perf_mmap_data *data)
2340 int i;
2342 perf_mmap_free_page((unsigned long)data->user_page);
2343 for (i = 0; i < data->nr_pages; i++)
2344 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2345 kfree(data);
2348 #else
2351 * Back perf_mmap() with vmalloc memory.
2353 * Required for architectures that have d-cache aliasing issues.
2356 static struct page *
2357 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2359 if (pgoff > (1UL << data->data_order))
2360 return NULL;
2362 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2365 static void perf_mmap_unmark_page(void *addr)
2367 struct page *page = vmalloc_to_page(addr);
2369 page->mapping = NULL;
2372 static void perf_mmap_data_free_work(struct work_struct *work)
2374 struct perf_mmap_data *data;
2375 void *base;
2376 int i, nr;
2378 data = container_of(work, struct perf_mmap_data, work);
2379 nr = 1 << data->data_order;
2381 base = data->user_page;
2382 for (i = 0; i < nr + 1; i++)
2383 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2385 vfree(base);
2386 kfree(data);
2389 static void perf_mmap_data_free(struct perf_mmap_data *data)
2391 schedule_work(&data->work);
2394 static struct perf_mmap_data *
2395 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2397 struct perf_mmap_data *data;
2398 unsigned long size;
2399 void *all_buf;
2401 WARN_ON(atomic_read(&event->mmap_count));
2403 size = sizeof(struct perf_mmap_data);
2404 size += sizeof(void *);
2406 data = kzalloc(size, GFP_KERNEL);
2407 if (!data)
2408 goto fail;
2410 INIT_WORK(&data->work, perf_mmap_data_free_work);
2412 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2413 if (!all_buf)
2414 goto fail_all_buf;
2416 data->user_page = all_buf;
2417 data->data_pages[0] = all_buf + PAGE_SIZE;
2418 data->data_order = ilog2(nr_pages);
2419 data->nr_pages = 1;
2421 return data;
2423 fail_all_buf:
2424 kfree(data);
2426 fail:
2427 return NULL;
2430 #endif
2432 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2434 struct perf_event *event = vma->vm_file->private_data;
2435 struct perf_mmap_data *data;
2436 int ret = VM_FAULT_SIGBUS;
2438 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2439 if (vmf->pgoff == 0)
2440 ret = 0;
2441 return ret;
2444 rcu_read_lock();
2445 data = rcu_dereference(event->data);
2446 if (!data)
2447 goto unlock;
2449 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2450 goto unlock;
2452 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2453 if (!vmf->page)
2454 goto unlock;
2456 get_page(vmf->page);
2457 vmf->page->mapping = vma->vm_file->f_mapping;
2458 vmf->page->index = vmf->pgoff;
2460 ret = 0;
2461 unlock:
2462 rcu_read_unlock();
2464 return ret;
2467 static void
2468 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2470 long max_size = perf_data_size(data);
2472 atomic_set(&data->lock, -1);
2474 if (event->attr.watermark) {
2475 data->watermark = min_t(long, max_size,
2476 event->attr.wakeup_watermark);
2479 if (!data->watermark)
2480 data->watermark = max_size / 2;
2483 rcu_assign_pointer(event->data, data);
2486 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2488 struct perf_mmap_data *data;
2490 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2491 perf_mmap_data_free(data);
2494 static void perf_mmap_data_release(struct perf_event *event)
2496 struct perf_mmap_data *data = event->data;
2498 WARN_ON(atomic_read(&event->mmap_count));
2500 rcu_assign_pointer(event->data, NULL);
2501 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2504 static void perf_mmap_open(struct vm_area_struct *vma)
2506 struct perf_event *event = vma->vm_file->private_data;
2508 atomic_inc(&event->mmap_count);
2511 static void perf_mmap_close(struct vm_area_struct *vma)
2513 struct perf_event *event = vma->vm_file->private_data;
2515 WARN_ON_ONCE(event->ctx->parent_ctx);
2516 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2517 unsigned long size = perf_data_size(event->data);
2518 struct user_struct *user = current_user();
2520 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2521 vma->vm_mm->locked_vm -= event->data->nr_locked;
2522 perf_mmap_data_release(event);
2523 mutex_unlock(&event->mmap_mutex);
2527 static const struct vm_operations_struct perf_mmap_vmops = {
2528 .open = perf_mmap_open,
2529 .close = perf_mmap_close,
2530 .fault = perf_mmap_fault,
2531 .page_mkwrite = perf_mmap_fault,
2534 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2536 struct perf_event *event = file->private_data;
2537 unsigned long user_locked, user_lock_limit;
2538 struct user_struct *user = current_user();
2539 unsigned long locked, lock_limit;
2540 struct perf_mmap_data *data;
2541 unsigned long vma_size;
2542 unsigned long nr_pages;
2543 long user_extra, extra;
2544 int ret = 0;
2546 if (!(vma->vm_flags & VM_SHARED))
2547 return -EINVAL;
2549 vma_size = vma->vm_end - vma->vm_start;
2550 nr_pages = (vma_size / PAGE_SIZE) - 1;
2553 * If we have data pages ensure they're a power-of-two number, so we
2554 * can do bitmasks instead of modulo.
2556 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2557 return -EINVAL;
2559 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2560 return -EINVAL;
2562 if (vma->vm_pgoff != 0)
2563 return -EINVAL;
2565 WARN_ON_ONCE(event->ctx->parent_ctx);
2566 mutex_lock(&event->mmap_mutex);
2567 if (event->output) {
2568 ret = -EINVAL;
2569 goto unlock;
2572 if (atomic_inc_not_zero(&event->mmap_count)) {
2573 if (nr_pages != event->data->nr_pages)
2574 ret = -EINVAL;
2575 goto unlock;
2578 user_extra = nr_pages + 1;
2579 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2582 * Increase the limit linearly with more CPUs:
2584 user_lock_limit *= num_online_cpus();
2586 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2588 extra = 0;
2589 if (user_locked > user_lock_limit)
2590 extra = user_locked - user_lock_limit;
2592 lock_limit = rlimit(RLIMIT_MEMLOCK);
2593 lock_limit >>= PAGE_SHIFT;
2594 locked = vma->vm_mm->locked_vm + extra;
2596 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2597 !capable(CAP_IPC_LOCK)) {
2598 ret = -EPERM;
2599 goto unlock;
2602 WARN_ON(event->data);
2604 data = perf_mmap_data_alloc(event, nr_pages);
2605 ret = -ENOMEM;
2606 if (!data)
2607 goto unlock;
2609 ret = 0;
2610 perf_mmap_data_init(event, data);
2612 atomic_set(&event->mmap_count, 1);
2613 atomic_long_add(user_extra, &user->locked_vm);
2614 vma->vm_mm->locked_vm += extra;
2615 event->data->nr_locked = extra;
2616 if (vma->vm_flags & VM_WRITE)
2617 event->data->writable = 1;
2619 unlock:
2620 mutex_unlock(&event->mmap_mutex);
2622 vma->vm_flags |= VM_RESERVED;
2623 vma->vm_ops = &perf_mmap_vmops;
2625 return ret;
2628 static int perf_fasync(int fd, struct file *filp, int on)
2630 struct inode *inode = filp->f_path.dentry->d_inode;
2631 struct perf_event *event = filp->private_data;
2632 int retval;
2634 mutex_lock(&inode->i_mutex);
2635 retval = fasync_helper(fd, filp, on, &event->fasync);
2636 mutex_unlock(&inode->i_mutex);
2638 if (retval < 0)
2639 return retval;
2641 return 0;
2644 static const struct file_operations perf_fops = {
2645 .release = perf_release,
2646 .read = perf_read,
2647 .poll = perf_poll,
2648 .unlocked_ioctl = perf_ioctl,
2649 .compat_ioctl = perf_ioctl,
2650 .mmap = perf_mmap,
2651 .fasync = perf_fasync,
2655 * Perf event wakeup
2657 * If there's data, ensure we set the poll() state and publish everything
2658 * to user-space before waking everybody up.
2661 void perf_event_wakeup(struct perf_event *event)
2663 wake_up_all(&event->waitq);
2665 if (event->pending_kill) {
2666 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2667 event->pending_kill = 0;
2672 * Pending wakeups
2674 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2676 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2677 * single linked list and use cmpxchg() to add entries lockless.
2680 static void perf_pending_event(struct perf_pending_entry *entry)
2682 struct perf_event *event = container_of(entry,
2683 struct perf_event, pending);
2685 if (event->pending_disable) {
2686 event->pending_disable = 0;
2687 __perf_event_disable(event);
2690 if (event->pending_wakeup) {
2691 event->pending_wakeup = 0;
2692 perf_event_wakeup(event);
2696 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2698 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2699 PENDING_TAIL,
2702 static void perf_pending_queue(struct perf_pending_entry *entry,
2703 void (*func)(struct perf_pending_entry *))
2705 struct perf_pending_entry **head;
2707 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2708 return;
2710 entry->func = func;
2712 head = &get_cpu_var(perf_pending_head);
2714 do {
2715 entry->next = *head;
2716 } while (cmpxchg(head, entry->next, entry) != entry->next);
2718 set_perf_event_pending();
2720 put_cpu_var(perf_pending_head);
2723 static int __perf_pending_run(void)
2725 struct perf_pending_entry *list;
2726 int nr = 0;
2728 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2729 while (list != PENDING_TAIL) {
2730 void (*func)(struct perf_pending_entry *);
2731 struct perf_pending_entry *entry = list;
2733 list = list->next;
2735 func = entry->func;
2736 entry->next = NULL;
2738 * Ensure we observe the unqueue before we issue the wakeup,
2739 * so that we won't be waiting forever.
2740 * -- see perf_not_pending().
2742 smp_wmb();
2744 func(entry);
2745 nr++;
2748 return nr;
2751 static inline int perf_not_pending(struct perf_event *event)
2754 * If we flush on whatever cpu we run, there is a chance we don't
2755 * need to wait.
2757 get_cpu();
2758 __perf_pending_run();
2759 put_cpu();
2762 * Ensure we see the proper queue state before going to sleep
2763 * so that we do not miss the wakeup. -- see perf_pending_handle()
2765 smp_rmb();
2766 return event->pending.next == NULL;
2769 static void perf_pending_sync(struct perf_event *event)
2771 wait_event(event->waitq, perf_not_pending(event));
2774 void perf_event_do_pending(void)
2776 __perf_pending_run();
2780 * Callchain support -- arch specific
2783 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2785 return NULL;
2788 __weak
2789 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2795 * Output
2797 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2798 unsigned long offset, unsigned long head)
2800 unsigned long mask;
2802 if (!data->writable)
2803 return true;
2805 mask = perf_data_size(data) - 1;
2807 offset = (offset - tail) & mask;
2808 head = (head - tail) & mask;
2810 if ((int)(head - offset) < 0)
2811 return false;
2813 return true;
2816 static void perf_output_wakeup(struct perf_output_handle *handle)
2818 atomic_set(&handle->data->poll, POLL_IN);
2820 if (handle->nmi) {
2821 handle->event->pending_wakeup = 1;
2822 perf_pending_queue(&handle->event->pending,
2823 perf_pending_event);
2824 } else
2825 perf_event_wakeup(handle->event);
2829 * Curious locking construct.
2831 * We need to ensure a later event_id doesn't publish a head when a former
2832 * event_id isn't done writing. However since we need to deal with NMIs we
2833 * cannot fully serialize things.
2835 * What we do is serialize between CPUs so we only have to deal with NMI
2836 * nesting on a single CPU.
2838 * We only publish the head (and generate a wakeup) when the outer-most
2839 * event_id completes.
2841 static void perf_output_lock(struct perf_output_handle *handle)
2843 struct perf_mmap_data *data = handle->data;
2844 int cur, cpu = get_cpu();
2846 handle->locked = 0;
2848 for (;;) {
2849 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2850 if (cur == -1) {
2851 handle->locked = 1;
2852 break;
2854 if (cur == cpu)
2855 break;
2857 cpu_relax();
2861 static void perf_output_unlock(struct perf_output_handle *handle)
2863 struct perf_mmap_data *data = handle->data;
2864 unsigned long head;
2865 int cpu;
2867 data->done_head = data->head;
2869 if (!handle->locked)
2870 goto out;
2872 again:
2874 * The xchg implies a full barrier that ensures all writes are done
2875 * before we publish the new head, matched by a rmb() in userspace when
2876 * reading this position.
2878 while ((head = atomic_long_xchg(&data->done_head, 0)))
2879 data->user_page->data_head = head;
2882 * NMI can happen here, which means we can miss a done_head update.
2885 cpu = atomic_xchg(&data->lock, -1);
2886 WARN_ON_ONCE(cpu != smp_processor_id());
2889 * Therefore we have to validate we did not indeed do so.
2891 if (unlikely(atomic_long_read(&data->done_head))) {
2893 * Since we had it locked, we can lock it again.
2895 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2896 cpu_relax();
2898 goto again;
2901 if (atomic_xchg(&data->wakeup, 0))
2902 perf_output_wakeup(handle);
2903 out:
2904 put_cpu();
2907 void perf_output_copy(struct perf_output_handle *handle,
2908 const void *buf, unsigned int len)
2910 unsigned int pages_mask;
2911 unsigned long offset;
2912 unsigned int size;
2913 void **pages;
2915 offset = handle->offset;
2916 pages_mask = handle->data->nr_pages - 1;
2917 pages = handle->data->data_pages;
2919 do {
2920 unsigned long page_offset;
2921 unsigned long page_size;
2922 int nr;
2924 nr = (offset >> PAGE_SHIFT) & pages_mask;
2925 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2926 page_offset = offset & (page_size - 1);
2927 size = min_t(unsigned int, page_size - page_offset, len);
2929 memcpy(pages[nr] + page_offset, buf, size);
2931 len -= size;
2932 buf += size;
2933 offset += size;
2934 } while (len);
2936 handle->offset = offset;
2939 * Check we didn't copy past our reservation window, taking the
2940 * possible unsigned int wrap into account.
2942 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2945 int perf_output_begin(struct perf_output_handle *handle,
2946 struct perf_event *event, unsigned int size,
2947 int nmi, int sample)
2949 struct perf_event *output_event;
2950 struct perf_mmap_data *data;
2951 unsigned long tail, offset, head;
2952 int have_lost;
2953 struct {
2954 struct perf_event_header header;
2955 u64 id;
2956 u64 lost;
2957 } lost_event;
2959 rcu_read_lock();
2961 * For inherited events we send all the output towards the parent.
2963 if (event->parent)
2964 event = event->parent;
2966 output_event = rcu_dereference(event->output);
2967 if (output_event)
2968 event = output_event;
2970 data = rcu_dereference(event->data);
2971 if (!data)
2972 goto out;
2974 handle->data = data;
2975 handle->event = event;
2976 handle->nmi = nmi;
2977 handle->sample = sample;
2979 if (!data->nr_pages)
2980 goto fail;
2982 have_lost = atomic_read(&data->lost);
2983 if (have_lost)
2984 size += sizeof(lost_event);
2986 perf_output_lock(handle);
2988 do {
2990 * Userspace could choose to issue a mb() before updating the
2991 * tail pointer. So that all reads will be completed before the
2992 * write is issued.
2994 tail = ACCESS_ONCE(data->user_page->data_tail);
2995 smp_rmb();
2996 offset = head = atomic_long_read(&data->head);
2997 head += size;
2998 if (unlikely(!perf_output_space(data, tail, offset, head)))
2999 goto fail;
3000 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3002 handle->offset = offset;
3003 handle->head = head;
3005 if (head - tail > data->watermark)
3006 atomic_set(&data->wakeup, 1);
3008 if (have_lost) {
3009 lost_event.header.type = PERF_RECORD_LOST;
3010 lost_event.header.misc = 0;
3011 lost_event.header.size = sizeof(lost_event);
3012 lost_event.id = event->id;
3013 lost_event.lost = atomic_xchg(&data->lost, 0);
3015 perf_output_put(handle, lost_event);
3018 return 0;
3020 fail:
3021 atomic_inc(&data->lost);
3022 perf_output_unlock(handle);
3023 out:
3024 rcu_read_unlock();
3026 return -ENOSPC;
3029 void perf_output_end(struct perf_output_handle *handle)
3031 struct perf_event *event = handle->event;
3032 struct perf_mmap_data *data = handle->data;
3034 int wakeup_events = event->attr.wakeup_events;
3036 if (handle->sample && wakeup_events) {
3037 int events = atomic_inc_return(&data->events);
3038 if (events >= wakeup_events) {
3039 atomic_sub(wakeup_events, &data->events);
3040 atomic_set(&data->wakeup, 1);
3044 perf_output_unlock(handle);
3045 rcu_read_unlock();
3048 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3051 * only top level events have the pid namespace they were created in
3053 if (event->parent)
3054 event = event->parent;
3056 return task_tgid_nr_ns(p, event->ns);
3059 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3062 * only top level events have the pid namespace they were created in
3064 if (event->parent)
3065 event = event->parent;
3067 return task_pid_nr_ns(p, event->ns);
3070 static void perf_output_read_one(struct perf_output_handle *handle,
3071 struct perf_event *event)
3073 u64 read_format = event->attr.read_format;
3074 u64 values[4];
3075 int n = 0;
3077 values[n++] = atomic64_read(&event->count);
3078 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3079 values[n++] = event->total_time_enabled +
3080 atomic64_read(&event->child_total_time_enabled);
3082 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3083 values[n++] = event->total_time_running +
3084 atomic64_read(&event->child_total_time_running);
3086 if (read_format & PERF_FORMAT_ID)
3087 values[n++] = primary_event_id(event);
3089 perf_output_copy(handle, values, n * sizeof(u64));
3093 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3095 static void perf_output_read_group(struct perf_output_handle *handle,
3096 struct perf_event *event)
3098 struct perf_event *leader = event->group_leader, *sub;
3099 u64 read_format = event->attr.read_format;
3100 u64 values[5];
3101 int n = 0;
3103 values[n++] = 1 + leader->nr_siblings;
3105 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3106 values[n++] = leader->total_time_enabled;
3108 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3109 values[n++] = leader->total_time_running;
3111 if (leader != event)
3112 leader->pmu->read(leader);
3114 values[n++] = atomic64_read(&leader->count);
3115 if (read_format & PERF_FORMAT_ID)
3116 values[n++] = primary_event_id(leader);
3118 perf_output_copy(handle, values, n * sizeof(u64));
3120 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3121 n = 0;
3123 if (sub != event)
3124 sub->pmu->read(sub);
3126 values[n++] = atomic64_read(&sub->count);
3127 if (read_format & PERF_FORMAT_ID)
3128 values[n++] = primary_event_id(sub);
3130 perf_output_copy(handle, values, n * sizeof(u64));
3134 static void perf_output_read(struct perf_output_handle *handle,
3135 struct perf_event *event)
3137 if (event->attr.read_format & PERF_FORMAT_GROUP)
3138 perf_output_read_group(handle, event);
3139 else
3140 perf_output_read_one(handle, event);
3143 void perf_output_sample(struct perf_output_handle *handle,
3144 struct perf_event_header *header,
3145 struct perf_sample_data *data,
3146 struct perf_event *event)
3148 u64 sample_type = data->type;
3150 perf_output_put(handle, *header);
3152 if (sample_type & PERF_SAMPLE_IP)
3153 perf_output_put(handle, data->ip);
3155 if (sample_type & PERF_SAMPLE_TID)
3156 perf_output_put(handle, data->tid_entry);
3158 if (sample_type & PERF_SAMPLE_TIME)
3159 perf_output_put(handle, data->time);
3161 if (sample_type & PERF_SAMPLE_ADDR)
3162 perf_output_put(handle, data->addr);
3164 if (sample_type & PERF_SAMPLE_ID)
3165 perf_output_put(handle, data->id);
3167 if (sample_type & PERF_SAMPLE_STREAM_ID)
3168 perf_output_put(handle, data->stream_id);
3170 if (sample_type & PERF_SAMPLE_CPU)
3171 perf_output_put(handle, data->cpu_entry);
3173 if (sample_type & PERF_SAMPLE_PERIOD)
3174 perf_output_put(handle, data->period);
3176 if (sample_type & PERF_SAMPLE_READ)
3177 perf_output_read(handle, event);
3179 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3180 if (data->callchain) {
3181 int size = 1;
3183 if (data->callchain)
3184 size += data->callchain->nr;
3186 size *= sizeof(u64);
3188 perf_output_copy(handle, data->callchain, size);
3189 } else {
3190 u64 nr = 0;
3191 perf_output_put(handle, nr);
3195 if (sample_type & PERF_SAMPLE_RAW) {
3196 if (data->raw) {
3197 perf_output_put(handle, data->raw->size);
3198 perf_output_copy(handle, data->raw->data,
3199 data->raw->size);
3200 } else {
3201 struct {
3202 u32 size;
3203 u32 data;
3204 } raw = {
3205 .size = sizeof(u32),
3206 .data = 0,
3208 perf_output_put(handle, raw);
3213 void perf_prepare_sample(struct perf_event_header *header,
3214 struct perf_sample_data *data,
3215 struct perf_event *event,
3216 struct pt_regs *regs)
3218 u64 sample_type = event->attr.sample_type;
3220 data->type = sample_type;
3222 header->type = PERF_RECORD_SAMPLE;
3223 header->size = sizeof(*header);
3225 header->misc = 0;
3226 header->misc |= perf_misc_flags(regs);
3228 if (sample_type & PERF_SAMPLE_IP) {
3229 data->ip = perf_instruction_pointer(regs);
3231 header->size += sizeof(data->ip);
3234 if (sample_type & PERF_SAMPLE_TID) {
3235 /* namespace issues */
3236 data->tid_entry.pid = perf_event_pid(event, current);
3237 data->tid_entry.tid = perf_event_tid(event, current);
3239 header->size += sizeof(data->tid_entry);
3242 if (sample_type & PERF_SAMPLE_TIME) {
3243 data->time = perf_clock();
3245 header->size += sizeof(data->time);
3248 if (sample_type & PERF_SAMPLE_ADDR)
3249 header->size += sizeof(data->addr);
3251 if (sample_type & PERF_SAMPLE_ID) {
3252 data->id = primary_event_id(event);
3254 header->size += sizeof(data->id);
3257 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3258 data->stream_id = event->id;
3260 header->size += sizeof(data->stream_id);
3263 if (sample_type & PERF_SAMPLE_CPU) {
3264 data->cpu_entry.cpu = raw_smp_processor_id();
3265 data->cpu_entry.reserved = 0;
3267 header->size += sizeof(data->cpu_entry);
3270 if (sample_type & PERF_SAMPLE_PERIOD)
3271 header->size += sizeof(data->period);
3273 if (sample_type & PERF_SAMPLE_READ)
3274 header->size += perf_event_read_size(event);
3276 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3277 int size = 1;
3279 data->callchain = perf_callchain(regs);
3281 if (data->callchain)
3282 size += data->callchain->nr;
3284 header->size += size * sizeof(u64);
3287 if (sample_type & PERF_SAMPLE_RAW) {
3288 int size = sizeof(u32);
3290 if (data->raw)
3291 size += data->raw->size;
3292 else
3293 size += sizeof(u32);
3295 WARN_ON_ONCE(size & (sizeof(u64)-1));
3296 header->size += size;
3300 static void perf_event_output(struct perf_event *event, int nmi,
3301 struct perf_sample_data *data,
3302 struct pt_regs *regs)
3304 struct perf_output_handle handle;
3305 struct perf_event_header header;
3307 perf_prepare_sample(&header, data, event, regs);
3309 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3310 return;
3312 perf_output_sample(&handle, &header, data, event);
3314 perf_output_end(&handle);
3318 * read event_id
3321 struct perf_read_event {
3322 struct perf_event_header header;
3324 u32 pid;
3325 u32 tid;
3328 static void
3329 perf_event_read_event(struct perf_event *event,
3330 struct task_struct *task)
3332 struct perf_output_handle handle;
3333 struct perf_read_event read_event = {
3334 .header = {
3335 .type = PERF_RECORD_READ,
3336 .misc = 0,
3337 .size = sizeof(read_event) + perf_event_read_size(event),
3339 .pid = perf_event_pid(event, task),
3340 .tid = perf_event_tid(event, task),
3342 int ret;
3344 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3345 if (ret)
3346 return;
3348 perf_output_put(&handle, read_event);
3349 perf_output_read(&handle, event);
3351 perf_output_end(&handle);
3355 * task tracking -- fork/exit
3357 * enabled by: attr.comm | attr.mmap | attr.task
3360 struct perf_task_event {
3361 struct task_struct *task;
3362 struct perf_event_context *task_ctx;
3364 struct {
3365 struct perf_event_header header;
3367 u32 pid;
3368 u32 ppid;
3369 u32 tid;
3370 u32 ptid;
3371 u64 time;
3372 } event_id;
3375 static void perf_event_task_output(struct perf_event *event,
3376 struct perf_task_event *task_event)
3378 struct perf_output_handle handle;
3379 struct task_struct *task = task_event->task;
3380 unsigned long flags;
3381 int size, ret;
3384 * If this CPU attempts to acquire an rq lock held by a CPU spinning
3385 * in perf_output_lock() from interrupt context, it's game over.
3387 local_irq_save(flags);
3389 size = task_event->event_id.header.size;
3390 ret = perf_output_begin(&handle, event, size, 0, 0);
3392 if (ret) {
3393 local_irq_restore(flags);
3394 return;
3397 task_event->event_id.pid = perf_event_pid(event, task);
3398 task_event->event_id.ppid = perf_event_pid(event, current);
3400 task_event->event_id.tid = perf_event_tid(event, task);
3401 task_event->event_id.ptid = perf_event_tid(event, current);
3403 perf_output_put(&handle, task_event->event_id);
3405 perf_output_end(&handle);
3406 local_irq_restore(flags);
3409 static int perf_event_task_match(struct perf_event *event)
3411 if (event->state < PERF_EVENT_STATE_INACTIVE)
3412 return 0;
3414 if (event->cpu != -1 && event->cpu != smp_processor_id())
3415 return 0;
3417 if (event->attr.comm || event->attr.mmap || event->attr.task)
3418 return 1;
3420 return 0;
3423 static void perf_event_task_ctx(struct perf_event_context *ctx,
3424 struct perf_task_event *task_event)
3426 struct perf_event *event;
3428 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3429 if (perf_event_task_match(event))
3430 perf_event_task_output(event, task_event);
3434 static void perf_event_task_event(struct perf_task_event *task_event)
3436 struct perf_cpu_context *cpuctx;
3437 struct perf_event_context *ctx = task_event->task_ctx;
3439 rcu_read_lock();
3440 cpuctx = &get_cpu_var(perf_cpu_context);
3441 perf_event_task_ctx(&cpuctx->ctx, task_event);
3442 if (!ctx)
3443 ctx = rcu_dereference(current->perf_event_ctxp);
3444 if (ctx)
3445 perf_event_task_ctx(ctx, task_event);
3446 put_cpu_var(perf_cpu_context);
3447 rcu_read_unlock();
3450 static void perf_event_task(struct task_struct *task,
3451 struct perf_event_context *task_ctx,
3452 int new)
3454 struct perf_task_event task_event;
3456 if (!atomic_read(&nr_comm_events) &&
3457 !atomic_read(&nr_mmap_events) &&
3458 !atomic_read(&nr_task_events))
3459 return;
3461 task_event = (struct perf_task_event){
3462 .task = task,
3463 .task_ctx = task_ctx,
3464 .event_id = {
3465 .header = {
3466 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3467 .misc = 0,
3468 .size = sizeof(task_event.event_id),
3470 /* .pid */
3471 /* .ppid */
3472 /* .tid */
3473 /* .ptid */
3474 .time = perf_clock(),
3478 perf_event_task_event(&task_event);
3481 void perf_event_fork(struct task_struct *task)
3483 perf_event_task(task, NULL, 1);
3487 * comm tracking
3490 struct perf_comm_event {
3491 struct task_struct *task;
3492 char *comm;
3493 int comm_size;
3495 struct {
3496 struct perf_event_header header;
3498 u32 pid;
3499 u32 tid;
3500 } event_id;
3503 static void perf_event_comm_output(struct perf_event *event,
3504 struct perf_comm_event *comm_event)
3506 struct perf_output_handle handle;
3507 int size = comm_event->event_id.header.size;
3508 int ret = perf_output_begin(&handle, event, size, 0, 0);
3510 if (ret)
3511 return;
3513 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3514 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3516 perf_output_put(&handle, comm_event->event_id);
3517 perf_output_copy(&handle, comm_event->comm,
3518 comm_event->comm_size);
3519 perf_output_end(&handle);
3522 static int perf_event_comm_match(struct perf_event *event)
3524 if (event->state < PERF_EVENT_STATE_INACTIVE)
3525 return 0;
3527 if (event->cpu != -1 && event->cpu != smp_processor_id())
3528 return 0;
3530 if (event->attr.comm)
3531 return 1;
3533 return 0;
3536 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3537 struct perf_comm_event *comm_event)
3539 struct perf_event *event;
3541 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3542 if (perf_event_comm_match(event))
3543 perf_event_comm_output(event, comm_event);
3547 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3549 struct perf_cpu_context *cpuctx;
3550 struct perf_event_context *ctx;
3551 unsigned int size;
3552 char comm[TASK_COMM_LEN];
3554 memset(comm, 0, sizeof(comm));
3555 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3556 size = ALIGN(strlen(comm)+1, sizeof(u64));
3558 comm_event->comm = comm;
3559 comm_event->comm_size = size;
3561 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3563 rcu_read_lock();
3564 cpuctx = &get_cpu_var(perf_cpu_context);
3565 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3566 ctx = rcu_dereference(current->perf_event_ctxp);
3567 if (ctx)
3568 perf_event_comm_ctx(ctx, comm_event);
3569 put_cpu_var(perf_cpu_context);
3570 rcu_read_unlock();
3573 void perf_event_comm(struct task_struct *task)
3575 struct perf_comm_event comm_event;
3577 if (task->perf_event_ctxp)
3578 perf_event_enable_on_exec(task);
3580 if (!atomic_read(&nr_comm_events))
3581 return;
3583 comm_event = (struct perf_comm_event){
3584 .task = task,
3585 /* .comm */
3586 /* .comm_size */
3587 .event_id = {
3588 .header = {
3589 .type = PERF_RECORD_COMM,
3590 .misc = 0,
3591 /* .size */
3593 /* .pid */
3594 /* .tid */
3598 perf_event_comm_event(&comm_event);
3602 * mmap tracking
3605 struct perf_mmap_event {
3606 struct vm_area_struct *vma;
3608 const char *file_name;
3609 int file_size;
3611 struct {
3612 struct perf_event_header header;
3614 u32 pid;
3615 u32 tid;
3616 u64 start;
3617 u64 len;
3618 u64 pgoff;
3619 } event_id;
3622 static void perf_event_mmap_output(struct perf_event *event,
3623 struct perf_mmap_event *mmap_event)
3625 struct perf_output_handle handle;
3626 int size = mmap_event->event_id.header.size;
3627 int ret = perf_output_begin(&handle, event, size, 0, 0);
3629 if (ret)
3630 return;
3632 mmap_event->event_id.pid = perf_event_pid(event, current);
3633 mmap_event->event_id.tid = perf_event_tid(event, current);
3635 perf_output_put(&handle, mmap_event->event_id);
3636 perf_output_copy(&handle, mmap_event->file_name,
3637 mmap_event->file_size);
3638 perf_output_end(&handle);
3641 static int perf_event_mmap_match(struct perf_event *event,
3642 struct perf_mmap_event *mmap_event)
3644 if (event->state < PERF_EVENT_STATE_INACTIVE)
3645 return 0;
3647 if (event->cpu != -1 && event->cpu != smp_processor_id())
3648 return 0;
3650 if (event->attr.mmap)
3651 return 1;
3653 return 0;
3656 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3657 struct perf_mmap_event *mmap_event)
3659 struct perf_event *event;
3661 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3662 if (perf_event_mmap_match(event, mmap_event))
3663 perf_event_mmap_output(event, mmap_event);
3667 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3669 struct perf_cpu_context *cpuctx;
3670 struct perf_event_context *ctx;
3671 struct vm_area_struct *vma = mmap_event->vma;
3672 struct file *file = vma->vm_file;
3673 unsigned int size;
3674 char tmp[16];
3675 char *buf = NULL;
3676 const char *name;
3678 memset(tmp, 0, sizeof(tmp));
3680 if (file) {
3682 * d_path works from the end of the buffer backwards, so we
3683 * need to add enough zero bytes after the string to handle
3684 * the 64bit alignment we do later.
3686 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3687 if (!buf) {
3688 name = strncpy(tmp, "//enomem", sizeof(tmp));
3689 goto got_name;
3691 name = d_path(&file->f_path, buf, PATH_MAX);
3692 if (IS_ERR(name)) {
3693 name = strncpy(tmp, "//toolong", sizeof(tmp));
3694 goto got_name;
3696 } else {
3697 if (arch_vma_name(mmap_event->vma)) {
3698 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3699 sizeof(tmp));
3700 goto got_name;
3703 if (!vma->vm_mm) {
3704 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3705 goto got_name;
3708 name = strncpy(tmp, "//anon", sizeof(tmp));
3709 goto got_name;
3712 got_name:
3713 size = ALIGN(strlen(name)+1, sizeof(u64));
3715 mmap_event->file_name = name;
3716 mmap_event->file_size = size;
3718 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3720 rcu_read_lock();
3721 cpuctx = &get_cpu_var(perf_cpu_context);
3722 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3723 ctx = rcu_dereference(current->perf_event_ctxp);
3724 if (ctx)
3725 perf_event_mmap_ctx(ctx, mmap_event);
3726 put_cpu_var(perf_cpu_context);
3727 rcu_read_unlock();
3729 kfree(buf);
3732 void __perf_event_mmap(struct vm_area_struct *vma)
3734 struct perf_mmap_event mmap_event;
3736 if (!atomic_read(&nr_mmap_events))
3737 return;
3739 mmap_event = (struct perf_mmap_event){
3740 .vma = vma,
3741 /* .file_name */
3742 /* .file_size */
3743 .event_id = {
3744 .header = {
3745 .type = PERF_RECORD_MMAP,
3746 .misc = 0,
3747 /* .size */
3749 /* .pid */
3750 /* .tid */
3751 .start = vma->vm_start,
3752 .len = vma->vm_end - vma->vm_start,
3753 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3757 perf_event_mmap_event(&mmap_event);
3761 * IRQ throttle logging
3764 static void perf_log_throttle(struct perf_event *event, int enable)
3766 struct perf_output_handle handle;
3767 int ret;
3769 struct {
3770 struct perf_event_header header;
3771 u64 time;
3772 u64 id;
3773 u64 stream_id;
3774 } throttle_event = {
3775 .header = {
3776 .type = PERF_RECORD_THROTTLE,
3777 .misc = 0,
3778 .size = sizeof(throttle_event),
3780 .time = perf_clock(),
3781 .id = primary_event_id(event),
3782 .stream_id = event->id,
3785 if (enable)
3786 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3788 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3789 if (ret)
3790 return;
3792 perf_output_put(&handle, throttle_event);
3793 perf_output_end(&handle);
3797 * Generic event overflow handling, sampling.
3800 static int __perf_event_overflow(struct perf_event *event, int nmi,
3801 int throttle, struct perf_sample_data *data,
3802 struct pt_regs *regs)
3804 int events = atomic_read(&event->event_limit);
3805 struct hw_perf_event *hwc = &event->hw;
3806 int ret = 0;
3808 throttle = (throttle && event->pmu->unthrottle != NULL);
3810 if (!throttle) {
3811 hwc->interrupts++;
3812 } else {
3813 if (hwc->interrupts != MAX_INTERRUPTS) {
3814 hwc->interrupts++;
3815 if (HZ * hwc->interrupts >
3816 (u64)sysctl_perf_event_sample_rate) {
3817 hwc->interrupts = MAX_INTERRUPTS;
3818 perf_log_throttle(event, 0);
3819 ret = 1;
3821 } else {
3823 * Keep re-disabling events even though on the previous
3824 * pass we disabled it - just in case we raced with a
3825 * sched-in and the event got enabled again:
3827 ret = 1;
3831 if (event->attr.freq) {
3832 u64 now = perf_clock();
3833 s64 delta = now - hwc->freq_time_stamp;
3835 hwc->freq_time_stamp = now;
3837 if (delta > 0 && delta < 2*TICK_NSEC)
3838 perf_adjust_period(event, delta, hwc->last_period);
3842 * XXX event_limit might not quite work as expected on inherited
3843 * events
3846 event->pending_kill = POLL_IN;
3847 if (events && atomic_dec_and_test(&event->event_limit)) {
3848 ret = 1;
3849 event->pending_kill = POLL_HUP;
3850 if (nmi) {
3851 event->pending_disable = 1;
3852 perf_pending_queue(&event->pending,
3853 perf_pending_event);
3854 } else
3855 perf_event_disable(event);
3858 if (event->overflow_handler)
3859 event->overflow_handler(event, nmi, data, regs);
3860 else
3861 perf_event_output(event, nmi, data, regs);
3863 return ret;
3866 int perf_event_overflow(struct perf_event *event, int nmi,
3867 struct perf_sample_data *data,
3868 struct pt_regs *regs)
3870 return __perf_event_overflow(event, nmi, 1, data, regs);
3874 * Generic software event infrastructure
3878 * We directly increment event->count and keep a second value in
3879 * event->hw.period_left to count intervals. This period event
3880 * is kept in the range [-sample_period, 0] so that we can use the
3881 * sign as trigger.
3884 static u64 perf_swevent_set_period(struct perf_event *event)
3886 struct hw_perf_event *hwc = &event->hw;
3887 u64 period = hwc->last_period;
3888 u64 nr, offset;
3889 s64 old, val;
3891 hwc->last_period = hwc->sample_period;
3893 again:
3894 old = val = atomic64_read(&hwc->period_left);
3895 if (val < 0)
3896 return 0;
3898 nr = div64_u64(period + val, period);
3899 offset = nr * period;
3900 val -= offset;
3901 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3902 goto again;
3904 return nr;
3907 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3908 int nmi, struct perf_sample_data *data,
3909 struct pt_regs *regs)
3911 struct hw_perf_event *hwc = &event->hw;
3912 int throttle = 0;
3914 data->period = event->hw.last_period;
3915 if (!overflow)
3916 overflow = perf_swevent_set_period(event);
3918 if (hwc->interrupts == MAX_INTERRUPTS)
3919 return;
3921 for (; overflow; overflow--) {
3922 if (__perf_event_overflow(event, nmi, throttle,
3923 data, regs)) {
3925 * We inhibit the overflow from happening when
3926 * hwc->interrupts == MAX_INTERRUPTS.
3928 break;
3930 throttle = 1;
3934 static void perf_swevent_unthrottle(struct perf_event *event)
3937 * Nothing to do, we already reset hwc->interrupts.
3941 static void perf_swevent_add(struct perf_event *event, u64 nr,
3942 int nmi, struct perf_sample_data *data,
3943 struct pt_regs *regs)
3945 struct hw_perf_event *hwc = &event->hw;
3947 atomic64_add(nr, &event->count);
3949 if (!regs)
3950 return;
3952 if (!hwc->sample_period)
3953 return;
3955 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3956 return perf_swevent_overflow(event, 1, nmi, data, regs);
3958 if (atomic64_add_negative(nr, &hwc->period_left))
3959 return;
3961 perf_swevent_overflow(event, 0, nmi, data, regs);
3964 static int perf_swevent_is_counting(struct perf_event *event)
3967 * The event is active, we're good!
3969 if (event->state == PERF_EVENT_STATE_ACTIVE)
3970 return 1;
3973 * The event is off/error, not counting.
3975 if (event->state != PERF_EVENT_STATE_INACTIVE)
3976 return 0;
3979 * The event is inactive, if the context is active
3980 * we're part of a group that didn't make it on the 'pmu',
3981 * not counting.
3983 if (event->ctx->is_active)
3984 return 0;
3987 * We're inactive and the context is too, this means the
3988 * task is scheduled out, we're counting events that happen
3989 * to us, like migration events.
3991 return 1;
3994 static int perf_tp_event_match(struct perf_event *event,
3995 struct perf_sample_data *data);
3997 static int perf_exclude_event(struct perf_event *event,
3998 struct pt_regs *regs)
4000 if (regs) {
4001 if (event->attr.exclude_user && user_mode(regs))
4002 return 1;
4004 if (event->attr.exclude_kernel && !user_mode(regs))
4005 return 1;
4008 return 0;
4011 static int perf_swevent_match(struct perf_event *event,
4012 enum perf_type_id type,
4013 u32 event_id,
4014 struct perf_sample_data *data,
4015 struct pt_regs *regs)
4017 if (event->cpu != -1 && event->cpu != smp_processor_id())
4018 return 0;
4020 if (!perf_swevent_is_counting(event))
4021 return 0;
4023 if (event->attr.type != type)
4024 return 0;
4026 if (event->attr.config != event_id)
4027 return 0;
4029 if (perf_exclude_event(event, regs))
4030 return 0;
4032 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4033 !perf_tp_event_match(event, data))
4034 return 0;
4036 return 1;
4039 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4040 enum perf_type_id type,
4041 u32 event_id, u64 nr, int nmi,
4042 struct perf_sample_data *data,
4043 struct pt_regs *regs)
4045 struct perf_event *event;
4047 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4048 if (perf_swevent_match(event, type, event_id, data, regs))
4049 perf_swevent_add(event, nr, nmi, data, regs);
4053 int perf_swevent_get_recursion_context(void)
4055 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4056 int rctx;
4058 if (in_nmi())
4059 rctx = 3;
4060 else if (in_irq())
4061 rctx = 2;
4062 else if (in_softirq())
4063 rctx = 1;
4064 else
4065 rctx = 0;
4067 if (cpuctx->recursion[rctx]) {
4068 put_cpu_var(perf_cpu_context);
4069 return -1;
4072 cpuctx->recursion[rctx]++;
4073 barrier();
4075 return rctx;
4077 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4079 void perf_swevent_put_recursion_context(int rctx)
4081 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4082 barrier();
4083 cpuctx->recursion[rctx]--;
4084 put_cpu_var(perf_cpu_context);
4086 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4088 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4089 u64 nr, int nmi,
4090 struct perf_sample_data *data,
4091 struct pt_regs *regs)
4093 struct perf_cpu_context *cpuctx;
4094 struct perf_event_context *ctx;
4096 cpuctx = &__get_cpu_var(perf_cpu_context);
4097 rcu_read_lock();
4098 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4099 nr, nmi, data, regs);
4101 * doesn't really matter which of the child contexts the
4102 * events ends up in.
4104 ctx = rcu_dereference(current->perf_event_ctxp);
4105 if (ctx)
4106 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4107 rcu_read_unlock();
4110 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4111 struct pt_regs *regs, u64 addr)
4113 struct perf_sample_data data;
4114 int rctx;
4116 rctx = perf_swevent_get_recursion_context();
4117 if (rctx < 0)
4118 return;
4120 perf_sample_data_init(&data, addr);
4122 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4124 perf_swevent_put_recursion_context(rctx);
4127 static void perf_swevent_read(struct perf_event *event)
4131 static int perf_swevent_enable(struct perf_event *event)
4133 struct hw_perf_event *hwc = &event->hw;
4135 if (hwc->sample_period) {
4136 hwc->last_period = hwc->sample_period;
4137 perf_swevent_set_period(event);
4139 return 0;
4142 static void perf_swevent_disable(struct perf_event *event)
4146 static const struct pmu perf_ops_generic = {
4147 .enable = perf_swevent_enable,
4148 .disable = perf_swevent_disable,
4149 .read = perf_swevent_read,
4150 .unthrottle = perf_swevent_unthrottle,
4154 * hrtimer based swevent callback
4157 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4159 enum hrtimer_restart ret = HRTIMER_RESTART;
4160 struct perf_sample_data data;
4161 struct pt_regs *regs;
4162 struct perf_event *event;
4163 u64 period;
4165 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4166 event->pmu->read(event);
4168 perf_sample_data_init(&data, 0);
4169 data.period = event->hw.last_period;
4170 regs = get_irq_regs();
4172 * In case we exclude kernel IPs or are somehow not in interrupt
4173 * context, provide the next best thing, the user IP.
4175 if ((event->attr.exclude_kernel || !regs) &&
4176 !event->attr.exclude_user)
4177 regs = task_pt_regs(current);
4179 if (regs) {
4180 if (!(event->attr.exclude_idle && current->pid == 0))
4181 if (perf_event_overflow(event, 0, &data, regs))
4182 ret = HRTIMER_NORESTART;
4185 period = max_t(u64, 10000, event->hw.sample_period);
4186 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4188 return ret;
4191 static void perf_swevent_start_hrtimer(struct perf_event *event)
4193 struct hw_perf_event *hwc = &event->hw;
4195 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4196 hwc->hrtimer.function = perf_swevent_hrtimer;
4197 if (hwc->sample_period) {
4198 u64 period;
4200 if (hwc->remaining) {
4201 if (hwc->remaining < 0)
4202 period = 10000;
4203 else
4204 period = hwc->remaining;
4205 hwc->remaining = 0;
4206 } else {
4207 period = max_t(u64, 10000, hwc->sample_period);
4209 __hrtimer_start_range_ns(&hwc->hrtimer,
4210 ns_to_ktime(period), 0,
4211 HRTIMER_MODE_REL, 0);
4215 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4217 struct hw_perf_event *hwc = &event->hw;
4219 if (hwc->sample_period) {
4220 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4221 hwc->remaining = ktime_to_ns(remaining);
4223 hrtimer_cancel(&hwc->hrtimer);
4228 * Software event: cpu wall time clock
4231 static void cpu_clock_perf_event_update(struct perf_event *event)
4233 int cpu = raw_smp_processor_id();
4234 s64 prev;
4235 u64 now;
4237 now = cpu_clock(cpu);
4238 prev = atomic64_xchg(&event->hw.prev_count, now);
4239 atomic64_add(now - prev, &event->count);
4242 static int cpu_clock_perf_event_enable(struct perf_event *event)
4244 struct hw_perf_event *hwc = &event->hw;
4245 int cpu = raw_smp_processor_id();
4247 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4248 perf_swevent_start_hrtimer(event);
4250 return 0;
4253 static void cpu_clock_perf_event_disable(struct perf_event *event)
4255 perf_swevent_cancel_hrtimer(event);
4256 cpu_clock_perf_event_update(event);
4259 static void cpu_clock_perf_event_read(struct perf_event *event)
4261 cpu_clock_perf_event_update(event);
4264 static const struct pmu perf_ops_cpu_clock = {
4265 .enable = cpu_clock_perf_event_enable,
4266 .disable = cpu_clock_perf_event_disable,
4267 .read = cpu_clock_perf_event_read,
4271 * Software event: task time clock
4274 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4276 u64 prev;
4277 s64 delta;
4279 prev = atomic64_xchg(&event->hw.prev_count, now);
4280 delta = now - prev;
4281 atomic64_add(delta, &event->count);
4284 static int task_clock_perf_event_enable(struct perf_event *event)
4286 struct hw_perf_event *hwc = &event->hw;
4287 u64 now;
4289 now = event->ctx->time;
4291 atomic64_set(&hwc->prev_count, now);
4293 perf_swevent_start_hrtimer(event);
4295 return 0;
4298 static void task_clock_perf_event_disable(struct perf_event *event)
4300 perf_swevent_cancel_hrtimer(event);
4301 task_clock_perf_event_update(event, event->ctx->time);
4305 static void task_clock_perf_event_read(struct perf_event *event)
4307 u64 time;
4309 if (!in_nmi()) {
4310 update_context_time(event->ctx);
4311 time = event->ctx->time;
4312 } else {
4313 u64 now = perf_clock();
4314 u64 delta = now - event->ctx->timestamp;
4315 time = event->ctx->time + delta;
4318 task_clock_perf_event_update(event, time);
4321 static const struct pmu perf_ops_task_clock = {
4322 .enable = task_clock_perf_event_enable,
4323 .disable = task_clock_perf_event_disable,
4324 .read = task_clock_perf_event_read,
4327 #ifdef CONFIG_EVENT_TRACING
4329 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4330 int entry_size, struct pt_regs *regs)
4332 struct perf_sample_data data;
4333 struct perf_raw_record raw = {
4334 .size = entry_size,
4335 .data = record,
4338 perf_sample_data_init(&data, addr);
4339 data.raw = &raw;
4341 /* Trace events already protected against recursion */
4342 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4343 &data, regs);
4345 EXPORT_SYMBOL_GPL(perf_tp_event);
4347 static int perf_tp_event_match(struct perf_event *event,
4348 struct perf_sample_data *data)
4350 void *record = data->raw->data;
4352 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4353 return 1;
4354 return 0;
4357 static void tp_perf_event_destroy(struct perf_event *event)
4359 perf_trace_disable(event->attr.config);
4362 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4365 * Raw tracepoint data is a severe data leak, only allow root to
4366 * have these.
4368 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4369 perf_paranoid_tracepoint_raw() &&
4370 !capable(CAP_SYS_ADMIN))
4371 return ERR_PTR(-EPERM);
4373 if (perf_trace_enable(event->attr.config))
4374 return NULL;
4376 event->destroy = tp_perf_event_destroy;
4378 return &perf_ops_generic;
4381 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4383 char *filter_str;
4384 int ret;
4386 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4387 return -EINVAL;
4389 filter_str = strndup_user(arg, PAGE_SIZE);
4390 if (IS_ERR(filter_str))
4391 return PTR_ERR(filter_str);
4393 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4395 kfree(filter_str);
4396 return ret;
4399 static void perf_event_free_filter(struct perf_event *event)
4401 ftrace_profile_free_filter(event);
4404 #else
4406 static int perf_tp_event_match(struct perf_event *event,
4407 struct perf_sample_data *data)
4409 return 1;
4412 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4414 return NULL;
4417 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4419 return -ENOENT;
4422 static void perf_event_free_filter(struct perf_event *event)
4426 #endif /* CONFIG_EVENT_TRACING */
4428 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4429 static void bp_perf_event_destroy(struct perf_event *event)
4431 release_bp_slot(event);
4434 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4436 int err;
4438 err = register_perf_hw_breakpoint(bp);
4439 if (err)
4440 return ERR_PTR(err);
4442 bp->destroy = bp_perf_event_destroy;
4444 return &perf_ops_bp;
4447 void perf_bp_event(struct perf_event *bp, void *data)
4449 struct perf_sample_data sample;
4450 struct pt_regs *regs = data;
4452 perf_sample_data_init(&sample, bp->attr.bp_addr);
4454 if (!perf_exclude_event(bp, regs))
4455 perf_swevent_add(bp, 1, 1, &sample, regs);
4457 #else
4458 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4460 return NULL;
4463 void perf_bp_event(struct perf_event *bp, void *regs)
4466 #endif
4468 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4470 static void sw_perf_event_destroy(struct perf_event *event)
4472 u64 event_id = event->attr.config;
4474 WARN_ON(event->parent);
4476 atomic_dec(&perf_swevent_enabled[event_id]);
4479 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4481 const struct pmu *pmu = NULL;
4482 u64 event_id = event->attr.config;
4485 * Software events (currently) can't in general distinguish
4486 * between user, kernel and hypervisor events.
4487 * However, context switches and cpu migrations are considered
4488 * to be kernel events, and page faults are never hypervisor
4489 * events.
4491 switch (event_id) {
4492 case PERF_COUNT_SW_CPU_CLOCK:
4493 pmu = &perf_ops_cpu_clock;
4495 break;
4496 case PERF_COUNT_SW_TASK_CLOCK:
4498 * If the user instantiates this as a per-cpu event,
4499 * use the cpu_clock event instead.
4501 if (event->ctx->task)
4502 pmu = &perf_ops_task_clock;
4503 else
4504 pmu = &perf_ops_cpu_clock;
4506 break;
4507 case PERF_COUNT_SW_PAGE_FAULTS:
4508 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4509 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4510 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4511 case PERF_COUNT_SW_CPU_MIGRATIONS:
4512 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4513 case PERF_COUNT_SW_EMULATION_FAULTS:
4514 if (!event->parent) {
4515 atomic_inc(&perf_swevent_enabled[event_id]);
4516 event->destroy = sw_perf_event_destroy;
4518 pmu = &perf_ops_generic;
4519 break;
4522 return pmu;
4526 * Allocate and initialize a event structure
4528 static struct perf_event *
4529 perf_event_alloc(struct perf_event_attr *attr,
4530 int cpu,
4531 struct perf_event_context *ctx,
4532 struct perf_event *group_leader,
4533 struct perf_event *parent_event,
4534 perf_overflow_handler_t overflow_handler,
4535 gfp_t gfpflags)
4537 const struct pmu *pmu;
4538 struct perf_event *event;
4539 struct hw_perf_event *hwc;
4540 long err;
4542 event = kzalloc(sizeof(*event), gfpflags);
4543 if (!event)
4544 return ERR_PTR(-ENOMEM);
4547 * Single events are their own group leaders, with an
4548 * empty sibling list:
4550 if (!group_leader)
4551 group_leader = event;
4553 mutex_init(&event->child_mutex);
4554 INIT_LIST_HEAD(&event->child_list);
4556 INIT_LIST_HEAD(&event->group_entry);
4557 INIT_LIST_HEAD(&event->event_entry);
4558 INIT_LIST_HEAD(&event->sibling_list);
4559 init_waitqueue_head(&event->waitq);
4561 mutex_init(&event->mmap_mutex);
4563 event->cpu = cpu;
4564 event->attr = *attr;
4565 event->group_leader = group_leader;
4566 event->pmu = NULL;
4567 event->ctx = ctx;
4568 event->oncpu = -1;
4570 event->parent = parent_event;
4572 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4573 event->id = atomic64_inc_return(&perf_event_id);
4575 event->state = PERF_EVENT_STATE_INACTIVE;
4577 if (!overflow_handler && parent_event)
4578 overflow_handler = parent_event->overflow_handler;
4580 event->overflow_handler = overflow_handler;
4582 if (attr->disabled)
4583 event->state = PERF_EVENT_STATE_OFF;
4585 pmu = NULL;
4587 hwc = &event->hw;
4588 hwc->sample_period = attr->sample_period;
4589 if (attr->freq && attr->sample_freq)
4590 hwc->sample_period = 1;
4591 hwc->last_period = hwc->sample_period;
4593 atomic64_set(&hwc->period_left, hwc->sample_period);
4596 * we currently do not support PERF_FORMAT_GROUP on inherited events
4598 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4599 goto done;
4601 switch (attr->type) {
4602 case PERF_TYPE_RAW:
4603 case PERF_TYPE_HARDWARE:
4604 case PERF_TYPE_HW_CACHE:
4605 pmu = hw_perf_event_init(event);
4606 break;
4608 case PERF_TYPE_SOFTWARE:
4609 pmu = sw_perf_event_init(event);
4610 break;
4612 case PERF_TYPE_TRACEPOINT:
4613 pmu = tp_perf_event_init(event);
4614 break;
4616 case PERF_TYPE_BREAKPOINT:
4617 pmu = bp_perf_event_init(event);
4618 break;
4621 default:
4622 break;
4624 done:
4625 err = 0;
4626 if (!pmu)
4627 err = -EINVAL;
4628 else if (IS_ERR(pmu))
4629 err = PTR_ERR(pmu);
4631 if (err) {
4632 if (event->ns)
4633 put_pid_ns(event->ns);
4634 kfree(event);
4635 return ERR_PTR(err);
4638 event->pmu = pmu;
4640 if (!event->parent) {
4641 atomic_inc(&nr_events);
4642 if (event->attr.mmap)
4643 atomic_inc(&nr_mmap_events);
4644 if (event->attr.comm)
4645 atomic_inc(&nr_comm_events);
4646 if (event->attr.task)
4647 atomic_inc(&nr_task_events);
4650 return event;
4653 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4654 struct perf_event_attr *attr)
4656 u32 size;
4657 int ret;
4659 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4660 return -EFAULT;
4663 * zero the full structure, so that a short copy will be nice.
4665 memset(attr, 0, sizeof(*attr));
4667 ret = get_user(size, &uattr->size);
4668 if (ret)
4669 return ret;
4671 if (size > PAGE_SIZE) /* silly large */
4672 goto err_size;
4674 if (!size) /* abi compat */
4675 size = PERF_ATTR_SIZE_VER0;
4677 if (size < PERF_ATTR_SIZE_VER0)
4678 goto err_size;
4681 * If we're handed a bigger struct than we know of,
4682 * ensure all the unknown bits are 0 - i.e. new
4683 * user-space does not rely on any kernel feature
4684 * extensions we dont know about yet.
4686 if (size > sizeof(*attr)) {
4687 unsigned char __user *addr;
4688 unsigned char __user *end;
4689 unsigned char val;
4691 addr = (void __user *)uattr + sizeof(*attr);
4692 end = (void __user *)uattr + size;
4694 for (; addr < end; addr++) {
4695 ret = get_user(val, addr);
4696 if (ret)
4697 return ret;
4698 if (val)
4699 goto err_size;
4701 size = sizeof(*attr);
4704 ret = copy_from_user(attr, uattr, size);
4705 if (ret)
4706 return -EFAULT;
4709 * If the type exists, the corresponding creation will verify
4710 * the attr->config.
4712 if (attr->type >= PERF_TYPE_MAX)
4713 return -EINVAL;
4715 if (attr->__reserved_1)
4716 return -EINVAL;
4718 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4719 return -EINVAL;
4721 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4722 return -EINVAL;
4724 out:
4725 return ret;
4727 err_size:
4728 put_user(sizeof(*attr), &uattr->size);
4729 ret = -E2BIG;
4730 goto out;
4733 static int perf_event_set_output(struct perf_event *event, int output_fd)
4735 struct perf_event *output_event = NULL;
4736 struct file *output_file = NULL;
4737 struct perf_event *old_output;
4738 int fput_needed = 0;
4739 int ret = -EINVAL;
4741 if (!output_fd)
4742 goto set;
4744 output_file = fget_light(output_fd, &fput_needed);
4745 if (!output_file)
4746 return -EBADF;
4748 if (output_file->f_op != &perf_fops)
4749 goto out;
4751 output_event = output_file->private_data;
4753 /* Don't chain output fds */
4754 if (output_event->output)
4755 goto out;
4757 /* Don't set an output fd when we already have an output channel */
4758 if (event->data)
4759 goto out;
4761 atomic_long_inc(&output_file->f_count);
4763 set:
4764 mutex_lock(&event->mmap_mutex);
4765 old_output = event->output;
4766 rcu_assign_pointer(event->output, output_event);
4767 mutex_unlock(&event->mmap_mutex);
4769 if (old_output) {
4771 * we need to make sure no existing perf_output_*()
4772 * is still referencing this event.
4774 synchronize_rcu();
4775 fput(old_output->filp);
4778 ret = 0;
4779 out:
4780 fput_light(output_file, fput_needed);
4781 return ret;
4785 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4787 * @attr_uptr: event_id type attributes for monitoring/sampling
4788 * @pid: target pid
4789 * @cpu: target cpu
4790 * @group_fd: group leader event fd
4792 SYSCALL_DEFINE5(perf_event_open,
4793 struct perf_event_attr __user *, attr_uptr,
4794 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4796 struct perf_event *event, *group_leader;
4797 struct perf_event_attr attr;
4798 struct perf_event_context *ctx;
4799 struct file *event_file = NULL;
4800 struct file *group_file = NULL;
4801 int fput_needed = 0;
4802 int fput_needed2 = 0;
4803 int err;
4805 /* for future expandability... */
4806 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4807 return -EINVAL;
4809 err = perf_copy_attr(attr_uptr, &attr);
4810 if (err)
4811 return err;
4813 if (!attr.exclude_kernel) {
4814 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4815 return -EACCES;
4818 if (attr.freq) {
4819 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4820 return -EINVAL;
4824 * Get the target context (task or percpu):
4826 ctx = find_get_context(pid, cpu);
4827 if (IS_ERR(ctx))
4828 return PTR_ERR(ctx);
4831 * Look up the group leader (we will attach this event to it):
4833 group_leader = NULL;
4834 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4835 err = -EINVAL;
4836 group_file = fget_light(group_fd, &fput_needed);
4837 if (!group_file)
4838 goto err_put_context;
4839 if (group_file->f_op != &perf_fops)
4840 goto err_put_context;
4842 group_leader = group_file->private_data;
4844 * Do not allow a recursive hierarchy (this new sibling
4845 * becoming part of another group-sibling):
4847 if (group_leader->group_leader != group_leader)
4848 goto err_put_context;
4850 * Do not allow to attach to a group in a different
4851 * task or CPU context:
4853 if (group_leader->ctx != ctx)
4854 goto err_put_context;
4856 * Only a group leader can be exclusive or pinned
4858 if (attr.exclusive || attr.pinned)
4859 goto err_put_context;
4862 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4863 NULL, NULL, GFP_KERNEL);
4864 err = PTR_ERR(event);
4865 if (IS_ERR(event))
4866 goto err_put_context;
4868 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4869 if (err < 0)
4870 goto err_free_put_context;
4872 event_file = fget_light(err, &fput_needed2);
4873 if (!event_file)
4874 goto err_free_put_context;
4876 if (flags & PERF_FLAG_FD_OUTPUT) {
4877 err = perf_event_set_output(event, group_fd);
4878 if (err)
4879 goto err_fput_free_put_context;
4882 event->filp = event_file;
4883 WARN_ON_ONCE(ctx->parent_ctx);
4884 mutex_lock(&ctx->mutex);
4885 perf_install_in_context(ctx, event, cpu);
4886 ++ctx->generation;
4887 mutex_unlock(&ctx->mutex);
4889 event->owner = current;
4890 get_task_struct(current);
4891 mutex_lock(&current->perf_event_mutex);
4892 list_add_tail(&event->owner_entry, &current->perf_event_list);
4893 mutex_unlock(&current->perf_event_mutex);
4895 err_fput_free_put_context:
4896 fput_light(event_file, fput_needed2);
4898 err_free_put_context:
4899 if (err < 0)
4900 kfree(event);
4902 err_put_context:
4903 if (err < 0)
4904 put_ctx(ctx);
4906 fput_light(group_file, fput_needed);
4908 return err;
4912 * perf_event_create_kernel_counter
4914 * @attr: attributes of the counter to create
4915 * @cpu: cpu in which the counter is bound
4916 * @pid: task to profile
4918 struct perf_event *
4919 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4920 pid_t pid,
4921 perf_overflow_handler_t overflow_handler)
4923 struct perf_event *event;
4924 struct perf_event_context *ctx;
4925 int err;
4928 * Get the target context (task or percpu):
4931 ctx = find_get_context(pid, cpu);
4932 if (IS_ERR(ctx)) {
4933 err = PTR_ERR(ctx);
4934 goto err_exit;
4937 event = perf_event_alloc(attr, cpu, ctx, NULL,
4938 NULL, overflow_handler, GFP_KERNEL);
4939 if (IS_ERR(event)) {
4940 err = PTR_ERR(event);
4941 goto err_put_context;
4944 event->filp = NULL;
4945 WARN_ON_ONCE(ctx->parent_ctx);
4946 mutex_lock(&ctx->mutex);
4947 perf_install_in_context(ctx, event, cpu);
4948 ++ctx->generation;
4949 mutex_unlock(&ctx->mutex);
4951 event->owner = current;
4952 get_task_struct(current);
4953 mutex_lock(&current->perf_event_mutex);
4954 list_add_tail(&event->owner_entry, &current->perf_event_list);
4955 mutex_unlock(&current->perf_event_mutex);
4957 return event;
4959 err_put_context:
4960 put_ctx(ctx);
4961 err_exit:
4962 return ERR_PTR(err);
4964 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4967 * inherit a event from parent task to child task:
4969 static struct perf_event *
4970 inherit_event(struct perf_event *parent_event,
4971 struct task_struct *parent,
4972 struct perf_event_context *parent_ctx,
4973 struct task_struct *child,
4974 struct perf_event *group_leader,
4975 struct perf_event_context *child_ctx)
4977 struct perf_event *child_event;
4980 * Instead of creating recursive hierarchies of events,
4981 * we link inherited events back to the original parent,
4982 * which has a filp for sure, which we use as the reference
4983 * count:
4985 if (parent_event->parent)
4986 parent_event = parent_event->parent;
4988 child_event = perf_event_alloc(&parent_event->attr,
4989 parent_event->cpu, child_ctx,
4990 group_leader, parent_event,
4991 NULL, GFP_KERNEL);
4992 if (IS_ERR(child_event))
4993 return child_event;
4994 get_ctx(child_ctx);
4997 * Make the child state follow the state of the parent event,
4998 * not its attr.disabled bit. We hold the parent's mutex,
4999 * so we won't race with perf_event_{en, dis}able_family.
5001 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5002 child_event->state = PERF_EVENT_STATE_INACTIVE;
5003 else
5004 child_event->state = PERF_EVENT_STATE_OFF;
5006 if (parent_event->attr.freq) {
5007 u64 sample_period = parent_event->hw.sample_period;
5008 struct hw_perf_event *hwc = &child_event->hw;
5010 hwc->sample_period = sample_period;
5011 hwc->last_period = sample_period;
5013 atomic64_set(&hwc->period_left, sample_period);
5016 child_event->overflow_handler = parent_event->overflow_handler;
5019 * Link it up in the child's context:
5021 add_event_to_ctx(child_event, child_ctx);
5024 * Get a reference to the parent filp - we will fput it
5025 * when the child event exits. This is safe to do because
5026 * we are in the parent and we know that the filp still
5027 * exists and has a nonzero count:
5029 atomic_long_inc(&parent_event->filp->f_count);
5032 * Link this into the parent event's child list
5034 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5035 mutex_lock(&parent_event->child_mutex);
5036 list_add_tail(&child_event->child_list, &parent_event->child_list);
5037 mutex_unlock(&parent_event->child_mutex);
5039 return child_event;
5042 static int inherit_group(struct perf_event *parent_event,
5043 struct task_struct *parent,
5044 struct perf_event_context *parent_ctx,
5045 struct task_struct *child,
5046 struct perf_event_context *child_ctx)
5048 struct perf_event *leader;
5049 struct perf_event *sub;
5050 struct perf_event *child_ctr;
5052 leader = inherit_event(parent_event, parent, parent_ctx,
5053 child, NULL, child_ctx);
5054 if (IS_ERR(leader))
5055 return PTR_ERR(leader);
5056 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5057 child_ctr = inherit_event(sub, parent, parent_ctx,
5058 child, leader, child_ctx);
5059 if (IS_ERR(child_ctr))
5060 return PTR_ERR(child_ctr);
5062 return 0;
5065 static void sync_child_event(struct perf_event *child_event,
5066 struct task_struct *child)
5068 struct perf_event *parent_event = child_event->parent;
5069 u64 child_val;
5071 if (child_event->attr.inherit_stat)
5072 perf_event_read_event(child_event, child);
5074 child_val = atomic64_read(&child_event->count);
5077 * Add back the child's count to the parent's count:
5079 atomic64_add(child_val, &parent_event->count);
5080 atomic64_add(child_event->total_time_enabled,
5081 &parent_event->child_total_time_enabled);
5082 atomic64_add(child_event->total_time_running,
5083 &parent_event->child_total_time_running);
5086 * Remove this event from the parent's list
5088 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5089 mutex_lock(&parent_event->child_mutex);
5090 list_del_init(&child_event->child_list);
5091 mutex_unlock(&parent_event->child_mutex);
5094 * Release the parent event, if this was the last
5095 * reference to it.
5097 fput(parent_event->filp);
5100 static void
5101 __perf_event_exit_task(struct perf_event *child_event,
5102 struct perf_event_context *child_ctx,
5103 struct task_struct *child)
5105 struct perf_event *parent_event;
5107 perf_event_remove_from_context(child_event);
5109 parent_event = child_event->parent;
5111 * It can happen that parent exits first, and has events
5112 * that are still around due to the child reference. These
5113 * events need to be zapped - but otherwise linger.
5115 if (parent_event) {
5116 sync_child_event(child_event, child);
5117 free_event(child_event);
5122 * When a child task exits, feed back event values to parent events.
5124 void perf_event_exit_task(struct task_struct *child)
5126 struct perf_event *child_event, *tmp;
5127 struct perf_event_context *child_ctx;
5128 unsigned long flags;
5130 if (likely(!child->perf_event_ctxp)) {
5131 perf_event_task(child, NULL, 0);
5132 return;
5135 local_irq_save(flags);
5137 * We can't reschedule here because interrupts are disabled,
5138 * and either child is current or it is a task that can't be
5139 * scheduled, so we are now safe from rescheduling changing
5140 * our context.
5142 child_ctx = child->perf_event_ctxp;
5143 __perf_event_task_sched_out(child_ctx);
5146 * Take the context lock here so that if find_get_context is
5147 * reading child->perf_event_ctxp, we wait until it has
5148 * incremented the context's refcount before we do put_ctx below.
5150 raw_spin_lock(&child_ctx->lock);
5151 child->perf_event_ctxp = NULL;
5153 * If this context is a clone; unclone it so it can't get
5154 * swapped to another process while we're removing all
5155 * the events from it.
5157 unclone_ctx(child_ctx);
5158 update_context_time(child_ctx);
5159 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5162 * Report the task dead after unscheduling the events so that we
5163 * won't get any samples after PERF_RECORD_EXIT. We can however still
5164 * get a few PERF_RECORD_READ events.
5166 perf_event_task(child, child_ctx, 0);
5169 * We can recurse on the same lock type through:
5171 * __perf_event_exit_task()
5172 * sync_child_event()
5173 * fput(parent_event->filp)
5174 * perf_release()
5175 * mutex_lock(&ctx->mutex)
5177 * But since its the parent context it won't be the same instance.
5179 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5181 again:
5182 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5183 group_entry)
5184 __perf_event_exit_task(child_event, child_ctx, child);
5186 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5187 group_entry)
5188 __perf_event_exit_task(child_event, child_ctx, child);
5191 * If the last event was a group event, it will have appended all
5192 * its siblings to the list, but we obtained 'tmp' before that which
5193 * will still point to the list head terminating the iteration.
5195 if (!list_empty(&child_ctx->pinned_groups) ||
5196 !list_empty(&child_ctx->flexible_groups))
5197 goto again;
5199 mutex_unlock(&child_ctx->mutex);
5201 put_ctx(child_ctx);
5204 static void perf_free_event(struct perf_event *event,
5205 struct perf_event_context *ctx)
5207 struct perf_event *parent = event->parent;
5209 if (WARN_ON_ONCE(!parent))
5210 return;
5212 mutex_lock(&parent->child_mutex);
5213 list_del_init(&event->child_list);
5214 mutex_unlock(&parent->child_mutex);
5216 fput(parent->filp);
5218 list_del_event(event, ctx);
5219 free_event(event);
5223 * free an unexposed, unused context as created by inheritance by
5224 * init_task below, used by fork() in case of fail.
5226 void perf_event_free_task(struct task_struct *task)
5228 struct perf_event_context *ctx = task->perf_event_ctxp;
5229 struct perf_event *event, *tmp;
5231 if (!ctx)
5232 return;
5234 mutex_lock(&ctx->mutex);
5235 again:
5236 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5237 perf_free_event(event, ctx);
5239 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5240 group_entry)
5241 perf_free_event(event, ctx);
5243 if (!list_empty(&ctx->pinned_groups) ||
5244 !list_empty(&ctx->flexible_groups))
5245 goto again;
5247 mutex_unlock(&ctx->mutex);
5249 put_ctx(ctx);
5252 static int
5253 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5254 struct perf_event_context *parent_ctx,
5255 struct task_struct *child,
5256 int *inherited_all)
5258 int ret;
5259 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5261 if (!event->attr.inherit) {
5262 *inherited_all = 0;
5263 return 0;
5266 if (!child_ctx) {
5268 * This is executed from the parent task context, so
5269 * inherit events that have been marked for cloning.
5270 * First allocate and initialize a context for the
5271 * child.
5274 child_ctx = kzalloc(sizeof(struct perf_event_context),
5275 GFP_KERNEL);
5276 if (!child_ctx)
5277 return -ENOMEM;
5279 __perf_event_init_context(child_ctx, child);
5280 child->perf_event_ctxp = child_ctx;
5281 get_task_struct(child);
5284 ret = inherit_group(event, parent, parent_ctx,
5285 child, child_ctx);
5287 if (ret)
5288 *inherited_all = 0;
5290 return ret;
5295 * Initialize the perf_event context in task_struct
5297 int perf_event_init_task(struct task_struct *child)
5299 struct perf_event_context *child_ctx, *parent_ctx;
5300 struct perf_event_context *cloned_ctx;
5301 struct perf_event *event;
5302 struct task_struct *parent = current;
5303 int inherited_all = 1;
5304 int ret = 0;
5306 child->perf_event_ctxp = NULL;
5308 mutex_init(&child->perf_event_mutex);
5309 INIT_LIST_HEAD(&child->perf_event_list);
5311 if (likely(!parent->perf_event_ctxp))
5312 return 0;
5315 * If the parent's context is a clone, pin it so it won't get
5316 * swapped under us.
5318 parent_ctx = perf_pin_task_context(parent);
5321 * No need to check if parent_ctx != NULL here; since we saw
5322 * it non-NULL earlier, the only reason for it to become NULL
5323 * is if we exit, and since we're currently in the middle of
5324 * a fork we can't be exiting at the same time.
5328 * Lock the parent list. No need to lock the child - not PID
5329 * hashed yet and not running, so nobody can access it.
5331 mutex_lock(&parent_ctx->mutex);
5334 * We dont have to disable NMIs - we are only looking at
5335 * the list, not manipulating it:
5337 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5338 ret = inherit_task_group(event, parent, parent_ctx, child,
5339 &inherited_all);
5340 if (ret)
5341 break;
5344 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5345 ret = inherit_task_group(event, parent, parent_ctx, child,
5346 &inherited_all);
5347 if (ret)
5348 break;
5351 child_ctx = child->perf_event_ctxp;
5353 if (child_ctx && inherited_all) {
5355 * Mark the child context as a clone of the parent
5356 * context, or of whatever the parent is a clone of.
5357 * Note that if the parent is a clone, it could get
5358 * uncloned at any point, but that doesn't matter
5359 * because the list of events and the generation
5360 * count can't have changed since we took the mutex.
5362 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5363 if (cloned_ctx) {
5364 child_ctx->parent_ctx = cloned_ctx;
5365 child_ctx->parent_gen = parent_ctx->parent_gen;
5366 } else {
5367 child_ctx->parent_ctx = parent_ctx;
5368 child_ctx->parent_gen = parent_ctx->generation;
5370 get_ctx(child_ctx->parent_ctx);
5373 mutex_unlock(&parent_ctx->mutex);
5375 perf_unpin_context(parent_ctx);
5377 return ret;
5380 static void __init perf_event_init_all_cpus(void)
5382 int cpu;
5383 struct perf_cpu_context *cpuctx;
5385 for_each_possible_cpu(cpu) {
5386 cpuctx = &per_cpu(perf_cpu_context, cpu);
5387 __perf_event_init_context(&cpuctx->ctx, NULL);
5391 static void __cpuinit perf_event_init_cpu(int cpu)
5393 struct perf_cpu_context *cpuctx;
5395 cpuctx = &per_cpu(perf_cpu_context, cpu);
5397 spin_lock(&perf_resource_lock);
5398 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5399 spin_unlock(&perf_resource_lock);
5402 #ifdef CONFIG_HOTPLUG_CPU
5403 static void __perf_event_exit_cpu(void *info)
5405 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5406 struct perf_event_context *ctx = &cpuctx->ctx;
5407 struct perf_event *event, *tmp;
5409 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5410 __perf_event_remove_from_context(event);
5411 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5412 __perf_event_remove_from_context(event);
5414 static void perf_event_exit_cpu(int cpu)
5416 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5417 struct perf_event_context *ctx = &cpuctx->ctx;
5419 mutex_lock(&ctx->mutex);
5420 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5421 mutex_unlock(&ctx->mutex);
5423 #else
5424 static inline void perf_event_exit_cpu(int cpu) { }
5425 #endif
5427 static int __cpuinit
5428 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5430 unsigned int cpu = (long)hcpu;
5432 switch (action) {
5434 case CPU_UP_PREPARE:
5435 case CPU_UP_PREPARE_FROZEN:
5436 perf_event_init_cpu(cpu);
5437 break;
5439 case CPU_DOWN_PREPARE:
5440 case CPU_DOWN_PREPARE_FROZEN:
5441 perf_event_exit_cpu(cpu);
5442 break;
5444 default:
5445 break;
5448 return NOTIFY_OK;
5452 * This has to have a higher priority than migration_notifier in sched.c.
5454 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5455 .notifier_call = perf_cpu_notify,
5456 .priority = 20,
5459 void __init perf_event_init(void)
5461 perf_event_init_all_cpus();
5462 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5463 (void *)(long)smp_processor_id());
5464 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5465 (void *)(long)smp_processor_id());
5466 register_cpu_notifier(&perf_cpu_nb);
5469 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5470 struct sysdev_class_attribute *attr,
5471 char *buf)
5473 return sprintf(buf, "%d\n", perf_reserved_percpu);
5476 static ssize_t
5477 perf_set_reserve_percpu(struct sysdev_class *class,
5478 struct sysdev_class_attribute *attr,
5479 const char *buf,
5480 size_t count)
5482 struct perf_cpu_context *cpuctx;
5483 unsigned long val;
5484 int err, cpu, mpt;
5486 err = strict_strtoul(buf, 10, &val);
5487 if (err)
5488 return err;
5489 if (val > perf_max_events)
5490 return -EINVAL;
5492 spin_lock(&perf_resource_lock);
5493 perf_reserved_percpu = val;
5494 for_each_online_cpu(cpu) {
5495 cpuctx = &per_cpu(perf_cpu_context, cpu);
5496 raw_spin_lock_irq(&cpuctx->ctx.lock);
5497 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5498 perf_max_events - perf_reserved_percpu);
5499 cpuctx->max_pertask = mpt;
5500 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5502 spin_unlock(&perf_resource_lock);
5504 return count;
5507 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5508 struct sysdev_class_attribute *attr,
5509 char *buf)
5511 return sprintf(buf, "%d\n", perf_overcommit);
5514 static ssize_t
5515 perf_set_overcommit(struct sysdev_class *class,
5516 struct sysdev_class_attribute *attr,
5517 const char *buf, size_t count)
5519 unsigned long val;
5520 int err;
5522 err = strict_strtoul(buf, 10, &val);
5523 if (err)
5524 return err;
5525 if (val > 1)
5526 return -EINVAL;
5528 spin_lock(&perf_resource_lock);
5529 perf_overcommit = val;
5530 spin_unlock(&perf_resource_lock);
5532 return count;
5535 static SYSDEV_CLASS_ATTR(
5536 reserve_percpu,
5537 0644,
5538 perf_show_reserve_percpu,
5539 perf_set_reserve_percpu
5542 static SYSDEV_CLASS_ATTR(
5543 overcommit,
5544 0644,
5545 perf_show_overcommit,
5546 perf_set_overcommit
5549 static struct attribute *perfclass_attrs[] = {
5550 &attr_reserve_percpu.attr,
5551 &attr_overcommit.attr,
5552 NULL
5555 static struct attribute_group perfclass_attr_group = {
5556 .attrs = perfclass_attrs,
5557 .name = "perf_events",
5560 static int __init perf_event_sysfs_init(void)
5562 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5563 &perfclass_attr_group);
5565 device_initcall(perf_event_sysfs_init);