[PATCH] sched: fix cond_resched_softirq() offset
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobee200b2ac8dc1bee144242a0cb1ae6b199c53113
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/suspend.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/kprobes.h>
54 #include <linux/delayacct.h>
55 #include <asm/tlb.h>
57 #include <asm/unistd.h>
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 * and back.
64 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
73 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
78 * Some helpers for converting nanosecond timing to jiffy resolution
80 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
84 * These are the 'tuning knobs' of the scheduler:
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
90 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91 #define DEF_TIMESLICE (100 * HZ / 1000)
92 #define ON_RUNQUEUE_WEIGHT 30
93 #define CHILD_PENALTY 95
94 #define PARENT_PENALTY 100
95 #define EXIT_WEIGHT 3
96 #define PRIO_BONUS_RATIO 25
97 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98 #define INTERACTIVE_DELTA 2
99 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
101 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
109 * This part scales the interactivity limit depending on niceness.
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
128 * too hard.
131 #define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 MAX_SLEEP_AVG)
135 #define GRANULARITY (10 * HZ / 1000 ? : 1)
137 #ifdef CONFIG_SMP
138 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 num_online_cpus())
141 #else
142 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144 #endif
146 #define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
149 #define DELTA(p) \
150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 INTERACTIVE_DELTA)
153 #define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
156 #define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
160 #define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
163 #define SCALE_PRIO(x, prio) \
164 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
166 static unsigned int static_prio_timeslice(int static_prio)
168 if (static_prio < NICE_TO_PRIO(0))
169 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
170 else
171 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
175 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
176 * to time slice values: [800ms ... 100ms ... 5ms]
178 * The higher a thread's priority, the bigger timeslices
179 * it gets during one round of execution. But even the lowest
180 * priority thread gets MIN_TIMESLICE worth of execution time.
183 static inline unsigned int task_timeslice(struct task_struct *p)
185 return static_prio_timeslice(p->static_prio);
189 * These are the runqueue data structures:
192 struct prio_array {
193 unsigned int nr_active;
194 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
195 struct list_head queue[MAX_PRIO];
199 * This is the main, per-CPU runqueue data structure.
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
205 struct rq {
206 spinlock_t lock;
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
212 unsigned long nr_running;
213 unsigned long raw_weighted_load;
214 #ifdef CONFIG_SMP
215 unsigned long cpu_load[3];
216 #endif
217 unsigned long long nr_switches;
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
225 unsigned long nr_uninterruptible;
227 unsigned long expired_timestamp;
228 unsigned long long timestamp_last_tick;
229 struct task_struct *curr, *idle;
230 struct mm_struct *prev_mm;
231 struct prio_array *active, *expired, arrays[2];
232 int best_expired_prio;
233 atomic_t nr_iowait;
235 #ifdef CONFIG_SMP
236 struct sched_domain *sd;
238 /* For active balancing */
239 int active_balance;
240 int push_cpu;
241 int cpu; /* cpu of this runqueue */
243 struct task_struct *migration_thread;
244 struct list_head migration_queue;
245 #endif
247 #ifdef CONFIG_SCHEDSTATS
248 /* latency stats */
249 struct sched_info rq_sched_info;
251 /* sys_sched_yield() stats */
252 unsigned long yld_exp_empty;
253 unsigned long yld_act_empty;
254 unsigned long yld_both_empty;
255 unsigned long yld_cnt;
257 /* schedule() stats */
258 unsigned long sched_switch;
259 unsigned long sched_cnt;
260 unsigned long sched_goidle;
262 /* try_to_wake_up() stats */
263 unsigned long ttwu_cnt;
264 unsigned long ttwu_local;
265 #endif
266 struct lock_class_key rq_lock_key;
269 static DEFINE_PER_CPU(struct rq, runqueues);
271 static inline int cpu_of(struct rq *rq)
273 #ifdef CONFIG_SMP
274 return rq->cpu;
275 #else
276 return 0;
277 #endif
281 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
282 * See detach_destroy_domains: synchronize_sched for details.
284 * The domain tree of any CPU may only be accessed from within
285 * preempt-disabled sections.
287 #define for_each_domain(cpu, __sd) \
288 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
290 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
291 #define this_rq() (&__get_cpu_var(runqueues))
292 #define task_rq(p) cpu_rq(task_cpu(p))
293 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
295 #ifndef prepare_arch_switch
296 # define prepare_arch_switch(next) do { } while (0)
297 #endif
298 #ifndef finish_arch_switch
299 # define finish_arch_switch(prev) do { } while (0)
300 #endif
302 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
303 static inline int task_running(struct rq *rq, struct task_struct *p)
305 return rq->curr == p;
308 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
312 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
314 #ifdef CONFIG_DEBUG_SPINLOCK
315 /* this is a valid case when another task releases the spinlock */
316 rq->lock.owner = current;
317 #endif
319 * If we are tracking spinlock dependencies then we have to
320 * fix up the runqueue lock - which gets 'carried over' from
321 * prev into current:
323 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
325 spin_unlock_irq(&rq->lock);
328 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
329 static inline int task_running(struct rq *rq, struct task_struct *p)
331 #ifdef CONFIG_SMP
332 return p->oncpu;
333 #else
334 return rq->curr == p;
335 #endif
338 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
340 #ifdef CONFIG_SMP
342 * We can optimise this out completely for !SMP, because the
343 * SMP rebalancing from interrupt is the only thing that cares
344 * here.
346 next->oncpu = 1;
347 #endif
348 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
349 spin_unlock_irq(&rq->lock);
350 #else
351 spin_unlock(&rq->lock);
352 #endif
355 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
357 #ifdef CONFIG_SMP
359 * After ->oncpu is cleared, the task can be moved to a different CPU.
360 * We must ensure this doesn't happen until the switch is completely
361 * finished.
363 smp_wmb();
364 prev->oncpu = 0;
365 #endif
366 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
367 local_irq_enable();
368 #endif
370 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
373 * __task_rq_lock - lock the runqueue a given task resides on.
374 * Must be called interrupts disabled.
376 static inline struct rq *__task_rq_lock(struct task_struct *p)
377 __acquires(rq->lock)
379 struct rq *rq;
381 repeat_lock_task:
382 rq = task_rq(p);
383 spin_lock(&rq->lock);
384 if (unlikely(rq != task_rq(p))) {
385 spin_unlock(&rq->lock);
386 goto repeat_lock_task;
388 return rq;
392 * task_rq_lock - lock the runqueue a given task resides on and disable
393 * interrupts. Note the ordering: we can safely lookup the task_rq without
394 * explicitly disabling preemption.
396 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
397 __acquires(rq->lock)
399 struct rq *rq;
401 repeat_lock_task:
402 local_irq_save(*flags);
403 rq = task_rq(p);
404 spin_lock(&rq->lock);
405 if (unlikely(rq != task_rq(p))) {
406 spin_unlock_irqrestore(&rq->lock, *flags);
407 goto repeat_lock_task;
409 return rq;
412 static inline void __task_rq_unlock(struct rq *rq)
413 __releases(rq->lock)
415 spin_unlock(&rq->lock);
418 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
419 __releases(rq->lock)
421 spin_unlock_irqrestore(&rq->lock, *flags);
424 #ifdef CONFIG_SCHEDSTATS
426 * bump this up when changing the output format or the meaning of an existing
427 * format, so that tools can adapt (or abort)
429 #define SCHEDSTAT_VERSION 12
431 static int show_schedstat(struct seq_file *seq, void *v)
433 int cpu;
435 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
436 seq_printf(seq, "timestamp %lu\n", jiffies);
437 for_each_online_cpu(cpu) {
438 struct rq *rq = cpu_rq(cpu);
439 #ifdef CONFIG_SMP
440 struct sched_domain *sd;
441 int dcnt = 0;
442 #endif
444 /* runqueue-specific stats */
445 seq_printf(seq,
446 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
447 cpu, rq->yld_both_empty,
448 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
449 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
450 rq->ttwu_cnt, rq->ttwu_local,
451 rq->rq_sched_info.cpu_time,
452 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
454 seq_printf(seq, "\n");
456 #ifdef CONFIG_SMP
457 /* domain-specific stats */
458 preempt_disable();
459 for_each_domain(cpu, sd) {
460 enum idle_type itype;
461 char mask_str[NR_CPUS];
463 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
464 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
465 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
466 itype++) {
467 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
468 sd->lb_cnt[itype],
469 sd->lb_balanced[itype],
470 sd->lb_failed[itype],
471 sd->lb_imbalance[itype],
472 sd->lb_gained[itype],
473 sd->lb_hot_gained[itype],
474 sd->lb_nobusyq[itype],
475 sd->lb_nobusyg[itype]);
477 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
478 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
479 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
480 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
481 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
483 preempt_enable();
484 #endif
486 return 0;
489 static int schedstat_open(struct inode *inode, struct file *file)
491 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
492 char *buf = kmalloc(size, GFP_KERNEL);
493 struct seq_file *m;
494 int res;
496 if (!buf)
497 return -ENOMEM;
498 res = single_open(file, show_schedstat, NULL);
499 if (!res) {
500 m = file->private_data;
501 m->buf = buf;
502 m->size = size;
503 } else
504 kfree(buf);
505 return res;
508 struct file_operations proc_schedstat_operations = {
509 .open = schedstat_open,
510 .read = seq_read,
511 .llseek = seq_lseek,
512 .release = single_release,
516 * Expects runqueue lock to be held for atomicity of update
518 static inline void
519 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
521 if (rq) {
522 rq->rq_sched_info.run_delay += delta_jiffies;
523 rq->rq_sched_info.pcnt++;
528 * Expects runqueue lock to be held for atomicity of update
530 static inline void
531 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
533 if (rq)
534 rq->rq_sched_info.cpu_time += delta_jiffies;
536 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
537 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
538 #else /* !CONFIG_SCHEDSTATS */
539 static inline void
540 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
542 static inline void
543 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
545 # define schedstat_inc(rq, field) do { } while (0)
546 # define schedstat_add(rq, field, amt) do { } while (0)
547 #endif
550 * rq_lock - lock a given runqueue and disable interrupts.
552 static inline struct rq *this_rq_lock(void)
553 __acquires(rq->lock)
555 struct rq *rq;
557 local_irq_disable();
558 rq = this_rq();
559 spin_lock(&rq->lock);
561 return rq;
564 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
566 * Called when a process is dequeued from the active array and given
567 * the cpu. We should note that with the exception of interactive
568 * tasks, the expired queue will become the active queue after the active
569 * queue is empty, without explicitly dequeuing and requeuing tasks in the
570 * expired queue. (Interactive tasks may be requeued directly to the
571 * active queue, thus delaying tasks in the expired queue from running;
572 * see scheduler_tick()).
574 * This function is only called from sched_info_arrive(), rather than
575 * dequeue_task(). Even though a task may be queued and dequeued multiple
576 * times as it is shuffled about, we're really interested in knowing how
577 * long it was from the *first* time it was queued to the time that it
578 * finally hit a cpu.
580 static inline void sched_info_dequeued(struct task_struct *t)
582 t->sched_info.last_queued = 0;
586 * Called when a task finally hits the cpu. We can now calculate how
587 * long it was waiting to run. We also note when it began so that we
588 * can keep stats on how long its timeslice is.
590 static void sched_info_arrive(struct task_struct *t)
592 unsigned long now = jiffies, delta_jiffies = 0;
594 if (t->sched_info.last_queued)
595 delta_jiffies = now - t->sched_info.last_queued;
596 sched_info_dequeued(t);
597 t->sched_info.run_delay += delta_jiffies;
598 t->sched_info.last_arrival = now;
599 t->sched_info.pcnt++;
601 rq_sched_info_arrive(task_rq(t), delta_jiffies);
605 * Called when a process is queued into either the active or expired
606 * array. The time is noted and later used to determine how long we
607 * had to wait for us to reach the cpu. Since the expired queue will
608 * become the active queue after active queue is empty, without dequeuing
609 * and requeuing any tasks, we are interested in queuing to either. It
610 * is unusual but not impossible for tasks to be dequeued and immediately
611 * requeued in the same or another array: this can happen in sched_yield(),
612 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
613 * to runqueue.
615 * This function is only called from enqueue_task(), but also only updates
616 * the timestamp if it is already not set. It's assumed that
617 * sched_info_dequeued() will clear that stamp when appropriate.
619 static inline void sched_info_queued(struct task_struct *t)
621 if (unlikely(sched_info_on()))
622 if (!t->sched_info.last_queued)
623 t->sched_info.last_queued = jiffies;
627 * Called when a process ceases being the active-running process, either
628 * voluntarily or involuntarily. Now we can calculate how long we ran.
630 static inline void sched_info_depart(struct task_struct *t)
632 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
634 t->sched_info.cpu_time += delta_jiffies;
635 rq_sched_info_depart(task_rq(t), delta_jiffies);
639 * Called when tasks are switched involuntarily due, typically, to expiring
640 * their time slice. (This may also be called when switching to or from
641 * the idle task.) We are only called when prev != next.
643 static inline void
644 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
646 struct rq *rq = task_rq(prev);
649 * prev now departs the cpu. It's not interesting to record
650 * stats about how efficient we were at scheduling the idle
651 * process, however.
653 if (prev != rq->idle)
654 sched_info_depart(prev);
656 if (next != rq->idle)
657 sched_info_arrive(next);
659 static inline void
660 sched_info_switch(struct task_struct *prev, struct task_struct *next)
662 if (unlikely(sched_info_on()))
663 __sched_info_switch(prev, next);
665 #else
666 #define sched_info_queued(t) do { } while (0)
667 #define sched_info_switch(t, next) do { } while (0)
668 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
671 * Adding/removing a task to/from a priority array:
673 static void dequeue_task(struct task_struct *p, struct prio_array *array)
675 array->nr_active--;
676 list_del(&p->run_list);
677 if (list_empty(array->queue + p->prio))
678 __clear_bit(p->prio, array->bitmap);
681 static void enqueue_task(struct task_struct *p, struct prio_array *array)
683 sched_info_queued(p);
684 list_add_tail(&p->run_list, array->queue + p->prio);
685 __set_bit(p->prio, array->bitmap);
686 array->nr_active++;
687 p->array = array;
691 * Put task to the end of the run list without the overhead of dequeue
692 * followed by enqueue.
694 static void requeue_task(struct task_struct *p, struct prio_array *array)
696 list_move_tail(&p->run_list, array->queue + p->prio);
699 static inline void
700 enqueue_task_head(struct task_struct *p, struct prio_array *array)
702 list_add(&p->run_list, array->queue + p->prio);
703 __set_bit(p->prio, array->bitmap);
704 array->nr_active++;
705 p->array = array;
709 * __normal_prio - return the priority that is based on the static
710 * priority but is modified by bonuses/penalties.
712 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
713 * into the -5 ... 0 ... +5 bonus/penalty range.
715 * We use 25% of the full 0...39 priority range so that:
717 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
718 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
720 * Both properties are important to certain workloads.
723 static inline int __normal_prio(struct task_struct *p)
725 int bonus, prio;
727 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
729 prio = p->static_prio - bonus;
730 if (prio < MAX_RT_PRIO)
731 prio = MAX_RT_PRIO;
732 if (prio > MAX_PRIO-1)
733 prio = MAX_PRIO-1;
734 return prio;
738 * To aid in avoiding the subversion of "niceness" due to uneven distribution
739 * of tasks with abnormal "nice" values across CPUs the contribution that
740 * each task makes to its run queue's load is weighted according to its
741 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
742 * scaled version of the new time slice allocation that they receive on time
743 * slice expiry etc.
747 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
748 * If static_prio_timeslice() is ever changed to break this assumption then
749 * this code will need modification
751 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
752 #define LOAD_WEIGHT(lp) \
753 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
754 #define PRIO_TO_LOAD_WEIGHT(prio) \
755 LOAD_WEIGHT(static_prio_timeslice(prio))
756 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
757 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
759 static void set_load_weight(struct task_struct *p)
761 if (has_rt_policy(p)) {
762 #ifdef CONFIG_SMP
763 if (p == task_rq(p)->migration_thread)
765 * The migration thread does the actual balancing.
766 * Giving its load any weight will skew balancing
767 * adversely.
769 p->load_weight = 0;
770 else
771 #endif
772 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
773 } else
774 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
777 static inline void
778 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
780 rq->raw_weighted_load += p->load_weight;
783 static inline void
784 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
786 rq->raw_weighted_load -= p->load_weight;
789 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
791 rq->nr_running++;
792 inc_raw_weighted_load(rq, p);
795 static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
797 rq->nr_running--;
798 dec_raw_weighted_load(rq, p);
802 * Calculate the expected normal priority: i.e. priority
803 * without taking RT-inheritance into account. Might be
804 * boosted by interactivity modifiers. Changes upon fork,
805 * setprio syscalls, and whenever the interactivity
806 * estimator recalculates.
808 static inline int normal_prio(struct task_struct *p)
810 int prio;
812 if (has_rt_policy(p))
813 prio = MAX_RT_PRIO-1 - p->rt_priority;
814 else
815 prio = __normal_prio(p);
816 return prio;
820 * Calculate the current priority, i.e. the priority
821 * taken into account by the scheduler. This value might
822 * be boosted by RT tasks, or might be boosted by
823 * interactivity modifiers. Will be RT if the task got
824 * RT-boosted. If not then it returns p->normal_prio.
826 static int effective_prio(struct task_struct *p)
828 p->normal_prio = normal_prio(p);
830 * If we are RT tasks or we were boosted to RT priority,
831 * keep the priority unchanged. Otherwise, update priority
832 * to the normal priority:
834 if (!rt_prio(p->prio))
835 return p->normal_prio;
836 return p->prio;
840 * __activate_task - move a task to the runqueue.
842 static void __activate_task(struct task_struct *p, struct rq *rq)
844 struct prio_array *target = rq->active;
846 if (batch_task(p))
847 target = rq->expired;
848 enqueue_task(p, target);
849 inc_nr_running(p, rq);
853 * __activate_idle_task - move idle task to the _front_ of runqueue.
855 static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
857 enqueue_task_head(p, rq->active);
858 inc_nr_running(p, rq);
862 * Recalculate p->normal_prio and p->prio after having slept,
863 * updating the sleep-average too:
865 static int recalc_task_prio(struct task_struct *p, unsigned long long now)
867 /* Caller must always ensure 'now >= p->timestamp' */
868 unsigned long sleep_time = now - p->timestamp;
870 if (batch_task(p))
871 sleep_time = 0;
873 if (likely(sleep_time > 0)) {
875 * This ceiling is set to the lowest priority that would allow
876 * a task to be reinserted into the active array on timeslice
877 * completion.
879 unsigned long ceiling = INTERACTIVE_SLEEP(p);
881 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
883 * Prevents user tasks from achieving best priority
884 * with one single large enough sleep.
886 p->sleep_avg = ceiling;
888 * Using INTERACTIVE_SLEEP() as a ceiling places a
889 * nice(0) task 1ms sleep away from promotion, and
890 * gives it 700ms to round-robin with no chance of
891 * being demoted. This is more than generous, so
892 * mark this sleep as non-interactive to prevent the
893 * on-runqueue bonus logic from intervening should
894 * this task not receive cpu immediately.
896 p->sleep_type = SLEEP_NONINTERACTIVE;
897 } else {
899 * Tasks waking from uninterruptible sleep are
900 * limited in their sleep_avg rise as they
901 * are likely to be waiting on I/O
903 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
904 if (p->sleep_avg >= ceiling)
905 sleep_time = 0;
906 else if (p->sleep_avg + sleep_time >=
907 ceiling) {
908 p->sleep_avg = ceiling;
909 sleep_time = 0;
914 * This code gives a bonus to interactive tasks.
916 * The boost works by updating the 'average sleep time'
917 * value here, based on ->timestamp. The more time a
918 * task spends sleeping, the higher the average gets -
919 * and the higher the priority boost gets as well.
921 p->sleep_avg += sleep_time;
924 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
925 p->sleep_avg = NS_MAX_SLEEP_AVG;
928 return effective_prio(p);
932 * activate_task - move a task to the runqueue and do priority recalculation
934 * Update all the scheduling statistics stuff. (sleep average
935 * calculation, priority modifiers, etc.)
937 static void activate_task(struct task_struct *p, struct rq *rq, int local)
939 unsigned long long now;
941 now = sched_clock();
942 #ifdef CONFIG_SMP
943 if (!local) {
944 /* Compensate for drifting sched_clock */
945 struct rq *this_rq = this_rq();
946 now = (now - this_rq->timestamp_last_tick)
947 + rq->timestamp_last_tick;
949 #endif
951 if (!rt_task(p))
952 p->prio = recalc_task_prio(p, now);
955 * This checks to make sure it's not an uninterruptible task
956 * that is now waking up.
958 if (p->sleep_type == SLEEP_NORMAL) {
960 * Tasks which were woken up by interrupts (ie. hw events)
961 * are most likely of interactive nature. So we give them
962 * the credit of extending their sleep time to the period
963 * of time they spend on the runqueue, waiting for execution
964 * on a CPU, first time around:
966 if (in_interrupt())
967 p->sleep_type = SLEEP_INTERRUPTED;
968 else {
970 * Normal first-time wakeups get a credit too for
971 * on-runqueue time, but it will be weighted down:
973 p->sleep_type = SLEEP_INTERACTIVE;
976 p->timestamp = now;
978 __activate_task(p, rq);
982 * deactivate_task - remove a task from the runqueue.
984 static void deactivate_task(struct task_struct *p, struct rq *rq)
986 dec_nr_running(p, rq);
987 dequeue_task(p, p->array);
988 p->array = NULL;
992 * resched_task - mark a task 'to be rescheduled now'.
994 * On UP this means the setting of the need_resched flag, on SMP it
995 * might also involve a cross-CPU call to trigger the scheduler on
996 * the target CPU.
998 #ifdef CONFIG_SMP
1000 #ifndef tsk_is_polling
1001 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1002 #endif
1004 static void resched_task(struct task_struct *p)
1006 int cpu;
1008 assert_spin_locked(&task_rq(p)->lock);
1010 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1011 return;
1013 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1015 cpu = task_cpu(p);
1016 if (cpu == smp_processor_id())
1017 return;
1019 /* NEED_RESCHED must be visible before we test polling */
1020 smp_mb();
1021 if (!tsk_is_polling(p))
1022 smp_send_reschedule(cpu);
1024 #else
1025 static inline void resched_task(struct task_struct *p)
1027 assert_spin_locked(&task_rq(p)->lock);
1028 set_tsk_need_resched(p);
1030 #endif
1033 * task_curr - is this task currently executing on a CPU?
1034 * @p: the task in question.
1036 inline int task_curr(const struct task_struct *p)
1038 return cpu_curr(task_cpu(p)) == p;
1041 /* Used instead of source_load when we know the type == 0 */
1042 unsigned long weighted_cpuload(const int cpu)
1044 return cpu_rq(cpu)->raw_weighted_load;
1047 #ifdef CONFIG_SMP
1048 struct migration_req {
1049 struct list_head list;
1051 struct task_struct *task;
1052 int dest_cpu;
1054 struct completion done;
1058 * The task's runqueue lock must be held.
1059 * Returns true if you have to wait for migration thread.
1061 static int
1062 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1064 struct rq *rq = task_rq(p);
1067 * If the task is not on a runqueue (and not running), then
1068 * it is sufficient to simply update the task's cpu field.
1070 if (!p->array && !task_running(rq, p)) {
1071 set_task_cpu(p, dest_cpu);
1072 return 0;
1075 init_completion(&req->done);
1076 req->task = p;
1077 req->dest_cpu = dest_cpu;
1078 list_add(&req->list, &rq->migration_queue);
1080 return 1;
1084 * wait_task_inactive - wait for a thread to unschedule.
1086 * The caller must ensure that the task *will* unschedule sometime soon,
1087 * else this function might spin for a *long* time. This function can't
1088 * be called with interrupts off, or it may introduce deadlock with
1089 * smp_call_function() if an IPI is sent by the same process we are
1090 * waiting to become inactive.
1092 void wait_task_inactive(struct task_struct *p)
1094 unsigned long flags;
1095 struct rq *rq;
1096 int preempted;
1098 repeat:
1099 rq = task_rq_lock(p, &flags);
1100 /* Must be off runqueue entirely, not preempted. */
1101 if (unlikely(p->array || task_running(rq, p))) {
1102 /* If it's preempted, we yield. It could be a while. */
1103 preempted = !task_running(rq, p);
1104 task_rq_unlock(rq, &flags);
1105 cpu_relax();
1106 if (preempted)
1107 yield();
1108 goto repeat;
1110 task_rq_unlock(rq, &flags);
1113 /***
1114 * kick_process - kick a running thread to enter/exit the kernel
1115 * @p: the to-be-kicked thread
1117 * Cause a process which is running on another CPU to enter
1118 * kernel-mode, without any delay. (to get signals handled.)
1120 * NOTE: this function doesnt have to take the runqueue lock,
1121 * because all it wants to ensure is that the remote task enters
1122 * the kernel. If the IPI races and the task has been migrated
1123 * to another CPU then no harm is done and the purpose has been
1124 * achieved as well.
1126 void kick_process(struct task_struct *p)
1128 int cpu;
1130 preempt_disable();
1131 cpu = task_cpu(p);
1132 if ((cpu != smp_processor_id()) && task_curr(p))
1133 smp_send_reschedule(cpu);
1134 preempt_enable();
1138 * Return a low guess at the load of a migration-source cpu weighted
1139 * according to the scheduling class and "nice" value.
1141 * We want to under-estimate the load of migration sources, to
1142 * balance conservatively.
1144 static inline unsigned long source_load(int cpu, int type)
1146 struct rq *rq = cpu_rq(cpu);
1148 if (type == 0)
1149 return rq->raw_weighted_load;
1151 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1155 * Return a high guess at the load of a migration-target cpu weighted
1156 * according to the scheduling class and "nice" value.
1158 static inline unsigned long target_load(int cpu, int type)
1160 struct rq *rq = cpu_rq(cpu);
1162 if (type == 0)
1163 return rq->raw_weighted_load;
1165 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1169 * Return the average load per task on the cpu's run queue
1171 static inline unsigned long cpu_avg_load_per_task(int cpu)
1173 struct rq *rq = cpu_rq(cpu);
1174 unsigned long n = rq->nr_running;
1176 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1180 * find_idlest_group finds and returns the least busy CPU group within the
1181 * domain.
1183 static struct sched_group *
1184 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1186 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1187 unsigned long min_load = ULONG_MAX, this_load = 0;
1188 int load_idx = sd->forkexec_idx;
1189 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1191 do {
1192 unsigned long load, avg_load;
1193 int local_group;
1194 int i;
1196 /* Skip over this group if it has no CPUs allowed */
1197 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1198 goto nextgroup;
1200 local_group = cpu_isset(this_cpu, group->cpumask);
1202 /* Tally up the load of all CPUs in the group */
1203 avg_load = 0;
1205 for_each_cpu_mask(i, group->cpumask) {
1206 /* Bias balancing toward cpus of our domain */
1207 if (local_group)
1208 load = source_load(i, load_idx);
1209 else
1210 load = target_load(i, load_idx);
1212 avg_load += load;
1215 /* Adjust by relative CPU power of the group */
1216 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1218 if (local_group) {
1219 this_load = avg_load;
1220 this = group;
1221 } else if (avg_load < min_load) {
1222 min_load = avg_load;
1223 idlest = group;
1225 nextgroup:
1226 group = group->next;
1227 } while (group != sd->groups);
1229 if (!idlest || 100*this_load < imbalance*min_load)
1230 return NULL;
1231 return idlest;
1235 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1237 static int
1238 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1240 cpumask_t tmp;
1241 unsigned long load, min_load = ULONG_MAX;
1242 int idlest = -1;
1243 int i;
1245 /* Traverse only the allowed CPUs */
1246 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1248 for_each_cpu_mask(i, tmp) {
1249 load = weighted_cpuload(i);
1251 if (load < min_load || (load == min_load && i == this_cpu)) {
1252 min_load = load;
1253 idlest = i;
1257 return idlest;
1261 * sched_balance_self: balance the current task (running on cpu) in domains
1262 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1263 * SD_BALANCE_EXEC.
1265 * Balance, ie. select the least loaded group.
1267 * Returns the target CPU number, or the same CPU if no balancing is needed.
1269 * preempt must be disabled.
1271 static int sched_balance_self(int cpu, int flag)
1273 struct task_struct *t = current;
1274 struct sched_domain *tmp, *sd = NULL;
1276 for_each_domain(cpu, tmp) {
1278 * If power savings logic is enabled for a domain, stop there.
1280 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1281 break;
1282 if (tmp->flags & flag)
1283 sd = tmp;
1286 while (sd) {
1287 cpumask_t span;
1288 struct sched_group *group;
1289 int new_cpu, weight;
1291 if (!(sd->flags & flag)) {
1292 sd = sd->child;
1293 continue;
1296 span = sd->span;
1297 group = find_idlest_group(sd, t, cpu);
1298 if (!group) {
1299 sd = sd->child;
1300 continue;
1303 new_cpu = find_idlest_cpu(group, t, cpu);
1304 if (new_cpu == -1 || new_cpu == cpu) {
1305 /* Now try balancing at a lower domain level of cpu */
1306 sd = sd->child;
1307 continue;
1310 /* Now try balancing at a lower domain level of new_cpu */
1311 cpu = new_cpu;
1312 sd = NULL;
1313 weight = cpus_weight(span);
1314 for_each_domain(cpu, tmp) {
1315 if (weight <= cpus_weight(tmp->span))
1316 break;
1317 if (tmp->flags & flag)
1318 sd = tmp;
1320 /* while loop will break here if sd == NULL */
1323 return cpu;
1326 #endif /* CONFIG_SMP */
1329 * wake_idle() will wake a task on an idle cpu if task->cpu is
1330 * not idle and an idle cpu is available. The span of cpus to
1331 * search starts with cpus closest then further out as needed,
1332 * so we always favor a closer, idle cpu.
1334 * Returns the CPU we should wake onto.
1336 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1337 static int wake_idle(int cpu, struct task_struct *p)
1339 cpumask_t tmp;
1340 struct sched_domain *sd;
1341 int i;
1343 if (idle_cpu(cpu))
1344 return cpu;
1346 for_each_domain(cpu, sd) {
1347 if (sd->flags & SD_WAKE_IDLE) {
1348 cpus_and(tmp, sd->span, p->cpus_allowed);
1349 for_each_cpu_mask(i, tmp) {
1350 if (idle_cpu(i))
1351 return i;
1354 else
1355 break;
1357 return cpu;
1359 #else
1360 static inline int wake_idle(int cpu, struct task_struct *p)
1362 return cpu;
1364 #endif
1366 /***
1367 * try_to_wake_up - wake up a thread
1368 * @p: the to-be-woken-up thread
1369 * @state: the mask of task states that can be woken
1370 * @sync: do a synchronous wakeup?
1372 * Put it on the run-queue if it's not already there. The "current"
1373 * thread is always on the run-queue (except when the actual
1374 * re-schedule is in progress), and as such you're allowed to do
1375 * the simpler "current->state = TASK_RUNNING" to mark yourself
1376 * runnable without the overhead of this.
1378 * returns failure only if the task is already active.
1380 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1382 int cpu, this_cpu, success = 0;
1383 unsigned long flags;
1384 long old_state;
1385 struct rq *rq;
1386 #ifdef CONFIG_SMP
1387 struct sched_domain *sd, *this_sd = NULL;
1388 unsigned long load, this_load;
1389 int new_cpu;
1390 #endif
1392 rq = task_rq_lock(p, &flags);
1393 old_state = p->state;
1394 if (!(old_state & state))
1395 goto out;
1397 if (p->array)
1398 goto out_running;
1400 cpu = task_cpu(p);
1401 this_cpu = smp_processor_id();
1403 #ifdef CONFIG_SMP
1404 if (unlikely(task_running(rq, p)))
1405 goto out_activate;
1407 new_cpu = cpu;
1409 schedstat_inc(rq, ttwu_cnt);
1410 if (cpu == this_cpu) {
1411 schedstat_inc(rq, ttwu_local);
1412 goto out_set_cpu;
1415 for_each_domain(this_cpu, sd) {
1416 if (cpu_isset(cpu, sd->span)) {
1417 schedstat_inc(sd, ttwu_wake_remote);
1418 this_sd = sd;
1419 break;
1423 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1424 goto out_set_cpu;
1427 * Check for affine wakeup and passive balancing possibilities.
1429 if (this_sd) {
1430 int idx = this_sd->wake_idx;
1431 unsigned int imbalance;
1433 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1435 load = source_load(cpu, idx);
1436 this_load = target_load(this_cpu, idx);
1438 new_cpu = this_cpu; /* Wake to this CPU if we can */
1440 if (this_sd->flags & SD_WAKE_AFFINE) {
1441 unsigned long tl = this_load;
1442 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1445 * If sync wakeup then subtract the (maximum possible)
1446 * effect of the currently running task from the load
1447 * of the current CPU:
1449 if (sync)
1450 tl -= current->load_weight;
1452 if ((tl <= load &&
1453 tl + target_load(cpu, idx) <= tl_per_task) ||
1454 100*(tl + p->load_weight) <= imbalance*load) {
1456 * This domain has SD_WAKE_AFFINE and
1457 * p is cache cold in this domain, and
1458 * there is no bad imbalance.
1460 schedstat_inc(this_sd, ttwu_move_affine);
1461 goto out_set_cpu;
1466 * Start passive balancing when half the imbalance_pct
1467 * limit is reached.
1469 if (this_sd->flags & SD_WAKE_BALANCE) {
1470 if (imbalance*this_load <= 100*load) {
1471 schedstat_inc(this_sd, ttwu_move_balance);
1472 goto out_set_cpu;
1477 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1478 out_set_cpu:
1479 new_cpu = wake_idle(new_cpu, p);
1480 if (new_cpu != cpu) {
1481 set_task_cpu(p, new_cpu);
1482 task_rq_unlock(rq, &flags);
1483 /* might preempt at this point */
1484 rq = task_rq_lock(p, &flags);
1485 old_state = p->state;
1486 if (!(old_state & state))
1487 goto out;
1488 if (p->array)
1489 goto out_running;
1491 this_cpu = smp_processor_id();
1492 cpu = task_cpu(p);
1495 out_activate:
1496 #endif /* CONFIG_SMP */
1497 if (old_state == TASK_UNINTERRUPTIBLE) {
1498 rq->nr_uninterruptible--;
1500 * Tasks on involuntary sleep don't earn
1501 * sleep_avg beyond just interactive state.
1503 p->sleep_type = SLEEP_NONINTERACTIVE;
1504 } else
1507 * Tasks that have marked their sleep as noninteractive get
1508 * woken up with their sleep average not weighted in an
1509 * interactive way.
1511 if (old_state & TASK_NONINTERACTIVE)
1512 p->sleep_type = SLEEP_NONINTERACTIVE;
1515 activate_task(p, rq, cpu == this_cpu);
1517 * Sync wakeups (i.e. those types of wakeups where the waker
1518 * has indicated that it will leave the CPU in short order)
1519 * don't trigger a preemption, if the woken up task will run on
1520 * this cpu. (in this case the 'I will reschedule' promise of
1521 * the waker guarantees that the freshly woken up task is going
1522 * to be considered on this CPU.)
1524 if (!sync || cpu != this_cpu) {
1525 if (TASK_PREEMPTS_CURR(p, rq))
1526 resched_task(rq->curr);
1528 success = 1;
1530 out_running:
1531 p->state = TASK_RUNNING;
1532 out:
1533 task_rq_unlock(rq, &flags);
1535 return success;
1538 int fastcall wake_up_process(struct task_struct *p)
1540 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1541 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1543 EXPORT_SYMBOL(wake_up_process);
1545 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1547 return try_to_wake_up(p, state, 0);
1551 * Perform scheduler related setup for a newly forked process p.
1552 * p is forked by current.
1554 void fastcall sched_fork(struct task_struct *p, int clone_flags)
1556 int cpu = get_cpu();
1558 #ifdef CONFIG_SMP
1559 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1560 #endif
1561 set_task_cpu(p, cpu);
1564 * We mark the process as running here, but have not actually
1565 * inserted it onto the runqueue yet. This guarantees that
1566 * nobody will actually run it, and a signal or other external
1567 * event cannot wake it up and insert it on the runqueue either.
1569 p->state = TASK_RUNNING;
1572 * Make sure we do not leak PI boosting priority to the child:
1574 p->prio = current->normal_prio;
1576 INIT_LIST_HEAD(&p->run_list);
1577 p->array = NULL;
1578 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1579 if (unlikely(sched_info_on()))
1580 memset(&p->sched_info, 0, sizeof(p->sched_info));
1581 #endif
1582 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1583 p->oncpu = 0;
1584 #endif
1585 #ifdef CONFIG_PREEMPT
1586 /* Want to start with kernel preemption disabled. */
1587 task_thread_info(p)->preempt_count = 1;
1588 #endif
1590 * Share the timeslice between parent and child, thus the
1591 * total amount of pending timeslices in the system doesn't change,
1592 * resulting in more scheduling fairness.
1594 local_irq_disable();
1595 p->time_slice = (current->time_slice + 1) >> 1;
1597 * The remainder of the first timeslice might be recovered by
1598 * the parent if the child exits early enough.
1600 p->first_time_slice = 1;
1601 current->time_slice >>= 1;
1602 p->timestamp = sched_clock();
1603 if (unlikely(!current->time_slice)) {
1605 * This case is rare, it happens when the parent has only
1606 * a single jiffy left from its timeslice. Taking the
1607 * runqueue lock is not a problem.
1609 current->time_slice = 1;
1610 scheduler_tick();
1612 local_irq_enable();
1613 put_cpu();
1617 * wake_up_new_task - wake up a newly created task for the first time.
1619 * This function will do some initial scheduler statistics housekeeping
1620 * that must be done for every newly created context, then puts the task
1621 * on the runqueue and wakes it.
1623 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1625 struct rq *rq, *this_rq;
1626 unsigned long flags;
1627 int this_cpu, cpu;
1629 rq = task_rq_lock(p, &flags);
1630 BUG_ON(p->state != TASK_RUNNING);
1631 this_cpu = smp_processor_id();
1632 cpu = task_cpu(p);
1635 * We decrease the sleep average of forking parents
1636 * and children as well, to keep max-interactive tasks
1637 * from forking tasks that are max-interactive. The parent
1638 * (current) is done further down, under its lock.
1640 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1641 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1643 p->prio = effective_prio(p);
1645 if (likely(cpu == this_cpu)) {
1646 if (!(clone_flags & CLONE_VM)) {
1648 * The VM isn't cloned, so we're in a good position to
1649 * do child-runs-first in anticipation of an exec. This
1650 * usually avoids a lot of COW overhead.
1652 if (unlikely(!current->array))
1653 __activate_task(p, rq);
1654 else {
1655 p->prio = current->prio;
1656 p->normal_prio = current->normal_prio;
1657 list_add_tail(&p->run_list, &current->run_list);
1658 p->array = current->array;
1659 p->array->nr_active++;
1660 inc_nr_running(p, rq);
1662 set_need_resched();
1663 } else
1664 /* Run child last */
1665 __activate_task(p, rq);
1667 * We skip the following code due to cpu == this_cpu
1669 * task_rq_unlock(rq, &flags);
1670 * this_rq = task_rq_lock(current, &flags);
1672 this_rq = rq;
1673 } else {
1674 this_rq = cpu_rq(this_cpu);
1677 * Not the local CPU - must adjust timestamp. This should
1678 * get optimised away in the !CONFIG_SMP case.
1680 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1681 + rq->timestamp_last_tick;
1682 __activate_task(p, rq);
1683 if (TASK_PREEMPTS_CURR(p, rq))
1684 resched_task(rq->curr);
1687 * Parent and child are on different CPUs, now get the
1688 * parent runqueue to update the parent's ->sleep_avg:
1690 task_rq_unlock(rq, &flags);
1691 this_rq = task_rq_lock(current, &flags);
1693 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1694 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1695 task_rq_unlock(this_rq, &flags);
1699 * Potentially available exiting-child timeslices are
1700 * retrieved here - this way the parent does not get
1701 * penalized for creating too many threads.
1703 * (this cannot be used to 'generate' timeslices
1704 * artificially, because any timeslice recovered here
1705 * was given away by the parent in the first place.)
1707 void fastcall sched_exit(struct task_struct *p)
1709 unsigned long flags;
1710 struct rq *rq;
1713 * If the child was a (relative-) CPU hog then decrease
1714 * the sleep_avg of the parent as well.
1716 rq = task_rq_lock(p->parent, &flags);
1717 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1718 p->parent->time_slice += p->time_slice;
1719 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1720 p->parent->time_slice = task_timeslice(p);
1722 if (p->sleep_avg < p->parent->sleep_avg)
1723 p->parent->sleep_avg = p->parent->sleep_avg /
1724 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1725 (EXIT_WEIGHT + 1);
1726 task_rq_unlock(rq, &flags);
1730 * prepare_task_switch - prepare to switch tasks
1731 * @rq: the runqueue preparing to switch
1732 * @next: the task we are going to switch to.
1734 * This is called with the rq lock held and interrupts off. It must
1735 * be paired with a subsequent finish_task_switch after the context
1736 * switch.
1738 * prepare_task_switch sets up locking and calls architecture specific
1739 * hooks.
1741 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1743 prepare_lock_switch(rq, next);
1744 prepare_arch_switch(next);
1748 * finish_task_switch - clean up after a task-switch
1749 * @rq: runqueue associated with task-switch
1750 * @prev: the thread we just switched away from.
1752 * finish_task_switch must be called after the context switch, paired
1753 * with a prepare_task_switch call before the context switch.
1754 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1755 * and do any other architecture-specific cleanup actions.
1757 * Note that we may have delayed dropping an mm in context_switch(). If
1758 * so, we finish that here outside of the runqueue lock. (Doing it
1759 * with the lock held can cause deadlocks; see schedule() for
1760 * details.)
1762 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1763 __releases(rq->lock)
1765 struct mm_struct *mm = rq->prev_mm;
1766 long prev_state;
1768 rq->prev_mm = NULL;
1771 * A task struct has one reference for the use as "current".
1772 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1773 * schedule one last time. The schedule call will never return, and
1774 * the scheduled task must drop that reference.
1775 * The test for TASK_DEAD must occur while the runqueue locks are
1776 * still held, otherwise prev could be scheduled on another cpu, die
1777 * there before we look at prev->state, and then the reference would
1778 * be dropped twice.
1779 * Manfred Spraul <manfred@colorfullife.com>
1781 prev_state = prev->state;
1782 finish_arch_switch(prev);
1783 finish_lock_switch(rq, prev);
1784 if (mm)
1785 mmdrop(mm);
1786 if (unlikely(prev_state == TASK_DEAD)) {
1788 * Remove function-return probe instances associated with this
1789 * task and put them back on the free list.
1791 kprobe_flush_task(prev);
1792 put_task_struct(prev);
1797 * schedule_tail - first thing a freshly forked thread must call.
1798 * @prev: the thread we just switched away from.
1800 asmlinkage void schedule_tail(struct task_struct *prev)
1801 __releases(rq->lock)
1803 struct rq *rq = this_rq();
1805 finish_task_switch(rq, prev);
1806 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1807 /* In this case, finish_task_switch does not reenable preemption */
1808 preempt_enable();
1809 #endif
1810 if (current->set_child_tid)
1811 put_user(current->pid, current->set_child_tid);
1815 * context_switch - switch to the new MM and the new
1816 * thread's register state.
1818 static inline struct task_struct *
1819 context_switch(struct rq *rq, struct task_struct *prev,
1820 struct task_struct *next)
1822 struct mm_struct *mm = next->mm;
1823 struct mm_struct *oldmm = prev->active_mm;
1825 if (!mm) {
1826 next->active_mm = oldmm;
1827 atomic_inc(&oldmm->mm_count);
1828 enter_lazy_tlb(oldmm, next);
1829 } else
1830 switch_mm(oldmm, mm, next);
1832 if (!prev->mm) {
1833 prev->active_mm = NULL;
1834 WARN_ON(rq->prev_mm);
1835 rq->prev_mm = oldmm;
1838 * Since the runqueue lock will be released by the next
1839 * task (which is an invalid locking op but in the case
1840 * of the scheduler it's an obvious special-case), so we
1841 * do an early lockdep release here:
1843 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1844 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1845 #endif
1847 /* Here we just switch the register state and the stack. */
1848 switch_to(prev, next, prev);
1850 return prev;
1854 * nr_running, nr_uninterruptible and nr_context_switches:
1856 * externally visible scheduler statistics: current number of runnable
1857 * threads, current number of uninterruptible-sleeping threads, total
1858 * number of context switches performed since bootup.
1860 unsigned long nr_running(void)
1862 unsigned long i, sum = 0;
1864 for_each_online_cpu(i)
1865 sum += cpu_rq(i)->nr_running;
1867 return sum;
1870 unsigned long nr_uninterruptible(void)
1872 unsigned long i, sum = 0;
1874 for_each_possible_cpu(i)
1875 sum += cpu_rq(i)->nr_uninterruptible;
1878 * Since we read the counters lockless, it might be slightly
1879 * inaccurate. Do not allow it to go below zero though:
1881 if (unlikely((long)sum < 0))
1882 sum = 0;
1884 return sum;
1887 unsigned long long nr_context_switches(void)
1889 int i;
1890 unsigned long long sum = 0;
1892 for_each_possible_cpu(i)
1893 sum += cpu_rq(i)->nr_switches;
1895 return sum;
1898 unsigned long nr_iowait(void)
1900 unsigned long i, sum = 0;
1902 for_each_possible_cpu(i)
1903 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1905 return sum;
1908 unsigned long nr_active(void)
1910 unsigned long i, running = 0, uninterruptible = 0;
1912 for_each_online_cpu(i) {
1913 running += cpu_rq(i)->nr_running;
1914 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1917 if (unlikely((long)uninterruptible < 0))
1918 uninterruptible = 0;
1920 return running + uninterruptible;
1923 #ifdef CONFIG_SMP
1926 * Is this task likely cache-hot:
1928 static inline int
1929 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1931 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1935 * double_rq_lock - safely lock two runqueues
1937 * Note this does not disable interrupts like task_rq_lock,
1938 * you need to do so manually before calling.
1940 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1941 __acquires(rq1->lock)
1942 __acquires(rq2->lock)
1944 BUG_ON(!irqs_disabled());
1945 if (rq1 == rq2) {
1946 spin_lock(&rq1->lock);
1947 __acquire(rq2->lock); /* Fake it out ;) */
1948 } else {
1949 if (rq1 < rq2) {
1950 spin_lock(&rq1->lock);
1951 spin_lock(&rq2->lock);
1952 } else {
1953 spin_lock(&rq2->lock);
1954 spin_lock(&rq1->lock);
1960 * double_rq_unlock - safely unlock two runqueues
1962 * Note this does not restore interrupts like task_rq_unlock,
1963 * you need to do so manually after calling.
1965 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1966 __releases(rq1->lock)
1967 __releases(rq2->lock)
1969 spin_unlock(&rq1->lock);
1970 if (rq1 != rq2)
1971 spin_unlock(&rq2->lock);
1972 else
1973 __release(rq2->lock);
1977 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1979 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1980 __releases(this_rq->lock)
1981 __acquires(busiest->lock)
1982 __acquires(this_rq->lock)
1984 if (unlikely(!irqs_disabled())) {
1985 /* printk() doesn't work good under rq->lock */
1986 spin_unlock(&this_rq->lock);
1987 BUG_ON(1);
1989 if (unlikely(!spin_trylock(&busiest->lock))) {
1990 if (busiest < this_rq) {
1991 spin_unlock(&this_rq->lock);
1992 spin_lock(&busiest->lock);
1993 spin_lock(&this_rq->lock);
1994 } else
1995 spin_lock(&busiest->lock);
2000 * If dest_cpu is allowed for this process, migrate the task to it.
2001 * This is accomplished by forcing the cpu_allowed mask to only
2002 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2003 * the cpu_allowed mask is restored.
2005 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2007 struct migration_req req;
2008 unsigned long flags;
2009 struct rq *rq;
2011 rq = task_rq_lock(p, &flags);
2012 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2013 || unlikely(cpu_is_offline(dest_cpu)))
2014 goto out;
2016 /* force the process onto the specified CPU */
2017 if (migrate_task(p, dest_cpu, &req)) {
2018 /* Need to wait for migration thread (might exit: take ref). */
2019 struct task_struct *mt = rq->migration_thread;
2021 get_task_struct(mt);
2022 task_rq_unlock(rq, &flags);
2023 wake_up_process(mt);
2024 put_task_struct(mt);
2025 wait_for_completion(&req.done);
2027 return;
2029 out:
2030 task_rq_unlock(rq, &flags);
2034 * sched_exec - execve() is a valuable balancing opportunity, because at
2035 * this point the task has the smallest effective memory and cache footprint.
2037 void sched_exec(void)
2039 int new_cpu, this_cpu = get_cpu();
2040 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2041 put_cpu();
2042 if (new_cpu != this_cpu)
2043 sched_migrate_task(current, new_cpu);
2047 * pull_task - move a task from a remote runqueue to the local runqueue.
2048 * Both runqueues must be locked.
2050 static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2051 struct task_struct *p, struct rq *this_rq,
2052 struct prio_array *this_array, int this_cpu)
2054 dequeue_task(p, src_array);
2055 dec_nr_running(p, src_rq);
2056 set_task_cpu(p, this_cpu);
2057 inc_nr_running(p, this_rq);
2058 enqueue_task(p, this_array);
2059 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
2060 + this_rq->timestamp_last_tick;
2062 * Note that idle threads have a prio of MAX_PRIO, for this test
2063 * to be always true for them.
2065 if (TASK_PREEMPTS_CURR(p, this_rq))
2066 resched_task(this_rq->curr);
2070 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2072 static
2073 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2074 struct sched_domain *sd, enum idle_type idle,
2075 int *all_pinned)
2078 * We do not migrate tasks that are:
2079 * 1) running (obviously), or
2080 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2081 * 3) are cache-hot on their current CPU.
2083 if (!cpu_isset(this_cpu, p->cpus_allowed))
2084 return 0;
2085 *all_pinned = 0;
2087 if (task_running(rq, p))
2088 return 0;
2091 * Aggressive migration if:
2092 * 1) task is cache cold, or
2093 * 2) too many balance attempts have failed.
2096 if (sd->nr_balance_failed > sd->cache_nice_tries)
2097 return 1;
2099 if (task_hot(p, rq->timestamp_last_tick, sd))
2100 return 0;
2101 return 1;
2104 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2107 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2108 * load from busiest to this_rq, as part of a balancing operation within
2109 * "domain". Returns the number of tasks moved.
2111 * Called with both runqueues locked.
2113 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2114 unsigned long max_nr_move, unsigned long max_load_move,
2115 struct sched_domain *sd, enum idle_type idle,
2116 int *all_pinned)
2118 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2119 best_prio_seen, skip_for_load;
2120 struct prio_array *array, *dst_array;
2121 struct list_head *head, *curr;
2122 struct task_struct *tmp;
2123 long rem_load_move;
2125 if (max_nr_move == 0 || max_load_move == 0)
2126 goto out;
2128 rem_load_move = max_load_move;
2129 pinned = 1;
2130 this_best_prio = rq_best_prio(this_rq);
2131 best_prio = rq_best_prio(busiest);
2133 * Enable handling of the case where there is more than one task
2134 * with the best priority. If the current running task is one
2135 * of those with prio==best_prio we know it won't be moved
2136 * and therefore it's safe to override the skip (based on load) of
2137 * any task we find with that prio.
2139 best_prio_seen = best_prio == busiest->curr->prio;
2142 * We first consider expired tasks. Those will likely not be
2143 * executed in the near future, and they are most likely to
2144 * be cache-cold, thus switching CPUs has the least effect
2145 * on them.
2147 if (busiest->expired->nr_active) {
2148 array = busiest->expired;
2149 dst_array = this_rq->expired;
2150 } else {
2151 array = busiest->active;
2152 dst_array = this_rq->active;
2155 new_array:
2156 /* Start searching at priority 0: */
2157 idx = 0;
2158 skip_bitmap:
2159 if (!idx)
2160 idx = sched_find_first_bit(array->bitmap);
2161 else
2162 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2163 if (idx >= MAX_PRIO) {
2164 if (array == busiest->expired && busiest->active->nr_active) {
2165 array = busiest->active;
2166 dst_array = this_rq->active;
2167 goto new_array;
2169 goto out;
2172 head = array->queue + idx;
2173 curr = head->prev;
2174 skip_queue:
2175 tmp = list_entry(curr, struct task_struct, run_list);
2177 curr = curr->prev;
2180 * To help distribute high priority tasks accross CPUs we don't
2181 * skip a task if it will be the highest priority task (i.e. smallest
2182 * prio value) on its new queue regardless of its load weight
2184 skip_for_load = tmp->load_weight > rem_load_move;
2185 if (skip_for_load && idx < this_best_prio)
2186 skip_for_load = !best_prio_seen && idx == best_prio;
2187 if (skip_for_load ||
2188 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2190 best_prio_seen |= idx == best_prio;
2191 if (curr != head)
2192 goto skip_queue;
2193 idx++;
2194 goto skip_bitmap;
2197 #ifdef CONFIG_SCHEDSTATS
2198 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2199 schedstat_inc(sd, lb_hot_gained[idle]);
2200 #endif
2202 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2203 pulled++;
2204 rem_load_move -= tmp->load_weight;
2207 * We only want to steal up to the prescribed number of tasks
2208 * and the prescribed amount of weighted load.
2210 if (pulled < max_nr_move && rem_load_move > 0) {
2211 if (idx < this_best_prio)
2212 this_best_prio = idx;
2213 if (curr != head)
2214 goto skip_queue;
2215 idx++;
2216 goto skip_bitmap;
2218 out:
2220 * Right now, this is the only place pull_task() is called,
2221 * so we can safely collect pull_task() stats here rather than
2222 * inside pull_task().
2224 schedstat_add(sd, lb_gained[idle], pulled);
2226 if (all_pinned)
2227 *all_pinned = pinned;
2228 return pulled;
2232 * find_busiest_group finds and returns the busiest CPU group within the
2233 * domain. It calculates and returns the amount of weighted load which
2234 * should be moved to restore balance via the imbalance parameter.
2236 static struct sched_group *
2237 find_busiest_group(struct sched_domain *sd, int this_cpu,
2238 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2239 cpumask_t *cpus)
2241 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2242 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2243 unsigned long max_pull;
2244 unsigned long busiest_load_per_task, busiest_nr_running;
2245 unsigned long this_load_per_task, this_nr_running;
2246 int load_idx;
2247 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2248 int power_savings_balance = 1;
2249 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2250 unsigned long min_nr_running = ULONG_MAX;
2251 struct sched_group *group_min = NULL, *group_leader = NULL;
2252 #endif
2254 max_load = this_load = total_load = total_pwr = 0;
2255 busiest_load_per_task = busiest_nr_running = 0;
2256 this_load_per_task = this_nr_running = 0;
2257 if (idle == NOT_IDLE)
2258 load_idx = sd->busy_idx;
2259 else if (idle == NEWLY_IDLE)
2260 load_idx = sd->newidle_idx;
2261 else
2262 load_idx = sd->idle_idx;
2264 do {
2265 unsigned long load, group_capacity;
2266 int local_group;
2267 int i;
2268 unsigned long sum_nr_running, sum_weighted_load;
2270 local_group = cpu_isset(this_cpu, group->cpumask);
2272 /* Tally up the load of all CPUs in the group */
2273 sum_weighted_load = sum_nr_running = avg_load = 0;
2275 for_each_cpu_mask(i, group->cpumask) {
2276 struct rq *rq;
2278 if (!cpu_isset(i, *cpus))
2279 continue;
2281 rq = cpu_rq(i);
2283 if (*sd_idle && !idle_cpu(i))
2284 *sd_idle = 0;
2286 /* Bias balancing toward cpus of our domain */
2287 if (local_group)
2288 load = target_load(i, load_idx);
2289 else
2290 load = source_load(i, load_idx);
2292 avg_load += load;
2293 sum_nr_running += rq->nr_running;
2294 sum_weighted_load += rq->raw_weighted_load;
2297 total_load += avg_load;
2298 total_pwr += group->cpu_power;
2300 /* Adjust by relative CPU power of the group */
2301 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2303 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2305 if (local_group) {
2306 this_load = avg_load;
2307 this = group;
2308 this_nr_running = sum_nr_running;
2309 this_load_per_task = sum_weighted_load;
2310 } else if (avg_load > max_load &&
2311 sum_nr_running > group_capacity) {
2312 max_load = avg_load;
2313 busiest = group;
2314 busiest_nr_running = sum_nr_running;
2315 busiest_load_per_task = sum_weighted_load;
2318 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2320 * Busy processors will not participate in power savings
2321 * balance.
2323 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2324 goto group_next;
2327 * If the local group is idle or completely loaded
2328 * no need to do power savings balance at this domain
2330 if (local_group && (this_nr_running >= group_capacity ||
2331 !this_nr_running))
2332 power_savings_balance = 0;
2335 * If a group is already running at full capacity or idle,
2336 * don't include that group in power savings calculations
2338 if (!power_savings_balance || sum_nr_running >= group_capacity
2339 || !sum_nr_running)
2340 goto group_next;
2343 * Calculate the group which has the least non-idle load.
2344 * This is the group from where we need to pick up the load
2345 * for saving power
2347 if ((sum_nr_running < min_nr_running) ||
2348 (sum_nr_running == min_nr_running &&
2349 first_cpu(group->cpumask) <
2350 first_cpu(group_min->cpumask))) {
2351 group_min = group;
2352 min_nr_running = sum_nr_running;
2353 min_load_per_task = sum_weighted_load /
2354 sum_nr_running;
2358 * Calculate the group which is almost near its
2359 * capacity but still has some space to pick up some load
2360 * from other group and save more power
2362 if (sum_nr_running <= group_capacity - 1) {
2363 if (sum_nr_running > leader_nr_running ||
2364 (sum_nr_running == leader_nr_running &&
2365 first_cpu(group->cpumask) >
2366 first_cpu(group_leader->cpumask))) {
2367 group_leader = group;
2368 leader_nr_running = sum_nr_running;
2371 group_next:
2372 #endif
2373 group = group->next;
2374 } while (group != sd->groups);
2376 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2377 goto out_balanced;
2379 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2381 if (this_load >= avg_load ||
2382 100*max_load <= sd->imbalance_pct*this_load)
2383 goto out_balanced;
2385 busiest_load_per_task /= busiest_nr_running;
2387 * We're trying to get all the cpus to the average_load, so we don't
2388 * want to push ourselves above the average load, nor do we wish to
2389 * reduce the max loaded cpu below the average load, as either of these
2390 * actions would just result in more rebalancing later, and ping-pong
2391 * tasks around. Thus we look for the minimum possible imbalance.
2392 * Negative imbalances (*we* are more loaded than anyone else) will
2393 * be counted as no imbalance for these purposes -- we can't fix that
2394 * by pulling tasks to us. Be careful of negative numbers as they'll
2395 * appear as very large values with unsigned longs.
2397 if (max_load <= busiest_load_per_task)
2398 goto out_balanced;
2401 * In the presence of smp nice balancing, certain scenarios can have
2402 * max load less than avg load(as we skip the groups at or below
2403 * its cpu_power, while calculating max_load..)
2405 if (max_load < avg_load) {
2406 *imbalance = 0;
2407 goto small_imbalance;
2410 /* Don't want to pull so many tasks that a group would go idle */
2411 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2413 /* How much load to actually move to equalise the imbalance */
2414 *imbalance = min(max_pull * busiest->cpu_power,
2415 (avg_load - this_load) * this->cpu_power)
2416 / SCHED_LOAD_SCALE;
2419 * if *imbalance is less than the average load per runnable task
2420 * there is no gaurantee that any tasks will be moved so we'll have
2421 * a think about bumping its value to force at least one task to be
2422 * moved
2424 if (*imbalance < busiest_load_per_task) {
2425 unsigned long tmp, pwr_now, pwr_move;
2426 unsigned int imbn;
2428 small_imbalance:
2429 pwr_move = pwr_now = 0;
2430 imbn = 2;
2431 if (this_nr_running) {
2432 this_load_per_task /= this_nr_running;
2433 if (busiest_load_per_task > this_load_per_task)
2434 imbn = 1;
2435 } else
2436 this_load_per_task = SCHED_LOAD_SCALE;
2438 if (max_load - this_load >= busiest_load_per_task * imbn) {
2439 *imbalance = busiest_load_per_task;
2440 return busiest;
2444 * OK, we don't have enough imbalance to justify moving tasks,
2445 * however we may be able to increase total CPU power used by
2446 * moving them.
2449 pwr_now += busiest->cpu_power *
2450 min(busiest_load_per_task, max_load);
2451 pwr_now += this->cpu_power *
2452 min(this_load_per_task, this_load);
2453 pwr_now /= SCHED_LOAD_SCALE;
2455 /* Amount of load we'd subtract */
2456 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
2457 if (max_load > tmp)
2458 pwr_move += busiest->cpu_power *
2459 min(busiest_load_per_task, max_load - tmp);
2461 /* Amount of load we'd add */
2462 if (max_load*busiest->cpu_power <
2463 busiest_load_per_task*SCHED_LOAD_SCALE)
2464 tmp = max_load*busiest->cpu_power/this->cpu_power;
2465 else
2466 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2467 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
2468 pwr_move /= SCHED_LOAD_SCALE;
2470 /* Move if we gain throughput */
2471 if (pwr_move <= pwr_now)
2472 goto out_balanced;
2474 *imbalance = busiest_load_per_task;
2477 return busiest;
2479 out_balanced:
2480 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2481 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2482 goto ret;
2484 if (this == group_leader && group_leader != group_min) {
2485 *imbalance = min_load_per_task;
2486 return group_min;
2488 ret:
2489 #endif
2490 *imbalance = 0;
2491 return NULL;
2495 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2497 static struct rq *
2498 find_busiest_queue(struct sched_group *group, enum idle_type idle,
2499 unsigned long imbalance, cpumask_t *cpus)
2501 struct rq *busiest = NULL, *rq;
2502 unsigned long max_load = 0;
2503 int i;
2505 for_each_cpu_mask(i, group->cpumask) {
2507 if (!cpu_isset(i, *cpus))
2508 continue;
2510 rq = cpu_rq(i);
2512 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2513 continue;
2515 if (rq->raw_weighted_load > max_load) {
2516 max_load = rq->raw_weighted_load;
2517 busiest = rq;
2521 return busiest;
2525 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2526 * so long as it is large enough.
2528 #define MAX_PINNED_INTERVAL 512
2530 static inline unsigned long minus_1_or_zero(unsigned long n)
2532 return n > 0 ? n - 1 : 0;
2536 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2537 * tasks if there is an imbalance.
2539 * Called with this_rq unlocked.
2541 static int load_balance(int this_cpu, struct rq *this_rq,
2542 struct sched_domain *sd, enum idle_type idle)
2544 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2545 struct sched_group *group;
2546 unsigned long imbalance;
2547 struct rq *busiest;
2548 cpumask_t cpus = CPU_MASK_ALL;
2551 * When power savings policy is enabled for the parent domain, idle
2552 * sibling can pick up load irrespective of busy siblings. In this case,
2553 * let the state of idle sibling percolate up as IDLE, instead of
2554 * portraying it as NOT_IDLE.
2556 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2557 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2558 sd_idle = 1;
2560 schedstat_inc(sd, lb_cnt[idle]);
2562 redo:
2563 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2564 &cpus);
2565 if (!group) {
2566 schedstat_inc(sd, lb_nobusyg[idle]);
2567 goto out_balanced;
2570 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2571 if (!busiest) {
2572 schedstat_inc(sd, lb_nobusyq[idle]);
2573 goto out_balanced;
2576 BUG_ON(busiest == this_rq);
2578 schedstat_add(sd, lb_imbalance[idle], imbalance);
2580 nr_moved = 0;
2581 if (busiest->nr_running > 1) {
2583 * Attempt to move tasks. If find_busiest_group has found
2584 * an imbalance but busiest->nr_running <= 1, the group is
2585 * still unbalanced. nr_moved simply stays zero, so it is
2586 * correctly treated as an imbalance.
2588 double_rq_lock(this_rq, busiest);
2589 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2590 minus_1_or_zero(busiest->nr_running),
2591 imbalance, sd, idle, &all_pinned);
2592 double_rq_unlock(this_rq, busiest);
2594 /* All tasks on this runqueue were pinned by CPU affinity */
2595 if (unlikely(all_pinned)) {
2596 cpu_clear(cpu_of(busiest), cpus);
2597 if (!cpus_empty(cpus))
2598 goto redo;
2599 goto out_balanced;
2603 if (!nr_moved) {
2604 schedstat_inc(sd, lb_failed[idle]);
2605 sd->nr_balance_failed++;
2607 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2609 spin_lock(&busiest->lock);
2611 /* don't kick the migration_thread, if the curr
2612 * task on busiest cpu can't be moved to this_cpu
2614 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2615 spin_unlock(&busiest->lock);
2616 all_pinned = 1;
2617 goto out_one_pinned;
2620 if (!busiest->active_balance) {
2621 busiest->active_balance = 1;
2622 busiest->push_cpu = this_cpu;
2623 active_balance = 1;
2625 spin_unlock(&busiest->lock);
2626 if (active_balance)
2627 wake_up_process(busiest->migration_thread);
2630 * We've kicked active balancing, reset the failure
2631 * counter.
2633 sd->nr_balance_failed = sd->cache_nice_tries+1;
2635 } else
2636 sd->nr_balance_failed = 0;
2638 if (likely(!active_balance)) {
2639 /* We were unbalanced, so reset the balancing interval */
2640 sd->balance_interval = sd->min_interval;
2641 } else {
2643 * If we've begun active balancing, start to back off. This
2644 * case may not be covered by the all_pinned logic if there
2645 * is only 1 task on the busy runqueue (because we don't call
2646 * move_tasks).
2648 if (sd->balance_interval < sd->max_interval)
2649 sd->balance_interval *= 2;
2652 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2653 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2654 return -1;
2655 return nr_moved;
2657 out_balanced:
2658 schedstat_inc(sd, lb_balanced[idle]);
2660 sd->nr_balance_failed = 0;
2662 out_one_pinned:
2663 /* tune up the balancing interval */
2664 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2665 (sd->balance_interval < sd->max_interval))
2666 sd->balance_interval *= 2;
2668 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2669 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2670 return -1;
2671 return 0;
2675 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2676 * tasks if there is an imbalance.
2678 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2679 * this_rq is locked.
2681 static int
2682 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2684 struct sched_group *group;
2685 struct rq *busiest = NULL;
2686 unsigned long imbalance;
2687 int nr_moved = 0;
2688 int sd_idle = 0;
2689 cpumask_t cpus = CPU_MASK_ALL;
2692 * When power savings policy is enabled for the parent domain, idle
2693 * sibling can pick up load irrespective of busy siblings. In this case,
2694 * let the state of idle sibling percolate up as IDLE, instead of
2695 * portraying it as NOT_IDLE.
2697 if (sd->flags & SD_SHARE_CPUPOWER &&
2698 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2699 sd_idle = 1;
2701 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2702 redo:
2703 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2704 &sd_idle, &cpus);
2705 if (!group) {
2706 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2707 goto out_balanced;
2710 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2711 &cpus);
2712 if (!busiest) {
2713 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2714 goto out_balanced;
2717 BUG_ON(busiest == this_rq);
2719 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2721 nr_moved = 0;
2722 if (busiest->nr_running > 1) {
2723 /* Attempt to move tasks */
2724 double_lock_balance(this_rq, busiest);
2725 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2726 minus_1_or_zero(busiest->nr_running),
2727 imbalance, sd, NEWLY_IDLE, NULL);
2728 spin_unlock(&busiest->lock);
2730 if (!nr_moved) {
2731 cpu_clear(cpu_of(busiest), cpus);
2732 if (!cpus_empty(cpus))
2733 goto redo;
2737 if (!nr_moved) {
2738 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2739 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2740 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2741 return -1;
2742 } else
2743 sd->nr_balance_failed = 0;
2745 return nr_moved;
2747 out_balanced:
2748 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2749 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2750 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2751 return -1;
2752 sd->nr_balance_failed = 0;
2754 return 0;
2758 * idle_balance is called by schedule() if this_cpu is about to become
2759 * idle. Attempts to pull tasks from other CPUs.
2761 static void idle_balance(int this_cpu, struct rq *this_rq)
2763 struct sched_domain *sd;
2765 for_each_domain(this_cpu, sd) {
2766 if (sd->flags & SD_BALANCE_NEWIDLE) {
2767 /* If we've pulled tasks over stop searching: */
2768 if (load_balance_newidle(this_cpu, this_rq, sd))
2769 break;
2775 * active_load_balance is run by migration threads. It pushes running tasks
2776 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2777 * running on each physical CPU where possible, and avoids physical /
2778 * logical imbalances.
2780 * Called with busiest_rq locked.
2782 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2784 int target_cpu = busiest_rq->push_cpu;
2785 struct sched_domain *sd;
2786 struct rq *target_rq;
2788 /* Is there any task to move? */
2789 if (busiest_rq->nr_running <= 1)
2790 return;
2792 target_rq = cpu_rq(target_cpu);
2795 * This condition is "impossible", if it occurs
2796 * we need to fix it. Originally reported by
2797 * Bjorn Helgaas on a 128-cpu setup.
2799 BUG_ON(busiest_rq == target_rq);
2801 /* move a task from busiest_rq to target_rq */
2802 double_lock_balance(busiest_rq, target_rq);
2804 /* Search for an sd spanning us and the target CPU. */
2805 for_each_domain(target_cpu, sd) {
2806 if ((sd->flags & SD_LOAD_BALANCE) &&
2807 cpu_isset(busiest_cpu, sd->span))
2808 break;
2811 if (likely(sd)) {
2812 schedstat_inc(sd, alb_cnt);
2814 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2815 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2816 NULL))
2817 schedstat_inc(sd, alb_pushed);
2818 else
2819 schedstat_inc(sd, alb_failed);
2821 spin_unlock(&target_rq->lock);
2825 * rebalance_tick will get called every timer tick, on every CPU.
2827 * It checks each scheduling domain to see if it is due to be balanced,
2828 * and initiates a balancing operation if so.
2830 * Balancing parameters are set up in arch_init_sched_domains.
2833 /* Don't have all balancing operations going off at once: */
2834 static inline unsigned long cpu_offset(int cpu)
2836 return jiffies + cpu * HZ / NR_CPUS;
2839 static void
2840 rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
2842 unsigned long this_load, interval, j = cpu_offset(this_cpu);
2843 struct sched_domain *sd;
2844 int i, scale;
2846 this_load = this_rq->raw_weighted_load;
2848 /* Update our load: */
2849 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2850 unsigned long old_load, new_load;
2852 old_load = this_rq->cpu_load[i];
2853 new_load = this_load;
2855 * Round up the averaging division if load is increasing. This
2856 * prevents us from getting stuck on 9 if the load is 10, for
2857 * example.
2859 if (new_load > old_load)
2860 new_load += scale-1;
2861 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2864 for_each_domain(this_cpu, sd) {
2865 if (!(sd->flags & SD_LOAD_BALANCE))
2866 continue;
2868 interval = sd->balance_interval;
2869 if (idle != SCHED_IDLE)
2870 interval *= sd->busy_factor;
2872 /* scale ms to jiffies */
2873 interval = msecs_to_jiffies(interval);
2874 if (unlikely(!interval))
2875 interval = 1;
2877 if (j - sd->last_balance >= interval) {
2878 if (load_balance(this_cpu, this_rq, sd, idle)) {
2880 * We've pulled tasks over so either we're no
2881 * longer idle, or one of our SMT siblings is
2882 * not idle.
2884 idle = NOT_IDLE;
2886 sd->last_balance += interval;
2890 #else
2892 * on UP we do not need to balance between CPUs:
2894 static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle)
2897 static inline void idle_balance(int cpu, struct rq *rq)
2900 #endif
2902 static inline int wake_priority_sleeper(struct rq *rq)
2904 int ret = 0;
2906 #ifdef CONFIG_SCHED_SMT
2907 spin_lock(&rq->lock);
2909 * If an SMT sibling task has been put to sleep for priority
2910 * reasons reschedule the idle task to see if it can now run.
2912 if (rq->nr_running) {
2913 resched_task(rq->idle);
2914 ret = 1;
2916 spin_unlock(&rq->lock);
2917 #endif
2918 return ret;
2921 DEFINE_PER_CPU(struct kernel_stat, kstat);
2923 EXPORT_PER_CPU_SYMBOL(kstat);
2926 * This is called on clock ticks and on context switches.
2927 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2929 static inline void
2930 update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
2932 p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
2936 * Return current->sched_time plus any more ns on the sched_clock
2937 * that have not yet been banked.
2939 unsigned long long current_sched_time(const struct task_struct *p)
2941 unsigned long long ns;
2942 unsigned long flags;
2944 local_irq_save(flags);
2945 ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
2946 ns = p->sched_time + sched_clock() - ns;
2947 local_irq_restore(flags);
2949 return ns;
2953 * We place interactive tasks back into the active array, if possible.
2955 * To guarantee that this does not starve expired tasks we ignore the
2956 * interactivity of a task if the first expired task had to wait more
2957 * than a 'reasonable' amount of time. This deadline timeout is
2958 * load-dependent, as the frequency of array switched decreases with
2959 * increasing number of running tasks. We also ignore the interactivity
2960 * if a better static_prio task has expired:
2962 static inline int expired_starving(struct rq *rq)
2964 if (rq->curr->static_prio > rq->best_expired_prio)
2965 return 1;
2966 if (!STARVATION_LIMIT || !rq->expired_timestamp)
2967 return 0;
2968 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
2969 return 1;
2970 return 0;
2974 * Account user cpu time to a process.
2975 * @p: the process that the cpu time gets accounted to
2976 * @hardirq_offset: the offset to subtract from hardirq_count()
2977 * @cputime: the cpu time spent in user space since the last update
2979 void account_user_time(struct task_struct *p, cputime_t cputime)
2981 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2982 cputime64_t tmp;
2984 p->utime = cputime_add(p->utime, cputime);
2986 /* Add user time to cpustat. */
2987 tmp = cputime_to_cputime64(cputime);
2988 if (TASK_NICE(p) > 0)
2989 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2990 else
2991 cpustat->user = cputime64_add(cpustat->user, tmp);
2995 * Account system cpu time to a process.
2996 * @p: the process that the cpu time gets accounted to
2997 * @hardirq_offset: the offset to subtract from hardirq_count()
2998 * @cputime: the cpu time spent in kernel space since the last update
3000 void account_system_time(struct task_struct *p, int hardirq_offset,
3001 cputime_t cputime)
3003 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3004 struct rq *rq = this_rq();
3005 cputime64_t tmp;
3007 p->stime = cputime_add(p->stime, cputime);
3009 /* Add system time to cpustat. */
3010 tmp = cputime_to_cputime64(cputime);
3011 if (hardirq_count() - hardirq_offset)
3012 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3013 else if (softirq_count())
3014 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3015 else if (p != rq->idle)
3016 cpustat->system = cputime64_add(cpustat->system, tmp);
3017 else if (atomic_read(&rq->nr_iowait) > 0)
3018 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3019 else
3020 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3021 /* Account for system time used */
3022 acct_update_integrals(p);
3026 * Account for involuntary wait time.
3027 * @p: the process from which the cpu time has been stolen
3028 * @steal: the cpu time spent in involuntary wait
3030 void account_steal_time(struct task_struct *p, cputime_t steal)
3032 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3033 cputime64_t tmp = cputime_to_cputime64(steal);
3034 struct rq *rq = this_rq();
3036 if (p == rq->idle) {
3037 p->stime = cputime_add(p->stime, steal);
3038 if (atomic_read(&rq->nr_iowait) > 0)
3039 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3040 else
3041 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3042 } else
3043 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3047 * This function gets called by the timer code, with HZ frequency.
3048 * We call it with interrupts disabled.
3050 * It also gets called by the fork code, when changing the parent's
3051 * timeslices.
3053 void scheduler_tick(void)
3055 unsigned long long now = sched_clock();
3056 struct task_struct *p = current;
3057 int cpu = smp_processor_id();
3058 struct rq *rq = cpu_rq(cpu);
3060 update_cpu_clock(p, rq, now);
3062 rq->timestamp_last_tick = now;
3064 if (p == rq->idle) {
3065 if (wake_priority_sleeper(rq))
3066 goto out;
3067 rebalance_tick(cpu, rq, SCHED_IDLE);
3068 return;
3071 /* Task might have expired already, but not scheduled off yet */
3072 if (p->array != rq->active) {
3073 set_tsk_need_resched(p);
3074 goto out;
3076 spin_lock(&rq->lock);
3078 * The task was running during this tick - update the
3079 * time slice counter. Note: we do not update a thread's
3080 * priority until it either goes to sleep or uses up its
3081 * timeslice. This makes it possible for interactive tasks
3082 * to use up their timeslices at their highest priority levels.
3084 if (rt_task(p)) {
3086 * RR tasks need a special form of timeslice management.
3087 * FIFO tasks have no timeslices.
3089 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3090 p->time_slice = task_timeslice(p);
3091 p->first_time_slice = 0;
3092 set_tsk_need_resched(p);
3094 /* put it at the end of the queue: */
3095 requeue_task(p, rq->active);
3097 goto out_unlock;
3099 if (!--p->time_slice) {
3100 dequeue_task(p, rq->active);
3101 set_tsk_need_resched(p);
3102 p->prio = effective_prio(p);
3103 p->time_slice = task_timeslice(p);
3104 p->first_time_slice = 0;
3106 if (!rq->expired_timestamp)
3107 rq->expired_timestamp = jiffies;
3108 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
3109 enqueue_task(p, rq->expired);
3110 if (p->static_prio < rq->best_expired_prio)
3111 rq->best_expired_prio = p->static_prio;
3112 } else
3113 enqueue_task(p, rq->active);
3114 } else {
3116 * Prevent a too long timeslice allowing a task to monopolize
3117 * the CPU. We do this by splitting up the timeslice into
3118 * smaller pieces.
3120 * Note: this does not mean the task's timeslices expire or
3121 * get lost in any way, they just might be preempted by
3122 * another task of equal priority. (one with higher
3123 * priority would have preempted this task already.) We
3124 * requeue this task to the end of the list on this priority
3125 * level, which is in essence a round-robin of tasks with
3126 * equal priority.
3128 * This only applies to tasks in the interactive
3129 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3131 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3132 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3133 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3134 (p->array == rq->active)) {
3136 requeue_task(p, rq->active);
3137 set_tsk_need_resched(p);
3140 out_unlock:
3141 spin_unlock(&rq->lock);
3142 out:
3143 rebalance_tick(cpu, rq, NOT_IDLE);
3146 #ifdef CONFIG_SCHED_SMT
3147 static inline void wakeup_busy_runqueue(struct rq *rq)
3149 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3150 if (rq->curr == rq->idle && rq->nr_running)
3151 resched_task(rq->idle);
3155 * Called with interrupt disabled and this_rq's runqueue locked.
3157 static void wake_sleeping_dependent(int this_cpu)
3159 struct sched_domain *tmp, *sd = NULL;
3160 int i;
3162 for_each_domain(this_cpu, tmp) {
3163 if (tmp->flags & SD_SHARE_CPUPOWER) {
3164 sd = tmp;
3165 break;
3169 if (!sd)
3170 return;
3172 for_each_cpu_mask(i, sd->span) {
3173 struct rq *smt_rq = cpu_rq(i);
3175 if (i == this_cpu)
3176 continue;
3177 if (unlikely(!spin_trylock(&smt_rq->lock)))
3178 continue;
3180 wakeup_busy_runqueue(smt_rq);
3181 spin_unlock(&smt_rq->lock);
3186 * number of 'lost' timeslices this task wont be able to fully
3187 * utilize, if another task runs on a sibling. This models the
3188 * slowdown effect of other tasks running on siblings:
3190 static inline unsigned long
3191 smt_slice(struct task_struct *p, struct sched_domain *sd)
3193 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3197 * To minimise lock contention and not have to drop this_rq's runlock we only
3198 * trylock the sibling runqueues and bypass those runqueues if we fail to
3199 * acquire their lock. As we only trylock the normal locking order does not
3200 * need to be obeyed.
3202 static int
3203 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3205 struct sched_domain *tmp, *sd = NULL;
3206 int ret = 0, i;
3208 /* kernel/rt threads do not participate in dependent sleeping */
3209 if (!p->mm || rt_task(p))
3210 return 0;
3212 for_each_domain(this_cpu, tmp) {
3213 if (tmp->flags & SD_SHARE_CPUPOWER) {
3214 sd = tmp;
3215 break;
3219 if (!sd)
3220 return 0;
3222 for_each_cpu_mask(i, sd->span) {
3223 struct task_struct *smt_curr;
3224 struct rq *smt_rq;
3226 if (i == this_cpu)
3227 continue;
3229 smt_rq = cpu_rq(i);
3230 if (unlikely(!spin_trylock(&smt_rq->lock)))
3231 continue;
3233 smt_curr = smt_rq->curr;
3235 if (!smt_curr->mm)
3236 goto unlock;
3239 * If a user task with lower static priority than the
3240 * running task on the SMT sibling is trying to schedule,
3241 * delay it till there is proportionately less timeslice
3242 * left of the sibling task to prevent a lower priority
3243 * task from using an unfair proportion of the
3244 * physical cpu's resources. -ck
3246 if (rt_task(smt_curr)) {
3248 * With real time tasks we run non-rt tasks only
3249 * per_cpu_gain% of the time.
3251 if ((jiffies % DEF_TIMESLICE) >
3252 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3253 ret = 1;
3254 } else {
3255 if (smt_curr->static_prio < p->static_prio &&
3256 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3257 smt_slice(smt_curr, sd) > task_timeslice(p))
3258 ret = 1;
3260 unlock:
3261 spin_unlock(&smt_rq->lock);
3263 return ret;
3265 #else
3266 static inline void wake_sleeping_dependent(int this_cpu)
3269 static inline int
3270 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3272 return 0;
3274 #endif
3276 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3278 void fastcall add_preempt_count(int val)
3281 * Underflow?
3283 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3284 return;
3285 preempt_count() += val;
3287 * Spinlock count overflowing soon?
3289 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
3291 EXPORT_SYMBOL(add_preempt_count);
3293 void fastcall sub_preempt_count(int val)
3296 * Underflow?
3298 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3299 return;
3301 * Is the spinlock portion underflowing?
3303 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3304 !(preempt_count() & PREEMPT_MASK)))
3305 return;
3307 preempt_count() -= val;
3309 EXPORT_SYMBOL(sub_preempt_count);
3311 #endif
3313 static inline int interactive_sleep(enum sleep_type sleep_type)
3315 return (sleep_type == SLEEP_INTERACTIVE ||
3316 sleep_type == SLEEP_INTERRUPTED);
3320 * schedule() is the main scheduler function.
3322 asmlinkage void __sched schedule(void)
3324 struct task_struct *prev, *next;
3325 struct prio_array *array;
3326 struct list_head *queue;
3327 unsigned long long now;
3328 unsigned long run_time;
3329 int cpu, idx, new_prio;
3330 long *switch_count;
3331 struct rq *rq;
3334 * Test if we are atomic. Since do_exit() needs to call into
3335 * schedule() atomically, we ignore that path for now.
3336 * Otherwise, whine if we are scheduling when we should not be.
3338 if (unlikely(in_atomic() && !current->exit_state)) {
3339 printk(KERN_ERR "BUG: scheduling while atomic: "
3340 "%s/0x%08x/%d\n",
3341 current->comm, preempt_count(), current->pid);
3342 dump_stack();
3344 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3346 need_resched:
3347 preempt_disable();
3348 prev = current;
3349 release_kernel_lock(prev);
3350 need_resched_nonpreemptible:
3351 rq = this_rq();
3354 * The idle thread is not allowed to schedule!
3355 * Remove this check after it has been exercised a bit.
3357 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3358 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3359 dump_stack();
3362 schedstat_inc(rq, sched_cnt);
3363 now = sched_clock();
3364 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3365 run_time = now - prev->timestamp;
3366 if (unlikely((long long)(now - prev->timestamp) < 0))
3367 run_time = 0;
3368 } else
3369 run_time = NS_MAX_SLEEP_AVG;
3372 * Tasks charged proportionately less run_time at high sleep_avg to
3373 * delay them losing their interactive status
3375 run_time /= (CURRENT_BONUS(prev) ? : 1);
3377 spin_lock_irq(&rq->lock);
3379 switch_count = &prev->nivcsw;
3380 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3381 switch_count = &prev->nvcsw;
3382 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3383 unlikely(signal_pending(prev))))
3384 prev->state = TASK_RUNNING;
3385 else {
3386 if (prev->state == TASK_UNINTERRUPTIBLE)
3387 rq->nr_uninterruptible++;
3388 deactivate_task(prev, rq);
3392 cpu = smp_processor_id();
3393 if (unlikely(!rq->nr_running)) {
3394 idle_balance(cpu, rq);
3395 if (!rq->nr_running) {
3396 next = rq->idle;
3397 rq->expired_timestamp = 0;
3398 wake_sleeping_dependent(cpu);
3399 goto switch_tasks;
3403 array = rq->active;
3404 if (unlikely(!array->nr_active)) {
3406 * Switch the active and expired arrays.
3408 schedstat_inc(rq, sched_switch);
3409 rq->active = rq->expired;
3410 rq->expired = array;
3411 array = rq->active;
3412 rq->expired_timestamp = 0;
3413 rq->best_expired_prio = MAX_PRIO;
3416 idx = sched_find_first_bit(array->bitmap);
3417 queue = array->queue + idx;
3418 next = list_entry(queue->next, struct task_struct, run_list);
3420 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3421 unsigned long long delta = now - next->timestamp;
3422 if (unlikely((long long)(now - next->timestamp) < 0))
3423 delta = 0;
3425 if (next->sleep_type == SLEEP_INTERACTIVE)
3426 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3428 array = next->array;
3429 new_prio = recalc_task_prio(next, next->timestamp + delta);
3431 if (unlikely(next->prio != new_prio)) {
3432 dequeue_task(next, array);
3433 next->prio = new_prio;
3434 enqueue_task(next, array);
3437 next->sleep_type = SLEEP_NORMAL;
3438 if (dependent_sleeper(cpu, rq, next))
3439 next = rq->idle;
3440 switch_tasks:
3441 if (next == rq->idle)
3442 schedstat_inc(rq, sched_goidle);
3443 prefetch(next);
3444 prefetch_stack(next);
3445 clear_tsk_need_resched(prev);
3446 rcu_qsctr_inc(task_cpu(prev));
3448 update_cpu_clock(prev, rq, now);
3450 prev->sleep_avg -= run_time;
3451 if ((long)prev->sleep_avg <= 0)
3452 prev->sleep_avg = 0;
3453 prev->timestamp = prev->last_ran = now;
3455 sched_info_switch(prev, next);
3456 if (likely(prev != next)) {
3457 next->timestamp = now;
3458 rq->nr_switches++;
3459 rq->curr = next;
3460 ++*switch_count;
3462 prepare_task_switch(rq, next);
3463 prev = context_switch(rq, prev, next);
3464 barrier();
3466 * this_rq must be evaluated again because prev may have moved
3467 * CPUs since it called schedule(), thus the 'rq' on its stack
3468 * frame will be invalid.
3470 finish_task_switch(this_rq(), prev);
3471 } else
3472 spin_unlock_irq(&rq->lock);
3474 prev = current;
3475 if (unlikely(reacquire_kernel_lock(prev) < 0))
3476 goto need_resched_nonpreemptible;
3477 preempt_enable_no_resched();
3478 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3479 goto need_resched;
3481 EXPORT_SYMBOL(schedule);
3483 #ifdef CONFIG_PREEMPT
3485 * this is the entry point to schedule() from in-kernel preemption
3486 * off of preempt_enable. Kernel preemptions off return from interrupt
3487 * occur there and call schedule directly.
3489 asmlinkage void __sched preempt_schedule(void)
3491 struct thread_info *ti = current_thread_info();
3492 #ifdef CONFIG_PREEMPT_BKL
3493 struct task_struct *task = current;
3494 int saved_lock_depth;
3495 #endif
3497 * If there is a non-zero preempt_count or interrupts are disabled,
3498 * we do not want to preempt the current task. Just return..
3500 if (likely(ti->preempt_count || irqs_disabled()))
3501 return;
3503 need_resched:
3504 add_preempt_count(PREEMPT_ACTIVE);
3506 * We keep the big kernel semaphore locked, but we
3507 * clear ->lock_depth so that schedule() doesnt
3508 * auto-release the semaphore:
3510 #ifdef CONFIG_PREEMPT_BKL
3511 saved_lock_depth = task->lock_depth;
3512 task->lock_depth = -1;
3513 #endif
3514 schedule();
3515 #ifdef CONFIG_PREEMPT_BKL
3516 task->lock_depth = saved_lock_depth;
3517 #endif
3518 sub_preempt_count(PREEMPT_ACTIVE);
3520 /* we could miss a preemption opportunity between schedule and now */
3521 barrier();
3522 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3523 goto need_resched;
3525 EXPORT_SYMBOL(preempt_schedule);
3528 * this is the entry point to schedule() from kernel preemption
3529 * off of irq context.
3530 * Note, that this is called and return with irqs disabled. This will
3531 * protect us against recursive calling from irq.
3533 asmlinkage void __sched preempt_schedule_irq(void)
3535 struct thread_info *ti = current_thread_info();
3536 #ifdef CONFIG_PREEMPT_BKL
3537 struct task_struct *task = current;
3538 int saved_lock_depth;
3539 #endif
3540 /* Catch callers which need to be fixed */
3541 BUG_ON(ti->preempt_count || !irqs_disabled());
3543 need_resched:
3544 add_preempt_count(PREEMPT_ACTIVE);
3546 * We keep the big kernel semaphore locked, but we
3547 * clear ->lock_depth so that schedule() doesnt
3548 * auto-release the semaphore:
3550 #ifdef CONFIG_PREEMPT_BKL
3551 saved_lock_depth = task->lock_depth;
3552 task->lock_depth = -1;
3553 #endif
3554 local_irq_enable();
3555 schedule();
3556 local_irq_disable();
3557 #ifdef CONFIG_PREEMPT_BKL
3558 task->lock_depth = saved_lock_depth;
3559 #endif
3560 sub_preempt_count(PREEMPT_ACTIVE);
3562 /* we could miss a preemption opportunity between schedule and now */
3563 barrier();
3564 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3565 goto need_resched;
3568 #endif /* CONFIG_PREEMPT */
3570 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3571 void *key)
3573 return try_to_wake_up(curr->private, mode, sync);
3575 EXPORT_SYMBOL(default_wake_function);
3578 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3579 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3580 * number) then we wake all the non-exclusive tasks and one exclusive task.
3582 * There are circumstances in which we can try to wake a task which has already
3583 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3584 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3586 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3587 int nr_exclusive, int sync, void *key)
3589 struct list_head *tmp, *next;
3591 list_for_each_safe(tmp, next, &q->task_list) {
3592 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3593 unsigned flags = curr->flags;
3595 if (curr->func(curr, mode, sync, key) &&
3596 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3597 break;
3602 * __wake_up - wake up threads blocked on a waitqueue.
3603 * @q: the waitqueue
3604 * @mode: which threads
3605 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3606 * @key: is directly passed to the wakeup function
3608 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3609 int nr_exclusive, void *key)
3611 unsigned long flags;
3613 spin_lock_irqsave(&q->lock, flags);
3614 __wake_up_common(q, mode, nr_exclusive, 0, key);
3615 spin_unlock_irqrestore(&q->lock, flags);
3617 EXPORT_SYMBOL(__wake_up);
3620 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3622 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3624 __wake_up_common(q, mode, 1, 0, NULL);
3628 * __wake_up_sync - wake up threads blocked on a waitqueue.
3629 * @q: the waitqueue
3630 * @mode: which threads
3631 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3633 * The sync wakeup differs that the waker knows that it will schedule
3634 * away soon, so while the target thread will be woken up, it will not
3635 * be migrated to another CPU - ie. the two threads are 'synchronized'
3636 * with each other. This can prevent needless bouncing between CPUs.
3638 * On UP it can prevent extra preemption.
3640 void fastcall
3641 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3643 unsigned long flags;
3644 int sync = 1;
3646 if (unlikely(!q))
3647 return;
3649 if (unlikely(!nr_exclusive))
3650 sync = 0;
3652 spin_lock_irqsave(&q->lock, flags);
3653 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3654 spin_unlock_irqrestore(&q->lock, flags);
3656 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3658 void fastcall complete(struct completion *x)
3660 unsigned long flags;
3662 spin_lock_irqsave(&x->wait.lock, flags);
3663 x->done++;
3664 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3665 1, 0, NULL);
3666 spin_unlock_irqrestore(&x->wait.lock, flags);
3668 EXPORT_SYMBOL(complete);
3670 void fastcall complete_all(struct completion *x)
3672 unsigned long flags;
3674 spin_lock_irqsave(&x->wait.lock, flags);
3675 x->done += UINT_MAX/2;
3676 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3677 0, 0, NULL);
3678 spin_unlock_irqrestore(&x->wait.lock, flags);
3680 EXPORT_SYMBOL(complete_all);
3682 void fastcall __sched wait_for_completion(struct completion *x)
3684 might_sleep();
3686 spin_lock_irq(&x->wait.lock);
3687 if (!x->done) {
3688 DECLARE_WAITQUEUE(wait, current);
3690 wait.flags |= WQ_FLAG_EXCLUSIVE;
3691 __add_wait_queue_tail(&x->wait, &wait);
3692 do {
3693 __set_current_state(TASK_UNINTERRUPTIBLE);
3694 spin_unlock_irq(&x->wait.lock);
3695 schedule();
3696 spin_lock_irq(&x->wait.lock);
3697 } while (!x->done);
3698 __remove_wait_queue(&x->wait, &wait);
3700 x->done--;
3701 spin_unlock_irq(&x->wait.lock);
3703 EXPORT_SYMBOL(wait_for_completion);
3705 unsigned long fastcall __sched
3706 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3708 might_sleep();
3710 spin_lock_irq(&x->wait.lock);
3711 if (!x->done) {
3712 DECLARE_WAITQUEUE(wait, current);
3714 wait.flags |= WQ_FLAG_EXCLUSIVE;
3715 __add_wait_queue_tail(&x->wait, &wait);
3716 do {
3717 __set_current_state(TASK_UNINTERRUPTIBLE);
3718 spin_unlock_irq(&x->wait.lock);
3719 timeout = schedule_timeout(timeout);
3720 spin_lock_irq(&x->wait.lock);
3721 if (!timeout) {
3722 __remove_wait_queue(&x->wait, &wait);
3723 goto out;
3725 } while (!x->done);
3726 __remove_wait_queue(&x->wait, &wait);
3728 x->done--;
3729 out:
3730 spin_unlock_irq(&x->wait.lock);
3731 return timeout;
3733 EXPORT_SYMBOL(wait_for_completion_timeout);
3735 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3737 int ret = 0;
3739 might_sleep();
3741 spin_lock_irq(&x->wait.lock);
3742 if (!x->done) {
3743 DECLARE_WAITQUEUE(wait, current);
3745 wait.flags |= WQ_FLAG_EXCLUSIVE;
3746 __add_wait_queue_tail(&x->wait, &wait);
3747 do {
3748 if (signal_pending(current)) {
3749 ret = -ERESTARTSYS;
3750 __remove_wait_queue(&x->wait, &wait);
3751 goto out;
3753 __set_current_state(TASK_INTERRUPTIBLE);
3754 spin_unlock_irq(&x->wait.lock);
3755 schedule();
3756 spin_lock_irq(&x->wait.lock);
3757 } while (!x->done);
3758 __remove_wait_queue(&x->wait, &wait);
3760 x->done--;
3761 out:
3762 spin_unlock_irq(&x->wait.lock);
3764 return ret;
3766 EXPORT_SYMBOL(wait_for_completion_interruptible);
3768 unsigned long fastcall __sched
3769 wait_for_completion_interruptible_timeout(struct completion *x,
3770 unsigned long timeout)
3772 might_sleep();
3774 spin_lock_irq(&x->wait.lock);
3775 if (!x->done) {
3776 DECLARE_WAITQUEUE(wait, current);
3778 wait.flags |= WQ_FLAG_EXCLUSIVE;
3779 __add_wait_queue_tail(&x->wait, &wait);
3780 do {
3781 if (signal_pending(current)) {
3782 timeout = -ERESTARTSYS;
3783 __remove_wait_queue(&x->wait, &wait);
3784 goto out;
3786 __set_current_state(TASK_INTERRUPTIBLE);
3787 spin_unlock_irq(&x->wait.lock);
3788 timeout = schedule_timeout(timeout);
3789 spin_lock_irq(&x->wait.lock);
3790 if (!timeout) {
3791 __remove_wait_queue(&x->wait, &wait);
3792 goto out;
3794 } while (!x->done);
3795 __remove_wait_queue(&x->wait, &wait);
3797 x->done--;
3798 out:
3799 spin_unlock_irq(&x->wait.lock);
3800 return timeout;
3802 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3805 #define SLEEP_ON_VAR \
3806 unsigned long flags; \
3807 wait_queue_t wait; \
3808 init_waitqueue_entry(&wait, current);
3810 #define SLEEP_ON_HEAD \
3811 spin_lock_irqsave(&q->lock,flags); \
3812 __add_wait_queue(q, &wait); \
3813 spin_unlock(&q->lock);
3815 #define SLEEP_ON_TAIL \
3816 spin_lock_irq(&q->lock); \
3817 __remove_wait_queue(q, &wait); \
3818 spin_unlock_irqrestore(&q->lock, flags);
3820 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3822 SLEEP_ON_VAR
3824 current->state = TASK_INTERRUPTIBLE;
3826 SLEEP_ON_HEAD
3827 schedule();
3828 SLEEP_ON_TAIL
3830 EXPORT_SYMBOL(interruptible_sleep_on);
3832 long fastcall __sched
3833 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3835 SLEEP_ON_VAR
3837 current->state = TASK_INTERRUPTIBLE;
3839 SLEEP_ON_HEAD
3840 timeout = schedule_timeout(timeout);
3841 SLEEP_ON_TAIL
3843 return timeout;
3845 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3847 void fastcall __sched sleep_on(wait_queue_head_t *q)
3849 SLEEP_ON_VAR
3851 current->state = TASK_UNINTERRUPTIBLE;
3853 SLEEP_ON_HEAD
3854 schedule();
3855 SLEEP_ON_TAIL
3857 EXPORT_SYMBOL(sleep_on);
3859 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3861 SLEEP_ON_VAR
3863 current->state = TASK_UNINTERRUPTIBLE;
3865 SLEEP_ON_HEAD
3866 timeout = schedule_timeout(timeout);
3867 SLEEP_ON_TAIL
3869 return timeout;
3872 EXPORT_SYMBOL(sleep_on_timeout);
3874 #ifdef CONFIG_RT_MUTEXES
3877 * rt_mutex_setprio - set the current priority of a task
3878 * @p: task
3879 * @prio: prio value (kernel-internal form)
3881 * This function changes the 'effective' priority of a task. It does
3882 * not touch ->normal_prio like __setscheduler().
3884 * Used by the rt_mutex code to implement priority inheritance logic.
3886 void rt_mutex_setprio(struct task_struct *p, int prio)
3888 struct prio_array *array;
3889 unsigned long flags;
3890 struct rq *rq;
3891 int oldprio;
3893 BUG_ON(prio < 0 || prio > MAX_PRIO);
3895 rq = task_rq_lock(p, &flags);
3897 oldprio = p->prio;
3898 array = p->array;
3899 if (array)
3900 dequeue_task(p, array);
3901 p->prio = prio;
3903 if (array) {
3905 * If changing to an RT priority then queue it
3906 * in the active array!
3908 if (rt_task(p))
3909 array = rq->active;
3910 enqueue_task(p, array);
3912 * Reschedule if we are currently running on this runqueue and
3913 * our priority decreased, or if we are not currently running on
3914 * this runqueue and our priority is higher than the current's
3916 if (task_running(rq, p)) {
3917 if (p->prio > oldprio)
3918 resched_task(rq->curr);
3919 } else if (TASK_PREEMPTS_CURR(p, rq))
3920 resched_task(rq->curr);
3922 task_rq_unlock(rq, &flags);
3925 #endif
3927 void set_user_nice(struct task_struct *p, long nice)
3929 struct prio_array *array;
3930 int old_prio, delta;
3931 unsigned long flags;
3932 struct rq *rq;
3934 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3935 return;
3937 * We have to be careful, if called from sys_setpriority(),
3938 * the task might be in the middle of scheduling on another CPU.
3940 rq = task_rq_lock(p, &flags);
3942 * The RT priorities are set via sched_setscheduler(), but we still
3943 * allow the 'normal' nice value to be set - but as expected
3944 * it wont have any effect on scheduling until the task is
3945 * not SCHED_NORMAL/SCHED_BATCH:
3947 if (has_rt_policy(p)) {
3948 p->static_prio = NICE_TO_PRIO(nice);
3949 goto out_unlock;
3951 array = p->array;
3952 if (array) {
3953 dequeue_task(p, array);
3954 dec_raw_weighted_load(rq, p);
3957 p->static_prio = NICE_TO_PRIO(nice);
3958 set_load_weight(p);
3959 old_prio = p->prio;
3960 p->prio = effective_prio(p);
3961 delta = p->prio - old_prio;
3963 if (array) {
3964 enqueue_task(p, array);
3965 inc_raw_weighted_load(rq, p);
3967 * If the task increased its priority or is running and
3968 * lowered its priority, then reschedule its CPU:
3970 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3971 resched_task(rq->curr);
3973 out_unlock:
3974 task_rq_unlock(rq, &flags);
3976 EXPORT_SYMBOL(set_user_nice);
3979 * can_nice - check if a task can reduce its nice value
3980 * @p: task
3981 * @nice: nice value
3983 int can_nice(const struct task_struct *p, const int nice)
3985 /* convert nice value [19,-20] to rlimit style value [1,40] */
3986 int nice_rlim = 20 - nice;
3988 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3989 capable(CAP_SYS_NICE));
3992 #ifdef __ARCH_WANT_SYS_NICE
3995 * sys_nice - change the priority of the current process.
3996 * @increment: priority increment
3998 * sys_setpriority is a more generic, but much slower function that
3999 * does similar things.
4001 asmlinkage long sys_nice(int increment)
4003 long nice, retval;
4006 * Setpriority might change our priority at the same moment.
4007 * We don't have to worry. Conceptually one call occurs first
4008 * and we have a single winner.
4010 if (increment < -40)
4011 increment = -40;
4012 if (increment > 40)
4013 increment = 40;
4015 nice = PRIO_TO_NICE(current->static_prio) + increment;
4016 if (nice < -20)
4017 nice = -20;
4018 if (nice > 19)
4019 nice = 19;
4021 if (increment < 0 && !can_nice(current, nice))
4022 return -EPERM;
4024 retval = security_task_setnice(current, nice);
4025 if (retval)
4026 return retval;
4028 set_user_nice(current, nice);
4029 return 0;
4032 #endif
4035 * task_prio - return the priority value of a given task.
4036 * @p: the task in question.
4038 * This is the priority value as seen by users in /proc.
4039 * RT tasks are offset by -200. Normal tasks are centered
4040 * around 0, value goes from -16 to +15.
4042 int task_prio(const struct task_struct *p)
4044 return p->prio - MAX_RT_PRIO;
4048 * task_nice - return the nice value of a given task.
4049 * @p: the task in question.
4051 int task_nice(const struct task_struct *p)
4053 return TASK_NICE(p);
4055 EXPORT_SYMBOL_GPL(task_nice);
4058 * idle_cpu - is a given cpu idle currently?
4059 * @cpu: the processor in question.
4061 int idle_cpu(int cpu)
4063 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4067 * idle_task - return the idle task for a given cpu.
4068 * @cpu: the processor in question.
4070 struct task_struct *idle_task(int cpu)
4072 return cpu_rq(cpu)->idle;
4076 * find_process_by_pid - find a process with a matching PID value.
4077 * @pid: the pid in question.
4079 static inline struct task_struct *find_process_by_pid(pid_t pid)
4081 return pid ? find_task_by_pid(pid) : current;
4084 /* Actually do priority change: must hold rq lock. */
4085 static void __setscheduler(struct task_struct *p, int policy, int prio)
4087 BUG_ON(p->array);
4089 p->policy = policy;
4090 p->rt_priority = prio;
4091 p->normal_prio = normal_prio(p);
4092 /* we are holding p->pi_lock already */
4093 p->prio = rt_mutex_getprio(p);
4095 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4097 if (policy == SCHED_BATCH)
4098 p->sleep_avg = 0;
4099 set_load_weight(p);
4103 * sched_setscheduler - change the scheduling policy and/or RT priority of
4104 * a thread.
4105 * @p: the task in question.
4106 * @policy: new policy.
4107 * @param: structure containing the new RT priority.
4109 * NOTE: the task may be already dead
4111 int sched_setscheduler(struct task_struct *p, int policy,
4112 struct sched_param *param)
4114 int retval, oldprio, oldpolicy = -1;
4115 struct prio_array *array;
4116 unsigned long flags;
4117 struct rq *rq;
4119 /* may grab non-irq protected spin_locks */
4120 BUG_ON(in_interrupt());
4121 recheck:
4122 /* double check policy once rq lock held */
4123 if (policy < 0)
4124 policy = oldpolicy = p->policy;
4125 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4126 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4127 return -EINVAL;
4129 * Valid priorities for SCHED_FIFO and SCHED_RR are
4130 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4131 * SCHED_BATCH is 0.
4133 if (param->sched_priority < 0 ||
4134 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4135 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4136 return -EINVAL;
4137 if (is_rt_policy(policy) != (param->sched_priority != 0))
4138 return -EINVAL;
4141 * Allow unprivileged RT tasks to decrease priority:
4143 if (!capable(CAP_SYS_NICE)) {
4144 if (is_rt_policy(policy)) {
4145 unsigned long rlim_rtprio;
4146 unsigned long flags;
4148 if (!lock_task_sighand(p, &flags))
4149 return -ESRCH;
4150 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4151 unlock_task_sighand(p, &flags);
4153 /* can't set/change the rt policy */
4154 if (policy != p->policy && !rlim_rtprio)
4155 return -EPERM;
4157 /* can't increase priority */
4158 if (param->sched_priority > p->rt_priority &&
4159 param->sched_priority > rlim_rtprio)
4160 return -EPERM;
4163 /* can't change other user's priorities */
4164 if ((current->euid != p->euid) &&
4165 (current->euid != p->uid))
4166 return -EPERM;
4169 retval = security_task_setscheduler(p, policy, param);
4170 if (retval)
4171 return retval;
4173 * make sure no PI-waiters arrive (or leave) while we are
4174 * changing the priority of the task:
4176 spin_lock_irqsave(&p->pi_lock, flags);
4178 * To be able to change p->policy safely, the apropriate
4179 * runqueue lock must be held.
4181 rq = __task_rq_lock(p);
4182 /* recheck policy now with rq lock held */
4183 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4184 policy = oldpolicy = -1;
4185 __task_rq_unlock(rq);
4186 spin_unlock_irqrestore(&p->pi_lock, flags);
4187 goto recheck;
4189 array = p->array;
4190 if (array)
4191 deactivate_task(p, rq);
4192 oldprio = p->prio;
4193 __setscheduler(p, policy, param->sched_priority);
4194 if (array) {
4195 __activate_task(p, rq);
4197 * Reschedule if we are currently running on this runqueue and
4198 * our priority decreased, or if we are not currently running on
4199 * this runqueue and our priority is higher than the current's
4201 if (task_running(rq, p)) {
4202 if (p->prio > oldprio)
4203 resched_task(rq->curr);
4204 } else if (TASK_PREEMPTS_CURR(p, rq))
4205 resched_task(rq->curr);
4207 __task_rq_unlock(rq);
4208 spin_unlock_irqrestore(&p->pi_lock, flags);
4210 rt_mutex_adjust_pi(p);
4212 return 0;
4214 EXPORT_SYMBOL_GPL(sched_setscheduler);
4216 static int
4217 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4219 struct sched_param lparam;
4220 struct task_struct *p;
4221 int retval;
4223 if (!param || pid < 0)
4224 return -EINVAL;
4225 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4226 return -EFAULT;
4228 rcu_read_lock();
4229 retval = -ESRCH;
4230 p = find_process_by_pid(pid);
4231 if (p != NULL)
4232 retval = sched_setscheduler(p, policy, &lparam);
4233 rcu_read_unlock();
4235 return retval;
4239 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4240 * @pid: the pid in question.
4241 * @policy: new policy.
4242 * @param: structure containing the new RT priority.
4244 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4245 struct sched_param __user *param)
4247 /* negative values for policy are not valid */
4248 if (policy < 0)
4249 return -EINVAL;
4251 return do_sched_setscheduler(pid, policy, param);
4255 * sys_sched_setparam - set/change the RT priority of a thread
4256 * @pid: the pid in question.
4257 * @param: structure containing the new RT priority.
4259 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4261 return do_sched_setscheduler(pid, -1, param);
4265 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4266 * @pid: the pid in question.
4268 asmlinkage long sys_sched_getscheduler(pid_t pid)
4270 struct task_struct *p;
4271 int retval = -EINVAL;
4273 if (pid < 0)
4274 goto out_nounlock;
4276 retval = -ESRCH;
4277 read_lock(&tasklist_lock);
4278 p = find_process_by_pid(pid);
4279 if (p) {
4280 retval = security_task_getscheduler(p);
4281 if (!retval)
4282 retval = p->policy;
4284 read_unlock(&tasklist_lock);
4286 out_nounlock:
4287 return retval;
4291 * sys_sched_getscheduler - get the RT priority of a thread
4292 * @pid: the pid in question.
4293 * @param: structure containing the RT priority.
4295 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4297 struct sched_param lp;
4298 struct task_struct *p;
4299 int retval = -EINVAL;
4301 if (!param || pid < 0)
4302 goto out_nounlock;
4304 read_lock(&tasklist_lock);
4305 p = find_process_by_pid(pid);
4306 retval = -ESRCH;
4307 if (!p)
4308 goto out_unlock;
4310 retval = security_task_getscheduler(p);
4311 if (retval)
4312 goto out_unlock;
4314 lp.sched_priority = p->rt_priority;
4315 read_unlock(&tasklist_lock);
4318 * This one might sleep, we cannot do it with a spinlock held ...
4320 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4322 out_nounlock:
4323 return retval;
4325 out_unlock:
4326 read_unlock(&tasklist_lock);
4327 return retval;
4330 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4332 cpumask_t cpus_allowed;
4333 struct task_struct *p;
4334 int retval;
4336 lock_cpu_hotplug();
4337 read_lock(&tasklist_lock);
4339 p = find_process_by_pid(pid);
4340 if (!p) {
4341 read_unlock(&tasklist_lock);
4342 unlock_cpu_hotplug();
4343 return -ESRCH;
4347 * It is not safe to call set_cpus_allowed with the
4348 * tasklist_lock held. We will bump the task_struct's
4349 * usage count and then drop tasklist_lock.
4351 get_task_struct(p);
4352 read_unlock(&tasklist_lock);
4354 retval = -EPERM;
4355 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4356 !capable(CAP_SYS_NICE))
4357 goto out_unlock;
4359 retval = security_task_setscheduler(p, 0, NULL);
4360 if (retval)
4361 goto out_unlock;
4363 cpus_allowed = cpuset_cpus_allowed(p);
4364 cpus_and(new_mask, new_mask, cpus_allowed);
4365 retval = set_cpus_allowed(p, new_mask);
4367 out_unlock:
4368 put_task_struct(p);
4369 unlock_cpu_hotplug();
4370 return retval;
4373 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4374 cpumask_t *new_mask)
4376 if (len < sizeof(cpumask_t)) {
4377 memset(new_mask, 0, sizeof(cpumask_t));
4378 } else if (len > sizeof(cpumask_t)) {
4379 len = sizeof(cpumask_t);
4381 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4385 * sys_sched_setaffinity - set the cpu affinity of a process
4386 * @pid: pid of the process
4387 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4388 * @user_mask_ptr: user-space pointer to the new cpu mask
4390 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4391 unsigned long __user *user_mask_ptr)
4393 cpumask_t new_mask;
4394 int retval;
4396 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4397 if (retval)
4398 return retval;
4400 return sched_setaffinity(pid, new_mask);
4404 * Represents all cpu's present in the system
4405 * In systems capable of hotplug, this map could dynamically grow
4406 * as new cpu's are detected in the system via any platform specific
4407 * method, such as ACPI for e.g.
4410 cpumask_t cpu_present_map __read_mostly;
4411 EXPORT_SYMBOL(cpu_present_map);
4413 #ifndef CONFIG_SMP
4414 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4415 EXPORT_SYMBOL(cpu_online_map);
4417 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4418 EXPORT_SYMBOL(cpu_possible_map);
4419 #endif
4421 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4423 struct task_struct *p;
4424 int retval;
4426 lock_cpu_hotplug();
4427 read_lock(&tasklist_lock);
4429 retval = -ESRCH;
4430 p = find_process_by_pid(pid);
4431 if (!p)
4432 goto out_unlock;
4434 retval = security_task_getscheduler(p);
4435 if (retval)
4436 goto out_unlock;
4438 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4440 out_unlock:
4441 read_unlock(&tasklist_lock);
4442 unlock_cpu_hotplug();
4443 if (retval)
4444 return retval;
4446 return 0;
4450 * sys_sched_getaffinity - get the cpu affinity of a process
4451 * @pid: pid of the process
4452 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4453 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4455 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4456 unsigned long __user *user_mask_ptr)
4458 int ret;
4459 cpumask_t mask;
4461 if (len < sizeof(cpumask_t))
4462 return -EINVAL;
4464 ret = sched_getaffinity(pid, &mask);
4465 if (ret < 0)
4466 return ret;
4468 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4469 return -EFAULT;
4471 return sizeof(cpumask_t);
4475 * sys_sched_yield - yield the current processor to other threads.
4477 * this function yields the current CPU by moving the calling thread
4478 * to the expired array. If there are no other threads running on this
4479 * CPU then this function will return.
4481 asmlinkage long sys_sched_yield(void)
4483 struct rq *rq = this_rq_lock();
4484 struct prio_array *array = current->array, *target = rq->expired;
4486 schedstat_inc(rq, yld_cnt);
4488 * We implement yielding by moving the task into the expired
4489 * queue.
4491 * (special rule: RT tasks will just roundrobin in the active
4492 * array.)
4494 if (rt_task(current))
4495 target = rq->active;
4497 if (array->nr_active == 1) {
4498 schedstat_inc(rq, yld_act_empty);
4499 if (!rq->expired->nr_active)
4500 schedstat_inc(rq, yld_both_empty);
4501 } else if (!rq->expired->nr_active)
4502 schedstat_inc(rq, yld_exp_empty);
4504 if (array != target) {
4505 dequeue_task(current, array);
4506 enqueue_task(current, target);
4507 } else
4509 * requeue_task is cheaper so perform that if possible.
4511 requeue_task(current, array);
4514 * Since we are going to call schedule() anyway, there's
4515 * no need to preempt or enable interrupts:
4517 __release(rq->lock);
4518 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4519 _raw_spin_unlock(&rq->lock);
4520 preempt_enable_no_resched();
4522 schedule();
4524 return 0;
4527 static void __cond_resched(void)
4529 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4530 __might_sleep(__FILE__, __LINE__);
4531 #endif
4533 * The BKS might be reacquired before we have dropped
4534 * PREEMPT_ACTIVE, which could trigger a second
4535 * cond_resched() call.
4537 do {
4538 add_preempt_count(PREEMPT_ACTIVE);
4539 schedule();
4540 sub_preempt_count(PREEMPT_ACTIVE);
4541 } while (need_resched());
4544 int __sched cond_resched(void)
4546 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4547 system_state == SYSTEM_RUNNING) {
4548 __cond_resched();
4549 return 1;
4551 return 0;
4553 EXPORT_SYMBOL(cond_resched);
4556 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4557 * call schedule, and on return reacquire the lock.
4559 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4560 * operations here to prevent schedule() from being called twice (once via
4561 * spin_unlock(), once by hand).
4563 int cond_resched_lock(spinlock_t *lock)
4565 int ret = 0;
4567 if (need_lockbreak(lock)) {
4568 spin_unlock(lock);
4569 cpu_relax();
4570 ret = 1;
4571 spin_lock(lock);
4573 if (need_resched() && system_state == SYSTEM_RUNNING) {
4574 spin_release(&lock->dep_map, 1, _THIS_IP_);
4575 _raw_spin_unlock(lock);
4576 preempt_enable_no_resched();
4577 __cond_resched();
4578 ret = 1;
4579 spin_lock(lock);
4581 return ret;
4583 EXPORT_SYMBOL(cond_resched_lock);
4585 int __sched cond_resched_softirq(void)
4587 BUG_ON(!in_softirq());
4589 if (need_resched() && system_state == SYSTEM_RUNNING) {
4590 raw_local_irq_disable();
4591 _local_bh_enable();
4592 raw_local_irq_enable();
4593 __cond_resched();
4594 local_bh_disable();
4595 return 1;
4597 return 0;
4599 EXPORT_SYMBOL(cond_resched_softirq);
4602 * yield - yield the current processor to other threads.
4604 * this is a shortcut for kernel-space yielding - it marks the
4605 * thread runnable and calls sys_sched_yield().
4607 void __sched yield(void)
4609 set_current_state(TASK_RUNNING);
4610 sys_sched_yield();
4612 EXPORT_SYMBOL(yield);
4615 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4616 * that process accounting knows that this is a task in IO wait state.
4618 * But don't do that if it is a deliberate, throttling IO wait (this task
4619 * has set its backing_dev_info: the queue against which it should throttle)
4621 void __sched io_schedule(void)
4623 struct rq *rq = &__raw_get_cpu_var(runqueues);
4625 delayacct_blkio_start();
4626 atomic_inc(&rq->nr_iowait);
4627 schedule();
4628 atomic_dec(&rq->nr_iowait);
4629 delayacct_blkio_end();
4631 EXPORT_SYMBOL(io_schedule);
4633 long __sched io_schedule_timeout(long timeout)
4635 struct rq *rq = &__raw_get_cpu_var(runqueues);
4636 long ret;
4638 delayacct_blkio_start();
4639 atomic_inc(&rq->nr_iowait);
4640 ret = schedule_timeout(timeout);
4641 atomic_dec(&rq->nr_iowait);
4642 delayacct_blkio_end();
4643 return ret;
4647 * sys_sched_get_priority_max - return maximum RT priority.
4648 * @policy: scheduling class.
4650 * this syscall returns the maximum rt_priority that can be used
4651 * by a given scheduling class.
4653 asmlinkage long sys_sched_get_priority_max(int policy)
4655 int ret = -EINVAL;
4657 switch (policy) {
4658 case SCHED_FIFO:
4659 case SCHED_RR:
4660 ret = MAX_USER_RT_PRIO-1;
4661 break;
4662 case SCHED_NORMAL:
4663 case SCHED_BATCH:
4664 ret = 0;
4665 break;
4667 return ret;
4671 * sys_sched_get_priority_min - return minimum RT priority.
4672 * @policy: scheduling class.
4674 * this syscall returns the minimum rt_priority that can be used
4675 * by a given scheduling class.
4677 asmlinkage long sys_sched_get_priority_min(int policy)
4679 int ret = -EINVAL;
4681 switch (policy) {
4682 case SCHED_FIFO:
4683 case SCHED_RR:
4684 ret = 1;
4685 break;
4686 case SCHED_NORMAL:
4687 case SCHED_BATCH:
4688 ret = 0;
4690 return ret;
4694 * sys_sched_rr_get_interval - return the default timeslice of a process.
4695 * @pid: pid of the process.
4696 * @interval: userspace pointer to the timeslice value.
4698 * this syscall writes the default timeslice value of a given process
4699 * into the user-space timespec buffer. A value of '0' means infinity.
4701 asmlinkage
4702 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4704 struct task_struct *p;
4705 int retval = -EINVAL;
4706 struct timespec t;
4708 if (pid < 0)
4709 goto out_nounlock;
4711 retval = -ESRCH;
4712 read_lock(&tasklist_lock);
4713 p = find_process_by_pid(pid);
4714 if (!p)
4715 goto out_unlock;
4717 retval = security_task_getscheduler(p);
4718 if (retval)
4719 goto out_unlock;
4721 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4722 0 : task_timeslice(p), &t);
4723 read_unlock(&tasklist_lock);
4724 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4725 out_nounlock:
4726 return retval;
4727 out_unlock:
4728 read_unlock(&tasklist_lock);
4729 return retval;
4732 static inline struct task_struct *eldest_child(struct task_struct *p)
4734 if (list_empty(&p->children))
4735 return NULL;
4736 return list_entry(p->children.next,struct task_struct,sibling);
4739 static inline struct task_struct *older_sibling(struct task_struct *p)
4741 if (p->sibling.prev==&p->parent->children)
4742 return NULL;
4743 return list_entry(p->sibling.prev,struct task_struct,sibling);
4746 static inline struct task_struct *younger_sibling(struct task_struct *p)
4748 if (p->sibling.next==&p->parent->children)
4749 return NULL;
4750 return list_entry(p->sibling.next,struct task_struct,sibling);
4753 static const char stat_nam[] = "RSDTtZX";
4755 static void show_task(struct task_struct *p)
4757 struct task_struct *relative;
4758 unsigned long free = 0;
4759 unsigned state;
4761 state = p->state ? __ffs(p->state) + 1 : 0;
4762 printk("%-13.13s %c", p->comm,
4763 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4764 #if (BITS_PER_LONG == 32)
4765 if (state == TASK_RUNNING)
4766 printk(" running ");
4767 else
4768 printk(" %08lX ", thread_saved_pc(p));
4769 #else
4770 if (state == TASK_RUNNING)
4771 printk(" running task ");
4772 else
4773 printk(" %016lx ", thread_saved_pc(p));
4774 #endif
4775 #ifdef CONFIG_DEBUG_STACK_USAGE
4777 unsigned long *n = end_of_stack(p);
4778 while (!*n)
4779 n++;
4780 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4782 #endif
4783 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4784 if ((relative = eldest_child(p)))
4785 printk("%5d ", relative->pid);
4786 else
4787 printk(" ");
4788 if ((relative = younger_sibling(p)))
4789 printk("%7d", relative->pid);
4790 else
4791 printk(" ");
4792 if ((relative = older_sibling(p)))
4793 printk(" %5d", relative->pid);
4794 else
4795 printk(" ");
4796 if (!p->mm)
4797 printk(" (L-TLB)\n");
4798 else
4799 printk(" (NOTLB)\n");
4801 if (state != TASK_RUNNING)
4802 show_stack(p, NULL);
4805 void show_state(void)
4807 struct task_struct *g, *p;
4809 #if (BITS_PER_LONG == 32)
4810 printk("\n"
4811 " sibling\n");
4812 printk(" task PC pid father child younger older\n");
4813 #else
4814 printk("\n"
4815 " sibling\n");
4816 printk(" task PC pid father child younger older\n");
4817 #endif
4818 read_lock(&tasklist_lock);
4819 do_each_thread(g, p) {
4821 * reset the NMI-timeout, listing all files on a slow
4822 * console might take alot of time:
4824 touch_nmi_watchdog();
4825 show_task(p);
4826 } while_each_thread(g, p);
4828 read_unlock(&tasklist_lock);
4829 debug_show_all_locks();
4833 * init_idle - set up an idle thread for a given CPU
4834 * @idle: task in question
4835 * @cpu: cpu the idle task belongs to
4837 * NOTE: this function does not set the idle thread's NEED_RESCHED
4838 * flag, to make booting more robust.
4840 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4842 struct rq *rq = cpu_rq(cpu);
4843 unsigned long flags;
4845 idle->timestamp = sched_clock();
4846 idle->sleep_avg = 0;
4847 idle->array = NULL;
4848 idle->prio = idle->normal_prio = MAX_PRIO;
4849 idle->state = TASK_RUNNING;
4850 idle->cpus_allowed = cpumask_of_cpu(cpu);
4851 set_task_cpu(idle, cpu);
4853 spin_lock_irqsave(&rq->lock, flags);
4854 rq->curr = rq->idle = idle;
4855 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4856 idle->oncpu = 1;
4857 #endif
4858 spin_unlock_irqrestore(&rq->lock, flags);
4860 /* Set the preempt count _outside_ the spinlocks! */
4861 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4862 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4863 #else
4864 task_thread_info(idle)->preempt_count = 0;
4865 #endif
4869 * In a system that switches off the HZ timer nohz_cpu_mask
4870 * indicates which cpus entered this state. This is used
4871 * in the rcu update to wait only for active cpus. For system
4872 * which do not switch off the HZ timer nohz_cpu_mask should
4873 * always be CPU_MASK_NONE.
4875 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4877 #ifdef CONFIG_SMP
4879 * This is how migration works:
4881 * 1) we queue a struct migration_req structure in the source CPU's
4882 * runqueue and wake up that CPU's migration thread.
4883 * 2) we down() the locked semaphore => thread blocks.
4884 * 3) migration thread wakes up (implicitly it forces the migrated
4885 * thread off the CPU)
4886 * 4) it gets the migration request and checks whether the migrated
4887 * task is still in the wrong runqueue.
4888 * 5) if it's in the wrong runqueue then the migration thread removes
4889 * it and puts it into the right queue.
4890 * 6) migration thread up()s the semaphore.
4891 * 7) we wake up and the migration is done.
4895 * Change a given task's CPU affinity. Migrate the thread to a
4896 * proper CPU and schedule it away if the CPU it's executing on
4897 * is removed from the allowed bitmask.
4899 * NOTE: the caller must have a valid reference to the task, the
4900 * task must not exit() & deallocate itself prematurely. The
4901 * call is not atomic; no spinlocks may be held.
4903 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4905 struct migration_req req;
4906 unsigned long flags;
4907 struct rq *rq;
4908 int ret = 0;
4910 rq = task_rq_lock(p, &flags);
4911 if (!cpus_intersects(new_mask, cpu_online_map)) {
4912 ret = -EINVAL;
4913 goto out;
4916 p->cpus_allowed = new_mask;
4917 /* Can the task run on the task's current CPU? If so, we're done */
4918 if (cpu_isset(task_cpu(p), new_mask))
4919 goto out;
4921 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4922 /* Need help from migration thread: drop lock and wait. */
4923 task_rq_unlock(rq, &flags);
4924 wake_up_process(rq->migration_thread);
4925 wait_for_completion(&req.done);
4926 tlb_migrate_finish(p->mm);
4927 return 0;
4929 out:
4930 task_rq_unlock(rq, &flags);
4932 return ret;
4934 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4937 * Move (not current) task off this cpu, onto dest cpu. We're doing
4938 * this because either it can't run here any more (set_cpus_allowed()
4939 * away from this CPU, or CPU going down), or because we're
4940 * attempting to rebalance this task on exec (sched_exec).
4942 * So we race with normal scheduler movements, but that's OK, as long
4943 * as the task is no longer on this CPU.
4945 * Returns non-zero if task was successfully migrated.
4947 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4949 struct rq *rq_dest, *rq_src;
4950 int ret = 0;
4952 if (unlikely(cpu_is_offline(dest_cpu)))
4953 return ret;
4955 rq_src = cpu_rq(src_cpu);
4956 rq_dest = cpu_rq(dest_cpu);
4958 double_rq_lock(rq_src, rq_dest);
4959 /* Already moved. */
4960 if (task_cpu(p) != src_cpu)
4961 goto out;
4962 /* Affinity changed (again). */
4963 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4964 goto out;
4966 set_task_cpu(p, dest_cpu);
4967 if (p->array) {
4969 * Sync timestamp with rq_dest's before activating.
4970 * The same thing could be achieved by doing this step
4971 * afterwards, and pretending it was a local activate.
4972 * This way is cleaner and logically correct.
4974 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4975 + rq_dest->timestamp_last_tick;
4976 deactivate_task(p, rq_src);
4977 __activate_task(p, rq_dest);
4978 if (TASK_PREEMPTS_CURR(p, rq_dest))
4979 resched_task(rq_dest->curr);
4981 ret = 1;
4982 out:
4983 double_rq_unlock(rq_src, rq_dest);
4984 return ret;
4988 * migration_thread - this is a highprio system thread that performs
4989 * thread migration by bumping thread off CPU then 'pushing' onto
4990 * another runqueue.
4992 static int migration_thread(void *data)
4994 int cpu = (long)data;
4995 struct rq *rq;
4997 rq = cpu_rq(cpu);
4998 BUG_ON(rq->migration_thread != current);
5000 set_current_state(TASK_INTERRUPTIBLE);
5001 while (!kthread_should_stop()) {
5002 struct migration_req *req;
5003 struct list_head *head;
5005 try_to_freeze();
5007 spin_lock_irq(&rq->lock);
5009 if (cpu_is_offline(cpu)) {
5010 spin_unlock_irq(&rq->lock);
5011 goto wait_to_die;
5014 if (rq->active_balance) {
5015 active_load_balance(rq, cpu);
5016 rq->active_balance = 0;
5019 head = &rq->migration_queue;
5021 if (list_empty(head)) {
5022 spin_unlock_irq(&rq->lock);
5023 schedule();
5024 set_current_state(TASK_INTERRUPTIBLE);
5025 continue;
5027 req = list_entry(head->next, struct migration_req, list);
5028 list_del_init(head->next);
5030 spin_unlock(&rq->lock);
5031 __migrate_task(req->task, cpu, req->dest_cpu);
5032 local_irq_enable();
5034 complete(&req->done);
5036 __set_current_state(TASK_RUNNING);
5037 return 0;
5039 wait_to_die:
5040 /* Wait for kthread_stop */
5041 set_current_state(TASK_INTERRUPTIBLE);
5042 while (!kthread_should_stop()) {
5043 schedule();
5044 set_current_state(TASK_INTERRUPTIBLE);
5046 __set_current_state(TASK_RUNNING);
5047 return 0;
5050 #ifdef CONFIG_HOTPLUG_CPU
5052 * Figure out where task on dead CPU should go, use force if neccessary.
5053 * NOTE: interrupts should be disabled by the caller
5055 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5057 unsigned long flags;
5058 cpumask_t mask;
5059 struct rq *rq;
5060 int dest_cpu;
5062 restart:
5063 /* On same node? */
5064 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5065 cpus_and(mask, mask, p->cpus_allowed);
5066 dest_cpu = any_online_cpu(mask);
5068 /* On any allowed CPU? */
5069 if (dest_cpu == NR_CPUS)
5070 dest_cpu = any_online_cpu(p->cpus_allowed);
5072 /* No more Mr. Nice Guy. */
5073 if (dest_cpu == NR_CPUS) {
5074 rq = task_rq_lock(p, &flags);
5075 cpus_setall(p->cpus_allowed);
5076 dest_cpu = any_online_cpu(p->cpus_allowed);
5077 task_rq_unlock(rq, &flags);
5080 * Don't tell them about moving exiting tasks or
5081 * kernel threads (both mm NULL), since they never
5082 * leave kernel.
5084 if (p->mm && printk_ratelimit())
5085 printk(KERN_INFO "process %d (%s) no "
5086 "longer affine to cpu%d\n",
5087 p->pid, p->comm, dead_cpu);
5089 if (!__migrate_task(p, dead_cpu, dest_cpu))
5090 goto restart;
5094 * While a dead CPU has no uninterruptible tasks queued at this point,
5095 * it might still have a nonzero ->nr_uninterruptible counter, because
5096 * for performance reasons the counter is not stricly tracking tasks to
5097 * their home CPUs. So we just add the counter to another CPU's counter,
5098 * to keep the global sum constant after CPU-down:
5100 static void migrate_nr_uninterruptible(struct rq *rq_src)
5102 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5103 unsigned long flags;
5105 local_irq_save(flags);
5106 double_rq_lock(rq_src, rq_dest);
5107 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5108 rq_src->nr_uninterruptible = 0;
5109 double_rq_unlock(rq_src, rq_dest);
5110 local_irq_restore(flags);
5113 /* Run through task list and migrate tasks from the dead cpu. */
5114 static void migrate_live_tasks(int src_cpu)
5116 struct task_struct *p, *t;
5118 write_lock_irq(&tasklist_lock);
5120 do_each_thread(t, p) {
5121 if (p == current)
5122 continue;
5124 if (task_cpu(p) == src_cpu)
5125 move_task_off_dead_cpu(src_cpu, p);
5126 } while_each_thread(t, p);
5128 write_unlock_irq(&tasklist_lock);
5131 /* Schedules idle task to be the next runnable task on current CPU.
5132 * It does so by boosting its priority to highest possible and adding it to
5133 * the _front_ of the runqueue. Used by CPU offline code.
5135 void sched_idle_next(void)
5137 int this_cpu = smp_processor_id();
5138 struct rq *rq = cpu_rq(this_cpu);
5139 struct task_struct *p = rq->idle;
5140 unsigned long flags;
5142 /* cpu has to be offline */
5143 BUG_ON(cpu_online(this_cpu));
5146 * Strictly not necessary since rest of the CPUs are stopped by now
5147 * and interrupts disabled on the current cpu.
5149 spin_lock_irqsave(&rq->lock, flags);
5151 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5153 /* Add idle task to the _front_ of its priority queue: */
5154 __activate_idle_task(p, rq);
5156 spin_unlock_irqrestore(&rq->lock, flags);
5160 * Ensures that the idle task is using init_mm right before its cpu goes
5161 * offline.
5163 void idle_task_exit(void)
5165 struct mm_struct *mm = current->active_mm;
5167 BUG_ON(cpu_online(smp_processor_id()));
5169 if (mm != &init_mm)
5170 switch_mm(mm, &init_mm, current);
5171 mmdrop(mm);
5174 /* called under rq->lock with disabled interrupts */
5175 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5177 struct rq *rq = cpu_rq(dead_cpu);
5179 /* Must be exiting, otherwise would be on tasklist. */
5180 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5182 /* Cannot have done final schedule yet: would have vanished. */
5183 BUG_ON(p->state == TASK_DEAD);
5185 get_task_struct(p);
5188 * Drop lock around migration; if someone else moves it,
5189 * that's OK. No task can be added to this CPU, so iteration is
5190 * fine.
5191 * NOTE: interrupts should be left disabled --dev@
5193 spin_unlock(&rq->lock);
5194 move_task_off_dead_cpu(dead_cpu, p);
5195 spin_lock(&rq->lock);
5197 put_task_struct(p);
5200 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5201 static void migrate_dead_tasks(unsigned int dead_cpu)
5203 struct rq *rq = cpu_rq(dead_cpu);
5204 unsigned int arr, i;
5206 for (arr = 0; arr < 2; arr++) {
5207 for (i = 0; i < MAX_PRIO; i++) {
5208 struct list_head *list = &rq->arrays[arr].queue[i];
5210 while (!list_empty(list))
5211 migrate_dead(dead_cpu, list_entry(list->next,
5212 struct task_struct, run_list));
5216 #endif /* CONFIG_HOTPLUG_CPU */
5219 * migration_call - callback that gets triggered when a CPU is added.
5220 * Here we can start up the necessary migration thread for the new CPU.
5222 static int __cpuinit
5223 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5225 struct task_struct *p;
5226 int cpu = (long)hcpu;
5227 unsigned long flags;
5228 struct rq *rq;
5230 switch (action) {
5231 case CPU_UP_PREPARE:
5232 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5233 if (IS_ERR(p))
5234 return NOTIFY_BAD;
5235 p->flags |= PF_NOFREEZE;
5236 kthread_bind(p, cpu);
5237 /* Must be high prio: stop_machine expects to yield to it. */
5238 rq = task_rq_lock(p, &flags);
5239 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5240 task_rq_unlock(rq, &flags);
5241 cpu_rq(cpu)->migration_thread = p;
5242 break;
5244 case CPU_ONLINE:
5245 /* Strictly unneccessary, as first user will wake it. */
5246 wake_up_process(cpu_rq(cpu)->migration_thread);
5247 break;
5249 #ifdef CONFIG_HOTPLUG_CPU
5250 case CPU_UP_CANCELED:
5251 if (!cpu_rq(cpu)->migration_thread)
5252 break;
5253 /* Unbind it from offline cpu so it can run. Fall thru. */
5254 kthread_bind(cpu_rq(cpu)->migration_thread,
5255 any_online_cpu(cpu_online_map));
5256 kthread_stop(cpu_rq(cpu)->migration_thread);
5257 cpu_rq(cpu)->migration_thread = NULL;
5258 break;
5260 case CPU_DEAD:
5261 migrate_live_tasks(cpu);
5262 rq = cpu_rq(cpu);
5263 kthread_stop(rq->migration_thread);
5264 rq->migration_thread = NULL;
5265 /* Idle task back to normal (off runqueue, low prio) */
5266 rq = task_rq_lock(rq->idle, &flags);
5267 deactivate_task(rq->idle, rq);
5268 rq->idle->static_prio = MAX_PRIO;
5269 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5270 migrate_dead_tasks(cpu);
5271 task_rq_unlock(rq, &flags);
5272 migrate_nr_uninterruptible(rq);
5273 BUG_ON(rq->nr_running != 0);
5275 /* No need to migrate the tasks: it was best-effort if
5276 * they didn't do lock_cpu_hotplug(). Just wake up
5277 * the requestors. */
5278 spin_lock_irq(&rq->lock);
5279 while (!list_empty(&rq->migration_queue)) {
5280 struct migration_req *req;
5282 req = list_entry(rq->migration_queue.next,
5283 struct migration_req, list);
5284 list_del_init(&req->list);
5285 complete(&req->done);
5287 spin_unlock_irq(&rq->lock);
5288 break;
5289 #endif
5291 return NOTIFY_OK;
5294 /* Register at highest priority so that task migration (migrate_all_tasks)
5295 * happens before everything else.
5297 static struct notifier_block __cpuinitdata migration_notifier = {
5298 .notifier_call = migration_call,
5299 .priority = 10
5302 int __init migration_init(void)
5304 void *cpu = (void *)(long)smp_processor_id();
5305 int err;
5307 /* Start one for the boot CPU: */
5308 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5309 BUG_ON(err == NOTIFY_BAD);
5310 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5311 register_cpu_notifier(&migration_notifier);
5313 return 0;
5315 #endif
5317 #ifdef CONFIG_SMP
5318 #undef SCHED_DOMAIN_DEBUG
5319 #ifdef SCHED_DOMAIN_DEBUG
5320 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5322 int level = 0;
5324 if (!sd) {
5325 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5326 return;
5329 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5331 do {
5332 int i;
5333 char str[NR_CPUS];
5334 struct sched_group *group = sd->groups;
5335 cpumask_t groupmask;
5337 cpumask_scnprintf(str, NR_CPUS, sd->span);
5338 cpus_clear(groupmask);
5340 printk(KERN_DEBUG);
5341 for (i = 0; i < level + 1; i++)
5342 printk(" ");
5343 printk("domain %d: ", level);
5345 if (!(sd->flags & SD_LOAD_BALANCE)) {
5346 printk("does not load-balance\n");
5347 if (sd->parent)
5348 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5349 break;
5352 printk("span %s\n", str);
5354 if (!cpu_isset(cpu, sd->span))
5355 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5356 if (!cpu_isset(cpu, group->cpumask))
5357 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5359 printk(KERN_DEBUG);
5360 for (i = 0; i < level + 2; i++)
5361 printk(" ");
5362 printk("groups:");
5363 do {
5364 if (!group) {
5365 printk("\n");
5366 printk(KERN_ERR "ERROR: group is NULL\n");
5367 break;
5370 if (!group->cpu_power) {
5371 printk("\n");
5372 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5375 if (!cpus_weight(group->cpumask)) {
5376 printk("\n");
5377 printk(KERN_ERR "ERROR: empty group\n");
5380 if (cpus_intersects(groupmask, group->cpumask)) {
5381 printk("\n");
5382 printk(KERN_ERR "ERROR: repeated CPUs\n");
5385 cpus_or(groupmask, groupmask, group->cpumask);
5387 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5388 printk(" %s", str);
5390 group = group->next;
5391 } while (group != sd->groups);
5392 printk("\n");
5394 if (!cpus_equal(sd->span, groupmask))
5395 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5397 level++;
5398 sd = sd->parent;
5400 if (sd) {
5401 if (!cpus_subset(groupmask, sd->span))
5402 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5405 } while (sd);
5407 #else
5408 # define sched_domain_debug(sd, cpu) do { } while (0)
5409 #endif
5411 static int sd_degenerate(struct sched_domain *sd)
5413 if (cpus_weight(sd->span) == 1)
5414 return 1;
5416 /* Following flags need at least 2 groups */
5417 if (sd->flags & (SD_LOAD_BALANCE |
5418 SD_BALANCE_NEWIDLE |
5419 SD_BALANCE_FORK |
5420 SD_BALANCE_EXEC |
5421 SD_SHARE_CPUPOWER |
5422 SD_SHARE_PKG_RESOURCES)) {
5423 if (sd->groups != sd->groups->next)
5424 return 0;
5427 /* Following flags don't use groups */
5428 if (sd->flags & (SD_WAKE_IDLE |
5429 SD_WAKE_AFFINE |
5430 SD_WAKE_BALANCE))
5431 return 0;
5433 return 1;
5436 static int
5437 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5439 unsigned long cflags = sd->flags, pflags = parent->flags;
5441 if (sd_degenerate(parent))
5442 return 1;
5444 if (!cpus_equal(sd->span, parent->span))
5445 return 0;
5447 /* Does parent contain flags not in child? */
5448 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5449 if (cflags & SD_WAKE_AFFINE)
5450 pflags &= ~SD_WAKE_BALANCE;
5451 /* Flags needing groups don't count if only 1 group in parent */
5452 if (parent->groups == parent->groups->next) {
5453 pflags &= ~(SD_LOAD_BALANCE |
5454 SD_BALANCE_NEWIDLE |
5455 SD_BALANCE_FORK |
5456 SD_BALANCE_EXEC |
5457 SD_SHARE_CPUPOWER |
5458 SD_SHARE_PKG_RESOURCES);
5460 if (~cflags & pflags)
5461 return 0;
5463 return 1;
5467 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5468 * hold the hotplug lock.
5470 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5472 struct rq *rq = cpu_rq(cpu);
5473 struct sched_domain *tmp;
5475 /* Remove the sched domains which do not contribute to scheduling. */
5476 for (tmp = sd; tmp; tmp = tmp->parent) {
5477 struct sched_domain *parent = tmp->parent;
5478 if (!parent)
5479 break;
5480 if (sd_parent_degenerate(tmp, parent)) {
5481 tmp->parent = parent->parent;
5482 if (parent->parent)
5483 parent->parent->child = tmp;
5487 if (sd && sd_degenerate(sd)) {
5488 sd = sd->parent;
5489 if (sd)
5490 sd->child = NULL;
5493 sched_domain_debug(sd, cpu);
5495 rcu_assign_pointer(rq->sd, sd);
5498 /* cpus with isolated domains */
5499 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5501 /* Setup the mask of cpus configured for isolated domains */
5502 static int __init isolated_cpu_setup(char *str)
5504 int ints[NR_CPUS], i;
5506 str = get_options(str, ARRAY_SIZE(ints), ints);
5507 cpus_clear(cpu_isolated_map);
5508 for (i = 1; i <= ints[0]; i++)
5509 if (ints[i] < NR_CPUS)
5510 cpu_set(ints[i], cpu_isolated_map);
5511 return 1;
5514 __setup ("isolcpus=", isolated_cpu_setup);
5517 * init_sched_build_groups takes an array of groups, the cpumask we wish
5518 * to span, and a pointer to a function which identifies what group a CPU
5519 * belongs to. The return value of group_fn must be a valid index into the
5520 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5521 * keep track of groups covered with a cpumask_t).
5523 * init_sched_build_groups will build a circular linked list of the groups
5524 * covered by the given span, and will set each group's ->cpumask correctly,
5525 * and ->cpu_power to 0.
5527 static void
5528 init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5529 const cpumask_t *cpu_map,
5530 int (*group_fn)(int cpu, const cpumask_t *cpu_map))
5532 struct sched_group *first = NULL, *last = NULL;
5533 cpumask_t covered = CPU_MASK_NONE;
5534 int i;
5536 for_each_cpu_mask(i, span) {
5537 int group = group_fn(i, cpu_map);
5538 struct sched_group *sg = &groups[group];
5539 int j;
5541 if (cpu_isset(i, covered))
5542 continue;
5544 sg->cpumask = CPU_MASK_NONE;
5545 sg->cpu_power = 0;
5547 for_each_cpu_mask(j, span) {
5548 if (group_fn(j, cpu_map) != group)
5549 continue;
5551 cpu_set(j, covered);
5552 cpu_set(j, sg->cpumask);
5554 if (!first)
5555 first = sg;
5556 if (last)
5557 last->next = sg;
5558 last = sg;
5560 last->next = first;
5563 #define SD_NODES_PER_DOMAIN 16
5566 * Self-tuning task migration cost measurement between source and target CPUs.
5568 * This is done by measuring the cost of manipulating buffers of varying
5569 * sizes. For a given buffer-size here are the steps that are taken:
5571 * 1) the source CPU reads+dirties a shared buffer
5572 * 2) the target CPU reads+dirties the same shared buffer
5574 * We measure how long they take, in the following 4 scenarios:
5576 * - source: CPU1, target: CPU2 | cost1
5577 * - source: CPU2, target: CPU1 | cost2
5578 * - source: CPU1, target: CPU1 | cost3
5579 * - source: CPU2, target: CPU2 | cost4
5581 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5582 * the cost of migration.
5584 * We then start off from a small buffer-size and iterate up to larger
5585 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5586 * doing a maximum search for the cost. (The maximum cost for a migration
5587 * normally occurs when the working set size is around the effective cache
5588 * size.)
5590 #define SEARCH_SCOPE 2
5591 #define MIN_CACHE_SIZE (64*1024U)
5592 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5593 #define ITERATIONS 1
5594 #define SIZE_THRESH 130
5595 #define COST_THRESH 130
5598 * The migration cost is a function of 'domain distance'. Domain
5599 * distance is the number of steps a CPU has to iterate down its
5600 * domain tree to share a domain with the other CPU. The farther
5601 * two CPUs are from each other, the larger the distance gets.
5603 * Note that we use the distance only to cache measurement results,
5604 * the distance value is not used numerically otherwise. When two
5605 * CPUs have the same distance it is assumed that the migration
5606 * cost is the same. (this is a simplification but quite practical)
5608 #define MAX_DOMAIN_DISTANCE 32
5610 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5611 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5613 * Architectures may override the migration cost and thus avoid
5614 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5615 * virtualized hardware:
5617 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5618 CONFIG_DEFAULT_MIGRATION_COST
5619 #else
5620 -1LL
5621 #endif
5625 * Allow override of migration cost - in units of microseconds.
5626 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5627 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5629 static int __init migration_cost_setup(char *str)
5631 int ints[MAX_DOMAIN_DISTANCE+1], i;
5633 str = get_options(str, ARRAY_SIZE(ints), ints);
5635 printk("#ints: %d\n", ints[0]);
5636 for (i = 1; i <= ints[0]; i++) {
5637 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5638 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5640 return 1;
5643 __setup ("migration_cost=", migration_cost_setup);
5646 * Global multiplier (divisor) for migration-cutoff values,
5647 * in percentiles. E.g. use a value of 150 to get 1.5 times
5648 * longer cache-hot cutoff times.
5650 * (We scale it from 100 to 128 to long long handling easier.)
5653 #define MIGRATION_FACTOR_SCALE 128
5655 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5657 static int __init setup_migration_factor(char *str)
5659 get_option(&str, &migration_factor);
5660 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5661 return 1;
5664 __setup("migration_factor=", setup_migration_factor);
5667 * Estimated distance of two CPUs, measured via the number of domains
5668 * we have to pass for the two CPUs to be in the same span:
5670 static unsigned long domain_distance(int cpu1, int cpu2)
5672 unsigned long distance = 0;
5673 struct sched_domain *sd;
5675 for_each_domain(cpu1, sd) {
5676 WARN_ON(!cpu_isset(cpu1, sd->span));
5677 if (cpu_isset(cpu2, sd->span))
5678 return distance;
5679 distance++;
5681 if (distance >= MAX_DOMAIN_DISTANCE) {
5682 WARN_ON(1);
5683 distance = MAX_DOMAIN_DISTANCE-1;
5686 return distance;
5689 static unsigned int migration_debug;
5691 static int __init setup_migration_debug(char *str)
5693 get_option(&str, &migration_debug);
5694 return 1;
5697 __setup("migration_debug=", setup_migration_debug);
5700 * Maximum cache-size that the scheduler should try to measure.
5701 * Architectures with larger caches should tune this up during
5702 * bootup. Gets used in the domain-setup code (i.e. during SMP
5703 * bootup).
5705 unsigned int max_cache_size;
5707 static int __init setup_max_cache_size(char *str)
5709 get_option(&str, &max_cache_size);
5710 return 1;
5713 __setup("max_cache_size=", setup_max_cache_size);
5716 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5717 * is the operation that is timed, so we try to generate unpredictable
5718 * cachemisses that still end up filling the L2 cache:
5720 static void touch_cache(void *__cache, unsigned long __size)
5722 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5723 chunk2 = 2*size/3;
5724 unsigned long *cache = __cache;
5725 int i;
5727 for (i = 0; i < size/6; i += 8) {
5728 switch (i % 6) {
5729 case 0: cache[i]++;
5730 case 1: cache[size-1-i]++;
5731 case 2: cache[chunk1-i]++;
5732 case 3: cache[chunk1+i]++;
5733 case 4: cache[chunk2-i]++;
5734 case 5: cache[chunk2+i]++;
5740 * Measure the cache-cost of one task migration. Returns in units of nsec.
5742 static unsigned long long
5743 measure_one(void *cache, unsigned long size, int source, int target)
5745 cpumask_t mask, saved_mask;
5746 unsigned long long t0, t1, t2, t3, cost;
5748 saved_mask = current->cpus_allowed;
5751 * Flush source caches to RAM and invalidate them:
5753 sched_cacheflush();
5756 * Migrate to the source CPU:
5758 mask = cpumask_of_cpu(source);
5759 set_cpus_allowed(current, mask);
5760 WARN_ON(smp_processor_id() != source);
5763 * Dirty the working set:
5765 t0 = sched_clock();
5766 touch_cache(cache, size);
5767 t1 = sched_clock();
5770 * Migrate to the target CPU, dirty the L2 cache and access
5771 * the shared buffer. (which represents the working set
5772 * of a migrated task.)
5774 mask = cpumask_of_cpu(target);
5775 set_cpus_allowed(current, mask);
5776 WARN_ON(smp_processor_id() != target);
5778 t2 = sched_clock();
5779 touch_cache(cache, size);
5780 t3 = sched_clock();
5782 cost = t1-t0 + t3-t2;
5784 if (migration_debug >= 2)
5785 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5786 source, target, t1-t0, t1-t0, t3-t2, cost);
5788 * Flush target caches to RAM and invalidate them:
5790 sched_cacheflush();
5792 set_cpus_allowed(current, saved_mask);
5794 return cost;
5798 * Measure a series of task migrations and return the average
5799 * result. Since this code runs early during bootup the system
5800 * is 'undisturbed' and the average latency makes sense.
5802 * The algorithm in essence auto-detects the relevant cache-size,
5803 * so it will properly detect different cachesizes for different
5804 * cache-hierarchies, depending on how the CPUs are connected.
5806 * Architectures can prime the upper limit of the search range via
5807 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5809 static unsigned long long
5810 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5812 unsigned long long cost1, cost2;
5813 int i;
5816 * Measure the migration cost of 'size' bytes, over an
5817 * average of 10 runs:
5819 * (We perturb the cache size by a small (0..4k)
5820 * value to compensate size/alignment related artifacts.
5821 * We also subtract the cost of the operation done on
5822 * the same CPU.)
5824 cost1 = 0;
5827 * dry run, to make sure we start off cache-cold on cpu1,
5828 * and to get any vmalloc pagefaults in advance:
5830 measure_one(cache, size, cpu1, cpu2);
5831 for (i = 0; i < ITERATIONS; i++)
5832 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5834 measure_one(cache, size, cpu2, cpu1);
5835 for (i = 0; i < ITERATIONS; i++)
5836 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5839 * (We measure the non-migrating [cached] cost on both
5840 * cpu1 and cpu2, to handle CPUs with different speeds)
5842 cost2 = 0;
5844 measure_one(cache, size, cpu1, cpu1);
5845 for (i = 0; i < ITERATIONS; i++)
5846 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5848 measure_one(cache, size, cpu2, cpu2);
5849 for (i = 0; i < ITERATIONS; i++)
5850 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5853 * Get the per-iteration migration cost:
5855 do_div(cost1, 2*ITERATIONS);
5856 do_div(cost2, 2*ITERATIONS);
5858 return cost1 - cost2;
5861 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5863 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5864 unsigned int max_size, size, size_found = 0;
5865 long long cost = 0, prev_cost;
5866 void *cache;
5869 * Search from max_cache_size*5 down to 64K - the real relevant
5870 * cachesize has to lie somewhere inbetween.
5872 if (max_cache_size) {
5873 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5874 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5875 } else {
5877 * Since we have no estimation about the relevant
5878 * search range
5880 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5881 size = MIN_CACHE_SIZE;
5884 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5885 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5886 return 0;
5890 * Allocate the working set:
5892 cache = vmalloc(max_size);
5893 if (!cache) {
5894 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5895 return 1000000; /* return 1 msec on very small boxen */
5898 while (size <= max_size) {
5899 prev_cost = cost;
5900 cost = measure_cost(cpu1, cpu2, cache, size);
5903 * Update the max:
5905 if (cost > 0) {
5906 if (max_cost < cost) {
5907 max_cost = cost;
5908 size_found = size;
5912 * Calculate average fluctuation, we use this to prevent
5913 * noise from triggering an early break out of the loop:
5915 fluct = abs(cost - prev_cost);
5916 avg_fluct = (avg_fluct + fluct)/2;
5918 if (migration_debug)
5919 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5920 cpu1, cpu2, size,
5921 (long)cost / 1000000,
5922 ((long)cost / 100000) % 10,
5923 (long)max_cost / 1000000,
5924 ((long)max_cost / 100000) % 10,
5925 domain_distance(cpu1, cpu2),
5926 cost, avg_fluct);
5929 * If we iterated at least 20% past the previous maximum,
5930 * and the cost has dropped by more than 20% already,
5931 * (taking fluctuations into account) then we assume to
5932 * have found the maximum and break out of the loop early:
5934 if (size_found && (size*100 > size_found*SIZE_THRESH))
5935 if (cost+avg_fluct <= 0 ||
5936 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5938 if (migration_debug)
5939 printk("-> found max.\n");
5940 break;
5943 * Increase the cachesize in 10% steps:
5945 size = size * 10 / 9;
5948 if (migration_debug)
5949 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5950 cpu1, cpu2, size_found, max_cost);
5952 vfree(cache);
5955 * A task is considered 'cache cold' if at least 2 times
5956 * the worst-case cost of migration has passed.
5958 * (this limit is only listened to if the load-balancing
5959 * situation is 'nice' - if there is a large imbalance we
5960 * ignore it for the sake of CPU utilization and
5961 * processing fairness.)
5963 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5966 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5968 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5969 unsigned long j0, j1, distance, max_distance = 0;
5970 struct sched_domain *sd;
5972 j0 = jiffies;
5975 * First pass - calculate the cacheflush times:
5977 for_each_cpu_mask(cpu1, *cpu_map) {
5978 for_each_cpu_mask(cpu2, *cpu_map) {
5979 if (cpu1 == cpu2)
5980 continue;
5981 distance = domain_distance(cpu1, cpu2);
5982 max_distance = max(max_distance, distance);
5984 * No result cached yet?
5986 if (migration_cost[distance] == -1LL)
5987 migration_cost[distance] =
5988 measure_migration_cost(cpu1, cpu2);
5992 * Second pass - update the sched domain hierarchy with
5993 * the new cache-hot-time estimations:
5995 for_each_cpu_mask(cpu, *cpu_map) {
5996 distance = 0;
5997 for_each_domain(cpu, sd) {
5998 sd->cache_hot_time = migration_cost[distance];
5999 distance++;
6003 * Print the matrix:
6005 if (migration_debug)
6006 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6007 max_cache_size,
6008 #ifdef CONFIG_X86
6009 cpu_khz/1000
6010 #else
6012 #endif
6014 if (system_state == SYSTEM_BOOTING) {
6015 if (num_online_cpus() > 1) {
6016 printk("migration_cost=");
6017 for (distance = 0; distance <= max_distance; distance++) {
6018 if (distance)
6019 printk(",");
6020 printk("%ld", (long)migration_cost[distance] / 1000);
6022 printk("\n");
6025 j1 = jiffies;
6026 if (migration_debug)
6027 printk("migration: %ld seconds\n", (j1-j0)/HZ);
6030 * Move back to the original CPU. NUMA-Q gets confused
6031 * if we migrate to another quad during bootup.
6033 if (raw_smp_processor_id() != orig_cpu) {
6034 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6035 saved_mask = current->cpus_allowed;
6037 set_cpus_allowed(current, mask);
6038 set_cpus_allowed(current, saved_mask);
6042 #ifdef CONFIG_NUMA
6045 * find_next_best_node - find the next node to include in a sched_domain
6046 * @node: node whose sched_domain we're building
6047 * @used_nodes: nodes already in the sched_domain
6049 * Find the next node to include in a given scheduling domain. Simply
6050 * finds the closest node not already in the @used_nodes map.
6052 * Should use nodemask_t.
6054 static int find_next_best_node(int node, unsigned long *used_nodes)
6056 int i, n, val, min_val, best_node = 0;
6058 min_val = INT_MAX;
6060 for (i = 0; i < MAX_NUMNODES; i++) {
6061 /* Start at @node */
6062 n = (node + i) % MAX_NUMNODES;
6064 if (!nr_cpus_node(n))
6065 continue;
6067 /* Skip already used nodes */
6068 if (test_bit(n, used_nodes))
6069 continue;
6071 /* Simple min distance search */
6072 val = node_distance(node, n);
6074 if (val < min_val) {
6075 min_val = val;
6076 best_node = n;
6080 set_bit(best_node, used_nodes);
6081 return best_node;
6085 * sched_domain_node_span - get a cpumask for a node's sched_domain
6086 * @node: node whose cpumask we're constructing
6087 * @size: number of nodes to include in this span
6089 * Given a node, construct a good cpumask for its sched_domain to span. It
6090 * should be one that prevents unnecessary balancing, but also spreads tasks
6091 * out optimally.
6093 static cpumask_t sched_domain_node_span(int node)
6095 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6096 cpumask_t span, nodemask;
6097 int i;
6099 cpus_clear(span);
6100 bitmap_zero(used_nodes, MAX_NUMNODES);
6102 nodemask = node_to_cpumask(node);
6103 cpus_or(span, span, nodemask);
6104 set_bit(node, used_nodes);
6106 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6107 int next_node = find_next_best_node(node, used_nodes);
6109 nodemask = node_to_cpumask(next_node);
6110 cpus_or(span, span, nodemask);
6113 return span;
6115 #endif
6117 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6120 * SMT sched-domains:
6122 #ifdef CONFIG_SCHED_SMT
6123 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6124 static struct sched_group sched_group_cpus[NR_CPUS];
6126 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map)
6128 return cpu;
6130 #endif
6133 * multi-core sched-domains:
6135 #ifdef CONFIG_SCHED_MC
6136 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6137 static struct sched_group sched_group_core[NR_CPUS];
6138 #endif
6140 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6141 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
6143 cpumask_t mask = cpu_sibling_map[cpu];
6144 cpus_and(mask, mask, *cpu_map);
6145 return first_cpu(mask);
6147 #elif defined(CONFIG_SCHED_MC)
6148 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
6150 return cpu;
6152 #endif
6154 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6155 static struct sched_group sched_group_phys[NR_CPUS];
6157 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map)
6159 #ifdef CONFIG_SCHED_MC
6160 cpumask_t mask = cpu_coregroup_map(cpu);
6161 cpus_and(mask, mask, *cpu_map);
6162 return first_cpu(mask);
6163 #elif defined(CONFIG_SCHED_SMT)
6164 cpumask_t mask = cpu_sibling_map[cpu];
6165 cpus_and(mask, mask, *cpu_map);
6166 return first_cpu(mask);
6167 #else
6168 return cpu;
6169 #endif
6172 #ifdef CONFIG_NUMA
6174 * The init_sched_build_groups can't handle what we want to do with node
6175 * groups, so roll our own. Now each node has its own list of groups which
6176 * gets dynamically allocated.
6178 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6179 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6181 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6182 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
6184 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map)
6186 return cpu_to_node(cpu);
6188 static void init_numa_sched_groups_power(struct sched_group *group_head)
6190 struct sched_group *sg = group_head;
6191 int j;
6193 if (!sg)
6194 return;
6195 next_sg:
6196 for_each_cpu_mask(j, sg->cpumask) {
6197 struct sched_domain *sd;
6199 sd = &per_cpu(phys_domains, j);
6200 if (j != first_cpu(sd->groups->cpumask)) {
6202 * Only add "power" once for each
6203 * physical package.
6205 continue;
6208 sg->cpu_power += sd->groups->cpu_power;
6210 sg = sg->next;
6211 if (sg != group_head)
6212 goto next_sg;
6214 #endif
6216 #ifdef CONFIG_NUMA
6217 /* Free memory allocated for various sched_group structures */
6218 static void free_sched_groups(const cpumask_t *cpu_map)
6220 int cpu, i;
6222 for_each_cpu_mask(cpu, *cpu_map) {
6223 struct sched_group *sched_group_allnodes
6224 = sched_group_allnodes_bycpu[cpu];
6225 struct sched_group **sched_group_nodes
6226 = sched_group_nodes_bycpu[cpu];
6228 if (sched_group_allnodes) {
6229 kfree(sched_group_allnodes);
6230 sched_group_allnodes_bycpu[cpu] = NULL;
6233 if (!sched_group_nodes)
6234 continue;
6236 for (i = 0; i < MAX_NUMNODES; i++) {
6237 cpumask_t nodemask = node_to_cpumask(i);
6238 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6240 cpus_and(nodemask, nodemask, *cpu_map);
6241 if (cpus_empty(nodemask))
6242 continue;
6244 if (sg == NULL)
6245 continue;
6246 sg = sg->next;
6247 next_sg:
6248 oldsg = sg;
6249 sg = sg->next;
6250 kfree(oldsg);
6251 if (oldsg != sched_group_nodes[i])
6252 goto next_sg;
6254 kfree(sched_group_nodes);
6255 sched_group_nodes_bycpu[cpu] = NULL;
6258 #else
6259 static void free_sched_groups(const cpumask_t *cpu_map)
6262 #endif
6265 * Initialize sched groups cpu_power.
6267 * cpu_power indicates the capacity of sched group, which is used while
6268 * distributing the load between different sched groups in a sched domain.
6269 * Typically cpu_power for all the groups in a sched domain will be same unless
6270 * there are asymmetries in the topology. If there are asymmetries, group
6271 * having more cpu_power will pickup more load compared to the group having
6272 * less cpu_power.
6274 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6275 * the maximum number of tasks a group can handle in the presence of other idle
6276 * or lightly loaded groups in the same sched domain.
6278 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6280 struct sched_domain *child;
6281 struct sched_group *group;
6283 WARN_ON(!sd || !sd->groups);
6285 if (cpu != first_cpu(sd->groups->cpumask))
6286 return;
6288 child = sd->child;
6291 * For perf policy, if the groups in child domain share resources
6292 * (for example cores sharing some portions of the cache hierarchy
6293 * or SMT), then set this domain groups cpu_power such that each group
6294 * can handle only one task, when there are other idle groups in the
6295 * same sched domain.
6297 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6298 (child->flags &
6299 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6300 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6301 return;
6304 sd->groups->cpu_power = 0;
6307 * add cpu_power of each child group to this groups cpu_power
6309 group = child->groups;
6310 do {
6311 sd->groups->cpu_power += group->cpu_power;
6312 group = group->next;
6313 } while (group != child->groups);
6317 * Build sched domains for a given set of cpus and attach the sched domains
6318 * to the individual cpus
6320 static int build_sched_domains(const cpumask_t *cpu_map)
6322 int i;
6323 struct sched_domain *sd;
6324 #ifdef CONFIG_NUMA
6325 struct sched_group **sched_group_nodes = NULL;
6326 struct sched_group *sched_group_allnodes = NULL;
6329 * Allocate the per-node list of sched groups
6331 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6332 GFP_KERNEL);
6333 if (!sched_group_nodes) {
6334 printk(KERN_WARNING "Can not alloc sched group node list\n");
6335 return -ENOMEM;
6337 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6338 #endif
6341 * Set up domains for cpus specified by the cpu_map.
6343 for_each_cpu_mask(i, *cpu_map) {
6344 int group;
6345 struct sched_domain *sd = NULL, *p;
6346 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6348 cpus_and(nodemask, nodemask, *cpu_map);
6350 #ifdef CONFIG_NUMA
6351 if (cpus_weight(*cpu_map)
6352 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6353 if (!sched_group_allnodes) {
6354 sched_group_allnodes
6355 = kmalloc_node(sizeof(struct sched_group)
6356 * MAX_NUMNODES,
6357 GFP_KERNEL,
6358 cpu_to_node(i));
6359 if (!sched_group_allnodes) {
6360 printk(KERN_WARNING
6361 "Can not alloc allnodes sched group\n");
6362 goto error;
6364 sched_group_allnodes_bycpu[i]
6365 = sched_group_allnodes;
6367 sd = &per_cpu(allnodes_domains, i);
6368 *sd = SD_ALLNODES_INIT;
6369 sd->span = *cpu_map;
6370 group = cpu_to_allnodes_group(i, cpu_map);
6371 sd->groups = &sched_group_allnodes[group];
6372 p = sd;
6373 } else
6374 p = NULL;
6376 sd = &per_cpu(node_domains, i);
6377 *sd = SD_NODE_INIT;
6378 sd->span = sched_domain_node_span(cpu_to_node(i));
6379 sd->parent = p;
6380 if (p)
6381 p->child = sd;
6382 cpus_and(sd->span, sd->span, *cpu_map);
6383 #endif
6385 p = sd;
6386 sd = &per_cpu(phys_domains, i);
6387 group = cpu_to_phys_group(i, cpu_map);
6388 *sd = SD_CPU_INIT;
6389 sd->span = nodemask;
6390 sd->parent = p;
6391 if (p)
6392 p->child = sd;
6393 sd->groups = &sched_group_phys[group];
6395 #ifdef CONFIG_SCHED_MC
6396 p = sd;
6397 sd = &per_cpu(core_domains, i);
6398 group = cpu_to_core_group(i, cpu_map);
6399 *sd = SD_MC_INIT;
6400 sd->span = cpu_coregroup_map(i);
6401 cpus_and(sd->span, sd->span, *cpu_map);
6402 sd->parent = p;
6403 p->child = sd;
6404 sd->groups = &sched_group_core[group];
6405 #endif
6407 #ifdef CONFIG_SCHED_SMT
6408 p = sd;
6409 sd = &per_cpu(cpu_domains, i);
6410 group = cpu_to_cpu_group(i, cpu_map);
6411 *sd = SD_SIBLING_INIT;
6412 sd->span = cpu_sibling_map[i];
6413 cpus_and(sd->span, sd->span, *cpu_map);
6414 sd->parent = p;
6415 p->child = sd;
6416 sd->groups = &sched_group_cpus[group];
6417 #endif
6420 #ifdef CONFIG_SCHED_SMT
6421 /* Set up CPU (sibling) groups */
6422 for_each_cpu_mask(i, *cpu_map) {
6423 cpumask_t this_sibling_map = cpu_sibling_map[i];
6424 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6425 if (i != first_cpu(this_sibling_map))
6426 continue;
6428 init_sched_build_groups(sched_group_cpus, this_sibling_map,
6429 cpu_map, &cpu_to_cpu_group);
6431 #endif
6433 #ifdef CONFIG_SCHED_MC
6434 /* Set up multi-core groups */
6435 for_each_cpu_mask(i, *cpu_map) {
6436 cpumask_t this_core_map = cpu_coregroup_map(i);
6437 cpus_and(this_core_map, this_core_map, *cpu_map);
6438 if (i != first_cpu(this_core_map))
6439 continue;
6440 init_sched_build_groups(sched_group_core, this_core_map,
6441 cpu_map, &cpu_to_core_group);
6443 #endif
6446 /* Set up physical groups */
6447 for (i = 0; i < MAX_NUMNODES; i++) {
6448 cpumask_t nodemask = node_to_cpumask(i);
6450 cpus_and(nodemask, nodemask, *cpu_map);
6451 if (cpus_empty(nodemask))
6452 continue;
6454 init_sched_build_groups(sched_group_phys, nodemask,
6455 cpu_map, &cpu_to_phys_group);
6458 #ifdef CONFIG_NUMA
6459 /* Set up node groups */
6460 if (sched_group_allnodes)
6461 init_sched_build_groups(sched_group_allnodes, *cpu_map,
6462 cpu_map, &cpu_to_allnodes_group);
6464 for (i = 0; i < MAX_NUMNODES; i++) {
6465 /* Set up node groups */
6466 struct sched_group *sg, *prev;
6467 cpumask_t nodemask = node_to_cpumask(i);
6468 cpumask_t domainspan;
6469 cpumask_t covered = CPU_MASK_NONE;
6470 int j;
6472 cpus_and(nodemask, nodemask, *cpu_map);
6473 if (cpus_empty(nodemask)) {
6474 sched_group_nodes[i] = NULL;
6475 continue;
6478 domainspan = sched_domain_node_span(i);
6479 cpus_and(domainspan, domainspan, *cpu_map);
6481 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6482 if (!sg) {
6483 printk(KERN_WARNING "Can not alloc domain group for "
6484 "node %d\n", i);
6485 goto error;
6487 sched_group_nodes[i] = sg;
6488 for_each_cpu_mask(j, nodemask) {
6489 struct sched_domain *sd;
6490 sd = &per_cpu(node_domains, j);
6491 sd->groups = sg;
6493 sg->cpu_power = 0;
6494 sg->cpumask = nodemask;
6495 sg->next = sg;
6496 cpus_or(covered, covered, nodemask);
6497 prev = sg;
6499 for (j = 0; j < MAX_NUMNODES; j++) {
6500 cpumask_t tmp, notcovered;
6501 int n = (i + j) % MAX_NUMNODES;
6503 cpus_complement(notcovered, covered);
6504 cpus_and(tmp, notcovered, *cpu_map);
6505 cpus_and(tmp, tmp, domainspan);
6506 if (cpus_empty(tmp))
6507 break;
6509 nodemask = node_to_cpumask(n);
6510 cpus_and(tmp, tmp, nodemask);
6511 if (cpus_empty(tmp))
6512 continue;
6514 sg = kmalloc_node(sizeof(struct sched_group),
6515 GFP_KERNEL, i);
6516 if (!sg) {
6517 printk(KERN_WARNING
6518 "Can not alloc domain group for node %d\n", j);
6519 goto error;
6521 sg->cpu_power = 0;
6522 sg->cpumask = tmp;
6523 sg->next = prev->next;
6524 cpus_or(covered, covered, tmp);
6525 prev->next = sg;
6526 prev = sg;
6529 #endif
6531 /* Calculate CPU power for physical packages and nodes */
6532 #ifdef CONFIG_SCHED_SMT
6533 for_each_cpu_mask(i, *cpu_map) {
6534 sd = &per_cpu(cpu_domains, i);
6535 init_sched_groups_power(i, sd);
6537 #endif
6538 #ifdef CONFIG_SCHED_MC
6539 for_each_cpu_mask(i, *cpu_map) {
6540 sd = &per_cpu(core_domains, i);
6541 init_sched_groups_power(i, sd);
6543 #endif
6545 for_each_cpu_mask(i, *cpu_map) {
6546 sd = &per_cpu(phys_domains, i);
6547 init_sched_groups_power(i, sd);
6550 #ifdef CONFIG_NUMA
6551 for (i = 0; i < MAX_NUMNODES; i++)
6552 init_numa_sched_groups_power(sched_group_nodes[i]);
6554 if (sched_group_allnodes) {
6555 int group = cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map);
6556 struct sched_group *sg = &sched_group_allnodes[group];
6558 init_numa_sched_groups_power(sg);
6560 #endif
6562 /* Attach the domains */
6563 for_each_cpu_mask(i, *cpu_map) {
6564 struct sched_domain *sd;
6565 #ifdef CONFIG_SCHED_SMT
6566 sd = &per_cpu(cpu_domains, i);
6567 #elif defined(CONFIG_SCHED_MC)
6568 sd = &per_cpu(core_domains, i);
6569 #else
6570 sd = &per_cpu(phys_domains, i);
6571 #endif
6572 cpu_attach_domain(sd, i);
6575 * Tune cache-hot values:
6577 calibrate_migration_costs(cpu_map);
6579 return 0;
6581 #ifdef CONFIG_NUMA
6582 error:
6583 free_sched_groups(cpu_map);
6584 return -ENOMEM;
6585 #endif
6588 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6590 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6592 cpumask_t cpu_default_map;
6593 int err;
6596 * Setup mask for cpus without special case scheduling requirements.
6597 * For now this just excludes isolated cpus, but could be used to
6598 * exclude other special cases in the future.
6600 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6602 err = build_sched_domains(&cpu_default_map);
6604 return err;
6607 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6609 free_sched_groups(cpu_map);
6613 * Detach sched domains from a group of cpus specified in cpu_map
6614 * These cpus will now be attached to the NULL domain
6616 static void detach_destroy_domains(const cpumask_t *cpu_map)
6618 int i;
6620 for_each_cpu_mask(i, *cpu_map)
6621 cpu_attach_domain(NULL, i);
6622 synchronize_sched();
6623 arch_destroy_sched_domains(cpu_map);
6627 * Partition sched domains as specified by the cpumasks below.
6628 * This attaches all cpus from the cpumasks to the NULL domain,
6629 * waits for a RCU quiescent period, recalculates sched
6630 * domain information and then attaches them back to the
6631 * correct sched domains
6632 * Call with hotplug lock held
6634 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6636 cpumask_t change_map;
6637 int err = 0;
6639 cpus_and(*partition1, *partition1, cpu_online_map);
6640 cpus_and(*partition2, *partition2, cpu_online_map);
6641 cpus_or(change_map, *partition1, *partition2);
6643 /* Detach sched domains from all of the affected cpus */
6644 detach_destroy_domains(&change_map);
6645 if (!cpus_empty(*partition1))
6646 err = build_sched_domains(partition1);
6647 if (!err && !cpus_empty(*partition2))
6648 err = build_sched_domains(partition2);
6650 return err;
6653 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6654 int arch_reinit_sched_domains(void)
6656 int err;
6658 lock_cpu_hotplug();
6659 detach_destroy_domains(&cpu_online_map);
6660 err = arch_init_sched_domains(&cpu_online_map);
6661 unlock_cpu_hotplug();
6663 return err;
6666 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6668 int ret;
6670 if (buf[0] != '0' && buf[0] != '1')
6671 return -EINVAL;
6673 if (smt)
6674 sched_smt_power_savings = (buf[0] == '1');
6675 else
6676 sched_mc_power_savings = (buf[0] == '1');
6678 ret = arch_reinit_sched_domains();
6680 return ret ? ret : count;
6683 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6685 int err = 0;
6687 #ifdef CONFIG_SCHED_SMT
6688 if (smt_capable())
6689 err = sysfs_create_file(&cls->kset.kobj,
6690 &attr_sched_smt_power_savings.attr);
6691 #endif
6692 #ifdef CONFIG_SCHED_MC
6693 if (!err && mc_capable())
6694 err = sysfs_create_file(&cls->kset.kobj,
6695 &attr_sched_mc_power_savings.attr);
6696 #endif
6697 return err;
6699 #endif
6701 #ifdef CONFIG_SCHED_MC
6702 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6704 return sprintf(page, "%u\n", sched_mc_power_savings);
6706 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6707 const char *buf, size_t count)
6709 return sched_power_savings_store(buf, count, 0);
6711 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6712 sched_mc_power_savings_store);
6713 #endif
6715 #ifdef CONFIG_SCHED_SMT
6716 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6718 return sprintf(page, "%u\n", sched_smt_power_savings);
6720 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6721 const char *buf, size_t count)
6723 return sched_power_savings_store(buf, count, 1);
6725 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6726 sched_smt_power_savings_store);
6727 #endif
6730 #ifdef CONFIG_HOTPLUG_CPU
6732 * Force a reinitialization of the sched domains hierarchy. The domains
6733 * and groups cannot be updated in place without racing with the balancing
6734 * code, so we temporarily attach all running cpus to the NULL domain
6735 * which will prevent rebalancing while the sched domains are recalculated.
6737 static int update_sched_domains(struct notifier_block *nfb,
6738 unsigned long action, void *hcpu)
6740 switch (action) {
6741 case CPU_UP_PREPARE:
6742 case CPU_DOWN_PREPARE:
6743 detach_destroy_domains(&cpu_online_map);
6744 return NOTIFY_OK;
6746 case CPU_UP_CANCELED:
6747 case CPU_DOWN_FAILED:
6748 case CPU_ONLINE:
6749 case CPU_DEAD:
6751 * Fall through and re-initialise the domains.
6753 break;
6754 default:
6755 return NOTIFY_DONE;
6758 /* The hotplug lock is already held by cpu_up/cpu_down */
6759 arch_init_sched_domains(&cpu_online_map);
6761 return NOTIFY_OK;
6763 #endif
6765 void __init sched_init_smp(void)
6767 cpumask_t non_isolated_cpus;
6769 lock_cpu_hotplug();
6770 arch_init_sched_domains(&cpu_online_map);
6771 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6772 if (cpus_empty(non_isolated_cpus))
6773 cpu_set(smp_processor_id(), non_isolated_cpus);
6774 unlock_cpu_hotplug();
6775 /* XXX: Theoretical race here - CPU may be hotplugged now */
6776 hotcpu_notifier(update_sched_domains, 0);
6778 /* Move init over to a non-isolated CPU */
6779 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6780 BUG();
6782 #else
6783 void __init sched_init_smp(void)
6786 #endif /* CONFIG_SMP */
6788 int in_sched_functions(unsigned long addr)
6790 /* Linker adds these: start and end of __sched functions */
6791 extern char __sched_text_start[], __sched_text_end[];
6793 return in_lock_functions(addr) ||
6794 (addr >= (unsigned long)__sched_text_start
6795 && addr < (unsigned long)__sched_text_end);
6798 void __init sched_init(void)
6800 int i, j, k;
6802 for_each_possible_cpu(i) {
6803 struct prio_array *array;
6804 struct rq *rq;
6806 rq = cpu_rq(i);
6807 spin_lock_init(&rq->lock);
6808 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6809 rq->nr_running = 0;
6810 rq->active = rq->arrays;
6811 rq->expired = rq->arrays + 1;
6812 rq->best_expired_prio = MAX_PRIO;
6814 #ifdef CONFIG_SMP
6815 rq->sd = NULL;
6816 for (j = 1; j < 3; j++)
6817 rq->cpu_load[j] = 0;
6818 rq->active_balance = 0;
6819 rq->push_cpu = 0;
6820 rq->cpu = i;
6821 rq->migration_thread = NULL;
6822 INIT_LIST_HEAD(&rq->migration_queue);
6823 #endif
6824 atomic_set(&rq->nr_iowait, 0);
6826 for (j = 0; j < 2; j++) {
6827 array = rq->arrays + j;
6828 for (k = 0; k < MAX_PRIO; k++) {
6829 INIT_LIST_HEAD(array->queue + k);
6830 __clear_bit(k, array->bitmap);
6832 // delimiter for bitsearch
6833 __set_bit(MAX_PRIO, array->bitmap);
6837 set_load_weight(&init_task);
6839 #ifdef CONFIG_RT_MUTEXES
6840 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6841 #endif
6844 * The boot idle thread does lazy MMU switching as well:
6846 atomic_inc(&init_mm.mm_count);
6847 enter_lazy_tlb(&init_mm, current);
6850 * Make us the idle thread. Technically, schedule() should not be
6851 * called from this thread, however somewhere below it might be,
6852 * but because we are the idle thread, we just pick up running again
6853 * when this runqueue becomes "idle".
6855 init_idle(current, smp_processor_id());
6858 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6859 void __might_sleep(char *file, int line)
6861 #ifdef in_atomic
6862 static unsigned long prev_jiffy; /* ratelimiting */
6864 if ((in_atomic() || irqs_disabled()) &&
6865 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6866 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6867 return;
6868 prev_jiffy = jiffies;
6869 printk(KERN_ERR "BUG: sleeping function called from invalid"
6870 " context at %s:%d\n", file, line);
6871 printk("in_atomic():%d, irqs_disabled():%d\n",
6872 in_atomic(), irqs_disabled());
6873 dump_stack();
6875 #endif
6877 EXPORT_SYMBOL(__might_sleep);
6878 #endif
6880 #ifdef CONFIG_MAGIC_SYSRQ
6881 void normalize_rt_tasks(void)
6883 struct prio_array *array;
6884 struct task_struct *p;
6885 unsigned long flags;
6886 struct rq *rq;
6888 read_lock_irq(&tasklist_lock);
6889 for_each_process(p) {
6890 if (!rt_task(p))
6891 continue;
6893 spin_lock_irqsave(&p->pi_lock, flags);
6894 rq = __task_rq_lock(p);
6896 array = p->array;
6897 if (array)
6898 deactivate_task(p, task_rq(p));
6899 __setscheduler(p, SCHED_NORMAL, 0);
6900 if (array) {
6901 __activate_task(p, task_rq(p));
6902 resched_task(rq->curr);
6905 __task_rq_unlock(rq);
6906 spin_unlock_irqrestore(&p->pi_lock, flags);
6908 read_unlock_irq(&tasklist_lock);
6911 #endif /* CONFIG_MAGIC_SYSRQ */
6913 #ifdef CONFIG_IA64
6915 * These functions are only useful for the IA64 MCA handling.
6917 * They can only be called when the whole system has been
6918 * stopped - every CPU needs to be quiescent, and no scheduling
6919 * activity can take place. Using them for anything else would
6920 * be a serious bug, and as a result, they aren't even visible
6921 * under any other configuration.
6925 * curr_task - return the current task for a given cpu.
6926 * @cpu: the processor in question.
6928 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6930 struct task_struct *curr_task(int cpu)
6932 return cpu_curr(cpu);
6936 * set_curr_task - set the current task for a given cpu.
6937 * @cpu: the processor in question.
6938 * @p: the task pointer to set.
6940 * Description: This function must only be used when non-maskable interrupts
6941 * are serviced on a separate stack. It allows the architecture to switch the
6942 * notion of the current task on a cpu in a non-blocking manner. This function
6943 * must be called with all CPU's synchronized, and interrupts disabled, the
6944 * and caller must save the original value of the current task (see
6945 * curr_task() above) and restore that value before reenabling interrupts and
6946 * re-starting the system.
6948 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6950 void set_curr_task(int cpu, struct task_struct *p)
6952 cpu_curr(cpu) = p;
6955 #endif