[PATCH] ratelimit the ieee1394 IR legacy activated messages
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ieee1394 / ohci1394.c
blobb12a970cc9a30669f75413ed32fac0337e7ba6d2
1 /*
2 * ohci1394.c - driver for OHCI 1394 boards
3 * Copyright (C)1999,2000 Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>
4 * Gord Peters <GordPeters@smarttech.com>
5 * 2001 Ben Collins <bcollins@debian.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software Foundation,
19 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * Things known to be working:
24 * . Async Request Transmit
25 * . Async Response Receive
26 * . Async Request Receive
27 * . Async Response Transmit
28 * . Iso Receive
29 * . DMA mmap for iso receive
30 * . Config ROM generation
32 * Things implemented, but still in test phase:
33 * . Iso Transmit
34 * . Async Stream Packets Transmit (Receive done via Iso interface)
36 * Things not implemented:
37 * . DMA error recovery
39 * Known bugs:
40 * . devctl BUS_RESET arg confusion (reset type or root holdoff?)
41 * added LONG_RESET_ROOT and SHORT_RESET_ROOT for root holdoff --kk
45 * Acknowledgments:
47 * Adam J Richter <adam@yggdrasil.com>
48 * . Use of pci_class to find device
50 * Emilie Chung <emilie.chung@axis.com>
51 * . Tip on Async Request Filter
53 * Pascal Drolet <pascal.drolet@informission.ca>
54 * . Various tips for optimization and functionnalities
56 * Robert Ficklin <rficklin@westengineering.com>
57 * . Loop in irq_handler
59 * James Goodwin <jamesg@Filanet.com>
60 * . Various tips on initialization, self-id reception, etc.
62 * Albrecht Dress <ad@mpifr-bonn.mpg.de>
63 * . Apple PowerBook detection
65 * Daniel Kobras <daniel.kobras@student.uni-tuebingen.de>
66 * . Reset the board properly before leaving + misc cleanups
68 * Leon van Stuivenberg <leonvs@iae.nl>
69 * . Bug fixes
71 * Ben Collins <bcollins@debian.org>
72 * . Working big-endian support
73 * . Updated to 2.4.x module scheme (PCI aswell)
74 * . Config ROM generation
76 * Manfred Weihs <weihs@ict.tuwien.ac.at>
77 * . Reworked code for initiating bus resets
78 * (long, short, with or without hold-off)
80 * Nandu Santhi <contactnandu@users.sourceforge.net>
81 * . Added support for nVidia nForce2 onboard Firewire chipset
85 #include <linux/config.h>
86 #include <linux/kernel.h>
87 #include <linux/list.h>
88 #include <linux/slab.h>
89 #include <linux/interrupt.h>
90 #include <linux/wait.h>
91 #include <linux/errno.h>
92 #include <linux/module.h>
93 #include <linux/moduleparam.h>
94 #include <linux/pci.h>
95 #include <linux/fs.h>
96 #include <linux/poll.h>
97 #include <asm/byteorder.h>
98 #include <asm/atomic.h>
99 #include <asm/uaccess.h>
100 #include <linux/delay.h>
101 #include <linux/spinlock.h>
103 #include <asm/pgtable.h>
104 #include <asm/page.h>
105 #include <asm/irq.h>
106 #include <linux/sched.h>
107 #include <linux/types.h>
108 #include <linux/vmalloc.h>
109 #include <linux/init.h>
111 #ifdef CONFIG_PPC_PMAC
112 #include <asm/machdep.h>
113 #include <asm/pmac_feature.h>
114 #include <asm/prom.h>
115 #include <asm/pci-bridge.h>
116 #endif
118 #include "csr1212.h"
119 #include "ieee1394.h"
120 #include "ieee1394_types.h"
121 #include "hosts.h"
122 #include "dma.h"
123 #include "iso.h"
124 #include "ieee1394_core.h"
125 #include "highlevel.h"
126 #include "ohci1394.h"
128 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
129 #define OHCI1394_DEBUG
130 #endif
132 #ifdef DBGMSG
133 #undef DBGMSG
134 #endif
136 #ifdef OHCI1394_DEBUG
137 #define DBGMSG(fmt, args...) \
138 printk(KERN_INFO "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
139 #else
140 #define DBGMSG(fmt, args...)
141 #endif
143 #ifdef CONFIG_IEEE1394_OHCI_DMA_DEBUG
144 #define OHCI_DMA_ALLOC(fmt, args...) \
145 HPSB_ERR("%s(%s)alloc(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
146 ++global_outstanding_dmas, ## args)
147 #define OHCI_DMA_FREE(fmt, args...) \
148 HPSB_ERR("%s(%s)free(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
149 --global_outstanding_dmas, ## args)
150 static int global_outstanding_dmas = 0;
151 #else
152 #define OHCI_DMA_ALLOC(fmt, args...)
153 #define OHCI_DMA_FREE(fmt, args...)
154 #endif
156 /* print general (card independent) information */
157 #define PRINT_G(level, fmt, args...) \
158 printk(level "%s: " fmt "\n" , OHCI1394_DRIVER_NAME , ## args)
160 /* print card specific information */
161 #define PRINT(level, fmt, args...) \
162 printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
164 static char version[] __devinitdata =
165 "$Rev: 1299 $ Ben Collins <bcollins@debian.org>";
167 /* Module Parameters */
168 static int phys_dma = 1;
169 module_param(phys_dma, int, 0644);
170 MODULE_PARM_DESC(phys_dma, "Enable physical dma (default = 1).");
172 static void dma_trm_tasklet(unsigned long data);
173 static void dma_trm_reset(struct dma_trm_ctx *d);
175 static int alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
176 enum context_type type, int ctx, int num_desc,
177 int buf_size, int split_buf_size, int context_base);
178 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d);
179 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d);
181 static int alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
182 enum context_type type, int ctx, int num_desc,
183 int context_base);
185 static void ohci1394_pci_remove(struct pci_dev *pdev);
187 #ifndef __LITTLE_ENDIAN
188 static unsigned hdr_sizes[] =
190 3, /* TCODE_WRITEQ */
191 4, /* TCODE_WRITEB */
192 3, /* TCODE_WRITE_RESPONSE */
193 0, /* ??? */
194 3, /* TCODE_READQ */
195 4, /* TCODE_READB */
196 3, /* TCODE_READQ_RESPONSE */
197 4, /* TCODE_READB_RESPONSE */
198 1, /* TCODE_CYCLE_START (???) */
199 4, /* TCODE_LOCK_REQUEST */
200 2, /* TCODE_ISO_DATA */
201 4, /* TCODE_LOCK_RESPONSE */
204 /* Swap headers */
205 static inline void packet_swab(quadlet_t *data, int tcode)
207 size_t size = hdr_sizes[tcode];
209 if (tcode > TCODE_LOCK_RESPONSE || hdr_sizes[tcode] == 0)
210 return;
212 while (size--)
213 data[size] = swab32(data[size]);
215 #else
216 /* Don't waste cycles on same sex byte swaps */
217 #define packet_swab(w,x)
218 #endif /* !LITTLE_ENDIAN */
220 /***********************************
221 * IEEE-1394 functionality section *
222 ***********************************/
224 static u8 get_phy_reg(struct ti_ohci *ohci, u8 addr)
226 int i;
227 unsigned long flags;
228 quadlet_t r;
230 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
232 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | 0x00008000);
234 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
235 if (reg_read(ohci, OHCI1394_PhyControl) & 0x80000000)
236 break;
238 mdelay(1);
241 r = reg_read(ohci, OHCI1394_PhyControl);
243 if (i >= OHCI_LOOP_COUNT)
244 PRINT (KERN_ERR, "Get PHY Reg timeout [0x%08x/0x%08x/%d]",
245 r, r & 0x80000000, i);
247 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
249 return (r & 0x00ff0000) >> 16;
252 static void set_phy_reg(struct ti_ohci *ohci, u8 addr, u8 data)
254 int i;
255 unsigned long flags;
256 u32 r = 0;
258 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
260 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | data | 0x00004000);
262 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
263 r = reg_read(ohci, OHCI1394_PhyControl);
264 if (!(r & 0x00004000))
265 break;
267 mdelay(1);
270 if (i == OHCI_LOOP_COUNT)
271 PRINT (KERN_ERR, "Set PHY Reg timeout [0x%08x/0x%08x/%d]",
272 r, r & 0x00004000, i);
274 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
276 return;
279 /* Or's our value into the current value */
280 static void set_phy_reg_mask(struct ti_ohci *ohci, u8 addr, u8 data)
282 u8 old;
284 old = get_phy_reg (ohci, addr);
285 old |= data;
286 set_phy_reg (ohci, addr, old);
288 return;
291 static void handle_selfid(struct ti_ohci *ohci, struct hpsb_host *host,
292 int phyid, int isroot)
294 quadlet_t *q = ohci->selfid_buf_cpu;
295 quadlet_t self_id_count=reg_read(ohci, OHCI1394_SelfIDCount);
296 size_t size;
297 quadlet_t q0, q1;
299 /* Check status of self-id reception */
301 if (ohci->selfid_swap)
302 q0 = le32_to_cpu(q[0]);
303 else
304 q0 = q[0];
306 if ((self_id_count & 0x80000000) ||
307 ((self_id_count & 0x00FF0000) != (q0 & 0x00FF0000))) {
308 PRINT(KERN_ERR,
309 "Error in reception of SelfID packets [0x%08x/0x%08x] (count: %d)",
310 self_id_count, q0, ohci->self_id_errors);
312 /* Tip by James Goodwin <jamesg@Filanet.com>:
313 * We had an error, generate another bus reset in response. */
314 if (ohci->self_id_errors<OHCI1394_MAX_SELF_ID_ERRORS) {
315 set_phy_reg_mask (ohci, 1, 0x40);
316 ohci->self_id_errors++;
317 } else {
318 PRINT(KERN_ERR,
319 "Too many errors on SelfID error reception, giving up!");
321 return;
324 /* SelfID Ok, reset error counter. */
325 ohci->self_id_errors = 0;
327 size = ((self_id_count & 0x00001FFC) >> 2) - 1;
328 q++;
330 while (size > 0) {
331 if (ohci->selfid_swap) {
332 q0 = le32_to_cpu(q[0]);
333 q1 = le32_to_cpu(q[1]);
334 } else {
335 q0 = q[0];
336 q1 = q[1];
339 if (q0 == ~q1) {
340 DBGMSG ("SelfID packet 0x%x received", q0);
341 hpsb_selfid_received(host, cpu_to_be32(q0));
342 if (((q0 & 0x3f000000) >> 24) == phyid)
343 DBGMSG ("SelfID for this node is 0x%08x", q0);
344 } else {
345 PRINT(KERN_ERR,
346 "SelfID is inconsistent [0x%08x/0x%08x]", q0, q1);
348 q += 2;
349 size -= 2;
352 DBGMSG("SelfID complete");
354 return;
357 static void ohci_soft_reset(struct ti_ohci *ohci) {
358 int i;
360 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
362 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
363 if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset))
364 break;
365 mdelay(1);
367 DBGMSG ("Soft reset finished");
371 /* Generate the dma receive prgs and start the context */
372 static void initialize_dma_rcv_ctx(struct dma_rcv_ctx *d, int generate_irq)
374 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
375 int i;
377 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
379 for (i=0; i<d->num_desc; i++) {
380 u32 c;
382 c = DMA_CTL_INPUT_MORE | DMA_CTL_UPDATE | DMA_CTL_BRANCH;
383 if (generate_irq)
384 c |= DMA_CTL_IRQ;
386 d->prg_cpu[i]->control = cpu_to_le32(c | d->buf_size);
388 /* End of descriptor list? */
389 if (i + 1 < d->num_desc) {
390 d->prg_cpu[i]->branchAddress =
391 cpu_to_le32((d->prg_bus[i+1] & 0xfffffff0) | 0x1);
392 } else {
393 d->prg_cpu[i]->branchAddress =
394 cpu_to_le32((d->prg_bus[0] & 0xfffffff0));
397 d->prg_cpu[i]->address = cpu_to_le32(d->buf_bus[i]);
398 d->prg_cpu[i]->status = cpu_to_le32(d->buf_size);
401 d->buf_ind = 0;
402 d->buf_offset = 0;
404 if (d->type == DMA_CTX_ISO) {
405 /* Clear contextControl */
406 reg_write(ohci, d->ctrlClear, 0xffffffff);
408 /* Set bufferFill, isochHeader, multichannel for IR context */
409 reg_write(ohci, d->ctrlSet, 0xd0000000);
411 /* Set the context match register to match on all tags */
412 reg_write(ohci, d->ctxtMatch, 0xf0000000);
414 /* Clear the multi channel mask high and low registers */
415 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, 0xffffffff);
416 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, 0xffffffff);
418 /* Set up isoRecvIntMask to generate interrupts */
419 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << d->ctx);
422 /* Tell the controller where the first AR program is */
423 reg_write(ohci, d->cmdPtr, d->prg_bus[0] | 0x1);
425 /* Run context */
426 reg_write(ohci, d->ctrlSet, 0x00008000);
428 DBGMSG("Receive DMA ctx=%d initialized", d->ctx);
431 /* Initialize the dma transmit context */
432 static void initialize_dma_trm_ctx(struct dma_trm_ctx *d)
434 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
436 /* Stop the context */
437 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
439 d->prg_ind = 0;
440 d->sent_ind = 0;
441 d->free_prgs = d->num_desc;
442 d->branchAddrPtr = NULL;
443 INIT_LIST_HEAD(&d->fifo_list);
444 INIT_LIST_HEAD(&d->pending_list);
446 if (d->type == DMA_CTX_ISO) {
447 /* enable interrupts */
448 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << d->ctx);
451 DBGMSG("Transmit DMA ctx=%d initialized", d->ctx);
454 /* Count the number of available iso contexts */
455 static int get_nb_iso_ctx(struct ti_ohci *ohci, int reg)
457 int i,ctx=0;
458 u32 tmp;
460 reg_write(ohci, reg, 0xffffffff);
461 tmp = reg_read(ohci, reg);
463 DBGMSG("Iso contexts reg: %08x implemented: %08x", reg, tmp);
465 /* Count the number of contexts */
466 for (i=0; i<32; i++) {
467 if (tmp & 1) ctx++;
468 tmp >>= 1;
470 return ctx;
473 /* Global initialization */
474 static void ohci_initialize(struct ti_ohci *ohci)
476 char irq_buf[16];
477 quadlet_t buf;
478 int num_ports, i;
480 spin_lock_init(&ohci->phy_reg_lock);
481 spin_lock_init(&ohci->event_lock);
483 /* Put some defaults to these undefined bus options */
484 buf = reg_read(ohci, OHCI1394_BusOptions);
485 buf |= 0x60000000; /* Enable CMC and ISC */
486 if (hpsb_disable_irm)
487 buf &= ~0x80000000;
488 else
489 buf |= 0x80000000; /* Enable IRMC */
490 buf &= ~0x00ff0000; /* XXX: Set cyc_clk_acc to zero for now */
491 buf &= ~0x18000000; /* Disable PMC and BMC */
492 reg_write(ohci, OHCI1394_BusOptions, buf);
494 /* Set the bus number */
495 reg_write(ohci, OHCI1394_NodeID, 0x0000ffc0);
497 /* Enable posted writes */
498 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_postedWriteEnable);
500 /* Clear link control register */
501 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
503 /* Enable cycle timer and cycle master and set the IRM
504 * contender bit in our self ID packets if appropriate. */
505 reg_write(ohci, OHCI1394_LinkControlSet,
506 OHCI1394_LinkControl_CycleTimerEnable |
507 OHCI1394_LinkControl_CycleMaster);
508 i = get_phy_reg(ohci, 4) | PHY_04_LCTRL;
509 if (hpsb_disable_irm)
510 i &= ~PHY_04_CONTENDER;
511 else
512 i |= PHY_04_CONTENDER;
513 set_phy_reg(ohci, 4, i);
515 /* Set up self-id dma buffer */
516 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->selfid_buf_bus);
518 /* enable self-id and phys */
519 reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_RcvSelfID |
520 OHCI1394_LinkControl_RcvPhyPkt);
522 /* Set the Config ROM mapping register */
523 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->csr_config_rom_bus);
525 /* Now get our max packet size */
526 ohci->max_packet_size =
527 1<<(((reg_read(ohci, OHCI1394_BusOptions)>>12)&0xf)+1);
529 /* Don't accept phy packets into AR request context */
530 reg_write(ohci, OHCI1394_LinkControlClear, 0x00000400);
532 /* Clear the interrupt mask */
533 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
534 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
536 /* Clear the interrupt mask */
537 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
538 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
540 /* Initialize AR dma */
541 initialize_dma_rcv_ctx(&ohci->ar_req_context, 0);
542 initialize_dma_rcv_ctx(&ohci->ar_resp_context, 0);
544 /* Initialize AT dma */
545 initialize_dma_trm_ctx(&ohci->at_req_context);
546 initialize_dma_trm_ctx(&ohci->at_resp_context);
548 /* Initialize IR Legacy DMA channel mask */
549 ohci->ir_legacy_channels = 0;
552 * Accept AT requests from all nodes. This probably
553 * will have to be controlled from the subsystem
554 * on a per node basis.
556 reg_write(ohci,OHCI1394_AsReqFilterHiSet, 0x80000000);
558 /* Specify AT retries */
559 reg_write(ohci, OHCI1394_ATRetries,
560 OHCI1394_MAX_AT_REQ_RETRIES |
561 (OHCI1394_MAX_AT_RESP_RETRIES<<4) |
562 (OHCI1394_MAX_PHYS_RESP_RETRIES<<8));
564 /* We don't want hardware swapping */
565 reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwap);
567 /* Enable interrupts */
568 reg_write(ohci, OHCI1394_IntMaskSet,
569 OHCI1394_unrecoverableError |
570 OHCI1394_masterIntEnable |
571 OHCI1394_busReset |
572 OHCI1394_selfIDComplete |
573 OHCI1394_RSPkt |
574 OHCI1394_RQPkt |
575 OHCI1394_respTxComplete |
576 OHCI1394_reqTxComplete |
577 OHCI1394_isochRx |
578 OHCI1394_isochTx |
579 OHCI1394_cycleInconsistent);
581 /* Enable link */
582 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable);
584 buf = reg_read(ohci, OHCI1394_Version);
585 #ifndef __sparc__
586 sprintf (irq_buf, "%d", ohci->dev->irq);
587 #else
588 sprintf (irq_buf, "%s", __irq_itoa(ohci->dev->irq));
589 #endif
590 PRINT(KERN_INFO, "OHCI-1394 %d.%d (PCI): IRQ=[%s] "
591 "MMIO=[%lx-%lx] Max Packet=[%d]",
592 ((((buf) >> 16) & 0xf) + (((buf) >> 20) & 0xf) * 10),
593 ((((buf) >> 4) & 0xf) + ((buf) & 0xf) * 10), irq_buf,
594 pci_resource_start(ohci->dev, 0),
595 pci_resource_start(ohci->dev, 0) + OHCI1394_REGISTER_SIZE - 1,
596 ohci->max_packet_size);
598 /* Check all of our ports to make sure that if anything is
599 * connected, we enable that port. */
600 num_ports = get_phy_reg(ohci, 2) & 0xf;
601 for (i = 0; i < num_ports; i++) {
602 unsigned int status;
604 set_phy_reg(ohci, 7, i);
605 status = get_phy_reg(ohci, 8);
607 if (status & 0x20)
608 set_phy_reg(ohci, 8, status & ~1);
611 /* Serial EEPROM Sanity check. */
612 if ((ohci->max_packet_size < 512) ||
613 (ohci->max_packet_size > 4096)) {
614 /* Serial EEPROM contents are suspect, set a sane max packet
615 * size and print the raw contents for bug reports if verbose
616 * debug is enabled. */
617 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
618 int i;
619 #endif
621 PRINT(KERN_DEBUG, "Serial EEPROM has suspicious values, "
622 "attempting to setting max_packet_size to 512 bytes");
623 reg_write(ohci, OHCI1394_BusOptions,
624 (reg_read(ohci, OHCI1394_BusOptions) & 0xf007) | 0x8002);
625 ohci->max_packet_size = 512;
626 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
627 PRINT(KERN_DEBUG, " EEPROM Present: %d",
628 (reg_read(ohci, OHCI1394_Version) >> 24) & 0x1);
629 reg_write(ohci, OHCI1394_GUID_ROM, 0x80000000);
631 for (i = 0;
632 ((i < 1000) &&
633 (reg_read(ohci, OHCI1394_GUID_ROM) & 0x80000000)); i++)
634 udelay(10);
636 for (i = 0; i < 0x20; i++) {
637 reg_write(ohci, OHCI1394_GUID_ROM, 0x02000000);
638 PRINT(KERN_DEBUG, " EEPROM %02x: %02x", i,
639 (reg_read(ohci, OHCI1394_GUID_ROM) >> 16) & 0xff);
641 #endif
646 * Insert a packet in the DMA fifo and generate the DMA prg
647 * FIXME: rewrite the program in order to accept packets crossing
648 * page boundaries.
649 * check also that a single dma descriptor doesn't cross a
650 * page boundary.
652 static void insert_packet(struct ti_ohci *ohci,
653 struct dma_trm_ctx *d, struct hpsb_packet *packet)
655 u32 cycleTimer;
656 int idx = d->prg_ind;
658 DBGMSG("Inserting packet for node " NODE_BUS_FMT
659 ", tlabel=%d, tcode=0x%x, speed=%d",
660 NODE_BUS_ARGS(ohci->host, packet->node_id), packet->tlabel,
661 packet->tcode, packet->speed_code);
663 d->prg_cpu[idx]->begin.address = 0;
664 d->prg_cpu[idx]->begin.branchAddress = 0;
666 if (d->type == DMA_CTX_ASYNC_RESP) {
668 * For response packets, we need to put a timeout value in
669 * the 16 lower bits of the status... let's try 1 sec timeout
671 cycleTimer = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
672 d->prg_cpu[idx]->begin.status = cpu_to_le32(
673 (((((cycleTimer>>25)&0x7)+1)&0x7)<<13) |
674 ((cycleTimer&0x01fff000)>>12));
676 DBGMSG("cycleTimer: %08x timeStamp: %08x",
677 cycleTimer, d->prg_cpu[idx]->begin.status);
678 } else
679 d->prg_cpu[idx]->begin.status = 0;
681 if ( (packet->type == hpsb_async) || (packet->type == hpsb_raw) ) {
683 if (packet->type == hpsb_raw) {
684 d->prg_cpu[idx]->data[0] = cpu_to_le32(OHCI1394_TCODE_PHY<<4);
685 d->prg_cpu[idx]->data[1] = cpu_to_le32(packet->header[0]);
686 d->prg_cpu[idx]->data[2] = cpu_to_le32(packet->header[1]);
687 } else {
688 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
689 (packet->header[0] & 0xFFFF);
691 if (packet->tcode == TCODE_ISO_DATA) {
692 /* Sending an async stream packet */
693 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
694 } else {
695 /* Sending a normal async request or response */
696 d->prg_cpu[idx]->data[1] =
697 (packet->header[1] & 0xFFFF) |
698 (packet->header[0] & 0xFFFF0000);
699 d->prg_cpu[idx]->data[2] = packet->header[2];
700 d->prg_cpu[idx]->data[3] = packet->header[3];
702 packet_swab(d->prg_cpu[idx]->data, packet->tcode);
705 if (packet->data_size) { /* block transmit */
706 if (packet->tcode == TCODE_STREAM_DATA){
707 d->prg_cpu[idx]->begin.control =
708 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
709 DMA_CTL_IMMEDIATE | 0x8);
710 } else {
711 d->prg_cpu[idx]->begin.control =
712 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
713 DMA_CTL_IMMEDIATE | 0x10);
715 d->prg_cpu[idx]->end.control =
716 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
717 DMA_CTL_IRQ |
718 DMA_CTL_BRANCH |
719 packet->data_size);
721 * Check that the packet data buffer
722 * does not cross a page boundary.
724 * XXX Fix this some day. eth1394 seems to trigger
725 * it, but ignoring it doesn't seem to cause a
726 * problem.
728 #if 0
729 if (cross_bound((unsigned long)packet->data,
730 packet->data_size)>0) {
731 /* FIXME: do something about it */
732 PRINT(KERN_ERR,
733 "%s: packet data addr: %p size %Zd bytes "
734 "cross page boundary", __FUNCTION__,
735 packet->data, packet->data_size);
737 #endif
738 d->prg_cpu[idx]->end.address = cpu_to_le32(
739 pci_map_single(ohci->dev, packet->data,
740 packet->data_size,
741 PCI_DMA_TODEVICE));
742 OHCI_DMA_ALLOC("single, block transmit packet");
744 d->prg_cpu[idx]->end.branchAddress = 0;
745 d->prg_cpu[idx]->end.status = 0;
746 if (d->branchAddrPtr)
747 *(d->branchAddrPtr) =
748 cpu_to_le32(d->prg_bus[idx] | 0x3);
749 d->branchAddrPtr =
750 &(d->prg_cpu[idx]->end.branchAddress);
751 } else { /* quadlet transmit */
752 if (packet->type == hpsb_raw)
753 d->prg_cpu[idx]->begin.control =
754 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
755 DMA_CTL_IMMEDIATE |
756 DMA_CTL_IRQ |
757 DMA_CTL_BRANCH |
758 (packet->header_size + 4));
759 else
760 d->prg_cpu[idx]->begin.control =
761 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
762 DMA_CTL_IMMEDIATE |
763 DMA_CTL_IRQ |
764 DMA_CTL_BRANCH |
765 packet->header_size);
767 if (d->branchAddrPtr)
768 *(d->branchAddrPtr) =
769 cpu_to_le32(d->prg_bus[idx] | 0x2);
770 d->branchAddrPtr =
771 &(d->prg_cpu[idx]->begin.branchAddress);
774 } else { /* iso packet */
775 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
776 (packet->header[0] & 0xFFFF);
777 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
778 packet_swab(d->prg_cpu[idx]->data, packet->tcode);
780 d->prg_cpu[idx]->begin.control =
781 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
782 DMA_CTL_IMMEDIATE | 0x8);
783 d->prg_cpu[idx]->end.control =
784 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
785 DMA_CTL_UPDATE |
786 DMA_CTL_IRQ |
787 DMA_CTL_BRANCH |
788 packet->data_size);
789 d->prg_cpu[idx]->end.address = cpu_to_le32(
790 pci_map_single(ohci->dev, packet->data,
791 packet->data_size, PCI_DMA_TODEVICE));
792 OHCI_DMA_ALLOC("single, iso transmit packet");
794 d->prg_cpu[idx]->end.branchAddress = 0;
795 d->prg_cpu[idx]->end.status = 0;
796 DBGMSG("Iso xmit context info: header[%08x %08x]\n"
797 " begin=%08x %08x %08x %08x\n"
798 " %08x %08x %08x %08x\n"
799 " end =%08x %08x %08x %08x",
800 d->prg_cpu[idx]->data[0], d->prg_cpu[idx]->data[1],
801 d->prg_cpu[idx]->begin.control,
802 d->prg_cpu[idx]->begin.address,
803 d->prg_cpu[idx]->begin.branchAddress,
804 d->prg_cpu[idx]->begin.status,
805 d->prg_cpu[idx]->data[0],
806 d->prg_cpu[idx]->data[1],
807 d->prg_cpu[idx]->data[2],
808 d->prg_cpu[idx]->data[3],
809 d->prg_cpu[idx]->end.control,
810 d->prg_cpu[idx]->end.address,
811 d->prg_cpu[idx]->end.branchAddress,
812 d->prg_cpu[idx]->end.status);
813 if (d->branchAddrPtr)
814 *(d->branchAddrPtr) = cpu_to_le32(d->prg_bus[idx] | 0x3);
815 d->branchAddrPtr = &(d->prg_cpu[idx]->end.branchAddress);
817 d->free_prgs--;
819 /* queue the packet in the appropriate context queue */
820 list_add_tail(&packet->driver_list, &d->fifo_list);
821 d->prg_ind = (d->prg_ind + 1) % d->num_desc;
825 * This function fills the FIFO with the (eventual) pending packets
826 * and runs or wakes up the DMA prg if necessary.
828 * The function MUST be called with the d->lock held.
830 static void dma_trm_flush(struct ti_ohci *ohci, struct dma_trm_ctx *d)
832 struct hpsb_packet *packet, *ptmp;
833 int idx = d->prg_ind;
834 int z = 0;
836 /* insert the packets into the dma fifo */
837 list_for_each_entry_safe(packet, ptmp, &d->pending_list, driver_list) {
838 if (!d->free_prgs)
839 break;
841 /* For the first packet only */
842 if (!z)
843 z = (packet->data_size) ? 3 : 2;
845 /* Insert the packet */
846 list_del_init(&packet->driver_list);
847 insert_packet(ohci, d, packet);
850 /* Nothing must have been done, either no free_prgs or no packets */
851 if (z == 0)
852 return;
854 /* Is the context running ? (should be unless it is
855 the first packet to be sent in this context) */
856 if (!(reg_read(ohci, d->ctrlSet) & 0x8000)) {
857 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
859 DBGMSG("Starting transmit DMA ctx=%d",d->ctx);
860 reg_write(ohci, d->cmdPtr, d->prg_bus[idx] | z);
862 /* Check that the node id is valid, and not 63 */
863 if (!(nodeId & 0x80000000) || (nodeId & 0x3f) == 63)
864 PRINT(KERN_ERR, "Running dma failed because Node ID is not valid");
865 else
866 reg_write(ohci, d->ctrlSet, 0x8000);
867 } else {
868 /* Wake up the dma context if necessary */
869 if (!(reg_read(ohci, d->ctrlSet) & 0x400))
870 DBGMSG("Waking transmit DMA ctx=%d",d->ctx);
872 /* do this always, to avoid race condition */
873 reg_write(ohci, d->ctrlSet, 0x1000);
876 return;
879 /* Transmission of an async or iso packet */
880 static int ohci_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
882 struct ti_ohci *ohci = host->hostdata;
883 struct dma_trm_ctx *d;
884 unsigned long flags;
886 if (packet->data_size > ohci->max_packet_size) {
887 PRINT(KERN_ERR,
888 "Transmit packet size %Zd is too big",
889 packet->data_size);
890 return -EOVERFLOW;
893 /* Decide whether we have an iso, a request, or a response packet */
894 if (packet->type == hpsb_raw)
895 d = &ohci->at_req_context;
896 else if ((packet->tcode == TCODE_ISO_DATA) && (packet->type == hpsb_iso)) {
897 /* The legacy IT DMA context is initialized on first
898 * use. However, the alloc cannot be run from
899 * interrupt context, so we bail out if that is the
900 * case. I don't see anyone sending ISO packets from
901 * interrupt context anyway... */
903 if (ohci->it_legacy_context.ohci == NULL) {
904 if (in_interrupt()) {
905 PRINT(KERN_ERR,
906 "legacy IT context cannot be initialized during interrupt");
907 return -EINVAL;
910 if (alloc_dma_trm_ctx(ohci, &ohci->it_legacy_context,
911 DMA_CTX_ISO, 0, IT_NUM_DESC,
912 OHCI1394_IsoXmitContextBase) < 0) {
913 PRINT(KERN_ERR,
914 "error initializing legacy IT context");
915 return -ENOMEM;
918 initialize_dma_trm_ctx(&ohci->it_legacy_context);
921 d = &ohci->it_legacy_context;
922 } else if ((packet->tcode & 0x02) && (packet->tcode != TCODE_ISO_DATA))
923 d = &ohci->at_resp_context;
924 else
925 d = &ohci->at_req_context;
927 spin_lock_irqsave(&d->lock,flags);
929 list_add_tail(&packet->driver_list, &d->pending_list);
931 dma_trm_flush(ohci, d);
933 spin_unlock_irqrestore(&d->lock,flags);
935 return 0;
938 static int ohci_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
940 struct ti_ohci *ohci = host->hostdata;
941 int retval = 0;
942 unsigned long flags;
943 int phy_reg;
945 switch (cmd) {
946 case RESET_BUS:
947 switch (arg) {
948 case SHORT_RESET:
949 phy_reg = get_phy_reg(ohci, 5);
950 phy_reg |= 0x40;
951 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
952 break;
953 case LONG_RESET:
954 phy_reg = get_phy_reg(ohci, 1);
955 phy_reg |= 0x40;
956 set_phy_reg(ohci, 1, phy_reg); /* set IBR */
957 break;
958 case SHORT_RESET_NO_FORCE_ROOT:
959 phy_reg = get_phy_reg(ohci, 1);
960 if (phy_reg & 0x80) {
961 phy_reg &= ~0x80;
962 set_phy_reg(ohci, 1, phy_reg); /* clear RHB */
965 phy_reg = get_phy_reg(ohci, 5);
966 phy_reg |= 0x40;
967 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
968 break;
969 case LONG_RESET_NO_FORCE_ROOT:
970 phy_reg = get_phy_reg(ohci, 1);
971 phy_reg &= ~0x80;
972 phy_reg |= 0x40;
973 set_phy_reg(ohci, 1, phy_reg); /* clear RHB, set IBR */
974 break;
975 case SHORT_RESET_FORCE_ROOT:
976 phy_reg = get_phy_reg(ohci, 1);
977 if (!(phy_reg & 0x80)) {
978 phy_reg |= 0x80;
979 set_phy_reg(ohci, 1, phy_reg); /* set RHB */
982 phy_reg = get_phy_reg(ohci, 5);
983 phy_reg |= 0x40;
984 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
985 break;
986 case LONG_RESET_FORCE_ROOT:
987 phy_reg = get_phy_reg(ohci, 1);
988 phy_reg |= 0xc0;
989 set_phy_reg(ohci, 1, phy_reg); /* set RHB and IBR */
990 break;
991 default:
992 retval = -1;
994 break;
996 case GET_CYCLE_COUNTER:
997 retval = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
998 break;
1000 case SET_CYCLE_COUNTER:
1001 reg_write(ohci, OHCI1394_IsochronousCycleTimer, arg);
1002 break;
1004 case SET_BUS_ID:
1005 PRINT(KERN_ERR, "devctl command SET_BUS_ID err");
1006 break;
1008 case ACT_CYCLE_MASTER:
1009 if (arg) {
1010 /* check if we are root and other nodes are present */
1011 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
1012 if ((nodeId & (1<<30)) && (nodeId & 0x3f)) {
1014 * enable cycleTimer, cycleMaster
1016 DBGMSG("Cycle master enabled");
1017 reg_write(ohci, OHCI1394_LinkControlSet,
1018 OHCI1394_LinkControl_CycleTimerEnable |
1019 OHCI1394_LinkControl_CycleMaster);
1021 } else {
1022 /* disable cycleTimer, cycleMaster, cycleSource */
1023 reg_write(ohci, OHCI1394_LinkControlClear,
1024 OHCI1394_LinkControl_CycleTimerEnable |
1025 OHCI1394_LinkControl_CycleMaster |
1026 OHCI1394_LinkControl_CycleSource);
1028 break;
1030 case CANCEL_REQUESTS:
1031 DBGMSG("Cancel request received");
1032 dma_trm_reset(&ohci->at_req_context);
1033 dma_trm_reset(&ohci->at_resp_context);
1034 break;
1036 case ISO_LISTEN_CHANNEL:
1038 u64 mask;
1039 struct dma_rcv_ctx *d = &ohci->ir_legacy_context;
1040 int ir_legacy_active;
1042 if (arg<0 || arg>63) {
1043 PRINT(KERN_ERR,
1044 "%s: IS0 listen channel %d is out of range",
1045 __FUNCTION__, arg);
1046 return -EFAULT;
1049 mask = (u64)0x1<<arg;
1051 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1053 if (ohci->ISO_channel_usage & mask) {
1054 PRINT(KERN_ERR,
1055 "%s: IS0 listen channel %d is already used",
1056 __FUNCTION__, arg);
1057 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1058 return -EFAULT;
1061 ir_legacy_active = ohci->ir_legacy_channels;
1063 ohci->ISO_channel_usage |= mask;
1064 ohci->ir_legacy_channels |= mask;
1066 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1068 if (!ir_legacy_active) {
1069 if (ohci1394_register_iso_tasklet(ohci,
1070 &ohci->ir_legacy_tasklet) < 0) {
1071 PRINT(KERN_ERR, "No IR DMA context available");
1072 return -EBUSY;
1075 /* the IR context can be assigned to any DMA context
1076 * by ohci1394_register_iso_tasklet */
1077 d->ctx = ohci->ir_legacy_tasklet.context;
1078 d->ctrlSet = OHCI1394_IsoRcvContextControlSet +
1079 32*d->ctx;
1080 d->ctrlClear = OHCI1394_IsoRcvContextControlClear +
1081 32*d->ctx;
1082 d->cmdPtr = OHCI1394_IsoRcvCommandPtr + 32*d->ctx;
1083 d->ctxtMatch = OHCI1394_IsoRcvContextMatch + 32*d->ctx;
1085 initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1);
1087 if (printk_ratelimit())
1088 PRINT(KERN_ERR, "IR legacy activated");
1091 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1093 if (arg>31)
1094 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet,
1095 1<<(arg-32));
1096 else
1097 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet,
1098 1<<arg);
1100 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1101 DBGMSG("Listening enabled on channel %d", arg);
1102 break;
1104 case ISO_UNLISTEN_CHANNEL:
1106 u64 mask;
1108 if (arg<0 || arg>63) {
1109 PRINT(KERN_ERR,
1110 "%s: IS0 unlisten channel %d is out of range",
1111 __FUNCTION__, arg);
1112 return -EFAULT;
1115 mask = (u64)0x1<<arg;
1117 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1119 if (!(ohci->ISO_channel_usage & mask)) {
1120 PRINT(KERN_ERR,
1121 "%s: IS0 unlisten channel %d is not used",
1122 __FUNCTION__, arg);
1123 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1124 return -EFAULT;
1127 ohci->ISO_channel_usage &= ~mask;
1128 ohci->ir_legacy_channels &= ~mask;
1130 if (arg>31)
1131 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear,
1132 1<<(arg-32));
1133 else
1134 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear,
1135 1<<arg);
1137 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1138 DBGMSG("Listening disabled on channel %d", arg);
1140 if (ohci->ir_legacy_channels == 0) {
1141 stop_dma_rcv_ctx(&ohci->ir_legacy_context);
1142 DBGMSG("ISO legacy receive context stopped");
1145 break;
1147 default:
1148 PRINT_G(KERN_ERR, "ohci_devctl cmd %d not implemented yet",
1149 cmd);
1150 break;
1152 return retval;
1155 /***********************************
1156 * rawiso ISO reception *
1157 ***********************************/
1160 We use either buffer-fill or packet-per-buffer DMA mode. The DMA
1161 buffer is split into "blocks" (regions described by one DMA
1162 descriptor). Each block must be one page or less in size, and
1163 must not cross a page boundary.
1165 There is one little wrinkle with buffer-fill mode: a packet that
1166 starts in the final block may wrap around into the first block. But
1167 the user API expects all packets to be contiguous. Our solution is
1168 to keep the very last page of the DMA buffer in reserve - if a
1169 packet spans the gap, we copy its tail into this page.
1172 struct ohci_iso_recv {
1173 struct ti_ohci *ohci;
1175 struct ohci1394_iso_tasklet task;
1176 int task_active;
1178 enum { BUFFER_FILL_MODE = 0,
1179 PACKET_PER_BUFFER_MODE = 1 } dma_mode;
1181 /* memory and PCI mapping for the DMA descriptors */
1182 struct dma_prog_region prog;
1183 struct dma_cmd *block; /* = (struct dma_cmd*) prog.virt */
1185 /* how many DMA blocks fit in the buffer */
1186 unsigned int nblocks;
1188 /* stride of DMA blocks */
1189 unsigned int buf_stride;
1191 /* number of blocks to batch between interrupts */
1192 int block_irq_interval;
1194 /* block that DMA will finish next */
1195 int block_dma;
1197 /* (buffer-fill only) block that the reader will release next */
1198 int block_reader;
1200 /* (buffer-fill only) bytes of buffer the reader has released,
1201 less than one block */
1202 int released_bytes;
1204 /* (buffer-fill only) buffer offset at which the next packet will appear */
1205 int dma_offset;
1207 /* OHCI DMA context control registers */
1208 u32 ContextControlSet;
1209 u32 ContextControlClear;
1210 u32 CommandPtr;
1211 u32 ContextMatch;
1214 static void ohci_iso_recv_task(unsigned long data);
1215 static void ohci_iso_recv_stop(struct hpsb_iso *iso);
1216 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso);
1217 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync);
1218 static void ohci_iso_recv_program(struct hpsb_iso *iso);
1220 static int ohci_iso_recv_init(struct hpsb_iso *iso)
1222 struct ti_ohci *ohci = iso->host->hostdata;
1223 struct ohci_iso_recv *recv;
1224 int ctx;
1225 int ret = -ENOMEM;
1227 recv = kmalloc(sizeof(*recv), SLAB_KERNEL);
1228 if (!recv)
1229 return -ENOMEM;
1231 iso->hostdata = recv;
1232 recv->ohci = ohci;
1233 recv->task_active = 0;
1234 dma_prog_region_init(&recv->prog);
1235 recv->block = NULL;
1237 /* use buffer-fill mode, unless irq_interval is 1
1238 (note: multichannel requires buffer-fill) */
1240 if (((iso->irq_interval == 1 && iso->dma_mode == HPSB_ISO_DMA_OLD_ABI) ||
1241 iso->dma_mode == HPSB_ISO_DMA_PACKET_PER_BUFFER) && iso->channel != -1) {
1242 recv->dma_mode = PACKET_PER_BUFFER_MODE;
1243 } else {
1244 recv->dma_mode = BUFFER_FILL_MODE;
1247 /* set nblocks, buf_stride, block_irq_interval */
1249 if (recv->dma_mode == BUFFER_FILL_MODE) {
1250 recv->buf_stride = PAGE_SIZE;
1252 /* one block per page of data in the DMA buffer, minus the final guard page */
1253 recv->nblocks = iso->buf_size/PAGE_SIZE - 1;
1254 if (recv->nblocks < 3) {
1255 DBGMSG("ohci_iso_recv_init: DMA buffer too small");
1256 goto err;
1259 /* iso->irq_interval is in packets - translate that to blocks */
1260 if (iso->irq_interval == 1)
1261 recv->block_irq_interval = 1;
1262 else
1263 recv->block_irq_interval = iso->irq_interval *
1264 ((recv->nblocks+1)/iso->buf_packets);
1265 if (recv->block_irq_interval*4 > recv->nblocks)
1266 recv->block_irq_interval = recv->nblocks/4;
1267 if (recv->block_irq_interval < 1)
1268 recv->block_irq_interval = 1;
1270 } else {
1271 int max_packet_size;
1273 recv->nblocks = iso->buf_packets;
1274 recv->block_irq_interval = iso->irq_interval;
1275 if (recv->block_irq_interval * 4 > iso->buf_packets)
1276 recv->block_irq_interval = iso->buf_packets / 4;
1277 if (recv->block_irq_interval < 1)
1278 recv->block_irq_interval = 1;
1280 /* choose a buffer stride */
1281 /* must be a power of 2, and <= PAGE_SIZE */
1283 max_packet_size = iso->buf_size / iso->buf_packets;
1285 for (recv->buf_stride = 8; recv->buf_stride < max_packet_size;
1286 recv->buf_stride *= 2);
1288 if (recv->buf_stride*iso->buf_packets > iso->buf_size ||
1289 recv->buf_stride > PAGE_SIZE) {
1290 /* this shouldn't happen, but anyway... */
1291 DBGMSG("ohci_iso_recv_init: problem choosing a buffer stride");
1292 goto err;
1296 recv->block_reader = 0;
1297 recv->released_bytes = 0;
1298 recv->block_dma = 0;
1299 recv->dma_offset = 0;
1301 /* size of DMA program = one descriptor per block */
1302 if (dma_prog_region_alloc(&recv->prog,
1303 sizeof(struct dma_cmd) * recv->nblocks,
1304 recv->ohci->dev))
1305 goto err;
1307 recv->block = (struct dma_cmd*) recv->prog.kvirt;
1309 ohci1394_init_iso_tasklet(&recv->task,
1310 iso->channel == -1 ? OHCI_ISO_MULTICHANNEL_RECEIVE :
1311 OHCI_ISO_RECEIVE,
1312 ohci_iso_recv_task, (unsigned long) iso);
1314 if (ohci1394_register_iso_tasklet(recv->ohci, &recv->task) < 0) {
1315 ret = -EBUSY;
1316 goto err;
1319 recv->task_active = 1;
1321 /* recv context registers are spaced 32 bytes apart */
1322 ctx = recv->task.context;
1323 recv->ContextControlSet = OHCI1394_IsoRcvContextControlSet + 32 * ctx;
1324 recv->ContextControlClear = OHCI1394_IsoRcvContextControlClear + 32 * ctx;
1325 recv->CommandPtr = OHCI1394_IsoRcvCommandPtr + 32 * ctx;
1326 recv->ContextMatch = OHCI1394_IsoRcvContextMatch + 32 * ctx;
1328 if (iso->channel == -1) {
1329 /* clear multi-channel selection mask */
1330 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, 0xFFFFFFFF);
1331 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, 0xFFFFFFFF);
1334 /* write the DMA program */
1335 ohci_iso_recv_program(iso);
1337 DBGMSG("ohci_iso_recv_init: %s mode, DMA buffer is %lu pages"
1338 " (%u bytes), using %u blocks, buf_stride %u, block_irq_interval %d",
1339 recv->dma_mode == BUFFER_FILL_MODE ?
1340 "buffer-fill" : "packet-per-buffer",
1341 iso->buf_size/PAGE_SIZE, iso->buf_size,
1342 recv->nblocks, recv->buf_stride, recv->block_irq_interval);
1344 return 0;
1346 err:
1347 ohci_iso_recv_shutdown(iso);
1348 return ret;
1351 static void ohci_iso_recv_stop(struct hpsb_iso *iso)
1353 struct ohci_iso_recv *recv = iso->hostdata;
1355 /* disable interrupts */
1356 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << recv->task.context);
1358 /* halt DMA */
1359 ohci1394_stop_context(recv->ohci, recv->ContextControlClear, NULL);
1362 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso)
1364 struct ohci_iso_recv *recv = iso->hostdata;
1366 if (recv->task_active) {
1367 ohci_iso_recv_stop(iso);
1368 ohci1394_unregister_iso_tasklet(recv->ohci, &recv->task);
1369 recv->task_active = 0;
1372 dma_prog_region_free(&recv->prog);
1373 kfree(recv);
1374 iso->hostdata = NULL;
1377 /* set up a "gapped" ring buffer DMA program */
1378 static void ohci_iso_recv_program(struct hpsb_iso *iso)
1380 struct ohci_iso_recv *recv = iso->hostdata;
1381 int blk;
1383 /* address of 'branch' field in previous DMA descriptor */
1384 u32 *prev_branch = NULL;
1386 for (blk = 0; blk < recv->nblocks; blk++) {
1387 u32 control;
1389 /* the DMA descriptor */
1390 struct dma_cmd *cmd = &recv->block[blk];
1392 /* offset of the DMA descriptor relative to the DMA prog buffer */
1393 unsigned long prog_offset = blk * sizeof(struct dma_cmd);
1395 /* offset of this packet's data within the DMA buffer */
1396 unsigned long buf_offset = blk * recv->buf_stride;
1398 if (recv->dma_mode == BUFFER_FILL_MODE) {
1399 control = 2 << 28; /* INPUT_MORE */
1400 } else {
1401 control = 3 << 28; /* INPUT_LAST */
1404 control |= 8 << 24; /* s = 1, update xferStatus and resCount */
1406 /* interrupt on last block, and at intervals */
1407 if (blk == recv->nblocks-1 || (blk % recv->block_irq_interval) == 0) {
1408 control |= 3 << 20; /* want interrupt */
1411 control |= 3 << 18; /* enable branch to address */
1412 control |= recv->buf_stride;
1414 cmd->control = cpu_to_le32(control);
1415 cmd->address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, buf_offset));
1416 cmd->branchAddress = 0; /* filled in on next loop */
1417 cmd->status = cpu_to_le32(recv->buf_stride);
1419 /* link the previous descriptor to this one */
1420 if (prev_branch) {
1421 *prev_branch = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog, prog_offset) | 1);
1424 prev_branch = &cmd->branchAddress;
1427 /* the final descriptor's branch address and Z should be left at 0 */
1430 /* listen or unlisten to a specific channel (multi-channel mode only) */
1431 static void ohci_iso_recv_change_channel(struct hpsb_iso *iso, unsigned char channel, int listen)
1433 struct ohci_iso_recv *recv = iso->hostdata;
1434 int reg, i;
1436 if (channel < 32) {
1437 reg = listen ? OHCI1394_IRMultiChanMaskLoSet : OHCI1394_IRMultiChanMaskLoClear;
1438 i = channel;
1439 } else {
1440 reg = listen ? OHCI1394_IRMultiChanMaskHiSet : OHCI1394_IRMultiChanMaskHiClear;
1441 i = channel - 32;
1444 reg_write(recv->ohci, reg, (1 << i));
1446 /* issue a dummy read to force all PCI writes to be posted immediately */
1447 mb();
1448 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1451 static void ohci_iso_recv_set_channel_mask(struct hpsb_iso *iso, u64 mask)
1453 struct ohci_iso_recv *recv = iso->hostdata;
1454 int i;
1456 for (i = 0; i < 64; i++) {
1457 if (mask & (1ULL << i)) {
1458 if (i < 32)
1459 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoSet, (1 << i));
1460 else
1461 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiSet, (1 << (i-32)));
1462 } else {
1463 if (i < 32)
1464 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, (1 << i));
1465 else
1466 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, (1 << (i-32)));
1470 /* issue a dummy read to force all PCI writes to be posted immediately */
1471 mb();
1472 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1475 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync)
1477 struct ohci_iso_recv *recv = iso->hostdata;
1478 struct ti_ohci *ohci = recv->ohci;
1479 u32 command, contextMatch;
1481 reg_write(recv->ohci, recv->ContextControlClear, 0xFFFFFFFF);
1482 wmb();
1484 /* always keep ISO headers */
1485 command = (1 << 30);
1487 if (recv->dma_mode == BUFFER_FILL_MODE)
1488 command |= (1 << 31);
1490 reg_write(recv->ohci, recv->ContextControlSet, command);
1492 /* match on specified tags */
1493 contextMatch = tag_mask << 28;
1495 if (iso->channel == -1) {
1496 /* enable multichannel reception */
1497 reg_write(recv->ohci, recv->ContextControlSet, (1 << 28));
1498 } else {
1499 /* listen on channel */
1500 contextMatch |= iso->channel;
1503 if (cycle != -1) {
1504 u32 seconds;
1506 /* enable cycleMatch */
1507 reg_write(recv->ohci, recv->ContextControlSet, (1 << 29));
1509 /* set starting cycle */
1510 cycle &= 0x1FFF;
1512 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
1513 just snarf them from the current time */
1514 seconds = reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
1516 /* advance one second to give some extra time for DMA to start */
1517 seconds += 1;
1519 cycle |= (seconds & 3) << 13;
1521 contextMatch |= cycle << 12;
1524 if (sync != -1) {
1525 /* set sync flag on first DMA descriptor */
1526 struct dma_cmd *cmd = &recv->block[recv->block_dma];
1527 cmd->control |= cpu_to_le32(DMA_CTL_WAIT);
1529 /* match sync field */
1530 contextMatch |= (sync&0xf)<<8;
1533 reg_write(recv->ohci, recv->ContextMatch, contextMatch);
1535 /* address of first descriptor block */
1536 command = dma_prog_region_offset_to_bus(&recv->prog,
1537 recv->block_dma * sizeof(struct dma_cmd));
1538 command |= 1; /* Z=1 */
1540 reg_write(recv->ohci, recv->CommandPtr, command);
1542 /* enable interrupts */
1543 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskSet, 1 << recv->task.context);
1545 wmb();
1547 /* run */
1548 reg_write(recv->ohci, recv->ContextControlSet, 0x8000);
1550 /* issue a dummy read of the cycle timer register to force
1551 all PCI writes to be posted immediately */
1552 mb();
1553 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1555 /* check RUN */
1556 if (!(reg_read(recv->ohci, recv->ContextControlSet) & 0x8000)) {
1557 PRINT(KERN_ERR,
1558 "Error starting IR DMA (ContextControl 0x%08x)\n",
1559 reg_read(recv->ohci, recv->ContextControlSet));
1560 return -1;
1563 return 0;
1566 static void ohci_iso_recv_release_block(struct ohci_iso_recv *recv, int block)
1568 /* re-use the DMA descriptor for the block */
1569 /* by linking the previous descriptor to it */
1571 int next_i = block;
1572 int prev_i = (next_i == 0) ? (recv->nblocks - 1) : (next_i - 1);
1574 struct dma_cmd *next = &recv->block[next_i];
1575 struct dma_cmd *prev = &recv->block[prev_i];
1577 /* ignore out-of-range requests */
1578 if ((block < 0) || (block > recv->nblocks))
1579 return;
1581 /* 'next' becomes the new end of the DMA chain,
1582 so disable branch and enable interrupt */
1583 next->branchAddress = 0;
1584 next->control |= cpu_to_le32(3 << 20);
1585 next->status = cpu_to_le32(recv->buf_stride);
1587 /* link prev to next */
1588 prev->branchAddress = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog,
1589 sizeof(struct dma_cmd) * next_i)
1590 | 1); /* Z=1 */
1592 /* disable interrupt on previous DMA descriptor, except at intervals */
1593 if ((prev_i % recv->block_irq_interval) == 0) {
1594 prev->control |= cpu_to_le32(3 << 20); /* enable interrupt */
1595 } else {
1596 prev->control &= cpu_to_le32(~(3<<20)); /* disable interrupt */
1598 wmb();
1600 /* wake up DMA in case it fell asleep */
1601 reg_write(recv->ohci, recv->ContextControlSet, (1 << 12));
1604 static void ohci_iso_recv_bufferfill_release(struct ohci_iso_recv *recv,
1605 struct hpsb_iso_packet_info *info)
1607 /* release the memory where the packet was */
1608 recv->released_bytes += info->total_len;
1610 /* have we released enough memory for one block? */
1611 while (recv->released_bytes > recv->buf_stride) {
1612 ohci_iso_recv_release_block(recv, recv->block_reader);
1613 recv->block_reader = (recv->block_reader + 1) % recv->nblocks;
1614 recv->released_bytes -= recv->buf_stride;
1618 static inline void ohci_iso_recv_release(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
1620 struct ohci_iso_recv *recv = iso->hostdata;
1621 if (recv->dma_mode == BUFFER_FILL_MODE) {
1622 ohci_iso_recv_bufferfill_release(recv, info);
1623 } else {
1624 ohci_iso_recv_release_block(recv, info - iso->infos);
1628 /* parse all packets from blocks that have been fully received */
1629 static void ohci_iso_recv_bufferfill_parse(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1631 int wake = 0;
1632 int runaway = 0;
1633 struct ti_ohci *ohci = recv->ohci;
1635 while (1) {
1636 /* we expect the next parsable packet to begin at recv->dma_offset */
1637 /* note: packet layout is as shown in section 10.6.1.1 of the OHCI spec */
1639 unsigned int offset;
1640 unsigned short len, cycle, total_len;
1641 unsigned char channel, tag, sy;
1643 unsigned char *p = iso->data_buf.kvirt;
1645 unsigned int this_block = recv->dma_offset/recv->buf_stride;
1647 /* don't loop indefinitely */
1648 if (runaway++ > 100000) {
1649 atomic_inc(&iso->overflows);
1650 PRINT(KERN_ERR,
1651 "IR DMA error - Runaway during buffer parsing!\n");
1652 break;
1655 /* stop parsing once we arrive at block_dma (i.e. don't get ahead of DMA) */
1656 if (this_block == recv->block_dma)
1657 break;
1659 wake = 1;
1661 /* parse data length, tag, channel, and sy */
1663 /* note: we keep our own local copies of 'len' and 'offset'
1664 so the user can't mess with them by poking in the mmap area */
1666 len = p[recv->dma_offset+2] | (p[recv->dma_offset+3] << 8);
1668 if (len > 4096) {
1669 PRINT(KERN_ERR,
1670 "IR DMA error - bogus 'len' value %u\n", len);
1673 channel = p[recv->dma_offset+1] & 0x3F;
1674 tag = p[recv->dma_offset+1] >> 6;
1675 sy = p[recv->dma_offset+0] & 0xF;
1677 /* advance to data payload */
1678 recv->dma_offset += 4;
1680 /* check for wrap-around */
1681 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1682 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1685 /* dma_offset now points to the first byte of the data payload */
1686 offset = recv->dma_offset;
1688 /* advance to xferStatus/timeStamp */
1689 recv->dma_offset += len;
1691 total_len = len + 8; /* 8 bytes header+trailer in OHCI packet */
1692 /* payload is padded to 4 bytes */
1693 if (len % 4) {
1694 recv->dma_offset += 4 - (len%4);
1695 total_len += 4 - (len%4);
1698 /* check for wrap-around */
1699 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1700 /* uh oh, the packet data wraps from the last
1701 to the first DMA block - make the packet
1702 contiguous by copying its "tail" into the
1703 guard page */
1705 int guard_off = recv->buf_stride*recv->nblocks;
1706 int tail_len = len - (guard_off - offset);
1708 if (tail_len > 0 && tail_len < recv->buf_stride) {
1709 memcpy(iso->data_buf.kvirt + guard_off,
1710 iso->data_buf.kvirt,
1711 tail_len);
1714 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1717 /* parse timestamp */
1718 cycle = p[recv->dma_offset+0] | (p[recv->dma_offset+1]<<8);
1719 cycle &= 0x1FFF;
1721 /* advance to next packet */
1722 recv->dma_offset += 4;
1724 /* check for wrap-around */
1725 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1726 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1729 hpsb_iso_packet_received(iso, offset, len, total_len, cycle, channel, tag, sy);
1732 if (wake)
1733 hpsb_iso_wake(iso);
1736 static void ohci_iso_recv_bufferfill_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1738 int loop;
1739 struct ti_ohci *ohci = recv->ohci;
1741 /* loop over all blocks */
1742 for (loop = 0; loop < recv->nblocks; loop++) {
1744 /* check block_dma to see if it's done */
1745 struct dma_cmd *im = &recv->block[recv->block_dma];
1747 /* check the DMA descriptor for new writes to xferStatus */
1748 u16 xferstatus = le32_to_cpu(im->status) >> 16;
1750 /* rescount is the number of bytes *remaining to be written* in the block */
1751 u16 rescount = le32_to_cpu(im->status) & 0xFFFF;
1753 unsigned char event = xferstatus & 0x1F;
1755 if (!event) {
1756 /* nothing has happened to this block yet */
1757 break;
1760 if (event != 0x11) {
1761 atomic_inc(&iso->overflows);
1762 PRINT(KERN_ERR,
1763 "IR DMA error - OHCI error code 0x%02x\n", event);
1766 if (rescount != 0) {
1767 /* the card is still writing to this block;
1768 we can't touch it until it's done */
1769 break;
1772 /* OK, the block is finished... */
1774 /* sync our view of the block */
1775 dma_region_sync_for_cpu(&iso->data_buf, recv->block_dma*recv->buf_stride, recv->buf_stride);
1777 /* reset the DMA descriptor */
1778 im->status = recv->buf_stride;
1780 /* advance block_dma */
1781 recv->block_dma = (recv->block_dma + 1) % recv->nblocks;
1783 if ((recv->block_dma+1) % recv->nblocks == recv->block_reader) {
1784 atomic_inc(&iso->overflows);
1785 DBGMSG("ISO reception overflow - "
1786 "ran out of DMA blocks");
1790 /* parse any packets that have arrived */
1791 ohci_iso_recv_bufferfill_parse(iso, recv);
1794 static void ohci_iso_recv_packetperbuf_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1796 int count;
1797 int wake = 0;
1798 struct ti_ohci *ohci = recv->ohci;
1800 /* loop over the entire buffer */
1801 for (count = 0; count < recv->nblocks; count++) {
1802 u32 packet_len = 0;
1804 /* pointer to the DMA descriptor */
1805 struct dma_cmd *il = ((struct dma_cmd*) recv->prog.kvirt) + iso->pkt_dma;
1807 /* check the DMA descriptor for new writes to xferStatus */
1808 u16 xferstatus = le32_to_cpu(il->status) >> 16;
1809 u16 rescount = le32_to_cpu(il->status) & 0xFFFF;
1811 unsigned char event = xferstatus & 0x1F;
1813 if (!event) {
1814 /* this packet hasn't come in yet; we are done for now */
1815 goto out;
1818 if (event == 0x11) {
1819 /* packet received successfully! */
1821 /* rescount is the number of bytes *remaining* in the packet buffer,
1822 after the packet was written */
1823 packet_len = recv->buf_stride - rescount;
1825 } else if (event == 0x02) {
1826 PRINT(KERN_ERR, "IR DMA error - packet too long for buffer\n");
1827 } else if (event) {
1828 PRINT(KERN_ERR, "IR DMA error - OHCI error code 0x%02x\n", event);
1831 /* sync our view of the buffer */
1832 dma_region_sync_for_cpu(&iso->data_buf, iso->pkt_dma * recv->buf_stride, recv->buf_stride);
1834 /* record the per-packet info */
1836 /* iso header is 8 bytes ahead of the data payload */
1837 unsigned char *hdr;
1839 unsigned int offset;
1840 unsigned short cycle;
1841 unsigned char channel, tag, sy;
1843 offset = iso->pkt_dma * recv->buf_stride;
1844 hdr = iso->data_buf.kvirt + offset;
1846 /* skip iso header */
1847 offset += 8;
1848 packet_len -= 8;
1850 cycle = (hdr[0] | (hdr[1] << 8)) & 0x1FFF;
1851 channel = hdr[5] & 0x3F;
1852 tag = hdr[5] >> 6;
1853 sy = hdr[4] & 0xF;
1855 hpsb_iso_packet_received(iso, offset, packet_len,
1856 recv->buf_stride, cycle, channel, tag, sy);
1859 /* reset the DMA descriptor */
1860 il->status = recv->buf_stride;
1862 wake = 1;
1863 recv->block_dma = iso->pkt_dma;
1866 out:
1867 if (wake)
1868 hpsb_iso_wake(iso);
1871 static void ohci_iso_recv_task(unsigned long data)
1873 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1874 struct ohci_iso_recv *recv = iso->hostdata;
1876 if (recv->dma_mode == BUFFER_FILL_MODE)
1877 ohci_iso_recv_bufferfill_task(iso, recv);
1878 else
1879 ohci_iso_recv_packetperbuf_task(iso, recv);
1882 /***********************************
1883 * rawiso ISO transmission *
1884 ***********************************/
1886 struct ohci_iso_xmit {
1887 struct ti_ohci *ohci;
1888 struct dma_prog_region prog;
1889 struct ohci1394_iso_tasklet task;
1890 int task_active;
1892 u32 ContextControlSet;
1893 u32 ContextControlClear;
1894 u32 CommandPtr;
1897 /* transmission DMA program:
1898 one OUTPUT_MORE_IMMEDIATE for the IT header
1899 one OUTPUT_LAST for the buffer data */
1901 struct iso_xmit_cmd {
1902 struct dma_cmd output_more_immediate;
1903 u8 iso_hdr[8];
1904 u32 unused[2];
1905 struct dma_cmd output_last;
1908 static int ohci_iso_xmit_init(struct hpsb_iso *iso);
1909 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle);
1910 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso);
1911 static void ohci_iso_xmit_task(unsigned long data);
1913 static int ohci_iso_xmit_init(struct hpsb_iso *iso)
1915 struct ohci_iso_xmit *xmit;
1916 unsigned int prog_size;
1917 int ctx;
1918 int ret = -ENOMEM;
1920 xmit = kmalloc(sizeof(*xmit), SLAB_KERNEL);
1921 if (!xmit)
1922 return -ENOMEM;
1924 iso->hostdata = xmit;
1925 xmit->ohci = iso->host->hostdata;
1926 xmit->task_active = 0;
1928 dma_prog_region_init(&xmit->prog);
1930 prog_size = sizeof(struct iso_xmit_cmd) * iso->buf_packets;
1932 if (dma_prog_region_alloc(&xmit->prog, prog_size, xmit->ohci->dev))
1933 goto err;
1935 ohci1394_init_iso_tasklet(&xmit->task, OHCI_ISO_TRANSMIT,
1936 ohci_iso_xmit_task, (unsigned long) iso);
1938 if (ohci1394_register_iso_tasklet(xmit->ohci, &xmit->task) < 0) {
1939 ret = -EBUSY;
1940 goto err;
1943 xmit->task_active = 1;
1945 /* xmit context registers are spaced 16 bytes apart */
1946 ctx = xmit->task.context;
1947 xmit->ContextControlSet = OHCI1394_IsoXmitContextControlSet + 16 * ctx;
1948 xmit->ContextControlClear = OHCI1394_IsoXmitContextControlClear + 16 * ctx;
1949 xmit->CommandPtr = OHCI1394_IsoXmitCommandPtr + 16 * ctx;
1951 return 0;
1953 err:
1954 ohci_iso_xmit_shutdown(iso);
1955 return ret;
1958 static void ohci_iso_xmit_stop(struct hpsb_iso *iso)
1960 struct ohci_iso_xmit *xmit = iso->hostdata;
1961 struct ti_ohci *ohci = xmit->ohci;
1963 /* disable interrupts */
1964 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskClear, 1 << xmit->task.context);
1966 /* halt DMA */
1967 if (ohci1394_stop_context(xmit->ohci, xmit->ContextControlClear, NULL)) {
1968 /* XXX the DMA context will lock up if you try to send too much data! */
1969 PRINT(KERN_ERR,
1970 "you probably exceeded the OHCI card's bandwidth limit - "
1971 "reload the module and reduce xmit bandwidth");
1975 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso)
1977 struct ohci_iso_xmit *xmit = iso->hostdata;
1979 if (xmit->task_active) {
1980 ohci_iso_xmit_stop(iso);
1981 ohci1394_unregister_iso_tasklet(xmit->ohci, &xmit->task);
1982 xmit->task_active = 0;
1985 dma_prog_region_free(&xmit->prog);
1986 kfree(xmit);
1987 iso->hostdata = NULL;
1990 static void ohci_iso_xmit_task(unsigned long data)
1992 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1993 struct ohci_iso_xmit *xmit = iso->hostdata;
1994 struct ti_ohci *ohci = xmit->ohci;
1995 int wake = 0;
1996 int count;
1998 /* check the whole buffer if necessary, starting at pkt_dma */
1999 for (count = 0; count < iso->buf_packets; count++) {
2000 int cycle;
2002 /* DMA descriptor */
2003 struct iso_xmit_cmd *cmd = dma_region_i(&xmit->prog, struct iso_xmit_cmd, iso->pkt_dma);
2005 /* check for new writes to xferStatus */
2006 u16 xferstatus = le32_to_cpu(cmd->output_last.status) >> 16;
2007 u8 event = xferstatus & 0x1F;
2009 if (!event) {
2010 /* packet hasn't been sent yet; we are done for now */
2011 break;
2014 if (event != 0x11)
2015 PRINT(KERN_ERR,
2016 "IT DMA error - OHCI error code 0x%02x\n", event);
2018 /* at least one packet went out, so wake up the writer */
2019 wake = 1;
2021 /* parse cycle */
2022 cycle = le32_to_cpu(cmd->output_last.status) & 0x1FFF;
2024 /* tell the subsystem the packet has gone out */
2025 hpsb_iso_packet_sent(iso, cycle, event != 0x11);
2027 /* reset the DMA descriptor for next time */
2028 cmd->output_last.status = 0;
2031 if (wake)
2032 hpsb_iso_wake(iso);
2035 static int ohci_iso_xmit_queue(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
2037 struct ohci_iso_xmit *xmit = iso->hostdata;
2038 struct ti_ohci *ohci = xmit->ohci;
2040 int next_i, prev_i;
2041 struct iso_xmit_cmd *next, *prev;
2043 unsigned int offset;
2044 unsigned short len;
2045 unsigned char tag, sy;
2047 /* check that the packet doesn't cross a page boundary
2048 (we could allow this if we added OUTPUT_MORE descriptor support) */
2049 if (cross_bound(info->offset, info->len)) {
2050 PRINT(KERN_ERR,
2051 "rawiso xmit: packet %u crosses a page boundary",
2052 iso->first_packet);
2053 return -EINVAL;
2056 offset = info->offset;
2057 len = info->len;
2058 tag = info->tag;
2059 sy = info->sy;
2061 /* sync up the card's view of the buffer */
2062 dma_region_sync_for_device(&iso->data_buf, offset, len);
2064 /* append first_packet to the DMA chain */
2065 /* by linking the previous descriptor to it */
2066 /* (next will become the new end of the DMA chain) */
2068 next_i = iso->first_packet;
2069 prev_i = (next_i == 0) ? (iso->buf_packets - 1) : (next_i - 1);
2071 next = dma_region_i(&xmit->prog, struct iso_xmit_cmd, next_i);
2072 prev = dma_region_i(&xmit->prog, struct iso_xmit_cmd, prev_i);
2074 /* set up the OUTPUT_MORE_IMMEDIATE descriptor */
2075 memset(next, 0, sizeof(struct iso_xmit_cmd));
2076 next->output_more_immediate.control = cpu_to_le32(0x02000008);
2078 /* ISO packet header is embedded in the OUTPUT_MORE_IMMEDIATE */
2080 /* tcode = 0xA, and sy */
2081 next->iso_hdr[0] = 0xA0 | (sy & 0xF);
2083 /* tag and channel number */
2084 next->iso_hdr[1] = (tag << 6) | (iso->channel & 0x3F);
2086 /* transmission speed */
2087 next->iso_hdr[2] = iso->speed & 0x7;
2089 /* payload size */
2090 next->iso_hdr[6] = len & 0xFF;
2091 next->iso_hdr[7] = len >> 8;
2093 /* set up the OUTPUT_LAST */
2094 next->output_last.control = cpu_to_le32(1 << 28);
2095 next->output_last.control |= cpu_to_le32(1 << 27); /* update timeStamp */
2096 next->output_last.control |= cpu_to_le32(3 << 20); /* want interrupt */
2097 next->output_last.control |= cpu_to_le32(3 << 18); /* enable branch */
2098 next->output_last.control |= cpu_to_le32(len);
2100 /* payload bus address */
2101 next->output_last.address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, offset));
2103 /* leave branchAddress at zero for now */
2105 /* re-write the previous DMA descriptor to chain to this one */
2107 /* set prev branch address to point to next (Z=3) */
2108 prev->output_last.branchAddress = cpu_to_le32(
2109 dma_prog_region_offset_to_bus(&xmit->prog, sizeof(struct iso_xmit_cmd) * next_i) | 3);
2111 /* disable interrupt, unless required by the IRQ interval */
2112 if (prev_i % iso->irq_interval) {
2113 prev->output_last.control &= cpu_to_le32(~(3 << 20)); /* no interrupt */
2114 } else {
2115 prev->output_last.control |= cpu_to_le32(3 << 20); /* enable interrupt */
2118 wmb();
2120 /* wake DMA in case it is sleeping */
2121 reg_write(xmit->ohci, xmit->ContextControlSet, 1 << 12);
2123 /* issue a dummy read of the cycle timer to force all PCI
2124 writes to be posted immediately */
2125 mb();
2126 reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer);
2128 return 0;
2131 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle)
2133 struct ohci_iso_xmit *xmit = iso->hostdata;
2134 struct ti_ohci *ohci = xmit->ohci;
2136 /* clear out the control register */
2137 reg_write(xmit->ohci, xmit->ContextControlClear, 0xFFFFFFFF);
2138 wmb();
2140 /* address and length of first descriptor block (Z=3) */
2141 reg_write(xmit->ohci, xmit->CommandPtr,
2142 dma_prog_region_offset_to_bus(&xmit->prog, iso->pkt_dma * sizeof(struct iso_xmit_cmd)) | 3);
2144 /* cycle match */
2145 if (cycle != -1) {
2146 u32 start = cycle & 0x1FFF;
2148 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
2149 just snarf them from the current time */
2150 u32 seconds = reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
2152 /* advance one second to give some extra time for DMA to start */
2153 seconds += 1;
2155 start |= (seconds & 3) << 13;
2157 reg_write(xmit->ohci, xmit->ContextControlSet, 0x80000000 | (start << 16));
2160 /* enable interrupts */
2161 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskSet, 1 << xmit->task.context);
2163 /* run */
2164 reg_write(xmit->ohci, xmit->ContextControlSet, 0x8000);
2165 mb();
2167 /* wait 100 usec to give the card time to go active */
2168 udelay(100);
2170 /* check the RUN bit */
2171 if (!(reg_read(xmit->ohci, xmit->ContextControlSet) & 0x8000)) {
2172 PRINT(KERN_ERR, "Error starting IT DMA (ContextControl 0x%08x)\n",
2173 reg_read(xmit->ohci, xmit->ContextControlSet));
2174 return -1;
2177 return 0;
2180 static int ohci_isoctl(struct hpsb_iso *iso, enum isoctl_cmd cmd, unsigned long arg)
2183 switch(cmd) {
2184 case XMIT_INIT:
2185 return ohci_iso_xmit_init(iso);
2186 case XMIT_START:
2187 return ohci_iso_xmit_start(iso, arg);
2188 case XMIT_STOP:
2189 ohci_iso_xmit_stop(iso);
2190 return 0;
2191 case XMIT_QUEUE:
2192 return ohci_iso_xmit_queue(iso, (struct hpsb_iso_packet_info*) arg);
2193 case XMIT_SHUTDOWN:
2194 ohci_iso_xmit_shutdown(iso);
2195 return 0;
2197 case RECV_INIT:
2198 return ohci_iso_recv_init(iso);
2199 case RECV_START: {
2200 int *args = (int*) arg;
2201 return ohci_iso_recv_start(iso, args[0], args[1], args[2]);
2203 case RECV_STOP:
2204 ohci_iso_recv_stop(iso);
2205 return 0;
2206 case RECV_RELEASE:
2207 ohci_iso_recv_release(iso, (struct hpsb_iso_packet_info*) arg);
2208 return 0;
2209 case RECV_FLUSH:
2210 ohci_iso_recv_task((unsigned long) iso);
2211 return 0;
2212 case RECV_SHUTDOWN:
2213 ohci_iso_recv_shutdown(iso);
2214 return 0;
2215 case RECV_LISTEN_CHANNEL:
2216 ohci_iso_recv_change_channel(iso, arg, 1);
2217 return 0;
2218 case RECV_UNLISTEN_CHANNEL:
2219 ohci_iso_recv_change_channel(iso, arg, 0);
2220 return 0;
2221 case RECV_SET_CHANNEL_MASK:
2222 ohci_iso_recv_set_channel_mask(iso, *((u64*) arg));
2223 return 0;
2225 default:
2226 PRINT_G(KERN_ERR, "ohci_isoctl cmd %d not implemented yet",
2227 cmd);
2228 break;
2230 return -EINVAL;
2233 /***************************************
2234 * IEEE-1394 functionality section END *
2235 ***************************************/
2238 /********************************************************
2239 * Global stuff (interrupt handler, init/shutdown code) *
2240 ********************************************************/
2242 static void dma_trm_reset(struct dma_trm_ctx *d)
2244 unsigned long flags;
2245 LIST_HEAD(packet_list);
2246 struct ti_ohci *ohci = d->ohci;
2247 struct hpsb_packet *packet, *ptmp;
2249 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
2251 /* Lock the context, reset it and release it. Move the packets
2252 * that were pending in the context to packet_list and free
2253 * them after releasing the lock. */
2255 spin_lock_irqsave(&d->lock, flags);
2257 list_splice(&d->fifo_list, &packet_list);
2258 list_splice(&d->pending_list, &packet_list);
2259 INIT_LIST_HEAD(&d->fifo_list);
2260 INIT_LIST_HEAD(&d->pending_list);
2262 d->branchAddrPtr = NULL;
2263 d->sent_ind = d->prg_ind;
2264 d->free_prgs = d->num_desc;
2266 spin_unlock_irqrestore(&d->lock, flags);
2268 if (list_empty(&packet_list))
2269 return;
2271 PRINT(KERN_INFO, "AT dma reset ctx=%d, aborting transmission", d->ctx);
2273 /* Now process subsystem callbacks for the packets from this
2274 * context. */
2275 list_for_each_entry_safe(packet, ptmp, &packet_list, driver_list) {
2276 list_del_init(&packet->driver_list);
2277 hpsb_packet_sent(ohci->host, packet, ACKX_ABORTED);
2281 static void ohci_schedule_iso_tasklets(struct ti_ohci *ohci,
2282 quadlet_t rx_event,
2283 quadlet_t tx_event)
2285 struct ohci1394_iso_tasklet *t;
2286 unsigned long mask;
2288 spin_lock(&ohci->iso_tasklet_list_lock);
2290 list_for_each_entry(t, &ohci->iso_tasklet_list, link) {
2291 mask = 1 << t->context;
2293 if (t->type == OHCI_ISO_TRANSMIT && tx_event & mask)
2294 tasklet_schedule(&t->tasklet);
2295 else if (rx_event & mask)
2296 tasklet_schedule(&t->tasklet);
2299 spin_unlock(&ohci->iso_tasklet_list_lock);
2303 static irqreturn_t ohci_irq_handler(int irq, void *dev_id,
2304 struct pt_regs *regs_are_unused)
2306 quadlet_t event, node_id;
2307 struct ti_ohci *ohci = (struct ti_ohci *)dev_id;
2308 struct hpsb_host *host = ohci->host;
2309 int phyid = -1, isroot = 0;
2310 unsigned long flags;
2312 /* Read and clear the interrupt event register. Don't clear
2313 * the busReset event, though. This is done when we get the
2314 * selfIDComplete interrupt. */
2315 spin_lock_irqsave(&ohci->event_lock, flags);
2316 event = reg_read(ohci, OHCI1394_IntEventClear);
2317 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
2318 spin_unlock_irqrestore(&ohci->event_lock, flags);
2320 if (!event)
2321 return IRQ_NONE;
2323 /* If event is ~(u32)0 cardbus card was ejected. In this case
2324 * we just return, and clean up in the ohci1394_pci_remove
2325 * function. */
2326 if (event == ~(u32) 0) {
2327 DBGMSG("Device removed.");
2328 return IRQ_NONE;
2331 DBGMSG("IntEvent: %08x", event);
2333 if (event & OHCI1394_unrecoverableError) {
2334 int ctx;
2335 PRINT(KERN_ERR, "Unrecoverable error!");
2337 if (reg_read(ohci, OHCI1394_AsReqTrContextControlSet) & 0x800)
2338 PRINT(KERN_ERR, "Async Req Tx Context died: "
2339 "ctrl[%08x] cmdptr[%08x]",
2340 reg_read(ohci, OHCI1394_AsReqTrContextControlSet),
2341 reg_read(ohci, OHCI1394_AsReqTrCommandPtr));
2343 if (reg_read(ohci, OHCI1394_AsRspTrContextControlSet) & 0x800)
2344 PRINT(KERN_ERR, "Async Rsp Tx Context died: "
2345 "ctrl[%08x] cmdptr[%08x]",
2346 reg_read(ohci, OHCI1394_AsRspTrContextControlSet),
2347 reg_read(ohci, OHCI1394_AsRspTrCommandPtr));
2349 if (reg_read(ohci, OHCI1394_AsReqRcvContextControlSet) & 0x800)
2350 PRINT(KERN_ERR, "Async Req Rcv Context died: "
2351 "ctrl[%08x] cmdptr[%08x]",
2352 reg_read(ohci, OHCI1394_AsReqRcvContextControlSet),
2353 reg_read(ohci, OHCI1394_AsReqRcvCommandPtr));
2355 if (reg_read(ohci, OHCI1394_AsRspRcvContextControlSet) & 0x800)
2356 PRINT(KERN_ERR, "Async Rsp Rcv Context died: "
2357 "ctrl[%08x] cmdptr[%08x]",
2358 reg_read(ohci, OHCI1394_AsRspRcvContextControlSet),
2359 reg_read(ohci, OHCI1394_AsRspRcvCommandPtr));
2361 for (ctx = 0; ctx < ohci->nb_iso_xmit_ctx; ctx++) {
2362 if (reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)) & 0x800)
2363 PRINT(KERN_ERR, "Iso Xmit %d Context died: "
2364 "ctrl[%08x] cmdptr[%08x]", ctx,
2365 reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)),
2366 reg_read(ohci, OHCI1394_IsoXmitCommandPtr + (16 * ctx)));
2369 for (ctx = 0; ctx < ohci->nb_iso_rcv_ctx; ctx++) {
2370 if (reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)) & 0x800)
2371 PRINT(KERN_ERR, "Iso Recv %d Context died: "
2372 "ctrl[%08x] cmdptr[%08x] match[%08x]", ctx,
2373 reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)),
2374 reg_read(ohci, OHCI1394_IsoRcvCommandPtr + (32 * ctx)),
2375 reg_read(ohci, OHCI1394_IsoRcvContextMatch + (32 * ctx)));
2378 event &= ~OHCI1394_unrecoverableError;
2381 if (event & OHCI1394_cycleInconsistent) {
2382 /* We subscribe to the cycleInconsistent event only to
2383 * clear the corresponding event bit... otherwise,
2384 * isochronous cycleMatch DMA won't work. */
2385 DBGMSG("OHCI1394_cycleInconsistent");
2386 event &= ~OHCI1394_cycleInconsistent;
2389 if (event & OHCI1394_busReset) {
2390 /* The busReset event bit can't be cleared during the
2391 * selfID phase, so we disable busReset interrupts, to
2392 * avoid burying the cpu in interrupt requests. */
2393 spin_lock_irqsave(&ohci->event_lock, flags);
2394 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2396 if (ohci->check_busreset) {
2397 int loop_count = 0;
2399 udelay(10);
2401 while (reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
2402 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2404 spin_unlock_irqrestore(&ohci->event_lock, flags);
2405 udelay(10);
2406 spin_lock_irqsave(&ohci->event_lock, flags);
2408 /* The loop counter check is to prevent the driver
2409 * from remaining in this state forever. For the
2410 * initial bus reset, the loop continues for ever
2411 * and the system hangs, until some device is plugged-in
2412 * or out manually into a port! The forced reset seems
2413 * to solve this problem. This mainly effects nForce2. */
2414 if (loop_count > 10000) {
2415 ohci_devctl(host, RESET_BUS, LONG_RESET);
2416 DBGMSG("Detected bus-reset loop. Forced a bus reset!");
2417 loop_count = 0;
2420 loop_count++;
2423 spin_unlock_irqrestore(&ohci->event_lock, flags);
2424 if (!host->in_bus_reset) {
2425 DBGMSG("irq_handler: Bus reset requested");
2427 /* Subsystem call */
2428 hpsb_bus_reset(ohci->host);
2430 event &= ~OHCI1394_busReset;
2433 if (event & OHCI1394_reqTxComplete) {
2434 struct dma_trm_ctx *d = &ohci->at_req_context;
2435 DBGMSG("Got reqTxComplete interrupt "
2436 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2437 if (reg_read(ohci, d->ctrlSet) & 0x800)
2438 ohci1394_stop_context(ohci, d->ctrlClear,
2439 "reqTxComplete");
2440 else
2441 dma_trm_tasklet((unsigned long)d);
2442 //tasklet_schedule(&d->task);
2443 event &= ~OHCI1394_reqTxComplete;
2445 if (event & OHCI1394_respTxComplete) {
2446 struct dma_trm_ctx *d = &ohci->at_resp_context;
2447 DBGMSG("Got respTxComplete interrupt "
2448 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2449 if (reg_read(ohci, d->ctrlSet) & 0x800)
2450 ohci1394_stop_context(ohci, d->ctrlClear,
2451 "respTxComplete");
2452 else
2453 tasklet_schedule(&d->task);
2454 event &= ~OHCI1394_respTxComplete;
2456 if (event & OHCI1394_RQPkt) {
2457 struct dma_rcv_ctx *d = &ohci->ar_req_context;
2458 DBGMSG("Got RQPkt interrupt status=0x%08X",
2459 reg_read(ohci, d->ctrlSet));
2460 if (reg_read(ohci, d->ctrlSet) & 0x800)
2461 ohci1394_stop_context(ohci, d->ctrlClear, "RQPkt");
2462 else
2463 tasklet_schedule(&d->task);
2464 event &= ~OHCI1394_RQPkt;
2466 if (event & OHCI1394_RSPkt) {
2467 struct dma_rcv_ctx *d = &ohci->ar_resp_context;
2468 DBGMSG("Got RSPkt interrupt status=0x%08X",
2469 reg_read(ohci, d->ctrlSet));
2470 if (reg_read(ohci, d->ctrlSet) & 0x800)
2471 ohci1394_stop_context(ohci, d->ctrlClear, "RSPkt");
2472 else
2473 tasklet_schedule(&d->task);
2474 event &= ~OHCI1394_RSPkt;
2476 if (event & OHCI1394_isochRx) {
2477 quadlet_t rx_event;
2479 rx_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
2480 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, rx_event);
2481 ohci_schedule_iso_tasklets(ohci, rx_event, 0);
2482 event &= ~OHCI1394_isochRx;
2484 if (event & OHCI1394_isochTx) {
2485 quadlet_t tx_event;
2487 tx_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
2488 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, tx_event);
2489 ohci_schedule_iso_tasklets(ohci, 0, tx_event);
2490 event &= ~OHCI1394_isochTx;
2492 if (event & OHCI1394_selfIDComplete) {
2493 if (host->in_bus_reset) {
2494 node_id = reg_read(ohci, OHCI1394_NodeID);
2496 if (!(node_id & 0x80000000)) {
2497 PRINT(KERN_ERR,
2498 "SelfID received, but NodeID invalid "
2499 "(probably new bus reset occurred): %08X",
2500 node_id);
2501 goto selfid_not_valid;
2504 phyid = node_id & 0x0000003f;
2505 isroot = (node_id & 0x40000000) != 0;
2507 DBGMSG("SelfID interrupt received "
2508 "(phyid %d, %s)", phyid,
2509 (isroot ? "root" : "not root"));
2511 handle_selfid(ohci, host, phyid, isroot);
2513 /* Clear the bus reset event and re-enable the
2514 * busReset interrupt. */
2515 spin_lock_irqsave(&ohci->event_lock, flags);
2516 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2517 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2518 spin_unlock_irqrestore(&ohci->event_lock, flags);
2520 /* Accept Physical requests from all nodes. */
2521 reg_write(ohci,OHCI1394_AsReqFilterHiSet, 0xffffffff);
2522 reg_write(ohci,OHCI1394_AsReqFilterLoSet, 0xffffffff);
2524 /* Turn on phys dma reception.
2526 * TODO: Enable some sort of filtering management.
2528 if (phys_dma) {
2529 reg_write(ohci,OHCI1394_PhyReqFilterHiSet, 0xffffffff);
2530 reg_write(ohci,OHCI1394_PhyReqFilterLoSet, 0xffffffff);
2531 reg_write(ohci,OHCI1394_PhyUpperBound, 0xffff0000);
2532 } else {
2533 reg_write(ohci,OHCI1394_PhyReqFilterHiSet, 0x00000000);
2534 reg_write(ohci,OHCI1394_PhyReqFilterLoSet, 0x00000000);
2537 DBGMSG("PhyReqFilter=%08x%08x",
2538 reg_read(ohci,OHCI1394_PhyReqFilterHiSet),
2539 reg_read(ohci,OHCI1394_PhyReqFilterLoSet));
2541 hpsb_selfid_complete(host, phyid, isroot);
2542 } else
2543 PRINT(KERN_ERR,
2544 "SelfID received outside of bus reset sequence");
2546 selfid_not_valid:
2547 event &= ~OHCI1394_selfIDComplete;
2550 /* Make sure we handle everything, just in case we accidentally
2551 * enabled an interrupt that we didn't write a handler for. */
2552 if (event)
2553 PRINT(KERN_ERR, "Unhandled interrupt(s) 0x%08x",
2554 event);
2556 return IRQ_HANDLED;
2559 /* Put the buffer back into the dma context */
2560 static void insert_dma_buffer(struct dma_rcv_ctx *d, int idx)
2562 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2563 DBGMSG("Inserting dma buf ctx=%d idx=%d", d->ctx, idx);
2565 d->prg_cpu[idx]->status = cpu_to_le32(d->buf_size);
2566 d->prg_cpu[idx]->branchAddress &= le32_to_cpu(0xfffffff0);
2567 idx = (idx + d->num_desc - 1 ) % d->num_desc;
2568 d->prg_cpu[idx]->branchAddress |= le32_to_cpu(0x00000001);
2570 /* To avoid a race, ensure 1394 interface hardware sees the inserted
2571 * context program descriptors before it sees the wakeup bit set. */
2572 wmb();
2574 /* wake up the dma context if necessary */
2575 if (!(reg_read(ohci, d->ctrlSet) & 0x400)) {
2576 PRINT(KERN_INFO,
2577 "Waking dma ctx=%d ... processing is probably too slow",
2578 d->ctx);
2581 /* do this always, to avoid race condition */
2582 reg_write(ohci, d->ctrlSet, 0x1000);
2585 #define cond_le32_to_cpu(data, noswap) \
2586 (noswap ? data : le32_to_cpu(data))
2588 static const int TCODE_SIZE[16] = {20, 0, 16, -1, 16, 20, 20, 0,
2589 -1, 0, -1, 0, -1, -1, 16, -1};
2592 * Determine the length of a packet in the buffer
2593 * Optimization suggested by Pascal Drolet <pascal.drolet@informission.ca>
2595 static __inline__ int packet_length(struct dma_rcv_ctx *d, int idx, quadlet_t *buf_ptr,
2596 int offset, unsigned char tcode, int noswap)
2598 int length = -1;
2600 if (d->type == DMA_CTX_ASYNC_REQ || d->type == DMA_CTX_ASYNC_RESP) {
2601 length = TCODE_SIZE[tcode];
2602 if (length == 0) {
2603 if (offset + 12 >= d->buf_size) {
2604 length = (cond_le32_to_cpu(d->buf_cpu[(idx + 1) % d->num_desc]
2605 [3 - ((d->buf_size - offset) >> 2)], noswap) >> 16);
2606 } else {
2607 length = (cond_le32_to_cpu(buf_ptr[3], noswap) >> 16);
2609 length += 20;
2611 } else if (d->type == DMA_CTX_ISO) {
2612 /* Assumption: buffer fill mode with header/trailer */
2613 length = (cond_le32_to_cpu(buf_ptr[0], noswap) >> 16) + 8;
2616 if (length > 0 && length % 4)
2617 length += 4 - (length % 4);
2619 return length;
2622 /* Tasklet that processes dma receive buffers */
2623 static void dma_rcv_tasklet (unsigned long data)
2625 struct dma_rcv_ctx *d = (struct dma_rcv_ctx*)data;
2626 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2627 unsigned int split_left, idx, offset, rescount;
2628 unsigned char tcode;
2629 int length, bytes_left, ack;
2630 unsigned long flags;
2631 quadlet_t *buf_ptr;
2632 char *split_ptr;
2633 char msg[256];
2635 spin_lock_irqsave(&d->lock, flags);
2637 idx = d->buf_ind;
2638 offset = d->buf_offset;
2639 buf_ptr = d->buf_cpu[idx] + offset/4;
2641 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2642 bytes_left = d->buf_size - rescount - offset;
2644 while (bytes_left > 0) {
2645 tcode = (cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming) >> 4) & 0xf;
2647 /* packet_length() will return < 4 for an error */
2648 length = packet_length(d, idx, buf_ptr, offset, tcode, ohci->no_swap_incoming);
2650 if (length < 4) { /* something is wrong */
2651 sprintf(msg,"Unexpected tcode 0x%x(0x%08x) in AR ctx=%d, length=%d",
2652 tcode, cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming),
2653 d->ctx, length);
2654 ohci1394_stop_context(ohci, d->ctrlClear, msg);
2655 spin_unlock_irqrestore(&d->lock, flags);
2656 return;
2659 /* The first case is where we have a packet that crosses
2660 * over more than one descriptor. The next case is where
2661 * it's all in the first descriptor. */
2662 if ((offset + length) > d->buf_size) {
2663 DBGMSG("Split packet rcv'd");
2664 if (length > d->split_buf_size) {
2665 ohci1394_stop_context(ohci, d->ctrlClear,
2666 "Split packet size exceeded");
2667 d->buf_ind = idx;
2668 d->buf_offset = offset;
2669 spin_unlock_irqrestore(&d->lock, flags);
2670 return;
2673 if (le32_to_cpu(d->prg_cpu[(idx+1)%d->num_desc]->status)
2674 == d->buf_size) {
2675 /* Other part of packet not written yet.
2676 * this should never happen I think
2677 * anyway we'll get it on the next call. */
2678 PRINT(KERN_INFO,
2679 "Got only half a packet!");
2680 d->buf_ind = idx;
2681 d->buf_offset = offset;
2682 spin_unlock_irqrestore(&d->lock, flags);
2683 return;
2686 split_left = length;
2687 split_ptr = (char *)d->spb;
2688 memcpy(split_ptr,buf_ptr,d->buf_size-offset);
2689 split_left -= d->buf_size-offset;
2690 split_ptr += d->buf_size-offset;
2691 insert_dma_buffer(d, idx);
2692 idx = (idx+1) % d->num_desc;
2693 buf_ptr = d->buf_cpu[idx];
2694 offset=0;
2696 while (split_left >= d->buf_size) {
2697 memcpy(split_ptr,buf_ptr,d->buf_size);
2698 split_ptr += d->buf_size;
2699 split_left -= d->buf_size;
2700 insert_dma_buffer(d, idx);
2701 idx = (idx+1) % d->num_desc;
2702 buf_ptr = d->buf_cpu[idx];
2705 if (split_left > 0) {
2706 memcpy(split_ptr, buf_ptr, split_left);
2707 offset = split_left;
2708 buf_ptr += offset/4;
2710 } else {
2711 DBGMSG("Single packet rcv'd");
2712 memcpy(d->spb, buf_ptr, length);
2713 offset += length;
2714 buf_ptr += length/4;
2715 if (offset==d->buf_size) {
2716 insert_dma_buffer(d, idx);
2717 idx = (idx+1) % d->num_desc;
2718 buf_ptr = d->buf_cpu[idx];
2719 offset=0;
2723 /* We get one phy packet to the async descriptor for each
2724 * bus reset. We always ignore it. */
2725 if (tcode != OHCI1394_TCODE_PHY) {
2726 if (!ohci->no_swap_incoming)
2727 packet_swab(d->spb, tcode);
2728 DBGMSG("Packet received from node"
2729 " %d ack=0x%02X spd=%d tcode=0x%X"
2730 " length=%d ctx=%d tlabel=%d",
2731 (d->spb[1]>>16)&0x3f,
2732 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f,
2733 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>21)&0x3,
2734 tcode, length, d->ctx,
2735 (cond_le32_to_cpu(d->spb[0], ohci->no_swap_incoming)>>10)&0x3f);
2737 ack = (((cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f)
2738 == 0x11) ? 1 : 0;
2740 hpsb_packet_received(ohci->host, d->spb,
2741 length-4, ack);
2743 #ifdef OHCI1394_DEBUG
2744 else
2745 PRINT (KERN_DEBUG, "Got phy packet ctx=%d ... discarded",
2746 d->ctx);
2747 #endif
2749 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2751 bytes_left = d->buf_size - rescount - offset;
2755 d->buf_ind = idx;
2756 d->buf_offset = offset;
2758 spin_unlock_irqrestore(&d->lock, flags);
2761 /* Bottom half that processes sent packets */
2762 static void dma_trm_tasklet (unsigned long data)
2764 struct dma_trm_ctx *d = (struct dma_trm_ctx*)data;
2765 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2766 struct hpsb_packet *packet, *ptmp;
2767 unsigned long flags;
2768 u32 status, ack;
2769 size_t datasize;
2771 spin_lock_irqsave(&d->lock, flags);
2773 list_for_each_entry_safe(packet, ptmp, &d->fifo_list, driver_list) {
2774 datasize = packet->data_size;
2775 if (datasize && packet->type != hpsb_raw)
2776 status = le32_to_cpu(
2777 d->prg_cpu[d->sent_ind]->end.status) >> 16;
2778 else
2779 status = le32_to_cpu(
2780 d->prg_cpu[d->sent_ind]->begin.status) >> 16;
2782 if (status == 0)
2783 /* this packet hasn't been sent yet*/
2784 break;
2786 #ifdef OHCI1394_DEBUG
2787 if (datasize)
2788 if (((le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf) == 0xa)
2789 DBGMSG("Stream packet sent to channel %d tcode=0x%X "
2790 "ack=0x%X spd=%d dataLength=%d ctx=%d",
2791 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>8)&0x3f,
2792 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2793 status&0x1f, (status>>5)&0x3,
2794 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16,
2795 d->ctx);
2796 else
2797 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2798 "%d ack=0x%X spd=%d dataLength=%d ctx=%d",
2799 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16)&0x3f,
2800 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2801 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>10)&0x3f,
2802 status&0x1f, (status>>5)&0x3,
2803 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3])>>16,
2804 d->ctx);
2805 else
2806 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2807 "%d ack=0x%X spd=%d data=0x%08X ctx=%d",
2808 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])
2809 >>16)&0x3f,
2810 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2811 >>4)&0xf,
2812 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2813 >>10)&0x3f,
2814 status&0x1f, (status>>5)&0x3,
2815 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3]),
2816 d->ctx);
2817 #endif
2819 if (status & 0x10) {
2820 ack = status & 0xf;
2821 } else {
2822 switch (status & 0x1f) {
2823 case EVT_NO_STATUS: /* that should never happen */
2824 case EVT_RESERVED_A: /* that should never happen */
2825 case EVT_LONG_PACKET: /* that should never happen */
2826 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2827 ack = ACKX_SEND_ERROR;
2828 break;
2829 case EVT_MISSING_ACK:
2830 ack = ACKX_TIMEOUT;
2831 break;
2832 case EVT_UNDERRUN:
2833 ack = ACKX_SEND_ERROR;
2834 break;
2835 case EVT_OVERRUN: /* that should never happen */
2836 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2837 ack = ACKX_SEND_ERROR;
2838 break;
2839 case EVT_DESCRIPTOR_READ:
2840 case EVT_DATA_READ:
2841 case EVT_DATA_WRITE:
2842 ack = ACKX_SEND_ERROR;
2843 break;
2844 case EVT_BUS_RESET: /* that should never happen */
2845 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2846 ack = ACKX_SEND_ERROR;
2847 break;
2848 case EVT_TIMEOUT:
2849 ack = ACKX_TIMEOUT;
2850 break;
2851 case EVT_TCODE_ERR:
2852 ack = ACKX_SEND_ERROR;
2853 break;
2854 case EVT_RESERVED_B: /* that should never happen */
2855 case EVT_RESERVED_C: /* that should never happen */
2856 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2857 ack = ACKX_SEND_ERROR;
2858 break;
2859 case EVT_UNKNOWN:
2860 case EVT_FLUSHED:
2861 ack = ACKX_SEND_ERROR;
2862 break;
2863 default:
2864 PRINT(KERN_ERR, "Unhandled OHCI evt_* error 0x%x", status & 0x1f);
2865 ack = ACKX_SEND_ERROR;
2866 BUG();
2870 list_del_init(&packet->driver_list);
2871 hpsb_packet_sent(ohci->host, packet, ack);
2873 if (datasize) {
2874 pci_unmap_single(ohci->dev,
2875 cpu_to_le32(d->prg_cpu[d->sent_ind]->end.address),
2876 datasize, PCI_DMA_TODEVICE);
2877 OHCI_DMA_FREE("single Xmit data packet");
2880 d->sent_ind = (d->sent_ind+1)%d->num_desc;
2881 d->free_prgs++;
2884 dma_trm_flush(ohci, d);
2886 spin_unlock_irqrestore(&d->lock, flags);
2889 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d)
2891 if (d->ctrlClear) {
2892 ohci1394_stop_context(d->ohci, d->ctrlClear, NULL);
2894 if (d->type == DMA_CTX_ISO) {
2895 /* disable interrupts */
2896 reg_write(d->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << d->ctx);
2897 ohci1394_unregister_iso_tasklet(d->ohci, &d->ohci->ir_legacy_tasklet);
2898 } else {
2899 tasklet_kill(&d->task);
2905 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d)
2907 int i;
2908 struct ti_ohci *ohci = d->ohci;
2910 if (ohci == NULL)
2911 return;
2913 DBGMSG("Freeing dma_rcv_ctx %d", d->ctx);
2915 if (d->buf_cpu) {
2916 for (i=0; i<d->num_desc; i++)
2917 if (d->buf_cpu[i] && d->buf_bus[i]) {
2918 pci_free_consistent(
2919 ohci->dev, d->buf_size,
2920 d->buf_cpu[i], d->buf_bus[i]);
2921 OHCI_DMA_FREE("consistent dma_rcv buf[%d]", i);
2923 kfree(d->buf_cpu);
2924 kfree(d->buf_bus);
2926 if (d->prg_cpu) {
2927 for (i=0; i<d->num_desc; i++)
2928 if (d->prg_cpu[i] && d->prg_bus[i]) {
2929 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
2930 OHCI_DMA_FREE("consistent dma_rcv prg[%d]", i);
2932 pci_pool_destroy(d->prg_pool);
2933 OHCI_DMA_FREE("dma_rcv prg pool");
2934 kfree(d->prg_cpu);
2935 kfree(d->prg_bus);
2937 kfree(d->spb);
2939 /* Mark this context as freed. */
2940 d->ohci = NULL;
2943 static int
2944 alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
2945 enum context_type type, int ctx, int num_desc,
2946 int buf_size, int split_buf_size, int context_base)
2948 int i, len;
2949 static int num_allocs;
2950 static char pool_name[20];
2952 d->ohci = ohci;
2953 d->type = type;
2954 d->ctx = ctx;
2956 d->num_desc = num_desc;
2957 d->buf_size = buf_size;
2958 d->split_buf_size = split_buf_size;
2960 d->ctrlSet = 0;
2961 d->ctrlClear = 0;
2962 d->cmdPtr = 0;
2964 d->buf_cpu = kmalloc(d->num_desc * sizeof(quadlet_t*), GFP_ATOMIC);
2965 d->buf_bus = kmalloc(d->num_desc * sizeof(dma_addr_t), GFP_ATOMIC);
2967 if (d->buf_cpu == NULL || d->buf_bus == NULL) {
2968 PRINT(KERN_ERR, "Failed to allocate dma buffer");
2969 free_dma_rcv_ctx(d);
2970 return -ENOMEM;
2972 memset(d->buf_cpu, 0, d->num_desc * sizeof(quadlet_t*));
2973 memset(d->buf_bus, 0, d->num_desc * sizeof(dma_addr_t));
2975 d->prg_cpu = kmalloc(d->num_desc * sizeof(struct dma_cmd*),
2976 GFP_ATOMIC);
2977 d->prg_bus = kmalloc(d->num_desc * sizeof(dma_addr_t), GFP_ATOMIC);
2979 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
2980 PRINT(KERN_ERR, "Failed to allocate dma prg");
2981 free_dma_rcv_ctx(d);
2982 return -ENOMEM;
2984 memset(d->prg_cpu, 0, d->num_desc * sizeof(struct dma_cmd*));
2985 memset(d->prg_bus, 0, d->num_desc * sizeof(dma_addr_t));
2987 d->spb = kmalloc(d->split_buf_size, GFP_ATOMIC);
2989 if (d->spb == NULL) {
2990 PRINT(KERN_ERR, "Failed to allocate split buffer");
2991 free_dma_rcv_ctx(d);
2992 return -ENOMEM;
2995 len = sprintf(pool_name, "ohci1394_rcv_prg");
2996 sprintf(pool_name+len, "%d", num_allocs);
2997 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
2998 sizeof(struct dma_cmd), 4, 0);
2999 if(d->prg_pool == NULL)
3001 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3002 free_dma_rcv_ctx(d);
3003 return -ENOMEM;
3005 num_allocs++;
3007 OHCI_DMA_ALLOC("dma_rcv prg pool");
3009 for (i=0; i<d->num_desc; i++) {
3010 d->buf_cpu[i] = pci_alloc_consistent(ohci->dev,
3011 d->buf_size,
3012 d->buf_bus+i);
3013 OHCI_DMA_ALLOC("consistent dma_rcv buf[%d]", i);
3015 if (d->buf_cpu[i] != NULL) {
3016 memset(d->buf_cpu[i], 0, d->buf_size);
3017 } else {
3018 PRINT(KERN_ERR,
3019 "Failed to allocate dma buffer");
3020 free_dma_rcv_ctx(d);
3021 return -ENOMEM;
3024 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3025 OHCI_DMA_ALLOC("pool dma_rcv prg[%d]", i);
3027 if (d->prg_cpu[i] != NULL) {
3028 memset(d->prg_cpu[i], 0, sizeof(struct dma_cmd));
3029 } else {
3030 PRINT(KERN_ERR,
3031 "Failed to allocate dma prg");
3032 free_dma_rcv_ctx(d);
3033 return -ENOMEM;
3037 spin_lock_init(&d->lock);
3039 if (type == DMA_CTX_ISO) {
3040 ohci1394_init_iso_tasklet(&ohci->ir_legacy_tasklet,
3041 OHCI_ISO_MULTICHANNEL_RECEIVE,
3042 dma_rcv_tasklet, (unsigned long) d);
3043 } else {
3044 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3045 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3046 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3048 tasklet_init (&d->task, dma_rcv_tasklet, (unsigned long) d);
3051 return 0;
3054 static void free_dma_trm_ctx(struct dma_trm_ctx *d)
3056 int i;
3057 struct ti_ohci *ohci = d->ohci;
3059 if (ohci == NULL)
3060 return;
3062 DBGMSG("Freeing dma_trm_ctx %d", d->ctx);
3064 if (d->prg_cpu) {
3065 for (i=0; i<d->num_desc; i++)
3066 if (d->prg_cpu[i] && d->prg_bus[i]) {
3067 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
3068 OHCI_DMA_FREE("pool dma_trm prg[%d]", i);
3070 pci_pool_destroy(d->prg_pool);
3071 OHCI_DMA_FREE("dma_trm prg pool");
3072 kfree(d->prg_cpu);
3073 kfree(d->prg_bus);
3076 /* Mark this context as freed. */
3077 d->ohci = NULL;
3080 static int
3081 alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
3082 enum context_type type, int ctx, int num_desc,
3083 int context_base)
3085 int i, len;
3086 static char pool_name[20];
3087 static int num_allocs=0;
3089 d->ohci = ohci;
3090 d->type = type;
3091 d->ctx = ctx;
3092 d->num_desc = num_desc;
3093 d->ctrlSet = 0;
3094 d->ctrlClear = 0;
3095 d->cmdPtr = 0;
3097 d->prg_cpu = kmalloc(d->num_desc * sizeof(struct at_dma_prg*),
3098 GFP_KERNEL);
3099 d->prg_bus = kmalloc(d->num_desc * sizeof(dma_addr_t), GFP_KERNEL);
3101 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
3102 PRINT(KERN_ERR, "Failed to allocate at dma prg");
3103 free_dma_trm_ctx(d);
3104 return -ENOMEM;
3106 memset(d->prg_cpu, 0, d->num_desc * sizeof(struct at_dma_prg*));
3107 memset(d->prg_bus, 0, d->num_desc * sizeof(dma_addr_t));
3109 len = sprintf(pool_name, "ohci1394_trm_prg");
3110 sprintf(pool_name+len, "%d", num_allocs);
3111 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3112 sizeof(struct at_dma_prg), 4, 0);
3113 if (d->prg_pool == NULL) {
3114 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3115 free_dma_trm_ctx(d);
3116 return -ENOMEM;
3118 num_allocs++;
3120 OHCI_DMA_ALLOC("dma_rcv prg pool");
3122 for (i = 0; i < d->num_desc; i++) {
3123 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3124 OHCI_DMA_ALLOC("pool dma_trm prg[%d]", i);
3126 if (d->prg_cpu[i] != NULL) {
3127 memset(d->prg_cpu[i], 0, sizeof(struct at_dma_prg));
3128 } else {
3129 PRINT(KERN_ERR,
3130 "Failed to allocate at dma prg");
3131 free_dma_trm_ctx(d);
3132 return -ENOMEM;
3136 spin_lock_init(&d->lock);
3138 /* initialize tasklet */
3139 if (type == DMA_CTX_ISO) {
3140 ohci1394_init_iso_tasklet(&ohci->it_legacy_tasklet, OHCI_ISO_TRANSMIT,
3141 dma_trm_tasklet, (unsigned long) d);
3142 if (ohci1394_register_iso_tasklet(ohci,
3143 &ohci->it_legacy_tasklet) < 0) {
3144 PRINT(KERN_ERR, "No IT DMA context available");
3145 free_dma_trm_ctx(d);
3146 return -EBUSY;
3149 /* IT can be assigned to any context by register_iso_tasklet */
3150 d->ctx = ohci->it_legacy_tasklet.context;
3151 d->ctrlSet = OHCI1394_IsoXmitContextControlSet + 16 * d->ctx;
3152 d->ctrlClear = OHCI1394_IsoXmitContextControlClear + 16 * d->ctx;
3153 d->cmdPtr = OHCI1394_IsoXmitCommandPtr + 16 * d->ctx;
3154 } else {
3155 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3156 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3157 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3158 tasklet_init (&d->task, dma_trm_tasklet, (unsigned long)d);
3161 return 0;
3164 static void ohci_set_hw_config_rom(struct hpsb_host *host, quadlet_t *config_rom)
3166 struct ti_ohci *ohci = host->hostdata;
3168 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(config_rom[0]));
3169 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(config_rom[2]));
3171 memcpy(ohci->csr_config_rom_cpu, config_rom, OHCI_CONFIG_ROM_LEN);
3175 static quadlet_t ohci_hw_csr_reg(struct hpsb_host *host, int reg,
3176 quadlet_t data, quadlet_t compare)
3178 struct ti_ohci *ohci = host->hostdata;
3179 int i;
3181 reg_write(ohci, OHCI1394_CSRData, data);
3182 reg_write(ohci, OHCI1394_CSRCompareData, compare);
3183 reg_write(ohci, OHCI1394_CSRControl, reg & 0x3);
3185 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
3186 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
3187 break;
3189 mdelay(1);
3192 return reg_read(ohci, OHCI1394_CSRData);
3195 static struct hpsb_host_driver ohci1394_driver = {
3196 .owner = THIS_MODULE,
3197 .name = OHCI1394_DRIVER_NAME,
3198 .set_hw_config_rom = ohci_set_hw_config_rom,
3199 .transmit_packet = ohci_transmit,
3200 .devctl = ohci_devctl,
3201 .isoctl = ohci_isoctl,
3202 .hw_csr_reg = ohci_hw_csr_reg,
3207 /***********************************
3208 * PCI Driver Interface functions *
3209 ***********************************/
3211 #define FAIL(err, fmt, args...) \
3212 do { \
3213 PRINT_G(KERN_ERR, fmt , ## args); \
3214 ohci1394_pci_remove(dev); \
3215 return err; \
3216 } while (0)
3218 static int __devinit ohci1394_pci_probe(struct pci_dev *dev,
3219 const struct pci_device_id *ent)
3221 static int version_printed = 0;
3223 struct hpsb_host *host;
3224 struct ti_ohci *ohci; /* shortcut to currently handled device */
3225 unsigned long ohci_base;
3227 if (version_printed++ == 0)
3228 PRINT_G(KERN_INFO, "%s", version);
3230 if (pci_enable_device(dev))
3231 FAIL(-ENXIO, "Failed to enable OHCI hardware");
3232 pci_set_master(dev);
3234 host = hpsb_alloc_host(&ohci1394_driver, sizeof(struct ti_ohci), &dev->dev);
3235 if (!host) FAIL(-ENOMEM, "Failed to allocate host structure");
3237 ohci = host->hostdata;
3238 ohci->dev = dev;
3239 ohci->host = host;
3240 ohci->init_state = OHCI_INIT_ALLOC_HOST;
3241 host->pdev = dev;
3242 pci_set_drvdata(dev, ohci);
3244 /* We don't want hardware swapping */
3245 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3247 /* Some oddball Apple controllers do not order the selfid
3248 * properly, so we make up for it here. */
3249 #ifndef __LITTLE_ENDIAN
3250 /* XXX: Need a better way to check this. I'm wondering if we can
3251 * read the values of the OHCI1394_PCI_HCI_Control and the
3252 * noByteSwapData registers to see if they were not cleared to
3253 * zero. Should this work? Obviously it's not defined what these
3254 * registers will read when they aren't supported. Bleh! */
3255 if (dev->vendor == PCI_VENDOR_ID_APPLE &&
3256 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) {
3257 ohci->no_swap_incoming = 1;
3258 ohci->selfid_swap = 0;
3259 } else
3260 ohci->selfid_swap = 1;
3261 #endif
3264 #ifndef PCI_DEVICE_ID_NVIDIA_NFORCE2_FW
3265 #define PCI_DEVICE_ID_NVIDIA_NFORCE2_FW 0x006e
3266 #endif
3268 /* These chipsets require a bit of extra care when checking after
3269 * a busreset. */
3270 if ((dev->vendor == PCI_VENDOR_ID_APPLE &&
3271 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) ||
3272 (dev->vendor == PCI_VENDOR_ID_NVIDIA &&
3273 dev->device == PCI_DEVICE_ID_NVIDIA_NFORCE2_FW))
3274 ohci->check_busreset = 1;
3276 /* We hardwire the MMIO length, since some CardBus adaptors
3277 * fail to report the right length. Anyway, the ohci spec
3278 * clearly says it's 2kb, so this shouldn't be a problem. */
3279 ohci_base = pci_resource_start(dev, 0);
3280 if (pci_resource_len(dev, 0) != OHCI1394_REGISTER_SIZE)
3281 PRINT(KERN_WARNING, "Unexpected PCI resource length of %lx!",
3282 pci_resource_len(dev, 0));
3284 /* Seems PCMCIA handles this internally. Not sure why. Seems
3285 * pretty bogus to force a driver to special case this. */
3286 #ifndef PCMCIA
3287 if (!request_mem_region (ohci_base, OHCI1394_REGISTER_SIZE, OHCI1394_DRIVER_NAME))
3288 FAIL(-ENOMEM, "MMIO resource (0x%lx - 0x%lx) unavailable",
3289 ohci_base, ohci_base + OHCI1394_REGISTER_SIZE);
3290 #endif
3291 ohci->init_state = OHCI_INIT_HAVE_MEM_REGION;
3293 ohci->registers = ioremap(ohci_base, OHCI1394_REGISTER_SIZE);
3294 if (ohci->registers == NULL)
3295 FAIL(-ENXIO, "Failed to remap registers - card not accessible");
3296 ohci->init_state = OHCI_INIT_HAVE_IOMAPPING;
3297 DBGMSG("Remapped memory spaces reg 0x%p", ohci->registers);
3299 /* csr_config rom allocation */
3300 ohci->csr_config_rom_cpu =
3301 pci_alloc_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3302 &ohci->csr_config_rom_bus);
3303 OHCI_DMA_ALLOC("consistent csr_config_rom");
3304 if (ohci->csr_config_rom_cpu == NULL)
3305 FAIL(-ENOMEM, "Failed to allocate buffer config rom");
3306 ohci->init_state = OHCI_INIT_HAVE_CONFIG_ROM_BUFFER;
3308 /* self-id dma buffer allocation */
3309 ohci->selfid_buf_cpu =
3310 pci_alloc_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3311 &ohci->selfid_buf_bus);
3312 OHCI_DMA_ALLOC("consistent selfid_buf");
3314 if (ohci->selfid_buf_cpu == NULL)
3315 FAIL(-ENOMEM, "Failed to allocate DMA buffer for self-id packets");
3316 ohci->init_state = OHCI_INIT_HAVE_SELFID_BUFFER;
3318 if ((unsigned long)ohci->selfid_buf_cpu & 0x1fff)
3319 PRINT(KERN_INFO, "SelfID buffer %p is not aligned on "
3320 "8Kb boundary... may cause problems on some CXD3222 chip",
3321 ohci->selfid_buf_cpu);
3323 /* No self-id errors at startup */
3324 ohci->self_id_errors = 0;
3326 ohci->init_state = OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE;
3327 /* AR DMA request context allocation */
3328 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_req_context,
3329 DMA_CTX_ASYNC_REQ, 0, AR_REQ_NUM_DESC,
3330 AR_REQ_BUF_SIZE, AR_REQ_SPLIT_BUF_SIZE,
3331 OHCI1394_AsReqRcvContextBase) < 0)
3332 FAIL(-ENOMEM, "Failed to allocate AR Req context");
3334 /* AR DMA response context allocation */
3335 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_resp_context,
3336 DMA_CTX_ASYNC_RESP, 0, AR_RESP_NUM_DESC,
3337 AR_RESP_BUF_SIZE, AR_RESP_SPLIT_BUF_SIZE,
3338 OHCI1394_AsRspRcvContextBase) < 0)
3339 FAIL(-ENOMEM, "Failed to allocate AR Resp context");
3341 /* AT DMA request context */
3342 if (alloc_dma_trm_ctx(ohci, &ohci->at_req_context,
3343 DMA_CTX_ASYNC_REQ, 0, AT_REQ_NUM_DESC,
3344 OHCI1394_AsReqTrContextBase) < 0)
3345 FAIL(-ENOMEM, "Failed to allocate AT Req context");
3347 /* AT DMA response context */
3348 if (alloc_dma_trm_ctx(ohci, &ohci->at_resp_context,
3349 DMA_CTX_ASYNC_RESP, 1, AT_RESP_NUM_DESC,
3350 OHCI1394_AsRspTrContextBase) < 0)
3351 FAIL(-ENOMEM, "Failed to allocate AT Resp context");
3353 /* Start off with a soft reset, to clear everything to a sane
3354 * state. */
3355 ohci_soft_reset(ohci);
3357 /* Now enable LPS, which we need in order to start accessing
3358 * most of the registers. In fact, on some cards (ALI M5251),
3359 * accessing registers in the SClk domain without LPS enabled
3360 * will lock up the machine. Wait 50msec to make sure we have
3361 * full link enabled. */
3362 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3364 /* Disable and clear interrupts */
3365 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3366 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3368 mdelay(50);
3370 /* Determine the number of available IR and IT contexts. */
3371 ohci->nb_iso_rcv_ctx =
3372 get_nb_iso_ctx(ohci, OHCI1394_IsoRecvIntMaskSet);
3373 DBGMSG("%d iso receive contexts available",
3374 ohci->nb_iso_rcv_ctx);
3376 ohci->nb_iso_xmit_ctx =
3377 get_nb_iso_ctx(ohci, OHCI1394_IsoXmitIntMaskSet);
3378 DBGMSG("%d iso transmit contexts available",
3379 ohci->nb_iso_xmit_ctx);
3381 /* Set the usage bits for non-existent contexts so they can't
3382 * be allocated */
3383 ohci->ir_ctx_usage = ~0 << ohci->nb_iso_rcv_ctx;
3384 ohci->it_ctx_usage = ~0 << ohci->nb_iso_xmit_ctx;
3386 INIT_LIST_HEAD(&ohci->iso_tasklet_list);
3387 spin_lock_init(&ohci->iso_tasklet_list_lock);
3388 ohci->ISO_channel_usage = 0;
3389 spin_lock_init(&ohci->IR_channel_lock);
3391 /* Allocate the IR DMA context right here so we don't have
3392 * to do it in interrupt path - note that this doesn't
3393 * waste much memory and avoids the jugglery required to
3394 * allocate it in IRQ path. */
3395 if (alloc_dma_rcv_ctx(ohci, &ohci->ir_legacy_context,
3396 DMA_CTX_ISO, 0, IR_NUM_DESC,
3397 IR_BUF_SIZE, IR_SPLIT_BUF_SIZE,
3398 OHCI1394_IsoRcvContextBase) < 0) {
3399 FAIL(-ENOMEM, "Cannot allocate IR Legacy DMA context");
3402 /* We hopefully don't have to pre-allocate IT DMA like we did
3403 * for IR DMA above. Allocate it on-demand and mark inactive. */
3404 ohci->it_legacy_context.ohci = NULL;
3406 if (request_irq(dev->irq, ohci_irq_handler, SA_SHIRQ,
3407 OHCI1394_DRIVER_NAME, ohci))
3408 FAIL(-ENOMEM, "Failed to allocate shared interrupt %d", dev->irq);
3410 ohci->init_state = OHCI_INIT_HAVE_IRQ;
3411 ohci_initialize(ohci);
3413 /* Set certain csr values */
3414 host->csr.guid_hi = reg_read(ohci, OHCI1394_GUIDHi);
3415 host->csr.guid_lo = reg_read(ohci, OHCI1394_GUIDLo);
3416 host->csr.cyc_clk_acc = 100; /* how do we determine clk accuracy? */
3417 host->csr.max_rec = (reg_read(ohci, OHCI1394_BusOptions) >> 12) & 0xf;
3418 host->csr.lnk_spd = reg_read(ohci, OHCI1394_BusOptions) & 0x7;
3420 /* Tell the highlevel this host is ready */
3421 if (hpsb_add_host(host))
3422 FAIL(-ENOMEM, "Failed to register host with highlevel");
3424 ohci->init_state = OHCI_INIT_DONE;
3426 return 0;
3427 #undef FAIL
3430 static void ohci1394_pci_remove(struct pci_dev *pdev)
3432 struct ti_ohci *ohci;
3433 struct device *dev;
3435 ohci = pci_get_drvdata(pdev);
3436 if (!ohci)
3437 return;
3439 dev = get_device(&ohci->host->device);
3441 switch (ohci->init_state) {
3442 case OHCI_INIT_DONE:
3443 hpsb_remove_host(ohci->host);
3445 /* Clear out BUS Options */
3446 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3447 reg_write(ohci, OHCI1394_BusOptions,
3448 (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3449 0x00ff0000);
3450 memset(ohci->csr_config_rom_cpu, 0, OHCI_CONFIG_ROM_LEN);
3452 case OHCI_INIT_HAVE_IRQ:
3453 /* Clear interrupt registers */
3454 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3455 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3456 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3457 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3458 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3459 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3461 /* Disable IRM Contender */
3462 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3464 /* Clear link control register */
3465 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3467 /* Let all other nodes know to ignore us */
3468 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3470 /* Soft reset before we start - this disables
3471 * interrupts and clears linkEnable and LPS. */
3472 ohci_soft_reset(ohci);
3473 free_irq(ohci->dev->irq, ohci);
3475 case OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE:
3476 /* The ohci_soft_reset() stops all DMA contexts, so we
3477 * dont need to do this. */
3478 /* Free AR dma */
3479 free_dma_rcv_ctx(&ohci->ar_req_context);
3480 free_dma_rcv_ctx(&ohci->ar_resp_context);
3482 /* Free AT dma */
3483 free_dma_trm_ctx(&ohci->at_req_context);
3484 free_dma_trm_ctx(&ohci->at_resp_context);
3486 /* Free IR dma */
3487 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3489 /* Free IT dma */
3490 free_dma_trm_ctx(&ohci->it_legacy_context);
3492 /* Free IR legacy dma */
3493 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3496 case OHCI_INIT_HAVE_SELFID_BUFFER:
3497 pci_free_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3498 ohci->selfid_buf_cpu,
3499 ohci->selfid_buf_bus);
3500 OHCI_DMA_FREE("consistent selfid_buf");
3502 case OHCI_INIT_HAVE_CONFIG_ROM_BUFFER:
3503 pci_free_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3504 ohci->csr_config_rom_cpu,
3505 ohci->csr_config_rom_bus);
3506 OHCI_DMA_FREE("consistent csr_config_rom");
3508 case OHCI_INIT_HAVE_IOMAPPING:
3509 iounmap(ohci->registers);
3511 case OHCI_INIT_HAVE_MEM_REGION:
3512 #ifndef PCMCIA
3513 release_mem_region(pci_resource_start(ohci->dev, 0),
3514 OHCI1394_REGISTER_SIZE);
3515 #endif
3517 #ifdef CONFIG_PPC_PMAC
3518 /* On UniNorth, power down the cable and turn off the chip
3519 * clock when the module is removed to save power on
3520 * laptops. Turning it back ON is done by the arch code when
3521 * pci_enable_device() is called */
3523 struct device_node* of_node;
3525 of_node = pci_device_to_OF_node(ohci->dev);
3526 if (of_node) {
3527 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3528 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, of_node, 0, 0);
3531 #endif /* CONFIG_PPC_PMAC */
3533 case OHCI_INIT_ALLOC_HOST:
3534 pci_set_drvdata(ohci->dev, NULL);
3537 if (dev)
3538 put_device(dev);
3542 static int ohci1394_pci_resume (struct pci_dev *pdev)
3544 #ifdef CONFIG_PPC_PMAC
3545 if (_machine == _MACH_Pmac) {
3546 struct device_node *of_node;
3548 /* Re-enable 1394 */
3549 of_node = pci_device_to_OF_node (pdev);
3550 if (of_node)
3551 pmac_call_feature (PMAC_FTR_1394_ENABLE, of_node, 0, 1);
3553 #endif /* CONFIG_PPC_PMAC */
3555 pci_enable_device(pdev);
3557 return 0;
3561 static int ohci1394_pci_suspend (struct pci_dev *pdev, pm_message_t state)
3563 #ifdef CONFIG_PPC_PMAC
3564 if (_machine == _MACH_Pmac) {
3565 struct device_node *of_node;
3567 /* Disable 1394 */
3568 of_node = pci_device_to_OF_node (pdev);
3569 if (of_node)
3570 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3572 #endif
3574 return 0;
3578 #define PCI_CLASS_FIREWIRE_OHCI ((PCI_CLASS_SERIAL_FIREWIRE << 8) | 0x10)
3580 static struct pci_device_id ohci1394_pci_tbl[] = {
3582 .class = PCI_CLASS_FIREWIRE_OHCI,
3583 .class_mask = PCI_ANY_ID,
3584 .vendor = PCI_ANY_ID,
3585 .device = PCI_ANY_ID,
3586 .subvendor = PCI_ANY_ID,
3587 .subdevice = PCI_ANY_ID,
3589 { 0, },
3592 MODULE_DEVICE_TABLE(pci, ohci1394_pci_tbl);
3594 static struct pci_driver ohci1394_pci_driver = {
3595 .name = OHCI1394_DRIVER_NAME,
3596 .id_table = ohci1394_pci_tbl,
3597 .probe = ohci1394_pci_probe,
3598 .remove = ohci1394_pci_remove,
3599 .resume = ohci1394_pci_resume,
3600 .suspend = ohci1394_pci_suspend,
3605 /***********************************
3606 * OHCI1394 Video Interface *
3607 ***********************************/
3609 /* essentially the only purpose of this code is to allow another
3610 module to hook into ohci's interrupt handler */
3612 int ohci1394_stop_context(struct ti_ohci *ohci, int reg, char *msg)
3614 int i=0;
3616 /* stop the channel program if it's still running */
3617 reg_write(ohci, reg, 0x8000);
3619 /* Wait until it effectively stops */
3620 while (reg_read(ohci, reg) & 0x400) {
3621 i++;
3622 if (i>5000) {
3623 PRINT(KERN_ERR,
3624 "Runaway loop while stopping context: %s...", msg ? msg : "");
3625 return 1;
3628 mb();
3629 udelay(10);
3631 if (msg) PRINT(KERN_ERR, "%s: dma prg stopped", msg);
3632 return 0;
3635 void ohci1394_init_iso_tasklet(struct ohci1394_iso_tasklet *tasklet, int type,
3636 void (*func)(unsigned long), unsigned long data)
3638 tasklet_init(&tasklet->tasklet, func, data);
3639 tasklet->type = type;
3640 /* We init the tasklet->link field, so we can list_del() it
3641 * without worrying whether it was added to the list or not. */
3642 INIT_LIST_HEAD(&tasklet->link);
3645 int ohci1394_register_iso_tasklet(struct ti_ohci *ohci,
3646 struct ohci1394_iso_tasklet *tasklet)
3648 unsigned long flags, *usage;
3649 int n, i, r = -EBUSY;
3651 if (tasklet->type == OHCI_ISO_TRANSMIT) {
3652 n = ohci->nb_iso_xmit_ctx;
3653 usage = &ohci->it_ctx_usage;
3655 else {
3656 n = ohci->nb_iso_rcv_ctx;
3657 usage = &ohci->ir_ctx_usage;
3659 /* only one receive context can be multichannel (OHCI sec 10.4.1) */
3660 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3661 if (test_and_set_bit(0, &ohci->ir_multichannel_used)) {
3662 return r;
3667 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3669 for (i = 0; i < n; i++)
3670 if (!test_and_set_bit(i, usage)) {
3671 tasklet->context = i;
3672 list_add_tail(&tasklet->link, &ohci->iso_tasklet_list);
3673 r = 0;
3674 break;
3677 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3679 return r;
3682 void ohci1394_unregister_iso_tasklet(struct ti_ohci *ohci,
3683 struct ohci1394_iso_tasklet *tasklet)
3685 unsigned long flags;
3687 tasklet_kill(&tasklet->tasklet);
3689 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3691 if (tasklet->type == OHCI_ISO_TRANSMIT)
3692 clear_bit(tasklet->context, &ohci->it_ctx_usage);
3693 else {
3694 clear_bit(tasklet->context, &ohci->ir_ctx_usage);
3696 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3697 clear_bit(0, &ohci->ir_multichannel_used);
3701 list_del(&tasklet->link);
3703 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3706 EXPORT_SYMBOL(ohci1394_stop_context);
3707 EXPORT_SYMBOL(ohci1394_init_iso_tasklet);
3708 EXPORT_SYMBOL(ohci1394_register_iso_tasklet);
3709 EXPORT_SYMBOL(ohci1394_unregister_iso_tasklet);
3712 /***********************************
3713 * General module initialization *
3714 ***********************************/
3716 MODULE_AUTHOR("Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>");
3717 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE-1394 controllers");
3718 MODULE_LICENSE("GPL");
3720 static void __exit ohci1394_cleanup (void)
3722 pci_unregister_driver(&ohci1394_pci_driver);
3725 static int __init ohci1394_init(void)
3727 return pci_register_driver(&ohci1394_pci_driver);
3730 module_init(ohci1394_init);
3731 module_exit(ohci1394_cleanup);