[PATCH] sched: fix cond_resched_softirq() offset
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sparc64 / mm / init.c
blobab6d0ca718706fc575a17673459e6129f93643f5
1 /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
27 #include <asm/head.h>
28 #include <asm/system.h>
29 #include <asm/page.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/oplib.h>
33 #include <asm/iommu.h>
34 #include <asm/io.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/dma.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/spitfire.h>
42 #include <asm/sections.h>
43 #include <asm/tsb.h>
44 #include <asm/hypervisor.h>
45 #include <asm/prom.h>
47 extern void device_scan(void);
49 #define MAX_PHYS_ADDRESS (1UL << 42UL)
50 #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
51 #define KPTE_BITMAP_BYTES \
52 ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
54 unsigned long kern_linear_pte_xor[2] __read_mostly;
56 /* A bitmap, one bit for every 256MB of physical memory. If the bit
57 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
58 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62 /* A special kernel TSB for 4MB and 256MB linear mappings. */
63 struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
65 #define MAX_BANKS 32
67 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
68 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
69 static int pavail_ents __initdata;
70 static int pavail_rescan_ents __initdata;
72 static int cmp_p64(const void *a, const void *b)
74 const struct linux_prom64_registers *x = a, *y = b;
76 if (x->phys_addr > y->phys_addr)
77 return 1;
78 if (x->phys_addr < y->phys_addr)
79 return -1;
80 return 0;
83 static void __init read_obp_memory(const char *property,
84 struct linux_prom64_registers *regs,
85 int *num_ents)
87 int node = prom_finddevice("/memory");
88 int prop_size = prom_getproplen(node, property);
89 int ents, ret, i;
91 ents = prop_size / sizeof(struct linux_prom64_registers);
92 if (ents > MAX_BANKS) {
93 prom_printf("The machine has more %s property entries than "
94 "this kernel can support (%d).\n",
95 property, MAX_BANKS);
96 prom_halt();
99 ret = prom_getproperty(node, property, (char *) regs, prop_size);
100 if (ret == -1) {
101 prom_printf("Couldn't get %s property from /memory.\n");
102 prom_halt();
105 /* Sanitize what we got from the firmware, by page aligning
106 * everything.
108 for (i = 0; i < ents; i++) {
109 unsigned long base, size;
111 base = regs[i].phys_addr;
112 size = regs[i].reg_size;
114 size &= PAGE_MASK;
115 if (base & ~PAGE_MASK) {
116 unsigned long new_base = PAGE_ALIGN(base);
118 size -= new_base - base;
119 if ((long) size < 0L)
120 size = 0UL;
121 base = new_base;
123 regs[i].phys_addr = base;
124 regs[i].reg_size = size;
127 for (i = 0; i < ents; i++) {
128 if (regs[i].reg_size == 0UL) {
129 int j;
131 for (j = i; j < ents - 1; j++) {
132 regs[j].phys_addr =
133 regs[j+1].phys_addr;
134 regs[j].reg_size =
135 regs[j+1].reg_size;
138 ents--;
139 i--;
143 *num_ents = ents;
145 sort(regs, ents, sizeof(struct linux_prom64_registers),
146 cmp_p64, NULL);
149 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
151 /* Kernel physical address base and size in bytes. */
152 unsigned long kern_base __read_mostly;
153 unsigned long kern_size __read_mostly;
155 /* get_new_mmu_context() uses "cache + 1". */
156 DEFINE_SPINLOCK(ctx_alloc_lock);
157 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
158 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
159 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
161 /* References to special section boundaries */
162 extern char _start[], _end[];
164 /* Initial ramdisk setup */
165 extern unsigned long sparc_ramdisk_image64;
166 extern unsigned int sparc_ramdisk_image;
167 extern unsigned int sparc_ramdisk_size;
169 struct page *mem_map_zero __read_mostly;
171 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
173 unsigned long sparc64_kern_pri_context __read_mostly;
174 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
175 unsigned long sparc64_kern_sec_context __read_mostly;
177 int bigkernel = 0;
179 kmem_cache_t *pgtable_cache __read_mostly;
181 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
183 clear_page(addr);
186 extern void tsb_cache_init(void);
188 void pgtable_cache_init(void)
190 pgtable_cache = kmem_cache_create("pgtable_cache",
191 PAGE_SIZE, PAGE_SIZE,
192 SLAB_HWCACHE_ALIGN |
193 SLAB_MUST_HWCACHE_ALIGN,
194 zero_ctor,
195 NULL);
196 if (!pgtable_cache) {
197 prom_printf("Could not create pgtable_cache\n");
198 prom_halt();
200 tsb_cache_init();
203 #ifdef CONFIG_DEBUG_DCFLUSH
204 atomic_t dcpage_flushes = ATOMIC_INIT(0);
205 #ifdef CONFIG_SMP
206 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
207 #endif
208 #endif
210 inline void flush_dcache_page_impl(struct page *page)
212 BUG_ON(tlb_type == hypervisor);
213 #ifdef CONFIG_DEBUG_DCFLUSH
214 atomic_inc(&dcpage_flushes);
215 #endif
217 #ifdef DCACHE_ALIASING_POSSIBLE
218 __flush_dcache_page(page_address(page),
219 ((tlb_type == spitfire) &&
220 page_mapping(page) != NULL));
221 #else
222 if (page_mapping(page) != NULL &&
223 tlb_type == spitfire)
224 __flush_icache_page(__pa(page_address(page)));
225 #endif
228 #define PG_dcache_dirty PG_arch_1
229 #define PG_dcache_cpu_shift 24UL
230 #define PG_dcache_cpu_mask (256UL - 1UL)
232 #if NR_CPUS > 256
233 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
234 #endif
236 #define dcache_dirty_cpu(page) \
237 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
239 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
241 unsigned long mask = this_cpu;
242 unsigned long non_cpu_bits;
244 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
245 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
247 __asm__ __volatile__("1:\n\t"
248 "ldx [%2], %%g7\n\t"
249 "and %%g7, %1, %%g1\n\t"
250 "or %%g1, %0, %%g1\n\t"
251 "casx [%2], %%g7, %%g1\n\t"
252 "cmp %%g7, %%g1\n\t"
253 "membar #StoreLoad | #StoreStore\n\t"
254 "bne,pn %%xcc, 1b\n\t"
255 " nop"
256 : /* no outputs */
257 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
258 : "g1", "g7");
261 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
263 unsigned long mask = (1UL << PG_dcache_dirty);
265 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
266 "1:\n\t"
267 "ldx [%2], %%g7\n\t"
268 "srlx %%g7, %4, %%g1\n\t"
269 "and %%g1, %3, %%g1\n\t"
270 "cmp %%g1, %0\n\t"
271 "bne,pn %%icc, 2f\n\t"
272 " andn %%g7, %1, %%g1\n\t"
273 "casx [%2], %%g7, %%g1\n\t"
274 "cmp %%g7, %%g1\n\t"
275 "membar #StoreLoad | #StoreStore\n\t"
276 "bne,pn %%xcc, 1b\n\t"
277 " nop\n"
278 "2:"
279 : /* no outputs */
280 : "r" (cpu), "r" (mask), "r" (&page->flags),
281 "i" (PG_dcache_cpu_mask),
282 "i" (PG_dcache_cpu_shift)
283 : "g1", "g7");
286 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
288 unsigned long tsb_addr = (unsigned long) ent;
290 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
291 tsb_addr = __pa(tsb_addr);
293 __tsb_insert(tsb_addr, tag, pte);
296 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
297 unsigned long _PAGE_SZBITS __read_mostly;
299 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
301 struct mm_struct *mm;
302 struct tsb *tsb;
303 unsigned long tag, flags;
304 unsigned long tsb_index, tsb_hash_shift;
306 if (tlb_type != hypervisor) {
307 unsigned long pfn = pte_pfn(pte);
308 unsigned long pg_flags;
309 struct page *page;
311 if (pfn_valid(pfn) &&
312 (page = pfn_to_page(pfn), page_mapping(page)) &&
313 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
314 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
315 PG_dcache_cpu_mask);
316 int this_cpu = get_cpu();
318 /* This is just to optimize away some function calls
319 * in the SMP case.
321 if (cpu == this_cpu)
322 flush_dcache_page_impl(page);
323 else
324 smp_flush_dcache_page_impl(page, cpu);
326 clear_dcache_dirty_cpu(page, cpu);
328 put_cpu();
332 mm = vma->vm_mm;
334 tsb_index = MM_TSB_BASE;
335 tsb_hash_shift = PAGE_SHIFT;
337 spin_lock_irqsave(&mm->context.lock, flags);
339 #ifdef CONFIG_HUGETLB_PAGE
340 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
341 if ((tlb_type == hypervisor &&
342 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
343 (tlb_type != hypervisor &&
344 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
345 tsb_index = MM_TSB_HUGE;
346 tsb_hash_shift = HPAGE_SHIFT;
349 #endif
351 tsb = mm->context.tsb_block[tsb_index].tsb;
352 tsb += ((address >> tsb_hash_shift) &
353 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
354 tag = (address >> 22UL);
355 tsb_insert(tsb, tag, pte_val(pte));
357 spin_unlock_irqrestore(&mm->context.lock, flags);
360 void flush_dcache_page(struct page *page)
362 struct address_space *mapping;
363 int this_cpu;
365 if (tlb_type == hypervisor)
366 return;
368 /* Do not bother with the expensive D-cache flush if it
369 * is merely the zero page. The 'bigcore' testcase in GDB
370 * causes this case to run millions of times.
372 if (page == ZERO_PAGE(0))
373 return;
375 this_cpu = get_cpu();
377 mapping = page_mapping(page);
378 if (mapping && !mapping_mapped(mapping)) {
379 int dirty = test_bit(PG_dcache_dirty, &page->flags);
380 if (dirty) {
381 int dirty_cpu = dcache_dirty_cpu(page);
383 if (dirty_cpu == this_cpu)
384 goto out;
385 smp_flush_dcache_page_impl(page, dirty_cpu);
387 set_dcache_dirty(page, this_cpu);
388 } else {
389 /* We could delay the flush for the !page_mapping
390 * case too. But that case is for exec env/arg
391 * pages and those are %99 certainly going to get
392 * faulted into the tlb (and thus flushed) anyways.
394 flush_dcache_page_impl(page);
397 out:
398 put_cpu();
401 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
403 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
404 if (tlb_type == spitfire) {
405 unsigned long kaddr;
407 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
408 __flush_icache_page(__get_phys(kaddr));
412 void show_mem(void)
414 printk("Mem-info:\n");
415 show_free_areas();
416 printk("Free swap: %6ldkB\n",
417 nr_swap_pages << (PAGE_SHIFT-10));
418 printk("%ld pages of RAM\n", num_physpages);
419 printk("%d free pages\n", nr_free_pages());
422 void mmu_info(struct seq_file *m)
424 if (tlb_type == cheetah)
425 seq_printf(m, "MMU Type\t: Cheetah\n");
426 else if (tlb_type == cheetah_plus)
427 seq_printf(m, "MMU Type\t: Cheetah+\n");
428 else if (tlb_type == spitfire)
429 seq_printf(m, "MMU Type\t: Spitfire\n");
430 else if (tlb_type == hypervisor)
431 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
432 else
433 seq_printf(m, "MMU Type\t: ???\n");
435 #ifdef CONFIG_DEBUG_DCFLUSH
436 seq_printf(m, "DCPageFlushes\t: %d\n",
437 atomic_read(&dcpage_flushes));
438 #ifdef CONFIG_SMP
439 seq_printf(m, "DCPageFlushesXC\t: %d\n",
440 atomic_read(&dcpage_flushes_xcall));
441 #endif /* CONFIG_SMP */
442 #endif /* CONFIG_DEBUG_DCFLUSH */
445 struct linux_prom_translation {
446 unsigned long virt;
447 unsigned long size;
448 unsigned long data;
451 /* Exported for kernel TLB miss handling in ktlb.S */
452 struct linux_prom_translation prom_trans[512] __read_mostly;
453 unsigned int prom_trans_ents __read_mostly;
455 /* Exported for SMP bootup purposes. */
456 unsigned long kern_locked_tte_data;
458 /* The obp translations are saved based on 8k pagesize, since obp can
459 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
460 * HI_OBP_ADDRESS range are handled in ktlb.S.
462 static inline int in_obp_range(unsigned long vaddr)
464 return (vaddr >= LOW_OBP_ADDRESS &&
465 vaddr < HI_OBP_ADDRESS);
468 static int cmp_ptrans(const void *a, const void *b)
470 const struct linux_prom_translation *x = a, *y = b;
472 if (x->virt > y->virt)
473 return 1;
474 if (x->virt < y->virt)
475 return -1;
476 return 0;
479 /* Read OBP translations property into 'prom_trans[]'. */
480 static void __init read_obp_translations(void)
482 int n, node, ents, first, last, i;
484 node = prom_finddevice("/virtual-memory");
485 n = prom_getproplen(node, "translations");
486 if (unlikely(n == 0 || n == -1)) {
487 prom_printf("prom_mappings: Couldn't get size.\n");
488 prom_halt();
490 if (unlikely(n > sizeof(prom_trans))) {
491 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
492 prom_halt();
495 if ((n = prom_getproperty(node, "translations",
496 (char *)&prom_trans[0],
497 sizeof(prom_trans))) == -1) {
498 prom_printf("prom_mappings: Couldn't get property.\n");
499 prom_halt();
502 n = n / sizeof(struct linux_prom_translation);
504 ents = n;
506 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
507 cmp_ptrans, NULL);
509 /* Now kick out all the non-OBP entries. */
510 for (i = 0; i < ents; i++) {
511 if (in_obp_range(prom_trans[i].virt))
512 break;
514 first = i;
515 for (; i < ents; i++) {
516 if (!in_obp_range(prom_trans[i].virt))
517 break;
519 last = i;
521 for (i = 0; i < (last - first); i++) {
522 struct linux_prom_translation *src = &prom_trans[i + first];
523 struct linux_prom_translation *dest = &prom_trans[i];
525 *dest = *src;
527 for (; i < ents; i++) {
528 struct linux_prom_translation *dest = &prom_trans[i];
529 dest->virt = dest->size = dest->data = 0x0UL;
532 prom_trans_ents = last - first;
534 if (tlb_type == spitfire) {
535 /* Clear diag TTE bits. */
536 for (i = 0; i < prom_trans_ents; i++)
537 prom_trans[i].data &= ~0x0003fe0000000000UL;
541 static void __init hypervisor_tlb_lock(unsigned long vaddr,
542 unsigned long pte,
543 unsigned long mmu)
545 register unsigned long func asm("%o5");
546 register unsigned long arg0 asm("%o0");
547 register unsigned long arg1 asm("%o1");
548 register unsigned long arg2 asm("%o2");
549 register unsigned long arg3 asm("%o3");
551 func = HV_FAST_MMU_MAP_PERM_ADDR;
552 arg0 = vaddr;
553 arg1 = 0;
554 arg2 = pte;
555 arg3 = mmu;
556 __asm__ __volatile__("ta 0x80"
557 : "=&r" (func), "=&r" (arg0),
558 "=&r" (arg1), "=&r" (arg2),
559 "=&r" (arg3)
560 : "0" (func), "1" (arg0), "2" (arg1),
561 "3" (arg2), "4" (arg3));
562 if (arg0 != 0) {
563 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
564 "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
565 prom_halt();
569 static unsigned long kern_large_tte(unsigned long paddr);
571 static void __init remap_kernel(void)
573 unsigned long phys_page, tte_vaddr, tte_data;
574 int tlb_ent = sparc64_highest_locked_tlbent();
576 tte_vaddr = (unsigned long) KERNBASE;
577 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
578 tte_data = kern_large_tte(phys_page);
580 kern_locked_tte_data = tte_data;
582 /* Now lock us into the TLBs via Hypervisor or OBP. */
583 if (tlb_type == hypervisor) {
584 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
585 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
586 if (bigkernel) {
587 tte_vaddr += 0x400000;
588 tte_data += 0x400000;
589 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
590 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
592 } else {
593 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
594 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
595 if (bigkernel) {
596 tlb_ent -= 1;
597 prom_dtlb_load(tlb_ent,
598 tte_data + 0x400000,
599 tte_vaddr + 0x400000);
600 prom_itlb_load(tlb_ent,
601 tte_data + 0x400000,
602 tte_vaddr + 0x400000);
604 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
606 if (tlb_type == cheetah_plus) {
607 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
608 CTX_CHEETAH_PLUS_NUC);
609 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
610 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
615 static void __init inherit_prom_mappings(void)
617 read_obp_translations();
619 /* Now fixup OBP's idea about where we really are mapped. */
620 prom_printf("Remapping the kernel... ");
621 remap_kernel();
622 prom_printf("done.\n");
625 void prom_world(int enter)
627 if (!enter)
628 set_fs((mm_segment_t) { get_thread_current_ds() });
630 __asm__ __volatile__("flushw");
633 #ifdef DCACHE_ALIASING_POSSIBLE
634 void __flush_dcache_range(unsigned long start, unsigned long end)
636 unsigned long va;
638 if (tlb_type == spitfire) {
639 int n = 0;
641 for (va = start; va < end; va += 32) {
642 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
643 if (++n >= 512)
644 break;
646 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
647 start = __pa(start);
648 end = __pa(end);
649 for (va = start; va < end; va += 32)
650 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
651 "membar #Sync"
652 : /* no outputs */
653 : "r" (va),
654 "i" (ASI_DCACHE_INVALIDATE));
657 #endif /* DCACHE_ALIASING_POSSIBLE */
659 /* Caller does TLB context flushing on local CPU if necessary.
660 * The caller also ensures that CTX_VALID(mm->context) is false.
662 * We must be careful about boundary cases so that we never
663 * let the user have CTX 0 (nucleus) or we ever use a CTX
664 * version of zero (and thus NO_CONTEXT would not be caught
665 * by version mis-match tests in mmu_context.h).
667 * Always invoked with interrupts disabled.
669 void get_new_mmu_context(struct mm_struct *mm)
671 unsigned long ctx, new_ctx;
672 unsigned long orig_pgsz_bits;
673 unsigned long flags;
674 int new_version;
676 spin_lock_irqsave(&ctx_alloc_lock, flags);
677 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
678 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
679 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
680 new_version = 0;
681 if (new_ctx >= (1 << CTX_NR_BITS)) {
682 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
683 if (new_ctx >= ctx) {
684 int i;
685 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
686 CTX_FIRST_VERSION;
687 if (new_ctx == 1)
688 new_ctx = CTX_FIRST_VERSION;
690 /* Don't call memset, for 16 entries that's just
691 * plain silly...
693 mmu_context_bmap[0] = 3;
694 mmu_context_bmap[1] = 0;
695 mmu_context_bmap[2] = 0;
696 mmu_context_bmap[3] = 0;
697 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
698 mmu_context_bmap[i + 0] = 0;
699 mmu_context_bmap[i + 1] = 0;
700 mmu_context_bmap[i + 2] = 0;
701 mmu_context_bmap[i + 3] = 0;
703 new_version = 1;
704 goto out;
707 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
708 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
709 out:
710 tlb_context_cache = new_ctx;
711 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
712 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
714 if (unlikely(new_version))
715 smp_new_mmu_context_version();
718 void sparc_ultra_dump_itlb(void)
720 int slot;
722 if (tlb_type == spitfire) {
723 printk ("Contents of itlb: ");
724 for (slot = 0; slot < 14; slot++) printk (" ");
725 printk ("%2x:%016lx,%016lx\n",
727 spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
728 for (slot = 1; slot < 64; slot+=3) {
729 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
730 slot,
731 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
732 slot+1,
733 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
734 slot+2,
735 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
737 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
738 printk ("Contents of itlb0:\n");
739 for (slot = 0; slot < 16; slot+=2) {
740 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
741 slot,
742 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
743 slot+1,
744 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
746 printk ("Contents of itlb2:\n");
747 for (slot = 0; slot < 128; slot+=2) {
748 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
749 slot,
750 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
751 slot+1,
752 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
757 void sparc_ultra_dump_dtlb(void)
759 int slot;
761 if (tlb_type == spitfire) {
762 printk ("Contents of dtlb: ");
763 for (slot = 0; slot < 14; slot++) printk (" ");
764 printk ("%2x:%016lx,%016lx\n", 0,
765 spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
766 for (slot = 1; slot < 64; slot+=3) {
767 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
768 slot,
769 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
770 slot+1,
771 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
772 slot+2,
773 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
775 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
776 printk ("Contents of dtlb0:\n");
777 for (slot = 0; slot < 16; slot+=2) {
778 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
779 slot,
780 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
781 slot+1,
782 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
784 printk ("Contents of dtlb2:\n");
785 for (slot = 0; slot < 512; slot+=2) {
786 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
787 slot,
788 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
789 slot+1,
790 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
792 if (tlb_type == cheetah_plus) {
793 printk ("Contents of dtlb3:\n");
794 for (slot = 0; slot < 512; slot+=2) {
795 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
796 slot,
797 cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
798 slot+1,
799 cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
805 extern unsigned long cmdline_memory_size;
807 /* Find a free area for the bootmem map, avoiding the kernel image
808 * and the initial ramdisk.
810 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
811 unsigned long end_pfn)
813 unsigned long avoid_start, avoid_end, bootmap_size;
814 int i;
816 bootmap_size = ((end_pfn - start_pfn) + 7) / 8;
817 bootmap_size = ALIGN(bootmap_size, sizeof(long));
819 avoid_start = avoid_end = 0;
820 #ifdef CONFIG_BLK_DEV_INITRD
821 avoid_start = initrd_start;
822 avoid_end = PAGE_ALIGN(initrd_end);
823 #endif
825 #ifdef CONFIG_DEBUG_BOOTMEM
826 prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
827 kern_base, PAGE_ALIGN(kern_base + kern_size),
828 avoid_start, avoid_end);
829 #endif
830 for (i = 0; i < pavail_ents; i++) {
831 unsigned long start, end;
833 start = pavail[i].phys_addr;
834 end = start + pavail[i].reg_size;
836 while (start < end) {
837 if (start >= kern_base &&
838 start < PAGE_ALIGN(kern_base + kern_size)) {
839 start = PAGE_ALIGN(kern_base + kern_size);
840 continue;
842 if (start >= avoid_start && start < avoid_end) {
843 start = avoid_end;
844 continue;
847 if ((end - start) < bootmap_size)
848 break;
850 if (start < kern_base &&
851 (start + bootmap_size) > kern_base) {
852 start = PAGE_ALIGN(kern_base + kern_size);
853 continue;
856 if (start < avoid_start &&
857 (start + bootmap_size) > avoid_start) {
858 start = avoid_end;
859 continue;
862 /* OK, it doesn't overlap anything, use it. */
863 #ifdef CONFIG_DEBUG_BOOTMEM
864 prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
865 start >> PAGE_SHIFT, start);
866 #endif
867 return start >> PAGE_SHIFT;
871 prom_printf("Cannot find free area for bootmap, aborting.\n");
872 prom_halt();
875 static void __init trim_pavail(unsigned long *cur_size_p,
876 unsigned long *end_of_phys_p)
878 unsigned long to_trim = *cur_size_p - cmdline_memory_size;
879 unsigned long avoid_start, avoid_end;
880 int i;
882 to_trim = PAGE_ALIGN(to_trim);
884 avoid_start = avoid_end = 0;
885 #ifdef CONFIG_BLK_DEV_INITRD
886 avoid_start = initrd_start;
887 avoid_end = PAGE_ALIGN(initrd_end);
888 #endif
890 /* Trim some pavail[] entries in order to satisfy the
891 * requested "mem=xxx" kernel command line specification.
893 * We must not trim off the kernel image area nor the
894 * initial ramdisk range (if any). Also, we must not trim
895 * any pavail[] entry down to zero in order to preserve
896 * the invariant that all pavail[] entries have a non-zero
897 * size which is assumed by all of the code in here.
899 for (i = 0; i < pavail_ents; i++) {
900 unsigned long start, end, kern_end;
901 unsigned long trim_low, trim_high, n;
903 kern_end = PAGE_ALIGN(kern_base + kern_size);
905 trim_low = start = pavail[i].phys_addr;
906 trim_high = end = start + pavail[i].reg_size;
908 if (kern_base >= start &&
909 kern_base < end) {
910 trim_low = kern_base;
911 if (kern_end >= end)
912 continue;
914 if (kern_end >= start &&
915 kern_end < end) {
916 trim_high = kern_end;
918 if (avoid_start &&
919 avoid_start >= start &&
920 avoid_start < end) {
921 if (trim_low > avoid_start)
922 trim_low = avoid_start;
923 if (avoid_end >= end)
924 continue;
926 if (avoid_end &&
927 avoid_end >= start &&
928 avoid_end < end) {
929 if (trim_high < avoid_end)
930 trim_high = avoid_end;
933 if (trim_high <= trim_low)
934 continue;
936 if (trim_low == start && trim_high == end) {
937 /* Whole chunk is available for trimming.
938 * Trim all except one page, in order to keep
939 * entry non-empty.
941 n = (end - start) - PAGE_SIZE;
942 if (n > to_trim)
943 n = to_trim;
945 if (n) {
946 pavail[i].phys_addr += n;
947 pavail[i].reg_size -= n;
948 to_trim -= n;
950 } else {
951 n = (trim_low - start);
952 if (n > to_trim)
953 n = to_trim;
955 if (n) {
956 pavail[i].phys_addr += n;
957 pavail[i].reg_size -= n;
958 to_trim -= n;
960 if (to_trim) {
961 n = end - trim_high;
962 if (n > to_trim)
963 n = to_trim;
964 if (n) {
965 pavail[i].reg_size -= n;
966 to_trim -= n;
971 if (!to_trim)
972 break;
975 /* Recalculate. */
976 *cur_size_p = 0UL;
977 for (i = 0; i < pavail_ents; i++) {
978 *end_of_phys_p = pavail[i].phys_addr +
979 pavail[i].reg_size;
980 *cur_size_p += pavail[i].reg_size;
984 static unsigned long __init bootmem_init(unsigned long *pages_avail,
985 unsigned long phys_base)
987 unsigned long bootmap_size, end_pfn;
988 unsigned long end_of_phys_memory = 0UL;
989 unsigned long bootmap_pfn, bytes_avail, size;
990 int i;
992 #ifdef CONFIG_DEBUG_BOOTMEM
993 prom_printf("bootmem_init: Scan pavail, ");
994 #endif
996 bytes_avail = 0UL;
997 for (i = 0; i < pavail_ents; i++) {
998 end_of_phys_memory = pavail[i].phys_addr +
999 pavail[i].reg_size;
1000 bytes_avail += pavail[i].reg_size;
1003 /* Determine the location of the initial ramdisk before trying
1004 * to honor the "mem=xxx" command line argument. We must know
1005 * where the kernel image and the ramdisk image are so that we
1006 * do not trim those two areas from the physical memory map.
1009 #ifdef CONFIG_BLK_DEV_INITRD
1010 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
1011 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
1012 unsigned long ramdisk_image = sparc_ramdisk_image ?
1013 sparc_ramdisk_image : sparc_ramdisk_image64;
1014 ramdisk_image -= KERNBASE;
1015 initrd_start = ramdisk_image + phys_base;
1016 initrd_end = initrd_start + sparc_ramdisk_size;
1017 if (initrd_end > end_of_phys_memory) {
1018 printk(KERN_CRIT "initrd extends beyond end of memory "
1019 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
1020 initrd_end, end_of_phys_memory);
1021 initrd_start = 0;
1022 initrd_end = 0;
1025 #endif
1027 if (cmdline_memory_size &&
1028 bytes_avail > cmdline_memory_size)
1029 trim_pavail(&bytes_avail,
1030 &end_of_phys_memory);
1032 *pages_avail = bytes_avail >> PAGE_SHIFT;
1034 end_pfn = end_of_phys_memory >> PAGE_SHIFT;
1036 /* Initialize the boot-time allocator. */
1037 max_pfn = max_low_pfn = end_pfn;
1038 min_low_pfn = (phys_base >> PAGE_SHIFT);
1040 bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
1042 #ifdef CONFIG_DEBUG_BOOTMEM
1043 prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
1044 min_low_pfn, bootmap_pfn, max_low_pfn);
1045 #endif
1046 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
1047 min_low_pfn, end_pfn);
1049 /* Now register the available physical memory with the
1050 * allocator.
1052 for (i = 0; i < pavail_ents; i++) {
1053 #ifdef CONFIG_DEBUG_BOOTMEM
1054 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
1055 i, pavail[i].phys_addr, pavail[i].reg_size);
1056 #endif
1057 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
1060 #ifdef CONFIG_BLK_DEV_INITRD
1061 if (initrd_start) {
1062 size = initrd_end - initrd_start;
1064 /* Resert the initrd image area. */
1065 #ifdef CONFIG_DEBUG_BOOTMEM
1066 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
1067 initrd_start, initrd_end);
1068 #endif
1069 reserve_bootmem(initrd_start, size);
1070 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
1072 initrd_start += PAGE_OFFSET;
1073 initrd_end += PAGE_OFFSET;
1075 #endif
1076 /* Reserve the kernel text/data/bss. */
1077 #ifdef CONFIG_DEBUG_BOOTMEM
1078 prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
1079 #endif
1080 reserve_bootmem(kern_base, kern_size);
1081 *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
1083 /* Reserve the bootmem map. We do not account for it
1084 * in pages_avail because we will release that memory
1085 * in free_all_bootmem.
1087 size = bootmap_size;
1088 #ifdef CONFIG_DEBUG_BOOTMEM
1089 prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
1090 (bootmap_pfn << PAGE_SHIFT), size);
1091 #endif
1092 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
1093 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
1095 for (i = 0; i < pavail_ents; i++) {
1096 unsigned long start_pfn, end_pfn;
1098 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
1099 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
1100 #ifdef CONFIG_DEBUG_BOOTMEM
1101 prom_printf("memory_present(0, %lx, %lx)\n",
1102 start_pfn, end_pfn);
1103 #endif
1104 memory_present(0, start_pfn, end_pfn);
1107 sparse_init();
1109 return end_pfn;
1112 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1113 static int pall_ents __initdata;
1115 #ifdef CONFIG_DEBUG_PAGEALLOC
1116 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
1118 unsigned long vstart = PAGE_OFFSET + pstart;
1119 unsigned long vend = PAGE_OFFSET + pend;
1120 unsigned long alloc_bytes = 0UL;
1122 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1123 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1124 vstart, vend);
1125 prom_halt();
1128 while (vstart < vend) {
1129 unsigned long this_end, paddr = __pa(vstart);
1130 pgd_t *pgd = pgd_offset_k(vstart);
1131 pud_t *pud;
1132 pmd_t *pmd;
1133 pte_t *pte;
1135 pud = pud_offset(pgd, vstart);
1136 if (pud_none(*pud)) {
1137 pmd_t *new;
1139 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1140 alloc_bytes += PAGE_SIZE;
1141 pud_populate(&init_mm, pud, new);
1144 pmd = pmd_offset(pud, vstart);
1145 if (!pmd_present(*pmd)) {
1146 pte_t *new;
1148 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1149 alloc_bytes += PAGE_SIZE;
1150 pmd_populate_kernel(&init_mm, pmd, new);
1153 pte = pte_offset_kernel(pmd, vstart);
1154 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1155 if (this_end > vend)
1156 this_end = vend;
1158 while (vstart < this_end) {
1159 pte_val(*pte) = (paddr | pgprot_val(prot));
1161 vstart += PAGE_SIZE;
1162 paddr += PAGE_SIZE;
1163 pte++;
1167 return alloc_bytes;
1170 extern unsigned int kvmap_linear_patch[1];
1171 #endif /* CONFIG_DEBUG_PAGEALLOC */
1173 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1175 const unsigned long shift_256MB = 28;
1176 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1177 const unsigned long size_256MB = (1UL << shift_256MB);
1179 while (start < end) {
1180 long remains;
1182 remains = end - start;
1183 if (remains < size_256MB)
1184 break;
1186 if (start & mask_256MB) {
1187 start = (start + size_256MB) & ~mask_256MB;
1188 continue;
1191 while (remains >= size_256MB) {
1192 unsigned long index = start >> shift_256MB;
1194 __set_bit(index, kpte_linear_bitmap);
1196 start += size_256MB;
1197 remains -= size_256MB;
1202 static void __init kernel_physical_mapping_init(void)
1204 unsigned long i;
1205 #ifdef CONFIG_DEBUG_PAGEALLOC
1206 unsigned long mem_alloced = 0UL;
1207 #endif
1209 read_obp_memory("reg", &pall[0], &pall_ents);
1211 for (i = 0; i < pall_ents; i++) {
1212 unsigned long phys_start, phys_end;
1214 phys_start = pall[i].phys_addr;
1215 phys_end = phys_start + pall[i].reg_size;
1217 mark_kpte_bitmap(phys_start, phys_end);
1219 #ifdef CONFIG_DEBUG_PAGEALLOC
1220 mem_alloced += kernel_map_range(phys_start, phys_end,
1221 PAGE_KERNEL);
1222 #endif
1225 #ifdef CONFIG_DEBUG_PAGEALLOC
1226 printk("Allocated %ld bytes for kernel page tables.\n",
1227 mem_alloced);
1229 kvmap_linear_patch[0] = 0x01000000; /* nop */
1230 flushi(&kvmap_linear_patch[0]);
1232 __flush_tlb_all();
1233 #endif
1236 #ifdef CONFIG_DEBUG_PAGEALLOC
1237 void kernel_map_pages(struct page *page, int numpages, int enable)
1239 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1240 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1242 kernel_map_range(phys_start, phys_end,
1243 (enable ? PAGE_KERNEL : __pgprot(0)));
1245 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1246 PAGE_OFFSET + phys_end);
1248 /* we should perform an IPI and flush all tlbs,
1249 * but that can deadlock->flush only current cpu.
1251 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1252 PAGE_OFFSET + phys_end);
1254 #endif
1256 unsigned long __init find_ecache_flush_span(unsigned long size)
1258 int i;
1260 for (i = 0; i < pavail_ents; i++) {
1261 if (pavail[i].reg_size >= size)
1262 return pavail[i].phys_addr;
1265 return ~0UL;
1268 static void __init tsb_phys_patch(void)
1270 struct tsb_ldquad_phys_patch_entry *pquad;
1271 struct tsb_phys_patch_entry *p;
1273 pquad = &__tsb_ldquad_phys_patch;
1274 while (pquad < &__tsb_ldquad_phys_patch_end) {
1275 unsigned long addr = pquad->addr;
1277 if (tlb_type == hypervisor)
1278 *(unsigned int *) addr = pquad->sun4v_insn;
1279 else
1280 *(unsigned int *) addr = pquad->sun4u_insn;
1281 wmb();
1282 __asm__ __volatile__("flush %0"
1283 : /* no outputs */
1284 : "r" (addr));
1286 pquad++;
1289 p = &__tsb_phys_patch;
1290 while (p < &__tsb_phys_patch_end) {
1291 unsigned long addr = p->addr;
1293 *(unsigned int *) addr = p->insn;
1294 wmb();
1295 __asm__ __volatile__("flush %0"
1296 : /* no outputs */
1297 : "r" (addr));
1299 p++;
1303 /* Don't mark as init, we give this to the Hypervisor. */
1304 static struct hv_tsb_descr ktsb_descr[2];
1305 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1307 static void __init sun4v_ktsb_init(void)
1309 unsigned long ktsb_pa;
1311 /* First KTSB for PAGE_SIZE mappings. */
1312 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1314 switch (PAGE_SIZE) {
1315 case 8 * 1024:
1316 default:
1317 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1318 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1319 break;
1321 case 64 * 1024:
1322 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1323 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1324 break;
1326 case 512 * 1024:
1327 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1328 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1329 break;
1331 case 4 * 1024 * 1024:
1332 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1333 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1334 break;
1337 ktsb_descr[0].assoc = 1;
1338 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1339 ktsb_descr[0].ctx_idx = 0;
1340 ktsb_descr[0].tsb_base = ktsb_pa;
1341 ktsb_descr[0].resv = 0;
1343 /* Second KTSB for 4MB/256MB mappings. */
1344 ktsb_pa = (kern_base +
1345 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1347 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1348 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1349 HV_PGSZ_MASK_256MB);
1350 ktsb_descr[1].assoc = 1;
1351 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1352 ktsb_descr[1].ctx_idx = 0;
1353 ktsb_descr[1].tsb_base = ktsb_pa;
1354 ktsb_descr[1].resv = 0;
1357 void __cpuinit sun4v_ktsb_register(void)
1359 register unsigned long func asm("%o5");
1360 register unsigned long arg0 asm("%o0");
1361 register unsigned long arg1 asm("%o1");
1362 unsigned long pa;
1364 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1366 func = HV_FAST_MMU_TSB_CTX0;
1367 arg0 = 2;
1368 arg1 = pa;
1369 __asm__ __volatile__("ta %6"
1370 : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
1371 : "0" (func), "1" (arg0), "2" (arg1),
1372 "i" (HV_FAST_TRAP));
1375 /* paging_init() sets up the page tables */
1377 extern void cheetah_ecache_flush_init(void);
1378 extern void sun4v_patch_tlb_handlers(void);
1380 static unsigned long last_valid_pfn;
1381 pgd_t swapper_pg_dir[2048];
1383 static void sun4u_pgprot_init(void);
1384 static void sun4v_pgprot_init(void);
1386 void __init paging_init(void)
1388 unsigned long end_pfn, pages_avail, shift, phys_base;
1389 unsigned long real_end, i;
1391 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1392 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1394 /* Invalidate both kernel TSBs. */
1395 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1396 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1398 if (tlb_type == hypervisor)
1399 sun4v_pgprot_init();
1400 else
1401 sun4u_pgprot_init();
1403 if (tlb_type == cheetah_plus ||
1404 tlb_type == hypervisor)
1405 tsb_phys_patch();
1407 if (tlb_type == hypervisor) {
1408 sun4v_patch_tlb_handlers();
1409 sun4v_ktsb_init();
1412 /* Find available physical memory... */
1413 read_obp_memory("available", &pavail[0], &pavail_ents);
1415 phys_base = 0xffffffffffffffffUL;
1416 for (i = 0; i < pavail_ents; i++)
1417 phys_base = min(phys_base, pavail[i].phys_addr);
1419 set_bit(0, mmu_context_bmap);
1421 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1423 real_end = (unsigned long)_end;
1424 if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1425 bigkernel = 1;
1426 if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1427 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1428 prom_halt();
1431 /* Set kernel pgd to upper alias so physical page computations
1432 * work.
1434 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1436 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1438 /* Now can init the kernel/bad page tables. */
1439 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1440 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1442 inherit_prom_mappings();
1444 /* Ok, we can use our TLB miss and window trap handlers safely. */
1445 setup_tba();
1447 __flush_tlb_all();
1449 if (tlb_type == hypervisor)
1450 sun4v_ktsb_register();
1452 /* Setup bootmem... */
1453 pages_avail = 0;
1454 last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1456 max_mapnr = last_valid_pfn;
1458 kernel_physical_mapping_init();
1460 prom_build_devicetree();
1463 unsigned long zones_size[MAX_NR_ZONES];
1464 unsigned long zholes_size[MAX_NR_ZONES];
1465 int znum;
1467 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1468 zones_size[znum] = zholes_size[znum] = 0;
1470 zones_size[ZONE_DMA] = end_pfn;
1471 zholes_size[ZONE_DMA] = end_pfn - pages_avail;
1473 free_area_init_node(0, &contig_page_data, zones_size,
1474 __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1475 zholes_size);
1478 device_scan();
1481 static void __init taint_real_pages(void)
1483 int i;
1485 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1487 /* Find changes discovered in the physmem available rescan and
1488 * reserve the lost portions in the bootmem maps.
1490 for (i = 0; i < pavail_ents; i++) {
1491 unsigned long old_start, old_end;
1493 old_start = pavail[i].phys_addr;
1494 old_end = old_start +
1495 pavail[i].reg_size;
1496 while (old_start < old_end) {
1497 int n;
1499 for (n = 0; n < pavail_rescan_ents; n++) {
1500 unsigned long new_start, new_end;
1502 new_start = pavail_rescan[n].phys_addr;
1503 new_end = new_start +
1504 pavail_rescan[n].reg_size;
1506 if (new_start <= old_start &&
1507 new_end >= (old_start + PAGE_SIZE)) {
1508 set_bit(old_start >> 22,
1509 sparc64_valid_addr_bitmap);
1510 goto do_next_page;
1513 reserve_bootmem(old_start, PAGE_SIZE);
1515 do_next_page:
1516 old_start += PAGE_SIZE;
1521 int __init page_in_phys_avail(unsigned long paddr)
1523 int i;
1525 paddr &= PAGE_MASK;
1527 for (i = 0; i < pavail_rescan_ents; i++) {
1528 unsigned long start, end;
1530 start = pavail_rescan[i].phys_addr;
1531 end = start + pavail_rescan[i].reg_size;
1533 if (paddr >= start && paddr < end)
1534 return 1;
1536 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1537 return 1;
1538 #ifdef CONFIG_BLK_DEV_INITRD
1539 if (paddr >= __pa(initrd_start) &&
1540 paddr < __pa(PAGE_ALIGN(initrd_end)))
1541 return 1;
1542 #endif
1544 return 0;
1547 void __init mem_init(void)
1549 unsigned long codepages, datapages, initpages;
1550 unsigned long addr, last;
1551 int i;
1553 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1554 i += 1;
1555 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1556 if (sparc64_valid_addr_bitmap == NULL) {
1557 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1558 prom_halt();
1560 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1562 addr = PAGE_OFFSET + kern_base;
1563 last = PAGE_ALIGN(kern_size) + addr;
1564 while (addr < last) {
1565 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1566 addr += PAGE_SIZE;
1569 taint_real_pages();
1571 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1573 #ifdef CONFIG_DEBUG_BOOTMEM
1574 prom_printf("mem_init: Calling free_all_bootmem().\n");
1575 #endif
1576 totalram_pages = num_physpages = free_all_bootmem() - 1;
1579 * Set up the zero page, mark it reserved, so that page count
1580 * is not manipulated when freeing the page from user ptes.
1582 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1583 if (mem_map_zero == NULL) {
1584 prom_printf("paging_init: Cannot alloc zero page.\n");
1585 prom_halt();
1587 SetPageReserved(mem_map_zero);
1589 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1590 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1591 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1592 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1593 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1594 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1596 printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1597 nr_free_pages() << (PAGE_SHIFT-10),
1598 codepages << (PAGE_SHIFT-10),
1599 datapages << (PAGE_SHIFT-10),
1600 initpages << (PAGE_SHIFT-10),
1601 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1603 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1604 cheetah_ecache_flush_init();
1607 void free_initmem(void)
1609 unsigned long addr, initend;
1612 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1614 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1615 initend = (unsigned long)(__init_end) & PAGE_MASK;
1616 for (; addr < initend; addr += PAGE_SIZE) {
1617 unsigned long page;
1618 struct page *p;
1620 page = (addr +
1621 ((unsigned long) __va(kern_base)) -
1622 ((unsigned long) KERNBASE));
1623 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1624 p = virt_to_page(page);
1626 ClearPageReserved(p);
1627 init_page_count(p);
1628 __free_page(p);
1629 num_physpages++;
1630 totalram_pages++;
1634 #ifdef CONFIG_BLK_DEV_INITRD
1635 void free_initrd_mem(unsigned long start, unsigned long end)
1637 if (start < end)
1638 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1639 for (; start < end; start += PAGE_SIZE) {
1640 struct page *p = virt_to_page(start);
1642 ClearPageReserved(p);
1643 init_page_count(p);
1644 __free_page(p);
1645 num_physpages++;
1646 totalram_pages++;
1649 #endif
1651 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
1652 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
1653 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1654 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1655 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1656 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1658 pgprot_t PAGE_KERNEL __read_mostly;
1659 EXPORT_SYMBOL(PAGE_KERNEL);
1661 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1662 pgprot_t PAGE_COPY __read_mostly;
1664 pgprot_t PAGE_SHARED __read_mostly;
1665 EXPORT_SYMBOL(PAGE_SHARED);
1667 pgprot_t PAGE_EXEC __read_mostly;
1668 unsigned long pg_iobits __read_mostly;
1670 unsigned long _PAGE_IE __read_mostly;
1671 EXPORT_SYMBOL(_PAGE_IE);
1673 unsigned long _PAGE_E __read_mostly;
1674 EXPORT_SYMBOL(_PAGE_E);
1676 unsigned long _PAGE_CACHE __read_mostly;
1677 EXPORT_SYMBOL(_PAGE_CACHE);
1679 static void prot_init_common(unsigned long page_none,
1680 unsigned long page_shared,
1681 unsigned long page_copy,
1682 unsigned long page_readonly,
1683 unsigned long page_exec_bit)
1685 PAGE_COPY = __pgprot(page_copy);
1686 PAGE_SHARED = __pgprot(page_shared);
1688 protection_map[0x0] = __pgprot(page_none);
1689 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1690 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1691 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1692 protection_map[0x4] = __pgprot(page_readonly);
1693 protection_map[0x5] = __pgprot(page_readonly);
1694 protection_map[0x6] = __pgprot(page_copy);
1695 protection_map[0x7] = __pgprot(page_copy);
1696 protection_map[0x8] = __pgprot(page_none);
1697 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1698 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1699 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1700 protection_map[0xc] = __pgprot(page_readonly);
1701 protection_map[0xd] = __pgprot(page_readonly);
1702 protection_map[0xe] = __pgprot(page_shared);
1703 protection_map[0xf] = __pgprot(page_shared);
1706 static void __init sun4u_pgprot_init(void)
1708 unsigned long page_none, page_shared, page_copy, page_readonly;
1709 unsigned long page_exec_bit;
1711 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1712 _PAGE_CACHE_4U | _PAGE_P_4U |
1713 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1714 _PAGE_EXEC_4U);
1715 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1716 _PAGE_CACHE_4U | _PAGE_P_4U |
1717 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1718 _PAGE_EXEC_4U | _PAGE_L_4U);
1719 PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1721 _PAGE_IE = _PAGE_IE_4U;
1722 _PAGE_E = _PAGE_E_4U;
1723 _PAGE_CACHE = _PAGE_CACHE_4U;
1725 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1726 __ACCESS_BITS_4U | _PAGE_E_4U);
1728 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1729 0xfffff80000000000;
1730 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1731 _PAGE_P_4U | _PAGE_W_4U);
1733 /* XXX Should use 256MB on Panther. XXX */
1734 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1736 _PAGE_SZBITS = _PAGE_SZBITS_4U;
1737 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1738 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1739 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1742 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1743 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1744 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1745 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1746 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1747 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1748 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1750 page_exec_bit = _PAGE_EXEC_4U;
1752 prot_init_common(page_none, page_shared, page_copy, page_readonly,
1753 page_exec_bit);
1756 static void __init sun4v_pgprot_init(void)
1758 unsigned long page_none, page_shared, page_copy, page_readonly;
1759 unsigned long page_exec_bit;
1761 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1762 _PAGE_CACHE_4V | _PAGE_P_4V |
1763 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1764 _PAGE_EXEC_4V);
1765 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1766 PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1768 _PAGE_IE = _PAGE_IE_4V;
1769 _PAGE_E = _PAGE_E_4V;
1770 _PAGE_CACHE = _PAGE_CACHE_4V;
1772 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1773 0xfffff80000000000;
1774 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1775 _PAGE_P_4V | _PAGE_W_4V);
1777 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1778 0xfffff80000000000;
1779 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1780 _PAGE_P_4V | _PAGE_W_4V);
1782 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1783 __ACCESS_BITS_4V | _PAGE_E_4V);
1785 _PAGE_SZBITS = _PAGE_SZBITS_4V;
1786 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1787 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1788 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1789 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1791 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1792 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1793 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1794 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1795 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1796 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1797 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1799 page_exec_bit = _PAGE_EXEC_4V;
1801 prot_init_common(page_none, page_shared, page_copy, page_readonly,
1802 page_exec_bit);
1805 unsigned long pte_sz_bits(unsigned long sz)
1807 if (tlb_type == hypervisor) {
1808 switch (sz) {
1809 case 8 * 1024:
1810 default:
1811 return _PAGE_SZ8K_4V;
1812 case 64 * 1024:
1813 return _PAGE_SZ64K_4V;
1814 case 512 * 1024:
1815 return _PAGE_SZ512K_4V;
1816 case 4 * 1024 * 1024:
1817 return _PAGE_SZ4MB_4V;
1819 } else {
1820 switch (sz) {
1821 case 8 * 1024:
1822 default:
1823 return _PAGE_SZ8K_4U;
1824 case 64 * 1024:
1825 return _PAGE_SZ64K_4U;
1826 case 512 * 1024:
1827 return _PAGE_SZ512K_4U;
1828 case 4 * 1024 * 1024:
1829 return _PAGE_SZ4MB_4U;
1834 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1836 pte_t pte;
1838 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
1839 pte_val(pte) |= (((unsigned long)space) << 32);
1840 pte_val(pte) |= pte_sz_bits(page_size);
1842 return pte;
1845 static unsigned long kern_large_tte(unsigned long paddr)
1847 unsigned long val;
1849 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1850 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1851 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1852 if (tlb_type == hypervisor)
1853 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1854 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1855 _PAGE_EXEC_4V | _PAGE_W_4V);
1857 return val | paddr;
1861 * Translate PROM's mapping we capture at boot time into physical address.
1862 * The second parameter is only set from prom_callback() invocations.
1864 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
1866 unsigned long mask;
1867 int i;
1869 mask = _PAGE_PADDR_4U;
1870 if (tlb_type == hypervisor)
1871 mask = _PAGE_PADDR_4V;
1873 for (i = 0; i < prom_trans_ents; i++) {
1874 struct linux_prom_translation *p = &prom_trans[i];
1876 if (promva >= p->virt &&
1877 promva < (p->virt + p->size)) {
1878 unsigned long base = p->data & mask;
1880 if (error)
1881 *error = 0;
1882 return base + (promva & (8192 - 1));
1885 if (error)
1886 *error = 1;
1887 return 0UL;
1890 /* XXX We should kill off this ugly thing at so me point. XXX */
1891 unsigned long sun4u_get_pte(unsigned long addr)
1893 pgd_t *pgdp;
1894 pud_t *pudp;
1895 pmd_t *pmdp;
1896 pte_t *ptep;
1897 unsigned long mask = _PAGE_PADDR_4U;
1899 if (tlb_type == hypervisor)
1900 mask = _PAGE_PADDR_4V;
1902 if (addr >= PAGE_OFFSET)
1903 return addr & mask;
1905 if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
1906 return prom_virt_to_phys(addr, NULL);
1908 pgdp = pgd_offset_k(addr);
1909 pudp = pud_offset(pgdp, addr);
1910 pmdp = pmd_offset(pudp, addr);
1911 ptep = pte_offset_kernel(pmdp, addr);
1913 return pte_val(*ptep) & mask;
1916 /* If not locked, zap it. */
1917 void __flush_tlb_all(void)
1919 unsigned long pstate;
1920 int i;
1922 __asm__ __volatile__("flushw\n\t"
1923 "rdpr %%pstate, %0\n\t"
1924 "wrpr %0, %1, %%pstate"
1925 : "=r" (pstate)
1926 : "i" (PSTATE_IE));
1927 if (tlb_type == spitfire) {
1928 for (i = 0; i < 64; i++) {
1929 /* Spitfire Errata #32 workaround */
1930 /* NOTE: Always runs on spitfire, so no
1931 * cheetah+ page size encodings.
1933 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
1934 "flush %%g6"
1935 : /* No outputs */
1936 : "r" (0),
1937 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1939 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1940 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1941 "membar #Sync"
1942 : /* no outputs */
1943 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1944 spitfire_put_dtlb_data(i, 0x0UL);
1947 /* Spitfire Errata #32 workaround */
1948 /* NOTE: Always runs on spitfire, so no
1949 * cheetah+ page size encodings.
1951 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
1952 "flush %%g6"
1953 : /* No outputs */
1954 : "r" (0),
1955 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1957 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1958 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1959 "membar #Sync"
1960 : /* no outputs */
1961 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1962 spitfire_put_itlb_data(i, 0x0UL);
1965 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1966 cheetah_flush_dtlb_all();
1967 cheetah_flush_itlb_all();
1969 __asm__ __volatile__("wrpr %0, 0, %%pstate"
1970 : : "r" (pstate));
1973 #ifdef CONFIG_MEMORY_HOTPLUG
1975 void online_page(struct page *page)
1977 ClearPageReserved(page);
1978 init_page_count(page);
1979 __free_page(page);
1980 totalram_pages++;
1981 num_physpages++;
1984 int remove_memory(u64 start, u64 size)
1986 return -EINVAL;
1989 #endif /* CONFIG_MEMORY_HOTPLUG */