powerpc/pseries: Fix to handle slb resize across migration
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / kernel / lparcfg.c
blobf3bb5fb359c0b4627d069599f2726f4c5b040858
1 /*
2 * PowerPC64 LPAR Configuration Information Driver
4 * Dave Engebretsen engebret@us.ibm.com
5 * Copyright (c) 2003 Dave Engebretsen
6 * Will Schmidt willschm@us.ibm.com
7 * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
8 * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
9 * Nathan Lynch nathanl@austin.ibm.com
10 * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
17 * This driver creates a proc file at /proc/ppc64/lparcfg which contains
18 * keyword - value pairs that specify the configuration of the partition.
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/errno.h>
24 #include <linux/proc_fs.h>
25 #include <linux/init.h>
26 #include <linux/seq_file.h>
27 #include <asm/uaccess.h>
28 #include <asm/iseries/hv_lp_config.h>
29 #include <asm/lppaca.h>
30 #include <asm/hvcall.h>
31 #include <asm/firmware.h>
32 #include <asm/rtas.h>
33 #include <asm/system.h>
34 #include <asm/time.h>
35 #include <asm/prom.h>
36 #include <asm/vdso_datapage.h>
37 #include <asm/vio.h>
38 #include <asm/mmu.h>
40 #define MODULE_VERS "1.8"
41 #define MODULE_NAME "lparcfg"
43 /* #define LPARCFG_DEBUG */
45 static struct proc_dir_entry *proc_ppc64_lparcfg;
48 * Track sum of all purrs across all processors. This is used to further
49 * calculate usage values by different applications
51 static unsigned long get_purr(void)
53 unsigned long sum_purr = 0;
54 int cpu;
56 for_each_possible_cpu(cpu) {
57 if (firmware_has_feature(FW_FEATURE_ISERIES))
58 sum_purr += lppaca[cpu].emulated_time_base;
59 else {
60 struct cpu_usage *cu;
62 cu = &per_cpu(cpu_usage_array, cpu);
63 sum_purr += cu->current_tb;
66 return sum_purr;
69 #ifdef CONFIG_PPC_ISERIES
72 * Methods used to fetch LPAR data when running on an iSeries platform.
74 static int iseries_lparcfg_data(struct seq_file *m, void *v)
76 unsigned long pool_id;
77 int shared, entitled_capacity, max_entitled_capacity;
78 int processors, max_processors;
79 unsigned long purr = get_purr();
81 shared = (int)(local_paca->lppaca_ptr->shared_proc);
83 seq_printf(m, "system_active_processors=%d\n",
84 (int)HvLpConfig_getSystemPhysicalProcessors());
86 seq_printf(m, "system_potential_processors=%d\n",
87 (int)HvLpConfig_getSystemPhysicalProcessors());
89 processors = (int)HvLpConfig_getPhysicalProcessors();
90 seq_printf(m, "partition_active_processors=%d\n", processors);
92 max_processors = (int)HvLpConfig_getMaxPhysicalProcessors();
93 seq_printf(m, "partition_potential_processors=%d\n", max_processors);
95 if (shared) {
96 entitled_capacity = HvLpConfig_getSharedProcUnits();
97 max_entitled_capacity = HvLpConfig_getMaxSharedProcUnits();
98 } else {
99 entitled_capacity = processors * 100;
100 max_entitled_capacity = max_processors * 100;
102 seq_printf(m, "partition_entitled_capacity=%d\n", entitled_capacity);
104 seq_printf(m, "partition_max_entitled_capacity=%d\n",
105 max_entitled_capacity);
107 if (shared) {
108 pool_id = HvLpConfig_getSharedPoolIndex();
109 seq_printf(m, "pool=%d\n", (int)pool_id);
110 seq_printf(m, "pool_capacity=%d\n",
111 (int)(HvLpConfig_getNumProcsInSharedPool(pool_id) *
112 100));
113 seq_printf(m, "purr=%ld\n", purr);
116 seq_printf(m, "shared_processor_mode=%d\n", shared);
118 return 0;
121 #else /* CONFIG_PPC_ISERIES */
123 static int iseries_lparcfg_data(struct seq_file *m, void *v)
125 return 0;
128 #endif /* CONFIG_PPC_ISERIES */
130 #ifdef CONFIG_PPC_PSERIES
132 * Methods used to fetch LPAR data when running on a pSeries platform.
135 * h_get_mpp
136 * H_GET_MPP hcall returns info in 7 parms
138 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
140 int rc;
141 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
143 rc = plpar_hcall9(H_GET_MPP, retbuf);
145 mpp_data->entitled_mem = retbuf[0];
146 mpp_data->mapped_mem = retbuf[1];
148 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
149 mpp_data->pool_num = retbuf[2] & 0xffff;
151 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
152 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
153 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffff;
155 mpp_data->pool_size = retbuf[4];
156 mpp_data->loan_request = retbuf[5];
157 mpp_data->backing_mem = retbuf[6];
159 return rc;
161 EXPORT_SYMBOL(h_get_mpp);
163 struct hvcall_ppp_data {
164 u64 entitlement;
165 u64 unallocated_entitlement;
166 u16 group_num;
167 u16 pool_num;
168 u8 capped;
169 u8 weight;
170 u8 unallocated_weight;
171 u16 active_procs_in_pool;
172 u16 active_system_procs;
176 * H_GET_PPP hcall returns info in 4 parms.
177 * entitled_capacity,unallocated_capacity,
178 * aggregation, resource_capability).
180 * R4 = Entitled Processor Capacity Percentage.
181 * R5 = Unallocated Processor Capacity Percentage.
182 * R6 (AABBCCDDEEFFGGHH).
183 * XXXX - reserved (0)
184 * XXXX - reserved (0)
185 * XXXX - Group Number
186 * XXXX - Pool Number.
187 * R7 (IIJJKKLLMMNNOOPP).
188 * XX - reserved. (0)
189 * XX - bit 0-6 reserved (0). bit 7 is Capped indicator.
190 * XX - variable processor Capacity Weight
191 * XX - Unallocated Variable Processor Capacity Weight.
192 * XXXX - Active processors in Physical Processor Pool.
193 * XXXX - Processors active on platform.
195 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
197 unsigned long rc;
198 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
200 rc = plpar_hcall(H_GET_PPP, retbuf);
202 ppp_data->entitlement = retbuf[0];
203 ppp_data->unallocated_entitlement = retbuf[1];
205 ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
206 ppp_data->pool_num = retbuf[2] & 0xffff;
208 ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
209 ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
210 ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
211 ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
212 ppp_data->active_system_procs = retbuf[3] & 0xffff;
214 return rc;
217 static unsigned h_pic(unsigned long *pool_idle_time,
218 unsigned long *num_procs)
220 unsigned long rc;
221 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
223 rc = plpar_hcall(H_PIC, retbuf);
225 *pool_idle_time = retbuf[0];
226 *num_procs = retbuf[1];
228 return rc;
232 * parse_ppp_data
233 * Parse out the data returned from h_get_ppp and h_pic
235 static void parse_ppp_data(struct seq_file *m)
237 struct hvcall_ppp_data ppp_data;
238 int rc;
240 rc = h_get_ppp(&ppp_data);
241 if (rc)
242 return;
244 seq_printf(m, "partition_entitled_capacity=%lld\n",
245 ppp_data.entitlement);
246 seq_printf(m, "group=%d\n", ppp_data.group_num);
247 seq_printf(m, "system_active_processors=%d\n",
248 ppp_data.active_system_procs);
250 /* pool related entries are apropriate for shared configs */
251 if (lppaca[0].shared_proc) {
252 unsigned long pool_idle_time, pool_procs;
254 seq_printf(m, "pool=%d\n", ppp_data.pool_num);
256 /* report pool_capacity in percentage */
257 seq_printf(m, "pool_capacity=%d\n",
258 ppp_data.active_procs_in_pool * 100);
260 h_pic(&pool_idle_time, &pool_procs);
261 seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
262 seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
265 seq_printf(m, "unallocated_capacity_weight=%d\n",
266 ppp_data.unallocated_weight);
267 seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
268 seq_printf(m, "capped=%d\n", ppp_data.capped);
269 seq_printf(m, "unallocated_capacity=%lld\n",
270 ppp_data.unallocated_entitlement);
274 * parse_mpp_data
275 * Parse out data returned from h_get_mpp
277 static void parse_mpp_data(struct seq_file *m)
279 struct hvcall_mpp_data mpp_data;
280 int rc;
282 rc = h_get_mpp(&mpp_data);
283 if (rc)
284 return;
286 seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
288 if (mpp_data.mapped_mem != -1)
289 seq_printf(m, "mapped_entitled_memory=%ld\n",
290 mpp_data.mapped_mem);
292 seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
293 seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
295 seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
296 seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
297 mpp_data.unallocated_mem_weight);
298 seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
299 mpp_data.unallocated_entitlement);
301 if (mpp_data.pool_size != -1)
302 seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
303 mpp_data.pool_size);
305 seq_printf(m, "entitled_memory_loan_request=%ld\n",
306 mpp_data.loan_request);
308 seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
311 #define SPLPAR_CHARACTERISTICS_TOKEN 20
312 #define SPLPAR_MAXLENGTH 1026*(sizeof(char))
315 * parse_system_parameter_string()
316 * Retrieve the potential_processors, max_entitled_capacity and friends
317 * through the get-system-parameter rtas call. Replace keyword strings as
318 * necessary.
320 static void parse_system_parameter_string(struct seq_file *m)
322 int call_status;
324 unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
325 if (!local_buffer) {
326 printk(KERN_ERR "%s %s kmalloc failure at line %d \n",
327 __FILE__, __func__, __LINE__);
328 return;
331 spin_lock(&rtas_data_buf_lock);
332 memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH);
333 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
334 NULL,
335 SPLPAR_CHARACTERISTICS_TOKEN,
336 __pa(rtas_data_buf),
337 RTAS_DATA_BUF_SIZE);
338 memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH);
339 spin_unlock(&rtas_data_buf_lock);
341 if (call_status != 0) {
342 printk(KERN_INFO
343 "%s %s Error calling get-system-parameter (0x%x)\n",
344 __FILE__, __func__, call_status);
345 } else {
346 int splpar_strlen;
347 int idx, w_idx;
348 char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
349 if (!workbuffer) {
350 printk(KERN_ERR "%s %s kmalloc failure at line %d \n",
351 __FILE__, __func__, __LINE__);
352 kfree(local_buffer);
353 return;
355 #ifdef LPARCFG_DEBUG
356 printk(KERN_INFO "success calling get-system-parameter \n");
357 #endif
358 splpar_strlen = local_buffer[0] * 256 + local_buffer[1];
359 local_buffer += 2; /* step over strlen value */
361 w_idx = 0;
362 idx = 0;
363 while ((*local_buffer) && (idx < splpar_strlen)) {
364 workbuffer[w_idx++] = local_buffer[idx++];
365 if ((local_buffer[idx] == ',')
366 || (local_buffer[idx] == '\0')) {
367 workbuffer[w_idx] = '\0';
368 if (w_idx) {
369 /* avoid the empty string */
370 seq_printf(m, "%s\n", workbuffer);
372 memset(workbuffer, 0, SPLPAR_MAXLENGTH);
373 idx++; /* skip the comma */
374 w_idx = 0;
375 } else if (local_buffer[idx] == '=') {
376 /* code here to replace workbuffer contents
377 with different keyword strings */
378 if (0 == strcmp(workbuffer, "MaxEntCap")) {
379 strcpy(workbuffer,
380 "partition_max_entitled_capacity");
381 w_idx = strlen(workbuffer);
383 if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
384 strcpy(workbuffer,
385 "system_potential_processors");
386 w_idx = strlen(workbuffer);
390 kfree(workbuffer);
391 local_buffer -= 2; /* back up over strlen value */
393 kfree(local_buffer);
396 /* Return the number of processors in the system.
397 * This function reads through the device tree and counts
398 * the virtual processors, this does not include threads.
400 static int lparcfg_count_active_processors(void)
402 struct device_node *cpus_dn = NULL;
403 int count = 0;
405 while ((cpus_dn = of_find_node_by_type(cpus_dn, "cpu"))) {
406 #ifdef LPARCFG_DEBUG
407 printk(KERN_ERR "cpus_dn %p \n", cpus_dn);
408 #endif
409 count++;
411 return count;
414 static void pseries_cmo_data(struct seq_file *m)
416 int cpu;
417 unsigned long cmo_faults = 0;
418 unsigned long cmo_fault_time = 0;
420 seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
422 if (!firmware_has_feature(FW_FEATURE_CMO))
423 return;
425 for_each_possible_cpu(cpu) {
426 cmo_faults += lppaca[cpu].cmo_faults;
427 cmo_fault_time += lppaca[cpu].cmo_fault_time;
430 seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
431 seq_printf(m, "cmo_fault_time_usec=%lu\n",
432 cmo_fault_time / tb_ticks_per_usec);
433 seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
434 seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
435 seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
438 static void splpar_dispatch_data(struct seq_file *m)
440 int cpu;
441 unsigned long dispatches = 0;
442 unsigned long dispatch_dispersions = 0;
444 for_each_possible_cpu(cpu) {
445 dispatches += lppaca[cpu].yield_count;
446 dispatch_dispersions += lppaca[cpu].dispersion_count;
449 seq_printf(m, "dispatches=%lu\n", dispatches);
450 seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
453 static int pseries_lparcfg_data(struct seq_file *m, void *v)
455 int partition_potential_processors;
456 int partition_active_processors;
457 struct device_node *rtas_node;
458 const int *lrdrp = NULL;
460 rtas_node = of_find_node_by_path("/rtas");
461 if (rtas_node)
462 lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
464 if (lrdrp == NULL) {
465 partition_potential_processors = vdso_data->processorCount;
466 } else {
467 partition_potential_processors = *(lrdrp + 4);
469 of_node_put(rtas_node);
471 partition_active_processors = lparcfg_count_active_processors();
473 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
474 /* this call handles the ibm,get-system-parameter contents */
475 parse_system_parameter_string(m);
476 parse_ppp_data(m);
477 parse_mpp_data(m);
478 pseries_cmo_data(m);
479 splpar_dispatch_data(m);
481 seq_printf(m, "purr=%ld\n", get_purr());
482 } else { /* non SPLPAR case */
484 seq_printf(m, "system_active_processors=%d\n",
485 partition_potential_processors);
487 seq_printf(m, "system_potential_processors=%d\n",
488 partition_potential_processors);
490 seq_printf(m, "partition_max_entitled_capacity=%d\n",
491 partition_potential_processors * 100);
493 seq_printf(m, "partition_entitled_capacity=%d\n",
494 partition_active_processors * 100);
497 seq_printf(m, "partition_active_processors=%d\n",
498 partition_active_processors);
500 seq_printf(m, "partition_potential_processors=%d\n",
501 partition_potential_processors);
503 seq_printf(m, "shared_processor_mode=%d\n", lppaca[0].shared_proc);
505 seq_printf(m, "slb_size=%d\n", mmu_slb_size);
507 return 0;
510 static ssize_t update_ppp(u64 *entitlement, u8 *weight)
512 struct hvcall_ppp_data ppp_data;
513 u8 new_weight;
514 u64 new_entitled;
515 ssize_t retval;
517 /* Get our current parameters */
518 retval = h_get_ppp(&ppp_data);
519 if (retval)
520 return retval;
522 if (entitlement) {
523 new_weight = ppp_data.weight;
524 new_entitled = *entitlement;
525 } else if (weight) {
526 new_weight = *weight;
527 new_entitled = ppp_data.entitlement;
528 } else
529 return -EINVAL;
531 pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
532 __func__, ppp_data.entitlement, ppp_data.weight);
534 pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
535 __func__, new_entitled, new_weight);
537 retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
538 return retval;
542 * update_mpp
544 * Update the memory entitlement and weight for the partition. Caller must
545 * specify either a new entitlement or weight, not both, to be updated
546 * since the h_set_mpp call takes both entitlement and weight as parameters.
548 static ssize_t update_mpp(u64 *entitlement, u8 *weight)
550 struct hvcall_mpp_data mpp_data;
551 u64 new_entitled;
552 u8 new_weight;
553 ssize_t rc;
555 if (entitlement) {
556 /* Check with vio to ensure the new memory entitlement
557 * can be handled.
559 rc = vio_cmo_entitlement_update(*entitlement);
560 if (rc)
561 return rc;
564 rc = h_get_mpp(&mpp_data);
565 if (rc)
566 return rc;
568 if (entitlement) {
569 new_weight = mpp_data.mem_weight;
570 new_entitled = *entitlement;
571 } else if (weight) {
572 new_weight = *weight;
573 new_entitled = mpp_data.entitled_mem;
574 } else
575 return -EINVAL;
577 pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
578 __func__, mpp_data.entitled_mem, mpp_data.mem_weight);
580 pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
581 __func__, new_entitled, new_weight);
583 rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
584 return rc;
588 * Interface for changing system parameters (variable capacity weight
589 * and entitled capacity). Format of input is "param_name=value";
590 * anything after value is ignored. Valid parameters at this time are
591 * "partition_entitled_capacity" and "capacity_weight". We use
592 * H_SET_PPP to alter parameters.
594 * This function should be invoked only on systems with
595 * FW_FEATURE_SPLPAR.
597 static ssize_t lparcfg_write(struct file *file, const char __user * buf,
598 size_t count, loff_t * off)
600 int kbuf_sz = 64;
601 char kbuf[kbuf_sz];
602 char *tmp;
603 u64 new_entitled, *new_entitled_ptr = &new_entitled;
604 u8 new_weight, *new_weight_ptr = &new_weight;
605 ssize_t retval;
607 if (!firmware_has_feature(FW_FEATURE_SPLPAR) ||
608 firmware_has_feature(FW_FEATURE_ISERIES))
609 return -EINVAL;
611 if (count > kbuf_sz)
612 return -EINVAL;
614 if (copy_from_user(kbuf, buf, count))
615 return -EFAULT;
617 kbuf[count - 1] = '\0';
618 tmp = strchr(kbuf, '=');
619 if (!tmp)
620 return -EINVAL;
622 *tmp++ = '\0';
624 if (!strcmp(kbuf, "partition_entitled_capacity")) {
625 char *endp;
626 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
627 if (endp == tmp)
628 return -EINVAL;
630 retval = update_ppp(new_entitled_ptr, NULL);
631 } else if (!strcmp(kbuf, "capacity_weight")) {
632 char *endp;
633 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
634 if (endp == tmp)
635 return -EINVAL;
637 retval = update_ppp(NULL, new_weight_ptr);
638 } else if (!strcmp(kbuf, "entitled_memory")) {
639 char *endp;
640 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
641 if (endp == tmp)
642 return -EINVAL;
644 retval = update_mpp(new_entitled_ptr, NULL);
645 } else if (!strcmp(kbuf, "entitled_memory_weight")) {
646 char *endp;
647 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
648 if (endp == tmp)
649 return -EINVAL;
651 retval = update_mpp(NULL, new_weight_ptr);
652 } else
653 return -EINVAL;
655 if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
656 retval = count;
657 } else if (retval == H_BUSY) {
658 retval = -EBUSY;
659 } else if (retval == H_HARDWARE) {
660 retval = -EIO;
661 } else if (retval == H_PARAMETER) {
662 retval = -EINVAL;
665 return retval;
668 #else /* CONFIG_PPC_PSERIES */
670 static int pseries_lparcfg_data(struct seq_file *m, void *v)
672 return 0;
675 static ssize_t lparcfg_write(struct file *file, const char __user * buf,
676 size_t count, loff_t * off)
678 return -EINVAL;
681 #endif /* CONFIG_PPC_PSERIES */
683 static int lparcfg_data(struct seq_file *m, void *v)
685 struct device_node *rootdn;
686 const char *model = "";
687 const char *system_id = "";
688 const char *tmp;
689 const unsigned int *lp_index_ptr;
690 unsigned int lp_index = 0;
692 seq_printf(m, "%s %s \n", MODULE_NAME, MODULE_VERS);
694 rootdn = of_find_node_by_path("/");
695 if (rootdn) {
696 tmp = of_get_property(rootdn, "model", NULL);
697 if (tmp) {
698 model = tmp;
699 /* Skip "IBM," - see platforms/iseries/dt.c */
700 if (firmware_has_feature(FW_FEATURE_ISERIES))
701 model += 4;
703 tmp = of_get_property(rootdn, "system-id", NULL);
704 if (tmp) {
705 system_id = tmp;
706 /* Skip "IBM," - see platforms/iseries/dt.c */
707 if (firmware_has_feature(FW_FEATURE_ISERIES))
708 system_id += 4;
710 lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
711 NULL);
712 if (lp_index_ptr)
713 lp_index = *lp_index_ptr;
714 of_node_put(rootdn);
716 seq_printf(m, "serial_number=%s\n", system_id);
717 seq_printf(m, "system_type=%s\n", model);
718 seq_printf(m, "partition_id=%d\n", (int)lp_index);
720 if (firmware_has_feature(FW_FEATURE_ISERIES))
721 return iseries_lparcfg_data(m, v);
722 return pseries_lparcfg_data(m, v);
725 static int lparcfg_open(struct inode *inode, struct file *file)
727 return single_open(file, lparcfg_data, NULL);
730 static const struct file_operations lparcfg_fops = {
731 .owner = THIS_MODULE,
732 .read = seq_read,
733 .write = lparcfg_write,
734 .open = lparcfg_open,
735 .release = single_release,
738 static int __init lparcfg_init(void)
740 struct proc_dir_entry *ent;
741 mode_t mode = S_IRUSR | S_IRGRP | S_IROTH;
743 /* Allow writing if we have FW_FEATURE_SPLPAR */
744 if (firmware_has_feature(FW_FEATURE_SPLPAR) &&
745 !firmware_has_feature(FW_FEATURE_ISERIES))
746 mode |= S_IWUSR;
748 ent = proc_create("ppc64/lparcfg", mode, NULL, &lparcfg_fops);
749 if (!ent) {
750 printk(KERN_ERR "Failed to create ppc64/lparcfg\n");
751 return -EIO;
754 proc_ppc64_lparcfg = ent;
755 return 0;
758 static void __exit lparcfg_cleanup(void)
760 if (proc_ppc64_lparcfg)
761 remove_proc_entry("lparcfg", proc_ppc64_lparcfg->parent);
764 module_init(lparcfg_init);
765 module_exit(lparcfg_cleanup);
766 MODULE_DESCRIPTION("Interface for LPAR configuration data");
767 MODULE_AUTHOR("Dave Engebretsen");
768 MODULE_LICENSE("GPL");