powerpc/pseries: Fix to handle slb resize across migration
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / ip_output.c
blobd1d88e6255bc0a2d4525246e5ccb01b80db7cb08
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 /* Generate a checksum for an outgoing IP datagram. */
86 __inline__ void ip_send_check(struct iphdr *iph)
88 iph->check = 0;
89 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 int __ip_local_out(struct sk_buff *skb)
94 struct iphdr *iph = ip_hdr(skb);
96 iph->tot_len = htons(skb->len);
97 ip_send_check(iph);
98 return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb->dst->dev,
99 dst_output);
102 int ip_local_out(struct sk_buff *skb)
104 int err;
106 err = __ip_local_out(skb);
107 if (likely(err == 1))
108 err = dst_output(skb);
110 return err;
112 EXPORT_SYMBOL_GPL(ip_local_out);
114 /* dev_loopback_xmit for use with netfilter. */
115 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
117 skb_reset_mac_header(newskb);
118 __skb_pull(newskb, skb_network_offset(newskb));
119 newskb->pkt_type = PACKET_LOOPBACK;
120 newskb->ip_summed = CHECKSUM_UNNECESSARY;
121 WARN_ON(!newskb->dst);
122 netif_rx(newskb);
123 return 0;
126 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
128 int ttl = inet->uc_ttl;
130 if (ttl < 0)
131 ttl = dst_metric(dst, RTAX_HOPLIMIT);
132 return ttl;
136 * Add an ip header to a skbuff and send it out.
139 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
140 __be32 saddr, __be32 daddr, struct ip_options *opt)
142 struct inet_sock *inet = inet_sk(sk);
143 struct rtable *rt = skb->rtable;
144 struct iphdr *iph;
146 /* Build the IP header. */
147 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
148 skb_reset_network_header(skb);
149 iph = ip_hdr(skb);
150 iph->version = 4;
151 iph->ihl = 5;
152 iph->tos = inet->tos;
153 if (ip_dont_fragment(sk, &rt->u.dst))
154 iph->frag_off = htons(IP_DF);
155 else
156 iph->frag_off = 0;
157 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
158 iph->daddr = rt->rt_dst;
159 iph->saddr = rt->rt_src;
160 iph->protocol = sk->sk_protocol;
161 ip_select_ident(iph, &rt->u.dst, sk);
163 if (opt && opt->optlen) {
164 iph->ihl += opt->optlen>>2;
165 ip_options_build(skb, opt, daddr, rt, 0);
168 skb->priority = sk->sk_priority;
169 skb->mark = sk->sk_mark;
171 /* Send it out. */
172 return ip_local_out(skb);
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
177 static inline int ip_finish_output2(struct sk_buff *skb)
179 struct dst_entry *dst = skb->dst;
180 struct rtable *rt = (struct rtable *)dst;
181 struct net_device *dev = dst->dev;
182 unsigned int hh_len = LL_RESERVED_SPACE(dev);
184 if (rt->rt_type == RTN_MULTICAST)
185 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTMCASTPKTS);
186 else if (rt->rt_type == RTN_BROADCAST)
187 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTBCASTPKTS);
189 /* Be paranoid, rather than too clever. */
190 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
191 struct sk_buff *skb2;
193 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
194 if (skb2 == NULL) {
195 kfree_skb(skb);
196 return -ENOMEM;
198 if (skb->sk)
199 skb_set_owner_w(skb2, skb->sk);
200 kfree_skb(skb);
201 skb = skb2;
204 if (dst->hh)
205 return neigh_hh_output(dst->hh, skb);
206 else if (dst->neighbour)
207 return dst->neighbour->output(skb);
209 if (net_ratelimit())
210 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
211 kfree_skb(skb);
212 return -EINVAL;
215 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
217 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
219 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
220 skb->dst->dev->mtu : dst_mtu(skb->dst);
223 static int ip_finish_output(struct sk_buff *skb)
225 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
226 /* Policy lookup after SNAT yielded a new policy */
227 if (skb->dst->xfrm != NULL) {
228 IPCB(skb)->flags |= IPSKB_REROUTED;
229 return dst_output(skb);
231 #endif
232 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
233 return ip_fragment(skb, ip_finish_output2);
234 else
235 return ip_finish_output2(skb);
238 int ip_mc_output(struct sk_buff *skb)
240 struct sock *sk = skb->sk;
241 struct rtable *rt = skb->rtable;
242 struct net_device *dev = rt->u.dst.dev;
245 * If the indicated interface is up and running, send the packet.
247 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
249 skb->dev = dev;
250 skb->protocol = htons(ETH_P_IP);
253 * Multicasts are looped back for other local users
256 if (rt->rt_flags&RTCF_MULTICAST) {
257 if ((!sk || inet_sk(sk)->mc_loop)
258 #ifdef CONFIG_IP_MROUTE
259 /* Small optimization: do not loopback not local frames,
260 which returned after forwarding; they will be dropped
261 by ip_mr_input in any case.
262 Note, that local frames are looped back to be delivered
263 to local recipients.
265 This check is duplicated in ip_mr_input at the moment.
267 && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
268 #endif
270 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
271 if (newskb)
272 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
273 NULL, newskb->dev,
274 ip_dev_loopback_xmit);
277 /* Multicasts with ttl 0 must not go beyond the host */
279 if (ip_hdr(skb)->ttl == 0) {
280 kfree_skb(skb);
281 return 0;
285 if (rt->rt_flags&RTCF_BROADCAST) {
286 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
287 if (newskb)
288 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
289 newskb->dev, ip_dev_loopback_xmit);
292 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
293 ip_finish_output,
294 !(IPCB(skb)->flags & IPSKB_REROUTED));
297 int ip_output(struct sk_buff *skb)
299 struct net_device *dev = skb->dst->dev;
301 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
303 skb->dev = dev;
304 skb->protocol = htons(ETH_P_IP);
306 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
307 ip_finish_output,
308 !(IPCB(skb)->flags & IPSKB_REROUTED));
311 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
313 struct sock *sk = skb->sk;
314 struct inet_sock *inet = inet_sk(sk);
315 struct ip_options *opt = inet->opt;
316 struct rtable *rt;
317 struct iphdr *iph;
319 /* Skip all of this if the packet is already routed,
320 * f.e. by something like SCTP.
322 rt = skb->rtable;
323 if (rt != NULL)
324 goto packet_routed;
326 /* Make sure we can route this packet. */
327 rt = (struct rtable *)__sk_dst_check(sk, 0);
328 if (rt == NULL) {
329 __be32 daddr;
331 /* Use correct destination address if we have options. */
332 daddr = inet->daddr;
333 if(opt && opt->srr)
334 daddr = opt->faddr;
337 struct flowi fl = { .oif = sk->sk_bound_dev_if,
338 .nl_u = { .ip4_u =
339 { .daddr = daddr,
340 .saddr = inet->saddr,
341 .tos = RT_CONN_FLAGS(sk) } },
342 .proto = sk->sk_protocol,
343 .flags = inet_sk_flowi_flags(sk),
344 .uli_u = { .ports =
345 { .sport = inet->sport,
346 .dport = inet->dport } } };
348 /* If this fails, retransmit mechanism of transport layer will
349 * keep trying until route appears or the connection times
350 * itself out.
352 security_sk_classify_flow(sk, &fl);
353 if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
354 goto no_route;
356 sk_setup_caps(sk, &rt->u.dst);
358 skb->dst = dst_clone(&rt->u.dst);
360 packet_routed:
361 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
362 goto no_route;
364 /* OK, we know where to send it, allocate and build IP header. */
365 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
366 skb_reset_network_header(skb);
367 iph = ip_hdr(skb);
368 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
369 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
370 iph->frag_off = htons(IP_DF);
371 else
372 iph->frag_off = 0;
373 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
374 iph->protocol = sk->sk_protocol;
375 iph->saddr = rt->rt_src;
376 iph->daddr = rt->rt_dst;
377 /* Transport layer set skb->h.foo itself. */
379 if (opt && opt->optlen) {
380 iph->ihl += opt->optlen >> 2;
381 ip_options_build(skb, opt, inet->daddr, rt, 0);
384 ip_select_ident_more(iph, &rt->u.dst, sk,
385 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
387 skb->priority = sk->sk_priority;
388 skb->mark = sk->sk_mark;
390 return ip_local_out(skb);
392 no_route:
393 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
394 kfree_skb(skb);
395 return -EHOSTUNREACH;
399 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
401 to->pkt_type = from->pkt_type;
402 to->priority = from->priority;
403 to->protocol = from->protocol;
404 dst_release(to->dst);
405 to->dst = dst_clone(from->dst);
406 to->dev = from->dev;
407 to->mark = from->mark;
409 /* Copy the flags to each fragment. */
410 IPCB(to)->flags = IPCB(from)->flags;
412 #ifdef CONFIG_NET_SCHED
413 to->tc_index = from->tc_index;
414 #endif
415 nf_copy(to, from);
416 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
417 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
418 to->nf_trace = from->nf_trace;
419 #endif
420 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
421 to->ipvs_property = from->ipvs_property;
422 #endif
423 skb_copy_secmark(to, from);
427 * This IP datagram is too large to be sent in one piece. Break it up into
428 * smaller pieces (each of size equal to IP header plus
429 * a block of the data of the original IP data part) that will yet fit in a
430 * single device frame, and queue such a frame for sending.
433 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
435 struct iphdr *iph;
436 int raw = 0;
437 int ptr;
438 struct net_device *dev;
439 struct sk_buff *skb2;
440 unsigned int mtu, hlen, left, len, ll_rs, pad;
441 int offset;
442 __be16 not_last_frag;
443 struct rtable *rt = skb->rtable;
444 int err = 0;
446 dev = rt->u.dst.dev;
449 * Point into the IP datagram header.
452 iph = ip_hdr(skb);
454 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
455 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
456 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
457 htonl(ip_skb_dst_mtu(skb)));
458 kfree_skb(skb);
459 return -EMSGSIZE;
463 * Setup starting values.
466 hlen = iph->ihl * 4;
467 mtu = dst_mtu(&rt->u.dst) - hlen; /* Size of data space */
468 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
470 /* When frag_list is given, use it. First, check its validity:
471 * some transformers could create wrong frag_list or break existing
472 * one, it is not prohibited. In this case fall back to copying.
474 * LATER: this step can be merged to real generation of fragments,
475 * we can switch to copy when see the first bad fragment.
477 if (skb_shinfo(skb)->frag_list) {
478 struct sk_buff *frag;
479 int first_len = skb_pagelen(skb);
480 int truesizes = 0;
482 if (first_len - hlen > mtu ||
483 ((first_len - hlen) & 7) ||
484 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
485 skb_cloned(skb))
486 goto slow_path;
488 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
489 /* Correct geometry. */
490 if (frag->len > mtu ||
491 ((frag->len & 7) && frag->next) ||
492 skb_headroom(frag) < hlen)
493 goto slow_path;
495 /* Partially cloned skb? */
496 if (skb_shared(frag))
497 goto slow_path;
499 BUG_ON(frag->sk);
500 if (skb->sk) {
501 sock_hold(skb->sk);
502 frag->sk = skb->sk;
503 frag->destructor = sock_wfree;
504 truesizes += frag->truesize;
508 /* Everything is OK. Generate! */
510 err = 0;
511 offset = 0;
512 frag = skb_shinfo(skb)->frag_list;
513 skb_shinfo(skb)->frag_list = NULL;
514 skb->data_len = first_len - skb_headlen(skb);
515 skb->truesize -= truesizes;
516 skb->len = first_len;
517 iph->tot_len = htons(first_len);
518 iph->frag_off = htons(IP_MF);
519 ip_send_check(iph);
521 for (;;) {
522 /* Prepare header of the next frame,
523 * before previous one went down. */
524 if (frag) {
525 frag->ip_summed = CHECKSUM_NONE;
526 skb_reset_transport_header(frag);
527 __skb_push(frag, hlen);
528 skb_reset_network_header(frag);
529 memcpy(skb_network_header(frag), iph, hlen);
530 iph = ip_hdr(frag);
531 iph->tot_len = htons(frag->len);
532 ip_copy_metadata(frag, skb);
533 if (offset == 0)
534 ip_options_fragment(frag);
535 offset += skb->len - hlen;
536 iph->frag_off = htons(offset>>3);
537 if (frag->next != NULL)
538 iph->frag_off |= htons(IP_MF);
539 /* Ready, complete checksum */
540 ip_send_check(iph);
543 err = output(skb);
545 if (!err)
546 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
547 if (err || !frag)
548 break;
550 skb = frag;
551 frag = skb->next;
552 skb->next = NULL;
555 if (err == 0) {
556 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
557 return 0;
560 while (frag) {
561 skb = frag->next;
562 kfree_skb(frag);
563 frag = skb;
565 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
566 return err;
569 slow_path:
570 left = skb->len - hlen; /* Space per frame */
571 ptr = raw + hlen; /* Where to start from */
573 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
574 * we need to make room for the encapsulating header
576 pad = nf_bridge_pad(skb);
577 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
578 mtu -= pad;
581 * Fragment the datagram.
584 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
585 not_last_frag = iph->frag_off & htons(IP_MF);
588 * Keep copying data until we run out.
591 while (left > 0) {
592 len = left;
593 /* IF: it doesn't fit, use 'mtu' - the data space left */
594 if (len > mtu)
595 len = mtu;
596 /* IF: we are not sending upto and including the packet end
597 then align the next start on an eight byte boundary */
598 if (len < left) {
599 len &= ~7;
602 * Allocate buffer.
605 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
606 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
607 err = -ENOMEM;
608 goto fail;
612 * Set up data on packet
615 ip_copy_metadata(skb2, skb);
616 skb_reserve(skb2, ll_rs);
617 skb_put(skb2, len + hlen);
618 skb_reset_network_header(skb2);
619 skb2->transport_header = skb2->network_header + hlen;
622 * Charge the memory for the fragment to any owner
623 * it might possess
626 if (skb->sk)
627 skb_set_owner_w(skb2, skb->sk);
630 * Copy the packet header into the new buffer.
633 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
636 * Copy a block of the IP datagram.
638 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
639 BUG();
640 left -= len;
643 * Fill in the new header fields.
645 iph = ip_hdr(skb2);
646 iph->frag_off = htons((offset >> 3));
648 /* ANK: dirty, but effective trick. Upgrade options only if
649 * the segment to be fragmented was THE FIRST (otherwise,
650 * options are already fixed) and make it ONCE
651 * on the initial skb, so that all the following fragments
652 * will inherit fixed options.
654 if (offset == 0)
655 ip_options_fragment(skb);
658 * Added AC : If we are fragmenting a fragment that's not the
659 * last fragment then keep MF on each bit
661 if (left > 0 || not_last_frag)
662 iph->frag_off |= htons(IP_MF);
663 ptr += len;
664 offset += len;
667 * Put this fragment into the sending queue.
669 iph->tot_len = htons(len + hlen);
671 ip_send_check(iph);
673 err = output(skb2);
674 if (err)
675 goto fail;
677 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
679 kfree_skb(skb);
680 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
681 return err;
683 fail:
684 kfree_skb(skb);
685 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
686 return err;
689 EXPORT_SYMBOL(ip_fragment);
692 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
694 struct iovec *iov = from;
696 if (skb->ip_summed == CHECKSUM_PARTIAL) {
697 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
698 return -EFAULT;
699 } else {
700 __wsum csum = 0;
701 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
702 return -EFAULT;
703 skb->csum = csum_block_add(skb->csum, csum, odd);
705 return 0;
708 static inline __wsum
709 csum_page(struct page *page, int offset, int copy)
711 char *kaddr;
712 __wsum csum;
713 kaddr = kmap(page);
714 csum = csum_partial(kaddr + offset, copy, 0);
715 kunmap(page);
716 return csum;
719 static inline int ip_ufo_append_data(struct sock *sk,
720 int getfrag(void *from, char *to, int offset, int len,
721 int odd, struct sk_buff *skb),
722 void *from, int length, int hh_len, int fragheaderlen,
723 int transhdrlen, int mtu, unsigned int flags)
725 struct sk_buff *skb;
726 int err;
728 /* There is support for UDP fragmentation offload by network
729 * device, so create one single skb packet containing complete
730 * udp datagram
732 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
733 skb = sock_alloc_send_skb(sk,
734 hh_len + fragheaderlen + transhdrlen + 20,
735 (flags & MSG_DONTWAIT), &err);
737 if (skb == NULL)
738 return err;
740 /* reserve space for Hardware header */
741 skb_reserve(skb, hh_len);
743 /* create space for UDP/IP header */
744 skb_put(skb, fragheaderlen + transhdrlen);
746 /* initialize network header pointer */
747 skb_reset_network_header(skb);
749 /* initialize protocol header pointer */
750 skb->transport_header = skb->network_header + fragheaderlen;
752 skb->ip_summed = CHECKSUM_PARTIAL;
753 skb->csum = 0;
754 sk->sk_sndmsg_off = 0;
756 /* specify the length of each IP datagram fragment */
757 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
758 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
759 __skb_queue_tail(&sk->sk_write_queue, skb);
762 return skb_append_datato_frags(sk, skb, getfrag, from,
763 (length - transhdrlen));
767 * ip_append_data() and ip_append_page() can make one large IP datagram
768 * from many pieces of data. Each pieces will be holded on the socket
769 * until ip_push_pending_frames() is called. Each piece can be a page
770 * or non-page data.
772 * Not only UDP, other transport protocols - e.g. raw sockets - can use
773 * this interface potentially.
775 * LATER: length must be adjusted by pad at tail, when it is required.
777 int ip_append_data(struct sock *sk,
778 int getfrag(void *from, char *to, int offset, int len,
779 int odd, struct sk_buff *skb),
780 void *from, int length, int transhdrlen,
781 struct ipcm_cookie *ipc, struct rtable **rtp,
782 unsigned int flags)
784 struct inet_sock *inet = inet_sk(sk);
785 struct sk_buff *skb;
787 struct ip_options *opt = NULL;
788 int hh_len;
789 int exthdrlen;
790 int mtu;
791 int copy;
792 int err;
793 int offset = 0;
794 unsigned int maxfraglen, fragheaderlen;
795 int csummode = CHECKSUM_NONE;
796 struct rtable *rt;
798 if (flags&MSG_PROBE)
799 return 0;
801 if (skb_queue_empty(&sk->sk_write_queue)) {
803 * setup for corking.
805 opt = ipc->opt;
806 if (opt) {
807 if (inet->cork.opt == NULL) {
808 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
809 if (unlikely(inet->cork.opt == NULL))
810 return -ENOBUFS;
812 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
813 inet->cork.flags |= IPCORK_OPT;
814 inet->cork.addr = ipc->addr;
816 rt = *rtp;
817 if (unlikely(!rt))
818 return -EFAULT;
820 * We steal reference to this route, caller should not release it
822 *rtp = NULL;
823 inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
824 rt->u.dst.dev->mtu :
825 dst_mtu(rt->u.dst.path);
826 inet->cork.dst = &rt->u.dst;
827 inet->cork.length = 0;
828 sk->sk_sndmsg_page = NULL;
829 sk->sk_sndmsg_off = 0;
830 if ((exthdrlen = rt->u.dst.header_len) != 0) {
831 length += exthdrlen;
832 transhdrlen += exthdrlen;
834 } else {
835 rt = (struct rtable *)inet->cork.dst;
836 if (inet->cork.flags & IPCORK_OPT)
837 opt = inet->cork.opt;
839 transhdrlen = 0;
840 exthdrlen = 0;
841 mtu = inet->cork.fragsize;
843 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
845 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
846 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
848 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
849 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
850 return -EMSGSIZE;
854 * transhdrlen > 0 means that this is the first fragment and we wish
855 * it won't be fragmented in the future.
857 if (transhdrlen &&
858 length + fragheaderlen <= mtu &&
859 rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
860 !exthdrlen)
861 csummode = CHECKSUM_PARTIAL;
863 inet->cork.length += length;
864 if (((length> mtu) || !skb_queue_empty(&sk->sk_write_queue)) &&
865 (sk->sk_protocol == IPPROTO_UDP) &&
866 (rt->u.dst.dev->features & NETIF_F_UFO)) {
867 err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
868 fragheaderlen, transhdrlen, mtu,
869 flags);
870 if (err)
871 goto error;
872 return 0;
875 /* So, what's going on in the loop below?
877 * We use calculated fragment length to generate chained skb,
878 * each of segments is IP fragment ready for sending to network after
879 * adding appropriate IP header.
882 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
883 goto alloc_new_skb;
885 while (length > 0) {
886 /* Check if the remaining data fits into current packet. */
887 copy = mtu - skb->len;
888 if (copy < length)
889 copy = maxfraglen - skb->len;
890 if (copy <= 0) {
891 char *data;
892 unsigned int datalen;
893 unsigned int fraglen;
894 unsigned int fraggap;
895 unsigned int alloclen;
896 struct sk_buff *skb_prev;
897 alloc_new_skb:
898 skb_prev = skb;
899 if (skb_prev)
900 fraggap = skb_prev->len - maxfraglen;
901 else
902 fraggap = 0;
905 * If remaining data exceeds the mtu,
906 * we know we need more fragment(s).
908 datalen = length + fraggap;
909 if (datalen > mtu - fragheaderlen)
910 datalen = maxfraglen - fragheaderlen;
911 fraglen = datalen + fragheaderlen;
913 if ((flags & MSG_MORE) &&
914 !(rt->u.dst.dev->features&NETIF_F_SG))
915 alloclen = mtu;
916 else
917 alloclen = datalen + fragheaderlen;
919 /* The last fragment gets additional space at tail.
920 * Note, with MSG_MORE we overallocate on fragments,
921 * because we have no idea what fragment will be
922 * the last.
924 if (datalen == length + fraggap)
925 alloclen += rt->u.dst.trailer_len;
927 if (transhdrlen) {
928 skb = sock_alloc_send_skb(sk,
929 alloclen + hh_len + 15,
930 (flags & MSG_DONTWAIT), &err);
931 } else {
932 skb = NULL;
933 if (atomic_read(&sk->sk_wmem_alloc) <=
934 2 * sk->sk_sndbuf)
935 skb = sock_wmalloc(sk,
936 alloclen + hh_len + 15, 1,
937 sk->sk_allocation);
938 if (unlikely(skb == NULL))
939 err = -ENOBUFS;
940 else
941 /* only the initial fragment is
942 time stamped */
943 ipc->shtx.flags = 0;
945 if (skb == NULL)
946 goto error;
949 * Fill in the control structures
951 skb->ip_summed = csummode;
952 skb->csum = 0;
953 skb_reserve(skb, hh_len);
954 *skb_tx(skb) = ipc->shtx;
957 * Find where to start putting bytes.
959 data = skb_put(skb, fraglen);
960 skb_set_network_header(skb, exthdrlen);
961 skb->transport_header = (skb->network_header +
962 fragheaderlen);
963 data += fragheaderlen;
965 if (fraggap) {
966 skb->csum = skb_copy_and_csum_bits(
967 skb_prev, maxfraglen,
968 data + transhdrlen, fraggap, 0);
969 skb_prev->csum = csum_sub(skb_prev->csum,
970 skb->csum);
971 data += fraggap;
972 pskb_trim_unique(skb_prev, maxfraglen);
975 copy = datalen - transhdrlen - fraggap;
976 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
977 err = -EFAULT;
978 kfree_skb(skb);
979 goto error;
982 offset += copy;
983 length -= datalen - fraggap;
984 transhdrlen = 0;
985 exthdrlen = 0;
986 csummode = CHECKSUM_NONE;
989 * Put the packet on the pending queue.
991 __skb_queue_tail(&sk->sk_write_queue, skb);
992 continue;
995 if (copy > length)
996 copy = length;
998 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
999 unsigned int off;
1001 off = skb->len;
1002 if (getfrag(from, skb_put(skb, copy),
1003 offset, copy, off, skb) < 0) {
1004 __skb_trim(skb, off);
1005 err = -EFAULT;
1006 goto error;
1008 } else {
1009 int i = skb_shinfo(skb)->nr_frags;
1010 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1011 struct page *page = sk->sk_sndmsg_page;
1012 int off = sk->sk_sndmsg_off;
1013 unsigned int left;
1015 if (page && (left = PAGE_SIZE - off) > 0) {
1016 if (copy >= left)
1017 copy = left;
1018 if (page != frag->page) {
1019 if (i == MAX_SKB_FRAGS) {
1020 err = -EMSGSIZE;
1021 goto error;
1023 get_page(page);
1024 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1025 frag = &skb_shinfo(skb)->frags[i];
1027 } else if (i < MAX_SKB_FRAGS) {
1028 if (copy > PAGE_SIZE)
1029 copy = PAGE_SIZE;
1030 page = alloc_pages(sk->sk_allocation, 0);
1031 if (page == NULL) {
1032 err = -ENOMEM;
1033 goto error;
1035 sk->sk_sndmsg_page = page;
1036 sk->sk_sndmsg_off = 0;
1038 skb_fill_page_desc(skb, i, page, 0, 0);
1039 frag = &skb_shinfo(skb)->frags[i];
1040 } else {
1041 err = -EMSGSIZE;
1042 goto error;
1044 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1045 err = -EFAULT;
1046 goto error;
1048 sk->sk_sndmsg_off += copy;
1049 frag->size += copy;
1050 skb->len += copy;
1051 skb->data_len += copy;
1052 skb->truesize += copy;
1053 atomic_add(copy, &sk->sk_wmem_alloc);
1055 offset += copy;
1056 length -= copy;
1059 return 0;
1061 error:
1062 inet->cork.length -= length;
1063 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1064 return err;
1067 ssize_t ip_append_page(struct sock *sk, struct page *page,
1068 int offset, size_t size, int flags)
1070 struct inet_sock *inet = inet_sk(sk);
1071 struct sk_buff *skb;
1072 struct rtable *rt;
1073 struct ip_options *opt = NULL;
1074 int hh_len;
1075 int mtu;
1076 int len;
1077 int err;
1078 unsigned int maxfraglen, fragheaderlen, fraggap;
1080 if (inet->hdrincl)
1081 return -EPERM;
1083 if (flags&MSG_PROBE)
1084 return 0;
1086 if (skb_queue_empty(&sk->sk_write_queue))
1087 return -EINVAL;
1089 rt = (struct rtable *)inet->cork.dst;
1090 if (inet->cork.flags & IPCORK_OPT)
1091 opt = inet->cork.opt;
1093 if (!(rt->u.dst.dev->features&NETIF_F_SG))
1094 return -EOPNOTSUPP;
1096 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1097 mtu = inet->cork.fragsize;
1099 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1100 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1102 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1103 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1104 return -EMSGSIZE;
1107 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1108 return -EINVAL;
1110 inet->cork.length += size;
1111 if ((sk->sk_protocol == IPPROTO_UDP) &&
1112 (rt->u.dst.dev->features & NETIF_F_UFO)) {
1113 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1114 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1118 while (size > 0) {
1119 int i;
1121 if (skb_is_gso(skb))
1122 len = size;
1123 else {
1125 /* Check if the remaining data fits into current packet. */
1126 len = mtu - skb->len;
1127 if (len < size)
1128 len = maxfraglen - skb->len;
1130 if (len <= 0) {
1131 struct sk_buff *skb_prev;
1132 int alloclen;
1134 skb_prev = skb;
1135 fraggap = skb_prev->len - maxfraglen;
1137 alloclen = fragheaderlen + hh_len + fraggap + 15;
1138 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1139 if (unlikely(!skb)) {
1140 err = -ENOBUFS;
1141 goto error;
1145 * Fill in the control structures
1147 skb->ip_summed = CHECKSUM_NONE;
1148 skb->csum = 0;
1149 skb_reserve(skb, hh_len);
1152 * Find where to start putting bytes.
1154 skb_put(skb, fragheaderlen + fraggap);
1155 skb_reset_network_header(skb);
1156 skb->transport_header = (skb->network_header +
1157 fragheaderlen);
1158 if (fraggap) {
1159 skb->csum = skb_copy_and_csum_bits(skb_prev,
1160 maxfraglen,
1161 skb_transport_header(skb),
1162 fraggap, 0);
1163 skb_prev->csum = csum_sub(skb_prev->csum,
1164 skb->csum);
1165 pskb_trim_unique(skb_prev, maxfraglen);
1169 * Put the packet on the pending queue.
1171 __skb_queue_tail(&sk->sk_write_queue, skb);
1172 continue;
1175 i = skb_shinfo(skb)->nr_frags;
1176 if (len > size)
1177 len = size;
1178 if (skb_can_coalesce(skb, i, page, offset)) {
1179 skb_shinfo(skb)->frags[i-1].size += len;
1180 } else if (i < MAX_SKB_FRAGS) {
1181 get_page(page);
1182 skb_fill_page_desc(skb, i, page, offset, len);
1183 } else {
1184 err = -EMSGSIZE;
1185 goto error;
1188 if (skb->ip_summed == CHECKSUM_NONE) {
1189 __wsum csum;
1190 csum = csum_page(page, offset, len);
1191 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1194 skb->len += len;
1195 skb->data_len += len;
1196 skb->truesize += len;
1197 atomic_add(len, &sk->sk_wmem_alloc);
1198 offset += len;
1199 size -= len;
1201 return 0;
1203 error:
1204 inet->cork.length -= size;
1205 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1206 return err;
1209 static void ip_cork_release(struct inet_sock *inet)
1211 inet->cork.flags &= ~IPCORK_OPT;
1212 kfree(inet->cork.opt);
1213 inet->cork.opt = NULL;
1214 dst_release(inet->cork.dst);
1215 inet->cork.dst = NULL;
1219 * Combined all pending IP fragments on the socket as one IP datagram
1220 * and push them out.
1222 int ip_push_pending_frames(struct sock *sk)
1224 struct sk_buff *skb, *tmp_skb;
1225 struct sk_buff **tail_skb;
1226 struct inet_sock *inet = inet_sk(sk);
1227 struct net *net = sock_net(sk);
1228 struct ip_options *opt = NULL;
1229 struct rtable *rt = (struct rtable *)inet->cork.dst;
1230 struct iphdr *iph;
1231 __be16 df = 0;
1232 __u8 ttl;
1233 int err = 0;
1235 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1236 goto out;
1237 tail_skb = &(skb_shinfo(skb)->frag_list);
1239 /* move skb->data to ip header from ext header */
1240 if (skb->data < skb_network_header(skb))
1241 __skb_pull(skb, skb_network_offset(skb));
1242 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1243 __skb_pull(tmp_skb, skb_network_header_len(skb));
1244 *tail_skb = tmp_skb;
1245 tail_skb = &(tmp_skb->next);
1246 skb->len += tmp_skb->len;
1247 skb->data_len += tmp_skb->len;
1248 skb->truesize += tmp_skb->truesize;
1249 __sock_put(tmp_skb->sk);
1250 tmp_skb->destructor = NULL;
1251 tmp_skb->sk = NULL;
1254 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1255 * to fragment the frame generated here. No matter, what transforms
1256 * how transforms change size of the packet, it will come out.
1258 if (inet->pmtudisc < IP_PMTUDISC_DO)
1259 skb->local_df = 1;
1261 /* DF bit is set when we want to see DF on outgoing frames.
1262 * If local_df is set too, we still allow to fragment this frame
1263 * locally. */
1264 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1265 (skb->len <= dst_mtu(&rt->u.dst) &&
1266 ip_dont_fragment(sk, &rt->u.dst)))
1267 df = htons(IP_DF);
1269 if (inet->cork.flags & IPCORK_OPT)
1270 opt = inet->cork.opt;
1272 if (rt->rt_type == RTN_MULTICAST)
1273 ttl = inet->mc_ttl;
1274 else
1275 ttl = ip_select_ttl(inet, &rt->u.dst);
1277 iph = (struct iphdr *)skb->data;
1278 iph->version = 4;
1279 iph->ihl = 5;
1280 if (opt) {
1281 iph->ihl += opt->optlen>>2;
1282 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1284 iph->tos = inet->tos;
1285 iph->frag_off = df;
1286 ip_select_ident(iph, &rt->u.dst, sk);
1287 iph->ttl = ttl;
1288 iph->protocol = sk->sk_protocol;
1289 iph->saddr = rt->rt_src;
1290 iph->daddr = rt->rt_dst;
1292 skb->priority = sk->sk_priority;
1293 skb->mark = sk->sk_mark;
1295 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1296 * on dst refcount
1298 inet->cork.dst = NULL;
1299 skb->dst = &rt->u.dst;
1301 if (iph->protocol == IPPROTO_ICMP)
1302 icmp_out_count(net, ((struct icmphdr *)
1303 skb_transport_header(skb))->type);
1305 /* Netfilter gets whole the not fragmented skb. */
1306 err = ip_local_out(skb);
1307 if (err) {
1308 if (err > 0)
1309 err = inet->recverr ? net_xmit_errno(err) : 0;
1310 if (err)
1311 goto error;
1314 out:
1315 ip_cork_release(inet);
1316 return err;
1318 error:
1319 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1320 goto out;
1324 * Throw away all pending data on the socket.
1326 void ip_flush_pending_frames(struct sock *sk)
1328 struct sk_buff *skb;
1330 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1331 kfree_skb(skb);
1333 ip_cork_release(inet_sk(sk));
1338 * Fetch data from kernel space and fill in checksum if needed.
1340 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1341 int len, int odd, struct sk_buff *skb)
1343 __wsum csum;
1345 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1346 skb->csum = csum_block_add(skb->csum, csum, odd);
1347 return 0;
1351 * Generic function to send a packet as reply to another packet.
1352 * Used to send TCP resets so far. ICMP should use this function too.
1354 * Should run single threaded per socket because it uses the sock
1355 * structure to pass arguments.
1357 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1358 unsigned int len)
1360 struct inet_sock *inet = inet_sk(sk);
1361 struct {
1362 struct ip_options opt;
1363 char data[40];
1364 } replyopts;
1365 struct ipcm_cookie ipc;
1366 __be32 daddr;
1367 struct rtable *rt = skb->rtable;
1369 if (ip_options_echo(&replyopts.opt, skb))
1370 return;
1372 daddr = ipc.addr = rt->rt_src;
1373 ipc.opt = NULL;
1374 ipc.shtx.flags = 0;
1376 if (replyopts.opt.optlen) {
1377 ipc.opt = &replyopts.opt;
1379 if (ipc.opt->srr)
1380 daddr = replyopts.opt.faddr;
1384 struct flowi fl = { .oif = arg->bound_dev_if,
1385 .nl_u = { .ip4_u =
1386 { .daddr = daddr,
1387 .saddr = rt->rt_spec_dst,
1388 .tos = RT_TOS(ip_hdr(skb)->tos) } },
1389 /* Not quite clean, but right. */
1390 .uli_u = { .ports =
1391 { .sport = tcp_hdr(skb)->dest,
1392 .dport = tcp_hdr(skb)->source } },
1393 .proto = sk->sk_protocol,
1394 .flags = ip_reply_arg_flowi_flags(arg) };
1395 security_skb_classify_flow(skb, &fl);
1396 if (ip_route_output_key(sock_net(sk), &rt, &fl))
1397 return;
1400 /* And let IP do all the hard work.
1402 This chunk is not reenterable, hence spinlock.
1403 Note that it uses the fact, that this function is called
1404 with locally disabled BH and that sk cannot be already spinlocked.
1406 bh_lock_sock(sk);
1407 inet->tos = ip_hdr(skb)->tos;
1408 sk->sk_priority = skb->priority;
1409 sk->sk_protocol = ip_hdr(skb)->protocol;
1410 sk->sk_bound_dev_if = arg->bound_dev_if;
1411 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1412 &ipc, &rt, MSG_DONTWAIT);
1413 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1414 if (arg->csumoffset >= 0)
1415 *((__sum16 *)skb_transport_header(skb) +
1416 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1417 arg->csum));
1418 skb->ip_summed = CHECKSUM_NONE;
1419 ip_push_pending_frames(sk);
1422 bh_unlock_sock(sk);
1424 ip_rt_put(rt);
1427 void __init ip_init(void)
1429 ip_rt_init();
1430 inet_initpeers();
1432 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1433 igmp_mc_proc_init();
1434 #endif
1437 EXPORT_SYMBOL(ip_generic_getfrag);
1438 EXPORT_SYMBOL(ip_queue_xmit);
1439 EXPORT_SYMBOL(ip_send_check);