ARM: S5PV210: Add SMDKV210 board support file
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ocfs2 / aops.c
blob3dae4a13f6e48c968dcad4ddcf28672c807068c6
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
35 #include "ocfs2.h"
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 (unsigned long long)iblock, bh_result, create);
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock);
70 goto bail;
73 status = ocfs2_read_inode_block(inode, &bh);
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
78 fe = (struct ocfs2_dinode *) bh->b_data;
80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 le32_to_cpu(fe->i_clusters))) {
82 mlog(ML_ERROR, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock);
84 goto bail;
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 iblock;
92 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 if (!buffer_cache_bh) {
94 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 goto bail;
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh)
103 && ocfs2_inode_is_new(inode)) {
104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 if (!kaddr) {
106 mlog(ML_ERROR, "couldn't kmap!\n");
107 goto bail;
109 memcpy(kaddr + (bh_result->b_size * iblock),
110 buffer_cache_bh->b_data,
111 bh_result->b_size);
112 kunmap_atomic(kaddr, KM_USER0);
113 set_buffer_uptodate(bh_result);
115 brelse(buffer_cache_bh);
118 map_bh(bh_result, inode->i_sb,
119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121 err = 0;
123 bail:
124 brelse(bh);
126 mlog_exit(err);
127 return err;
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 (unsigned long long)iblock, bh_result, create);
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
161 if (max_blocks < count)
162 count = max_blocks;
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows block_prepare_write() to zero.
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
185 bh_result->b_size = count << inode->i_blkbits;
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
200 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202 (unsigned long long)past_eof);
204 if (create && (iblock >= past_eof))
205 set_buffer_new(bh_result);
208 bail:
209 if (err < 0)
210 err = -EIO;
212 mlog_exit(err);
213 return err;
216 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217 struct buffer_head *di_bh)
219 void *kaddr;
220 loff_t size;
221 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
223 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225 (unsigned long long)OCFS2_I(inode)->ip_blkno);
226 return -EROFS;
229 size = i_size_read(inode);
231 if (size > PAGE_CACHE_SIZE ||
232 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
233 ocfs2_error(inode->i_sb,
234 "Inode %llu has with inline data has bad size: %Lu",
235 (unsigned long long)OCFS2_I(inode)->ip_blkno,
236 (unsigned long long)size);
237 return -EROFS;
240 kaddr = kmap_atomic(page, KM_USER0);
241 if (size)
242 memcpy(kaddr, di->id2.i_data.id_data, size);
243 /* Clear the remaining part of the page */
244 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
245 flush_dcache_page(page);
246 kunmap_atomic(kaddr, KM_USER0);
248 SetPageUptodate(page);
250 return 0;
253 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
255 int ret;
256 struct buffer_head *di_bh = NULL;
258 BUG_ON(!PageLocked(page));
259 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
261 ret = ocfs2_read_inode_block(inode, &di_bh);
262 if (ret) {
263 mlog_errno(ret);
264 goto out;
267 ret = ocfs2_read_inline_data(inode, page, di_bh);
268 out:
269 unlock_page(page);
271 brelse(di_bh);
272 return ret;
275 static int ocfs2_readpage(struct file *file, struct page *page)
277 struct inode *inode = page->mapping->host;
278 struct ocfs2_inode_info *oi = OCFS2_I(inode);
279 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
280 int ret, unlock = 1;
282 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 ret = AOP_TRUNCATED_PAGE;
294 goto out_inode_unlock;
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 * and notice that the page they just read isn't needed.
305 * XXX sys_readahead() seems to get that wrong?
307 if (start >= i_size_read(inode)) {
308 zero_user(page, 0, PAGE_SIZE);
309 SetPageUptodate(page);
310 ret = 0;
311 goto out_alloc;
314 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 ret = ocfs2_readpage_inline(inode, page);
316 else
317 ret = block_read_full_page(page, ocfs2_get_block);
318 unlock = 0;
320 out_alloc:
321 up_read(&OCFS2_I(inode)->ip_alloc_sem);
322 out_inode_unlock:
323 ocfs2_inode_unlock(inode, 0);
324 out:
325 if (unlock)
326 unlock_page(page);
327 mlog_exit(ret);
328 return ret;
332 * This is used only for read-ahead. Failures or difficult to handle
333 * situations are safe to ignore.
335 * Right now, we don't bother with BH_Boundary - in-inode extent lists
336 * are quite large (243 extents on 4k blocks), so most inodes don't
337 * grow out to a tree. If need be, detecting boundary extents could
338 * trivially be added in a future version of ocfs2_get_block().
340 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
341 struct list_head *pages, unsigned nr_pages)
343 int ret, err = -EIO;
344 struct inode *inode = mapping->host;
345 struct ocfs2_inode_info *oi = OCFS2_I(inode);
346 loff_t start;
347 struct page *last;
350 * Use the nonblocking flag for the dlm code to avoid page
351 * lock inversion, but don't bother with retrying.
353 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
354 if (ret)
355 return err;
357 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
358 ocfs2_inode_unlock(inode, 0);
359 return err;
363 * Don't bother with inline-data. There isn't anything
364 * to read-ahead in that case anyway...
366 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
367 goto out_unlock;
370 * Check whether a remote node truncated this file - we just
371 * drop out in that case as it's not worth handling here.
373 last = list_entry(pages->prev, struct page, lru);
374 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
375 if (start >= i_size_read(inode))
376 goto out_unlock;
378 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
380 out_unlock:
381 up_read(&oi->ip_alloc_sem);
382 ocfs2_inode_unlock(inode, 0);
384 return err;
387 /* Note: Because we don't support holes, our allocation has
388 * already happened (allocation writes zeros to the file data)
389 * so we don't have to worry about ordered writes in
390 * ocfs2_writepage.
392 * ->writepage is called during the process of invalidating the page cache
393 * during blocked lock processing. It can't block on any cluster locks
394 * to during block mapping. It's relying on the fact that the block
395 * mapping can't have disappeared under the dirty pages that it is
396 * being asked to write back.
398 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
400 int ret;
402 mlog_entry("(0x%p)\n", page);
404 ret = block_write_full_page(page, ocfs2_get_block, wbc);
406 mlog_exit(ret);
408 return ret;
412 * This is called from ocfs2_write_zero_page() which has handled it's
413 * own cluster locking and has ensured allocation exists for those
414 * blocks to be written.
416 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
417 unsigned from, unsigned to)
419 int ret;
421 ret = block_prepare_write(page, from, to, ocfs2_get_block);
423 return ret;
426 /* Taken from ext3. We don't necessarily need the full blown
427 * functionality yet, but IMHO it's better to cut and paste the whole
428 * thing so we can avoid introducing our own bugs (and easily pick up
429 * their fixes when they happen) --Mark */
430 int walk_page_buffers( handle_t *handle,
431 struct buffer_head *head,
432 unsigned from,
433 unsigned to,
434 int *partial,
435 int (*fn)( handle_t *handle,
436 struct buffer_head *bh))
438 struct buffer_head *bh;
439 unsigned block_start, block_end;
440 unsigned blocksize = head->b_size;
441 int err, ret = 0;
442 struct buffer_head *next;
444 for ( bh = head, block_start = 0;
445 ret == 0 && (bh != head || !block_start);
446 block_start = block_end, bh = next)
448 next = bh->b_this_page;
449 block_end = block_start + blocksize;
450 if (block_end <= from || block_start >= to) {
451 if (partial && !buffer_uptodate(bh))
452 *partial = 1;
453 continue;
455 err = (*fn)(handle, bh);
456 if (!ret)
457 ret = err;
459 return ret;
462 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
463 struct page *page,
464 unsigned from,
465 unsigned to)
467 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
468 handle_t *handle;
469 int ret = 0;
471 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
472 if (IS_ERR(handle)) {
473 ret = -ENOMEM;
474 mlog_errno(ret);
475 goto out;
478 if (ocfs2_should_order_data(inode)) {
479 ret = ocfs2_jbd2_file_inode(handle, inode);
480 if (ret < 0)
481 mlog_errno(ret);
483 out:
484 if (ret) {
485 if (!IS_ERR(handle))
486 ocfs2_commit_trans(osb, handle);
487 handle = ERR_PTR(ret);
489 return handle;
492 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
494 sector_t status;
495 u64 p_blkno = 0;
496 int err = 0;
497 struct inode *inode = mapping->host;
499 mlog_entry("(block = %llu)\n", (unsigned long long)block);
501 /* We don't need to lock journal system files, since they aren't
502 * accessed concurrently from multiple nodes.
504 if (!INODE_JOURNAL(inode)) {
505 err = ocfs2_inode_lock(inode, NULL, 0);
506 if (err) {
507 if (err != -ENOENT)
508 mlog_errno(err);
509 goto bail;
511 down_read(&OCFS2_I(inode)->ip_alloc_sem);
514 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
515 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
516 NULL);
518 if (!INODE_JOURNAL(inode)) {
519 up_read(&OCFS2_I(inode)->ip_alloc_sem);
520 ocfs2_inode_unlock(inode, 0);
523 if (err) {
524 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
525 (unsigned long long)block);
526 mlog_errno(err);
527 goto bail;
530 bail:
531 status = err ? 0 : p_blkno;
533 mlog_exit((int)status);
535 return status;
539 * TODO: Make this into a generic get_blocks function.
541 * From do_direct_io in direct-io.c:
542 * "So what we do is to permit the ->get_blocks function to populate
543 * bh.b_size with the size of IO which is permitted at this offset and
544 * this i_blkbits."
546 * This function is called directly from get_more_blocks in direct-io.c.
548 * called like this: dio->get_blocks(dio->inode, fs_startblk,
549 * fs_count, map_bh, dio->rw == WRITE);
551 * Note that we never bother to allocate blocks here, and thus ignore the
552 * create argument.
554 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
555 struct buffer_head *bh_result, int create)
557 int ret;
558 u64 p_blkno, inode_blocks, contig_blocks;
559 unsigned int ext_flags;
560 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
561 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
563 /* This function won't even be called if the request isn't all
564 * nicely aligned and of the right size, so there's no need
565 * for us to check any of that. */
567 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
569 /* This figures out the size of the next contiguous block, and
570 * our logical offset */
571 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
572 &contig_blocks, &ext_flags);
573 if (ret) {
574 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
575 (unsigned long long)iblock);
576 ret = -EIO;
577 goto bail;
580 /* We should already CoW the refcounted extent. */
581 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
583 * get_more_blocks() expects us to describe a hole by clearing
584 * the mapped bit on bh_result().
586 * Consider an unwritten extent as a hole.
588 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
589 map_bh(bh_result, inode->i_sb, p_blkno);
590 else
591 clear_buffer_mapped(bh_result);
593 /* make sure we don't map more than max_blocks blocks here as
594 that's all the kernel will handle at this point. */
595 if (max_blocks < contig_blocks)
596 contig_blocks = max_blocks;
597 bh_result->b_size = contig_blocks << blocksize_bits;
598 bail:
599 return ret;
603 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
604 * particularly interested in the aio/dio case. Like the core uses
605 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
606 * truncation on another.
608 static void ocfs2_dio_end_io(struct kiocb *iocb,
609 loff_t offset,
610 ssize_t bytes,
611 void *private)
613 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
614 int level;
616 /* this io's submitter should not have unlocked this before we could */
617 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
619 ocfs2_iocb_clear_rw_locked(iocb);
621 level = ocfs2_iocb_rw_locked_level(iocb);
622 if (!level)
623 up_read(&inode->i_alloc_sem);
624 ocfs2_rw_unlock(inode, level);
628 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
629 * from ext3. PageChecked() bits have been removed as OCFS2 does not
630 * do journalled data.
632 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
634 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
636 jbd2_journal_invalidatepage(journal, page, offset);
639 static int ocfs2_releasepage(struct page *page, gfp_t wait)
641 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
643 if (!page_has_buffers(page))
644 return 0;
645 return jbd2_journal_try_to_free_buffers(journal, page, wait);
648 static ssize_t ocfs2_direct_IO(int rw,
649 struct kiocb *iocb,
650 const struct iovec *iov,
651 loff_t offset,
652 unsigned long nr_segs)
654 struct file *file = iocb->ki_filp;
655 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
656 int ret;
658 mlog_entry_void();
661 * Fallback to buffered I/O if we see an inode without
662 * extents.
664 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
665 return 0;
667 /* Fallback to buffered I/O if we are appending. */
668 if (i_size_read(inode) <= offset)
669 return 0;
671 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
672 inode->i_sb->s_bdev, iov, offset,
673 nr_segs,
674 ocfs2_direct_IO_get_blocks,
675 ocfs2_dio_end_io);
677 mlog_exit(ret);
678 return ret;
681 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
682 u32 cpos,
683 unsigned int *start,
684 unsigned int *end)
686 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
688 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
689 unsigned int cpp;
691 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
693 cluster_start = cpos % cpp;
694 cluster_start = cluster_start << osb->s_clustersize_bits;
696 cluster_end = cluster_start + osb->s_clustersize;
699 BUG_ON(cluster_start > PAGE_SIZE);
700 BUG_ON(cluster_end > PAGE_SIZE);
702 if (start)
703 *start = cluster_start;
704 if (end)
705 *end = cluster_end;
709 * 'from' and 'to' are the region in the page to avoid zeroing.
711 * If pagesize > clustersize, this function will avoid zeroing outside
712 * of the cluster boundary.
714 * from == to == 0 is code for "zero the entire cluster region"
716 static void ocfs2_clear_page_regions(struct page *page,
717 struct ocfs2_super *osb, u32 cpos,
718 unsigned from, unsigned to)
720 void *kaddr;
721 unsigned int cluster_start, cluster_end;
723 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
725 kaddr = kmap_atomic(page, KM_USER0);
727 if (from || to) {
728 if (from > cluster_start)
729 memset(kaddr + cluster_start, 0, from - cluster_start);
730 if (to < cluster_end)
731 memset(kaddr + to, 0, cluster_end - to);
732 } else {
733 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
736 kunmap_atomic(kaddr, KM_USER0);
740 * Nonsparse file systems fully allocate before we get to the write
741 * code. This prevents ocfs2_write() from tagging the write as an
742 * allocating one, which means ocfs2_map_page_blocks() might try to
743 * read-in the blocks at the tail of our file. Avoid reading them by
744 * testing i_size against each block offset.
746 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
747 unsigned int block_start)
749 u64 offset = page_offset(page) + block_start;
751 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
752 return 1;
754 if (i_size_read(inode) > offset)
755 return 1;
757 return 0;
761 * Some of this taken from block_prepare_write(). We already have our
762 * mapping by now though, and the entire write will be allocating or
763 * it won't, so not much need to use BH_New.
765 * This will also skip zeroing, which is handled externally.
767 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
768 struct inode *inode, unsigned int from,
769 unsigned int to, int new)
771 int ret = 0;
772 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
773 unsigned int block_end, block_start;
774 unsigned int bsize = 1 << inode->i_blkbits;
776 if (!page_has_buffers(page))
777 create_empty_buffers(page, bsize, 0);
779 head = page_buffers(page);
780 for (bh = head, block_start = 0; bh != head || !block_start;
781 bh = bh->b_this_page, block_start += bsize) {
782 block_end = block_start + bsize;
784 clear_buffer_new(bh);
787 * Ignore blocks outside of our i/o range -
788 * they may belong to unallocated clusters.
790 if (block_start >= to || block_end <= from) {
791 if (PageUptodate(page))
792 set_buffer_uptodate(bh);
793 continue;
797 * For an allocating write with cluster size >= page
798 * size, we always write the entire page.
800 if (new)
801 set_buffer_new(bh);
803 if (!buffer_mapped(bh)) {
804 map_bh(bh, inode->i_sb, *p_blkno);
805 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
808 if (PageUptodate(page)) {
809 if (!buffer_uptodate(bh))
810 set_buffer_uptodate(bh);
811 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
812 !buffer_new(bh) &&
813 ocfs2_should_read_blk(inode, page, block_start) &&
814 (block_start < from || block_end > to)) {
815 ll_rw_block(READ, 1, &bh);
816 *wait_bh++=bh;
819 *p_blkno = *p_blkno + 1;
823 * If we issued read requests - let them complete.
825 while(wait_bh > wait) {
826 wait_on_buffer(*--wait_bh);
827 if (!buffer_uptodate(*wait_bh))
828 ret = -EIO;
831 if (ret == 0 || !new)
832 return ret;
835 * If we get -EIO above, zero out any newly allocated blocks
836 * to avoid exposing stale data.
838 bh = head;
839 block_start = 0;
840 do {
841 block_end = block_start + bsize;
842 if (block_end <= from)
843 goto next_bh;
844 if (block_start >= to)
845 break;
847 zero_user(page, block_start, bh->b_size);
848 set_buffer_uptodate(bh);
849 mark_buffer_dirty(bh);
851 next_bh:
852 block_start = block_end;
853 bh = bh->b_this_page;
854 } while (bh != head);
856 return ret;
859 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
860 #define OCFS2_MAX_CTXT_PAGES 1
861 #else
862 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
863 #endif
865 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
868 * Describe the state of a single cluster to be written to.
870 struct ocfs2_write_cluster_desc {
871 u32 c_cpos;
872 u32 c_phys;
874 * Give this a unique field because c_phys eventually gets
875 * filled.
877 unsigned c_new;
878 unsigned c_unwritten;
879 unsigned c_needs_zero;
882 struct ocfs2_write_ctxt {
883 /* Logical cluster position / len of write */
884 u32 w_cpos;
885 u32 w_clen;
887 /* First cluster allocated in a nonsparse extend */
888 u32 w_first_new_cpos;
890 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
893 * This is true if page_size > cluster_size.
895 * It triggers a set of special cases during write which might
896 * have to deal with allocating writes to partial pages.
898 unsigned int w_large_pages;
901 * Pages involved in this write.
903 * w_target_page is the page being written to by the user.
905 * w_pages is an array of pages which always contains
906 * w_target_page, and in the case of an allocating write with
907 * page_size < cluster size, it will contain zero'd and mapped
908 * pages adjacent to w_target_page which need to be written
909 * out in so that future reads from that region will get
910 * zero's.
912 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
913 unsigned int w_num_pages;
914 struct page *w_target_page;
917 * ocfs2_write_end() uses this to know what the real range to
918 * write in the target should be.
920 unsigned int w_target_from;
921 unsigned int w_target_to;
924 * We could use journal_current_handle() but this is cleaner,
925 * IMHO -Mark
927 handle_t *w_handle;
929 struct buffer_head *w_di_bh;
931 struct ocfs2_cached_dealloc_ctxt w_dealloc;
934 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
936 int i;
938 for(i = 0; i < num_pages; i++) {
939 if (pages[i]) {
940 unlock_page(pages[i]);
941 mark_page_accessed(pages[i]);
942 page_cache_release(pages[i]);
947 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
949 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
951 brelse(wc->w_di_bh);
952 kfree(wc);
955 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
956 struct ocfs2_super *osb, loff_t pos,
957 unsigned len, struct buffer_head *di_bh)
959 u32 cend;
960 struct ocfs2_write_ctxt *wc;
962 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
963 if (!wc)
964 return -ENOMEM;
966 wc->w_cpos = pos >> osb->s_clustersize_bits;
967 wc->w_first_new_cpos = UINT_MAX;
968 cend = (pos + len - 1) >> osb->s_clustersize_bits;
969 wc->w_clen = cend - wc->w_cpos + 1;
970 get_bh(di_bh);
971 wc->w_di_bh = di_bh;
973 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
974 wc->w_large_pages = 1;
975 else
976 wc->w_large_pages = 0;
978 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
980 *wcp = wc;
982 return 0;
986 * If a page has any new buffers, zero them out here, and mark them uptodate
987 * and dirty so they'll be written out (in order to prevent uninitialised
988 * block data from leaking). And clear the new bit.
990 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
992 unsigned int block_start, block_end;
993 struct buffer_head *head, *bh;
995 BUG_ON(!PageLocked(page));
996 if (!page_has_buffers(page))
997 return;
999 bh = head = page_buffers(page);
1000 block_start = 0;
1001 do {
1002 block_end = block_start + bh->b_size;
1004 if (buffer_new(bh)) {
1005 if (block_end > from && block_start < to) {
1006 if (!PageUptodate(page)) {
1007 unsigned start, end;
1009 start = max(from, block_start);
1010 end = min(to, block_end);
1012 zero_user_segment(page, start, end);
1013 set_buffer_uptodate(bh);
1016 clear_buffer_new(bh);
1017 mark_buffer_dirty(bh);
1021 block_start = block_end;
1022 bh = bh->b_this_page;
1023 } while (bh != head);
1027 * Only called when we have a failure during allocating write to write
1028 * zero's to the newly allocated region.
1030 static void ocfs2_write_failure(struct inode *inode,
1031 struct ocfs2_write_ctxt *wc,
1032 loff_t user_pos, unsigned user_len)
1034 int i;
1035 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1036 to = user_pos + user_len;
1037 struct page *tmppage;
1039 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1041 for(i = 0; i < wc->w_num_pages; i++) {
1042 tmppage = wc->w_pages[i];
1044 if (page_has_buffers(tmppage)) {
1045 if (ocfs2_should_order_data(inode))
1046 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1048 block_commit_write(tmppage, from, to);
1053 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1054 struct ocfs2_write_ctxt *wc,
1055 struct page *page, u32 cpos,
1056 loff_t user_pos, unsigned user_len,
1057 int new)
1059 int ret;
1060 unsigned int map_from = 0, map_to = 0;
1061 unsigned int cluster_start, cluster_end;
1062 unsigned int user_data_from = 0, user_data_to = 0;
1064 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1065 &cluster_start, &cluster_end);
1067 if (page == wc->w_target_page) {
1068 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1069 map_to = map_from + user_len;
1071 if (new)
1072 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1073 cluster_start, cluster_end,
1074 new);
1075 else
1076 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1077 map_from, map_to, new);
1078 if (ret) {
1079 mlog_errno(ret);
1080 goto out;
1083 user_data_from = map_from;
1084 user_data_to = map_to;
1085 if (new) {
1086 map_from = cluster_start;
1087 map_to = cluster_end;
1089 } else {
1091 * If we haven't allocated the new page yet, we
1092 * shouldn't be writing it out without copying user
1093 * data. This is likely a math error from the caller.
1095 BUG_ON(!new);
1097 map_from = cluster_start;
1098 map_to = cluster_end;
1100 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1101 cluster_start, cluster_end, new);
1102 if (ret) {
1103 mlog_errno(ret);
1104 goto out;
1109 * Parts of newly allocated pages need to be zero'd.
1111 * Above, we have also rewritten 'to' and 'from' - as far as
1112 * the rest of the function is concerned, the entire cluster
1113 * range inside of a page needs to be written.
1115 * We can skip this if the page is up to date - it's already
1116 * been zero'd from being read in as a hole.
1118 if (new && !PageUptodate(page))
1119 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1120 cpos, user_data_from, user_data_to);
1122 flush_dcache_page(page);
1124 out:
1125 return ret;
1129 * This function will only grab one clusters worth of pages.
1131 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1132 struct ocfs2_write_ctxt *wc,
1133 u32 cpos, loff_t user_pos, int new,
1134 struct page *mmap_page)
1136 int ret = 0, i;
1137 unsigned long start, target_index, index;
1138 struct inode *inode = mapping->host;
1140 target_index = user_pos >> PAGE_CACHE_SHIFT;
1143 * Figure out how many pages we'll be manipulating here. For
1144 * non allocating write, we just change the one
1145 * page. Otherwise, we'll need a whole clusters worth.
1147 if (new) {
1148 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1149 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1150 } else {
1151 wc->w_num_pages = 1;
1152 start = target_index;
1155 for(i = 0; i < wc->w_num_pages; i++) {
1156 index = start + i;
1158 if (index == target_index && mmap_page) {
1160 * ocfs2_pagemkwrite() is a little different
1161 * and wants us to directly use the page
1162 * passed in.
1164 lock_page(mmap_page);
1166 if (mmap_page->mapping != mapping) {
1167 unlock_page(mmap_page);
1169 * Sanity check - the locking in
1170 * ocfs2_pagemkwrite() should ensure
1171 * that this code doesn't trigger.
1173 ret = -EINVAL;
1174 mlog_errno(ret);
1175 goto out;
1178 page_cache_get(mmap_page);
1179 wc->w_pages[i] = mmap_page;
1180 } else {
1181 wc->w_pages[i] = find_or_create_page(mapping, index,
1182 GFP_NOFS);
1183 if (!wc->w_pages[i]) {
1184 ret = -ENOMEM;
1185 mlog_errno(ret);
1186 goto out;
1190 if (index == target_index)
1191 wc->w_target_page = wc->w_pages[i];
1193 out:
1194 return ret;
1198 * Prepare a single cluster for write one cluster into the file.
1200 static int ocfs2_write_cluster(struct address_space *mapping,
1201 u32 phys, unsigned int unwritten,
1202 unsigned int should_zero,
1203 struct ocfs2_alloc_context *data_ac,
1204 struct ocfs2_alloc_context *meta_ac,
1205 struct ocfs2_write_ctxt *wc, u32 cpos,
1206 loff_t user_pos, unsigned user_len)
1208 int ret, i, new;
1209 u64 v_blkno, p_blkno;
1210 struct inode *inode = mapping->host;
1211 struct ocfs2_extent_tree et;
1213 new = phys == 0 ? 1 : 0;
1214 if (new) {
1215 u32 tmp_pos;
1218 * This is safe to call with the page locks - it won't take
1219 * any additional semaphores or cluster locks.
1221 tmp_pos = cpos;
1222 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1223 &tmp_pos, 1, 0, wc->w_di_bh,
1224 wc->w_handle, data_ac,
1225 meta_ac, NULL);
1227 * This shouldn't happen because we must have already
1228 * calculated the correct meta data allocation required. The
1229 * internal tree allocation code should know how to increase
1230 * transaction credits itself.
1232 * If need be, we could handle -EAGAIN for a
1233 * RESTART_TRANS here.
1235 mlog_bug_on_msg(ret == -EAGAIN,
1236 "Inode %llu: EAGAIN return during allocation.\n",
1237 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1238 if (ret < 0) {
1239 mlog_errno(ret);
1240 goto out;
1242 } else if (unwritten) {
1243 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1244 wc->w_di_bh);
1245 ret = ocfs2_mark_extent_written(inode, &et,
1246 wc->w_handle, cpos, 1, phys,
1247 meta_ac, &wc->w_dealloc);
1248 if (ret < 0) {
1249 mlog_errno(ret);
1250 goto out;
1254 if (should_zero)
1255 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1256 else
1257 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1260 * The only reason this should fail is due to an inability to
1261 * find the extent added.
1263 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1264 NULL);
1265 if (ret < 0) {
1266 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1267 "at logical block %llu",
1268 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1269 (unsigned long long)v_blkno);
1270 goto out;
1273 BUG_ON(p_blkno == 0);
1275 for(i = 0; i < wc->w_num_pages; i++) {
1276 int tmpret;
1278 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1279 wc->w_pages[i], cpos,
1280 user_pos, user_len,
1281 should_zero);
1282 if (tmpret) {
1283 mlog_errno(tmpret);
1284 if (ret == 0)
1285 ret = tmpret;
1290 * We only have cleanup to do in case of allocating write.
1292 if (ret && new)
1293 ocfs2_write_failure(inode, wc, user_pos, user_len);
1295 out:
1297 return ret;
1300 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1301 struct ocfs2_alloc_context *data_ac,
1302 struct ocfs2_alloc_context *meta_ac,
1303 struct ocfs2_write_ctxt *wc,
1304 loff_t pos, unsigned len)
1306 int ret, i;
1307 loff_t cluster_off;
1308 unsigned int local_len = len;
1309 struct ocfs2_write_cluster_desc *desc;
1310 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1312 for (i = 0; i < wc->w_clen; i++) {
1313 desc = &wc->w_desc[i];
1316 * We have to make sure that the total write passed in
1317 * doesn't extend past a single cluster.
1319 local_len = len;
1320 cluster_off = pos & (osb->s_clustersize - 1);
1321 if ((cluster_off + local_len) > osb->s_clustersize)
1322 local_len = osb->s_clustersize - cluster_off;
1324 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1325 desc->c_unwritten,
1326 desc->c_needs_zero,
1327 data_ac, meta_ac,
1328 wc, desc->c_cpos, pos, local_len);
1329 if (ret) {
1330 mlog_errno(ret);
1331 goto out;
1334 len -= local_len;
1335 pos += local_len;
1338 ret = 0;
1339 out:
1340 return ret;
1344 * ocfs2_write_end() wants to know which parts of the target page it
1345 * should complete the write on. It's easiest to compute them ahead of
1346 * time when a more complete view of the write is available.
1348 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1349 struct ocfs2_write_ctxt *wc,
1350 loff_t pos, unsigned len, int alloc)
1352 struct ocfs2_write_cluster_desc *desc;
1354 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1355 wc->w_target_to = wc->w_target_from + len;
1357 if (alloc == 0)
1358 return;
1361 * Allocating write - we may have different boundaries based
1362 * on page size and cluster size.
1364 * NOTE: We can no longer compute one value from the other as
1365 * the actual write length and user provided length may be
1366 * different.
1369 if (wc->w_large_pages) {
1371 * We only care about the 1st and last cluster within
1372 * our range and whether they should be zero'd or not. Either
1373 * value may be extended out to the start/end of a
1374 * newly allocated cluster.
1376 desc = &wc->w_desc[0];
1377 if (desc->c_needs_zero)
1378 ocfs2_figure_cluster_boundaries(osb,
1379 desc->c_cpos,
1380 &wc->w_target_from,
1381 NULL);
1383 desc = &wc->w_desc[wc->w_clen - 1];
1384 if (desc->c_needs_zero)
1385 ocfs2_figure_cluster_boundaries(osb,
1386 desc->c_cpos,
1387 NULL,
1388 &wc->w_target_to);
1389 } else {
1390 wc->w_target_from = 0;
1391 wc->w_target_to = PAGE_CACHE_SIZE;
1396 * Populate each single-cluster write descriptor in the write context
1397 * with information about the i/o to be done.
1399 * Returns the number of clusters that will have to be allocated, as
1400 * well as a worst case estimate of the number of extent records that
1401 * would have to be created during a write to an unwritten region.
1403 static int ocfs2_populate_write_desc(struct inode *inode,
1404 struct ocfs2_write_ctxt *wc,
1405 unsigned int *clusters_to_alloc,
1406 unsigned int *extents_to_split)
1408 int ret;
1409 struct ocfs2_write_cluster_desc *desc;
1410 unsigned int num_clusters = 0;
1411 unsigned int ext_flags = 0;
1412 u32 phys = 0;
1413 int i;
1415 *clusters_to_alloc = 0;
1416 *extents_to_split = 0;
1418 for (i = 0; i < wc->w_clen; i++) {
1419 desc = &wc->w_desc[i];
1420 desc->c_cpos = wc->w_cpos + i;
1422 if (num_clusters == 0) {
1424 * Need to look up the next extent record.
1426 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1427 &num_clusters, &ext_flags);
1428 if (ret) {
1429 mlog_errno(ret);
1430 goto out;
1433 /* We should already CoW the refcountd extent. */
1434 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1437 * Assume worst case - that we're writing in
1438 * the middle of the extent.
1440 * We can assume that the write proceeds from
1441 * left to right, in which case the extent
1442 * insert code is smart enough to coalesce the
1443 * next splits into the previous records created.
1445 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1446 *extents_to_split = *extents_to_split + 2;
1447 } else if (phys) {
1449 * Only increment phys if it doesn't describe
1450 * a hole.
1452 phys++;
1456 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1457 * file that got extended. w_first_new_cpos tells us
1458 * where the newly allocated clusters are so we can
1459 * zero them.
1461 if (desc->c_cpos >= wc->w_first_new_cpos) {
1462 BUG_ON(phys == 0);
1463 desc->c_needs_zero = 1;
1466 desc->c_phys = phys;
1467 if (phys == 0) {
1468 desc->c_new = 1;
1469 desc->c_needs_zero = 1;
1470 *clusters_to_alloc = *clusters_to_alloc + 1;
1473 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1474 desc->c_unwritten = 1;
1475 desc->c_needs_zero = 1;
1478 num_clusters--;
1481 ret = 0;
1482 out:
1483 return ret;
1486 static int ocfs2_write_begin_inline(struct address_space *mapping,
1487 struct inode *inode,
1488 struct ocfs2_write_ctxt *wc)
1490 int ret;
1491 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1492 struct page *page;
1493 handle_t *handle;
1494 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1496 page = find_or_create_page(mapping, 0, GFP_NOFS);
1497 if (!page) {
1498 ret = -ENOMEM;
1499 mlog_errno(ret);
1500 goto out;
1503 * If we don't set w_num_pages then this page won't get unlocked
1504 * and freed on cleanup of the write context.
1506 wc->w_pages[0] = wc->w_target_page = page;
1507 wc->w_num_pages = 1;
1509 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1510 if (IS_ERR(handle)) {
1511 ret = PTR_ERR(handle);
1512 mlog_errno(ret);
1513 goto out;
1516 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1517 OCFS2_JOURNAL_ACCESS_WRITE);
1518 if (ret) {
1519 ocfs2_commit_trans(osb, handle);
1521 mlog_errno(ret);
1522 goto out;
1525 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1526 ocfs2_set_inode_data_inline(inode, di);
1528 if (!PageUptodate(page)) {
1529 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1530 if (ret) {
1531 ocfs2_commit_trans(osb, handle);
1533 goto out;
1537 wc->w_handle = handle;
1538 out:
1539 return ret;
1542 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1544 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1546 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1547 return 1;
1548 return 0;
1551 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1552 struct inode *inode, loff_t pos,
1553 unsigned len, struct page *mmap_page,
1554 struct ocfs2_write_ctxt *wc)
1556 int ret, written = 0;
1557 loff_t end = pos + len;
1558 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1559 struct ocfs2_dinode *di = NULL;
1561 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1562 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1563 oi->ip_dyn_features);
1566 * Handle inodes which already have inline data 1st.
1568 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1569 if (mmap_page == NULL &&
1570 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1571 goto do_inline_write;
1574 * The write won't fit - we have to give this inode an
1575 * inline extent list now.
1577 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1578 if (ret)
1579 mlog_errno(ret);
1580 goto out;
1584 * Check whether the inode can accept inline data.
1586 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1587 return 0;
1590 * Check whether the write can fit.
1592 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1593 if (mmap_page ||
1594 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1595 return 0;
1597 do_inline_write:
1598 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1599 if (ret) {
1600 mlog_errno(ret);
1601 goto out;
1605 * This signals to the caller that the data can be written
1606 * inline.
1608 written = 1;
1609 out:
1610 return written ? written : ret;
1614 * This function only does anything for file systems which can't
1615 * handle sparse files.
1617 * What we want to do here is fill in any hole between the current end
1618 * of allocation and the end of our write. That way the rest of the
1619 * write path can treat it as an non-allocating write, which has no
1620 * special case code for sparse/nonsparse files.
1622 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1623 unsigned len,
1624 struct ocfs2_write_ctxt *wc)
1626 int ret;
1627 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1628 loff_t newsize = pos + len;
1630 if (ocfs2_sparse_alloc(osb))
1631 return 0;
1633 if (newsize <= i_size_read(inode))
1634 return 0;
1636 ret = ocfs2_extend_no_holes(inode, newsize, pos);
1637 if (ret)
1638 mlog_errno(ret);
1640 wc->w_first_new_cpos =
1641 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1643 return ret;
1646 int ocfs2_write_begin_nolock(struct address_space *mapping,
1647 loff_t pos, unsigned len, unsigned flags,
1648 struct page **pagep, void **fsdata,
1649 struct buffer_head *di_bh, struct page *mmap_page)
1651 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1652 unsigned int clusters_to_alloc, extents_to_split;
1653 struct ocfs2_write_ctxt *wc;
1654 struct inode *inode = mapping->host;
1655 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1656 struct ocfs2_dinode *di;
1657 struct ocfs2_alloc_context *data_ac = NULL;
1658 struct ocfs2_alloc_context *meta_ac = NULL;
1659 handle_t *handle;
1660 struct ocfs2_extent_tree et;
1662 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1663 if (ret) {
1664 mlog_errno(ret);
1665 return ret;
1668 if (ocfs2_supports_inline_data(osb)) {
1669 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1670 mmap_page, wc);
1671 if (ret == 1) {
1672 ret = 0;
1673 goto success;
1675 if (ret < 0) {
1676 mlog_errno(ret);
1677 goto out;
1681 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1682 if (ret) {
1683 mlog_errno(ret);
1684 goto out;
1687 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1688 if (ret < 0) {
1689 mlog_errno(ret);
1690 goto out;
1691 } else if (ret == 1) {
1692 ret = ocfs2_refcount_cow(inode, di_bh,
1693 wc->w_cpos, wc->w_clen, UINT_MAX);
1694 if (ret) {
1695 mlog_errno(ret);
1696 goto out;
1700 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1701 &extents_to_split);
1702 if (ret) {
1703 mlog_errno(ret);
1704 goto out;
1707 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1710 * We set w_target_from, w_target_to here so that
1711 * ocfs2_write_end() knows which range in the target page to
1712 * write out. An allocation requires that we write the entire
1713 * cluster range.
1715 if (clusters_to_alloc || extents_to_split) {
1717 * XXX: We are stretching the limits of
1718 * ocfs2_lock_allocators(). It greatly over-estimates
1719 * the work to be done.
1721 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1722 " clusters_to_add = %u, extents_to_split = %u\n",
1723 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1724 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1725 clusters_to_alloc, extents_to_split);
1727 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1728 wc->w_di_bh);
1729 ret = ocfs2_lock_allocators(inode, &et,
1730 clusters_to_alloc, extents_to_split,
1731 &data_ac, &meta_ac);
1732 if (ret) {
1733 mlog_errno(ret);
1734 goto out;
1737 credits = ocfs2_calc_extend_credits(inode->i_sb,
1738 &di->id2.i_list,
1739 clusters_to_alloc);
1744 * We have to zero sparse allocated clusters, unwritten extent clusters,
1745 * and non-sparse clusters we just extended. For non-sparse writes,
1746 * we know zeros will only be needed in the first and/or last cluster.
1748 if (clusters_to_alloc || extents_to_split ||
1749 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1750 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1751 cluster_of_pages = 1;
1752 else
1753 cluster_of_pages = 0;
1755 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1757 handle = ocfs2_start_trans(osb, credits);
1758 if (IS_ERR(handle)) {
1759 ret = PTR_ERR(handle);
1760 mlog_errno(ret);
1761 goto out;
1764 wc->w_handle = handle;
1766 if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1767 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1768 ret = -EDQUOT;
1769 goto out_commit;
1772 * We don't want this to fail in ocfs2_write_end(), so do it
1773 * here.
1775 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1776 OCFS2_JOURNAL_ACCESS_WRITE);
1777 if (ret) {
1778 mlog_errno(ret);
1779 goto out_quota;
1783 * Fill our page array first. That way we've grabbed enough so
1784 * that we can zero and flush if we error after adding the
1785 * extent.
1787 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1788 cluster_of_pages, mmap_page);
1789 if (ret) {
1790 mlog_errno(ret);
1791 goto out_quota;
1794 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1795 len);
1796 if (ret) {
1797 mlog_errno(ret);
1798 goto out_quota;
1801 if (data_ac)
1802 ocfs2_free_alloc_context(data_ac);
1803 if (meta_ac)
1804 ocfs2_free_alloc_context(meta_ac);
1806 success:
1807 *pagep = wc->w_target_page;
1808 *fsdata = wc;
1809 return 0;
1810 out_quota:
1811 if (clusters_to_alloc)
1812 vfs_dq_free_space(inode,
1813 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1814 out_commit:
1815 ocfs2_commit_trans(osb, handle);
1817 out:
1818 ocfs2_free_write_ctxt(wc);
1820 if (data_ac)
1821 ocfs2_free_alloc_context(data_ac);
1822 if (meta_ac)
1823 ocfs2_free_alloc_context(meta_ac);
1824 return ret;
1827 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1828 loff_t pos, unsigned len, unsigned flags,
1829 struct page **pagep, void **fsdata)
1831 int ret;
1832 struct buffer_head *di_bh = NULL;
1833 struct inode *inode = mapping->host;
1835 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1836 if (ret) {
1837 mlog_errno(ret);
1838 return ret;
1842 * Take alloc sem here to prevent concurrent lookups. That way
1843 * the mapping, zeroing and tree manipulation within
1844 * ocfs2_write() will be safe against ->readpage(). This
1845 * should also serve to lock out allocation from a shared
1846 * writeable region.
1848 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1850 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1851 fsdata, di_bh, NULL);
1852 if (ret) {
1853 mlog_errno(ret);
1854 goto out_fail;
1857 brelse(di_bh);
1859 return 0;
1861 out_fail:
1862 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1864 brelse(di_bh);
1865 ocfs2_inode_unlock(inode, 1);
1867 return ret;
1870 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1871 unsigned len, unsigned *copied,
1872 struct ocfs2_dinode *di,
1873 struct ocfs2_write_ctxt *wc)
1875 void *kaddr;
1877 if (unlikely(*copied < len)) {
1878 if (!PageUptodate(wc->w_target_page)) {
1879 *copied = 0;
1880 return;
1884 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1885 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1886 kunmap_atomic(kaddr, KM_USER0);
1888 mlog(0, "Data written to inode at offset %llu. "
1889 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1890 (unsigned long long)pos, *copied,
1891 le16_to_cpu(di->id2.i_data.id_count),
1892 le16_to_cpu(di->i_dyn_features));
1895 int ocfs2_write_end_nolock(struct address_space *mapping,
1896 loff_t pos, unsigned len, unsigned copied,
1897 struct page *page, void *fsdata)
1899 int i;
1900 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1901 struct inode *inode = mapping->host;
1902 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1903 struct ocfs2_write_ctxt *wc = fsdata;
1904 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1905 handle_t *handle = wc->w_handle;
1906 struct page *tmppage;
1908 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1909 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1910 goto out_write_size;
1913 if (unlikely(copied < len)) {
1914 if (!PageUptodate(wc->w_target_page))
1915 copied = 0;
1917 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1918 start+len);
1920 flush_dcache_page(wc->w_target_page);
1922 for(i = 0; i < wc->w_num_pages; i++) {
1923 tmppage = wc->w_pages[i];
1925 if (tmppage == wc->w_target_page) {
1926 from = wc->w_target_from;
1927 to = wc->w_target_to;
1929 BUG_ON(from > PAGE_CACHE_SIZE ||
1930 to > PAGE_CACHE_SIZE ||
1931 to < from);
1932 } else {
1934 * Pages adjacent to the target (if any) imply
1935 * a hole-filling write in which case we want
1936 * to flush their entire range.
1938 from = 0;
1939 to = PAGE_CACHE_SIZE;
1942 if (page_has_buffers(tmppage)) {
1943 if (ocfs2_should_order_data(inode))
1944 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1945 block_commit_write(tmppage, from, to);
1949 out_write_size:
1950 pos += copied;
1951 if (pos > inode->i_size) {
1952 i_size_write(inode, pos);
1953 mark_inode_dirty(inode);
1955 inode->i_blocks = ocfs2_inode_sector_count(inode);
1956 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1957 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1958 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1959 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1960 ocfs2_journal_dirty(handle, wc->w_di_bh);
1962 ocfs2_commit_trans(osb, handle);
1964 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1966 ocfs2_free_write_ctxt(wc);
1968 return copied;
1971 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1972 loff_t pos, unsigned len, unsigned copied,
1973 struct page *page, void *fsdata)
1975 int ret;
1976 struct inode *inode = mapping->host;
1978 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1980 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1981 ocfs2_inode_unlock(inode, 1);
1983 return ret;
1986 const struct address_space_operations ocfs2_aops = {
1987 .readpage = ocfs2_readpage,
1988 .readpages = ocfs2_readpages,
1989 .writepage = ocfs2_writepage,
1990 .write_begin = ocfs2_write_begin,
1991 .write_end = ocfs2_write_end,
1992 .bmap = ocfs2_bmap,
1993 .sync_page = block_sync_page,
1994 .direct_IO = ocfs2_direct_IO,
1995 .invalidatepage = ocfs2_invalidatepage,
1996 .releasepage = ocfs2_releasepage,
1997 .migratepage = buffer_migrate_page,
1998 .is_partially_uptodate = block_is_partially_uptodate,
1999 .error_remove_page = generic_error_remove_page,