powerpc/pseries: Fix to handle slb resize across migration
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / include / asm / mmu-hash64.h
blobedab67ee8e5394ccb3830c822866e6e9410d7adc
1 #ifndef _ASM_POWERPC_MMU_HASH64_H_
2 #define _ASM_POWERPC_MMU_HASH64_H_
3 /*
4 * PowerPC64 memory management structures
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
19 * Segment table
22 #define STE_ESID_V 0x80
23 #define STE_ESID_KS 0x20
24 #define STE_ESID_KP 0x10
25 #define STE_ESID_N 0x08
27 #define STE_VSID_SHIFT 12
29 /* Location of cpu0's segment table */
30 #define STAB0_PAGE 0x6
31 #define STAB0_OFFSET (STAB0_PAGE << 12)
32 #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
34 #ifndef __ASSEMBLY__
35 extern char initial_stab[];
36 #endif /* ! __ASSEMBLY */
39 * SLB
42 #define SLB_NUM_BOLTED 3
43 #define SLB_CACHE_ENTRIES 8
44 #define SLB_MIN_SIZE 32
46 /* Bits in the SLB ESID word */
47 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
49 /* Bits in the SLB VSID word */
50 #define SLB_VSID_SHIFT 12
51 #define SLB_VSID_SHIFT_1T 24
52 #define SLB_VSID_SSIZE_SHIFT 62
53 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
54 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
55 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
56 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
57 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
58 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
59 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
60 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
61 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
62 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
63 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
64 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
65 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
66 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
68 #define SLB_VSID_KERNEL (SLB_VSID_KP)
69 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
71 #define SLBIE_C (0x08000000)
72 #define SLBIE_SSIZE_SHIFT 25
75 * Hash table
78 #define HPTES_PER_GROUP 8
80 #define HPTE_V_SSIZE_SHIFT 62
81 #define HPTE_V_AVPN_SHIFT 7
82 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
83 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
84 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
85 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
86 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
87 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
88 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
89 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
91 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
92 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
93 #define HPTE_R_RPN_SHIFT 12
94 #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
95 #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
96 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
97 #define HPTE_R_N ASM_CONST(0x0000000000000004)
98 #define HPTE_R_C ASM_CONST(0x0000000000000080)
99 #define HPTE_R_R ASM_CONST(0x0000000000000100)
101 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
102 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
104 /* Values for PP (assumes Ks=0, Kp=1) */
105 /* pp0 will always be 0 for linux */
106 #define PP_RWXX 0 /* Supervisor read/write, User none */
107 #define PP_RWRX 1 /* Supervisor read/write, User read */
108 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
109 #define PP_RXRX 3 /* Supervisor read, User read */
111 #ifndef __ASSEMBLY__
113 struct hash_pte {
114 unsigned long v;
115 unsigned long r;
118 extern struct hash_pte *htab_address;
119 extern unsigned long htab_size_bytes;
120 extern unsigned long htab_hash_mask;
123 * Page size definition
125 * shift : is the "PAGE_SHIFT" value for that page size
126 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
127 * directly to a slbmte "vsid" value
128 * penc : is the HPTE encoding mask for the "LP" field:
131 struct mmu_psize_def
133 unsigned int shift; /* number of bits */
134 unsigned int penc; /* HPTE encoding */
135 unsigned int tlbiel; /* tlbiel supported for that page size */
136 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
137 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
140 #endif /* __ASSEMBLY__ */
143 * The kernel use the constants below to index in the page sizes array.
144 * The use of fixed constants for this purpose is better for performances
145 * of the low level hash refill handlers.
147 * A non supported page size has a "shift" field set to 0
149 * Any new page size being implemented can get a new entry in here. Whether
150 * the kernel will use it or not is a different matter though. The actual page
151 * size used by hugetlbfs is not defined here and may be made variable
154 #define MMU_PAGE_4K 0 /* 4K */
155 #define MMU_PAGE_64K 1 /* 64K */
156 #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
157 #define MMU_PAGE_1M 3 /* 1M */
158 #define MMU_PAGE_16M 4 /* 16M */
159 #define MMU_PAGE_16G 5 /* 16G */
160 #define MMU_PAGE_COUNT 6
163 * Segment sizes.
164 * These are the values used by hardware in the B field of
165 * SLB entries and the first dword of MMU hashtable entries.
166 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
168 #define MMU_SEGSIZE_256M 0
169 #define MMU_SEGSIZE_1T 1
172 #ifndef __ASSEMBLY__
175 * The current system page and segment sizes
177 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
178 extern int mmu_linear_psize;
179 extern int mmu_virtual_psize;
180 extern int mmu_vmalloc_psize;
181 extern int mmu_vmemmap_psize;
182 extern int mmu_io_psize;
183 extern int mmu_kernel_ssize;
184 extern int mmu_highuser_ssize;
185 extern u16 mmu_slb_size;
186 extern unsigned long tce_alloc_start, tce_alloc_end;
189 * If the processor supports 64k normal pages but not 64k cache
190 * inhibited pages, we have to be prepared to switch processes
191 * to use 4k pages when they create cache-inhibited mappings.
192 * If this is the case, mmu_ci_restrictions will be set to 1.
194 extern int mmu_ci_restrictions;
196 #ifdef CONFIG_HUGETLB_PAGE
198 * The page size indexes of the huge pages for use by hugetlbfs
200 extern unsigned int mmu_huge_psizes[MMU_PAGE_COUNT];
202 #endif /* CONFIG_HUGETLB_PAGE */
205 * This function sets the AVPN and L fields of the HPTE appropriately
206 * for the page size
208 static inline unsigned long hpte_encode_v(unsigned long va, int psize,
209 int ssize)
211 unsigned long v;
212 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
213 v <<= HPTE_V_AVPN_SHIFT;
214 if (psize != MMU_PAGE_4K)
215 v |= HPTE_V_LARGE;
216 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
217 return v;
221 * This function sets the ARPN, and LP fields of the HPTE appropriately
222 * for the page size. We assume the pa is already "clean" that is properly
223 * aligned for the requested page size
225 static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
227 unsigned long r;
229 /* A 4K page needs no special encoding */
230 if (psize == MMU_PAGE_4K)
231 return pa & HPTE_R_RPN;
232 else {
233 unsigned int penc = mmu_psize_defs[psize].penc;
234 unsigned int shift = mmu_psize_defs[psize].shift;
235 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
237 return r;
241 * Build a VA given VSID, EA and segment size
243 static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
244 int ssize)
246 if (ssize == MMU_SEGSIZE_256M)
247 return (vsid << 28) | (ea & 0xfffffffUL);
248 return (vsid << 40) | (ea & 0xffffffffffUL);
252 * This hashes a virtual address
255 static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
256 int ssize)
258 unsigned long hash, vsid;
260 if (ssize == MMU_SEGSIZE_256M) {
261 hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
262 } else {
263 vsid = va >> 40;
264 hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
266 return hash & 0x7fffffffffUL;
269 extern int __hash_page_4K(unsigned long ea, unsigned long access,
270 unsigned long vsid, pte_t *ptep, unsigned long trap,
271 unsigned int local, int ssize, int subpage_prot);
272 extern int __hash_page_64K(unsigned long ea, unsigned long access,
273 unsigned long vsid, pte_t *ptep, unsigned long trap,
274 unsigned int local, int ssize);
275 struct mm_struct;
276 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
277 extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
278 unsigned long ea, unsigned long vsid, int local,
279 unsigned long trap);
281 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
282 unsigned long pstart, unsigned long prot,
283 int psize, int ssize);
284 extern void add_gpage(unsigned long addr, unsigned long page_size,
285 unsigned long number_of_pages);
286 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
288 extern void hpte_init_native(void);
289 extern void hpte_init_lpar(void);
290 extern void hpte_init_iSeries(void);
291 extern void hpte_init_beat(void);
292 extern void hpte_init_beat_v3(void);
294 extern void stabs_alloc(void);
295 extern void slb_initialize(void);
296 extern void slb_flush_and_rebolt(void);
297 extern void stab_initialize(unsigned long stab);
299 extern void slb_vmalloc_update(void);
300 extern void slb_set_size(u16 size);
301 #endif /* __ASSEMBLY__ */
304 * VSID allocation
306 * We first generate a 36-bit "proto-VSID". For kernel addresses this
307 * is equal to the ESID, for user addresses it is:
308 * (context << 15) | (esid & 0x7fff)
310 * The two forms are distinguishable because the top bit is 0 for user
311 * addresses, whereas the top two bits are 1 for kernel addresses.
312 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
313 * now.
315 * The proto-VSIDs are then scrambled into real VSIDs with the
316 * multiplicative hash:
318 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
319 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
320 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
322 * This scramble is only well defined for proto-VSIDs below
323 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
324 * reserved. VSID_MULTIPLIER is prime, so in particular it is
325 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
326 * Because the modulus is 2^n-1 we can compute it efficiently without
327 * a divide or extra multiply (see below).
329 * This scheme has several advantages over older methods:
331 * - We have VSIDs allocated for every kernel address
332 * (i.e. everything above 0xC000000000000000), except the very top
333 * segment, which simplifies several things.
335 * - We allow for 15 significant bits of ESID and 20 bits of
336 * context for user addresses. i.e. 8T (43 bits) of address space for
337 * up to 1M contexts (although the page table structure and context
338 * allocation will need changes to take advantage of this).
340 * - The scramble function gives robust scattering in the hash
341 * table (at least based on some initial results). The previous
342 * method was more susceptible to pathological cases giving excessive
343 * hash collisions.
346 * WARNING - If you change these you must make sure the asm
347 * implementations in slb_allocate (slb_low.S), do_stab_bolted
348 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
350 * You'll also need to change the precomputed VSID values in head.S
351 * which are used by the iSeries firmware.
354 #define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
355 #define VSID_BITS_256M 36
356 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
358 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
359 #define VSID_BITS_1T 24
360 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
362 #define CONTEXT_BITS 19
363 #define USER_ESID_BITS 16
364 #define USER_ESID_BITS_1T 4
366 #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
369 * This macro generates asm code to compute the VSID scramble
370 * function. Used in slb_allocate() and do_stab_bolted. The function
371 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
373 * rt = register continaing the proto-VSID and into which the
374 * VSID will be stored
375 * rx = scratch register (clobbered)
377 * - rt and rx must be different registers
378 * - The answer will end up in the low VSID_BITS bits of rt. The higher
379 * bits may contain other garbage, so you may need to mask the
380 * result.
382 #define ASM_VSID_SCRAMBLE(rt, rx, size) \
383 lis rx,VSID_MULTIPLIER_##size@h; \
384 ori rx,rx,VSID_MULTIPLIER_##size@l; \
385 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
387 srdi rx,rt,VSID_BITS_##size; \
388 clrldi rt,rt,(64-VSID_BITS_##size); \
389 add rt,rt,rx; /* add high and low bits */ \
390 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
391 * 2^36-1+2^28-1. That in particular means that if r3 >= \
392 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
393 * the bit clear, r3 already has the answer we want, if it \
394 * doesn't, the answer is the low 36 bits of r3+1. So in all \
395 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
396 addi rx,rt,1; \
397 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
398 add rt,rt,rx
401 #ifndef __ASSEMBLY__
403 typedef unsigned long mm_context_id_t;
405 typedef struct {
406 mm_context_id_t id;
407 u16 user_psize; /* page size index */
409 #ifdef CONFIG_PPC_MM_SLICES
410 u64 low_slices_psize; /* SLB page size encodings */
411 u64 high_slices_psize; /* 4 bits per slice for now */
412 #else
413 u16 sllp; /* SLB page size encoding */
414 #endif
415 unsigned long vdso_base;
416 } mm_context_t;
419 #if 0
421 * The code below is equivalent to this function for arguments
422 * < 2^VSID_BITS, which is all this should ever be called
423 * with. However gcc is not clever enough to compute the
424 * modulus (2^n-1) without a second multiply.
426 #define vsid_scrample(protovsid, size) \
427 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
429 #else /* 1 */
430 #define vsid_scramble(protovsid, size) \
431 ({ \
432 unsigned long x; \
433 x = (protovsid) * VSID_MULTIPLIER_##size; \
434 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
435 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
437 #endif /* 1 */
439 /* This is only valid for addresses >= PAGE_OFFSET */
440 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
442 if (ssize == MMU_SEGSIZE_256M)
443 return vsid_scramble(ea >> SID_SHIFT, 256M);
444 return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
447 /* Returns the segment size indicator for a user address */
448 static inline int user_segment_size(unsigned long addr)
450 /* Use 1T segments if possible for addresses >= 1T */
451 if (addr >= (1UL << SID_SHIFT_1T))
452 return mmu_highuser_ssize;
453 return MMU_SEGSIZE_256M;
456 /* This is only valid for user addresses (which are below 2^44) */
457 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
458 int ssize)
460 if (ssize == MMU_SEGSIZE_256M)
461 return vsid_scramble((context << USER_ESID_BITS)
462 | (ea >> SID_SHIFT), 256M);
463 return vsid_scramble((context << USER_ESID_BITS_1T)
464 | (ea >> SID_SHIFT_1T), 1T);
468 * This is only used on legacy iSeries in lparmap.c,
469 * hence the 256MB segment assumption.
471 #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
472 VSID_MODULUS_256M)
473 #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
475 #endif /* __ASSEMBLY__ */
477 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */