rt2x00: Fix lock dependency errror
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blobc997d4f28ab39bd31e7e8b25adad8ea278b1c198
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
34 * Link tuning handlers
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
38 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39 return;
42 * Reset link information.
43 * Both the currently active vgc level as well as
44 * the link tuner counter should be reset. Resetting
45 * the counter is important for devices where the
46 * device should only perform link tuning during the
47 * first minute after being enabled.
49 rt2x00dev->link.count = 0;
50 rt2x00dev->link.vgc_level = 0;
53 * Reset the link tuner.
55 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
61 * Clear all (possibly) pre-existing quality statistics.
63 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
66 * The RX and TX percentage should start at 50%
67 * this will assure we will get at least get some
68 * decent value when the link tuner starts.
69 * The value will be dropped and overwritten with
70 * the correct (measured )value anyway during the
71 * first run of the link tuner.
73 rt2x00dev->link.qual.rx_percentage = 50;
74 rt2x00dev->link.qual.tx_percentage = 50;
76 rt2x00lib_reset_link_tuner(rt2x00dev);
78 queue_delayed_work(rt2x00dev->workqueue,
79 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
84 cancel_delayed_work_sync(&rt2x00dev->link.work);
88 * Radio control handlers.
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
92 int status;
95 * Don't enable the radio twice.
96 * And check if the hardware button has been disabled.
98 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100 return 0;
103 * Initialize all data queues.
105 rt2x00queue_init_rx(rt2x00dev);
106 rt2x00queue_init_tx(rt2x00dev);
109 * Enable radio.
111 status =
112 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
113 if (status)
114 return status;
116 rt2x00leds_led_radio(rt2x00dev, true);
117 rt2x00led_led_activity(rt2x00dev, true);
119 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
122 * Enable RX.
124 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
127 * Start the TX queues.
129 ieee80211_start_queues(rt2x00dev->hw);
131 return 0;
134 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
137 return;
140 * Stop the TX queues.
142 ieee80211_stop_queues(rt2x00dev->hw);
145 * Disable RX.
147 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
150 * Disable radio.
152 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
153 rt2x00led_led_activity(rt2x00dev, false);
154 rt2x00leds_led_radio(rt2x00dev, false);
157 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
160 * When we are disabling the RX, we should also stop the link tuner.
162 if (state == STATE_RADIO_RX_OFF)
163 rt2x00lib_stop_link_tuner(rt2x00dev);
165 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
168 * When we are enabling the RX, we should also start the link tuner.
170 if (state == STATE_RADIO_RX_ON &&
171 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
172 rt2x00lib_start_link_tuner(rt2x00dev);
175 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
177 enum antenna rx = rt2x00dev->link.ant.active.rx;
178 enum antenna tx = rt2x00dev->link.ant.active.tx;
179 int sample_a =
180 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
181 int sample_b =
182 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
185 * We are done sampling. Now we should evaluate the results.
187 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
190 * During the last period we have sampled the RSSI
191 * from both antenna's. It now is time to determine
192 * which antenna demonstrated the best performance.
193 * When we are already on the antenna with the best
194 * performance, then there really is nothing for us
195 * left to do.
197 if (sample_a == sample_b)
198 return;
200 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
201 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
203 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
204 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
206 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
209 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
211 enum antenna rx = rt2x00dev->link.ant.active.rx;
212 enum antenna tx = rt2x00dev->link.ant.active.tx;
213 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
214 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
217 * Legacy driver indicates that we should swap antenna's
218 * when the difference in RSSI is greater that 5. This
219 * also should be done when the RSSI was actually better
220 * then the previous sample.
221 * When the difference exceeds the threshold we should
222 * sample the rssi from the other antenna to make a valid
223 * comparison between the 2 antennas.
225 if (abs(rssi_curr - rssi_old) < 5)
226 return;
228 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
230 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
231 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
233 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
234 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
236 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
239 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
242 * Determine if software diversity is enabled for
243 * either the TX or RX antenna (or both).
244 * Always perform this check since within the link
245 * tuner interval the configuration might have changed.
247 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
248 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
250 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
251 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
252 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
253 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
254 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
255 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
257 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
258 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
259 rt2x00dev->link.ant.flags = 0;
260 return;
264 * If we have only sampled the data over the last period
265 * we should now harvest the data. Otherwise just evaluate
266 * the data. The latter should only be performed once
267 * every 2 seconds.
269 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
270 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
271 else if (rt2x00dev->link.count & 1)
272 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
275 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
277 int avg_rssi = rssi;
280 * Update global RSSI
282 if (link->qual.avg_rssi)
283 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
284 link->qual.avg_rssi = avg_rssi;
287 * Update antenna RSSI
289 if (link->ant.rssi_ant)
290 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
291 link->ant.rssi_ant = rssi;
294 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
296 if (qual->rx_failed || qual->rx_success)
297 qual->rx_percentage =
298 (qual->rx_success * 100) /
299 (qual->rx_failed + qual->rx_success);
300 else
301 qual->rx_percentage = 50;
303 if (qual->tx_failed || qual->tx_success)
304 qual->tx_percentage =
305 (qual->tx_success * 100) /
306 (qual->tx_failed + qual->tx_success);
307 else
308 qual->tx_percentage = 50;
310 qual->rx_success = 0;
311 qual->rx_failed = 0;
312 qual->tx_success = 0;
313 qual->tx_failed = 0;
316 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
317 int rssi)
319 int rssi_percentage = 0;
320 int signal;
323 * We need a positive value for the RSSI.
325 if (rssi < 0)
326 rssi += rt2x00dev->rssi_offset;
329 * Calculate the different percentages,
330 * which will be used for the signal.
332 if (rt2x00dev->rssi_offset)
333 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
336 * Add the individual percentages and use the WEIGHT
337 * defines to calculate the current link signal.
339 signal = ((WEIGHT_RSSI * rssi_percentage) +
340 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
341 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
343 return (signal > 100) ? 100 : signal;
346 static void rt2x00lib_link_tuner(struct work_struct *work)
348 struct rt2x00_dev *rt2x00dev =
349 container_of(work, struct rt2x00_dev, link.work.work);
352 * When the radio is shutting down we should
353 * immediately cease all link tuning.
355 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
356 return;
359 * Update statistics.
361 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
362 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
363 rt2x00dev->link.qual.rx_failed;
366 * Only perform the link tuning when Link tuning
367 * has been enabled (This could have been disabled from the EEPROM).
369 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
370 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
373 * Precalculate a portion of the link signal which is
374 * in based on the tx/rx success/failure counters.
376 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
379 * Send a signal to the led to update the led signal strength.
381 rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
384 * Evaluate antenna setup, make this the last step since this could
385 * possibly reset some statistics.
387 rt2x00lib_evaluate_antenna(rt2x00dev);
390 * Increase tuner counter, and reschedule the next link tuner run.
392 rt2x00dev->link.count++;
393 queue_delayed_work(rt2x00dev->workqueue,
394 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
397 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
399 struct rt2x00_dev *rt2x00dev =
400 container_of(work, struct rt2x00_dev, filter_work);
402 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
405 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
406 struct ieee80211_vif *vif)
408 struct rt2x00_dev *rt2x00dev = data;
409 struct rt2x00_intf *intf = vif_to_intf(vif);
410 struct sk_buff *skb;
411 struct ieee80211_tx_control control;
412 struct ieee80211_bss_conf conf;
413 int delayed_flags;
416 * Copy all data we need during this action under the protection
417 * of a spinlock. Otherwise race conditions might occur which results
418 * into an invalid configuration.
420 spin_lock(&intf->lock);
422 memcpy(&conf, &intf->conf, sizeof(conf));
423 delayed_flags = intf->delayed_flags;
424 intf->delayed_flags = 0;
426 spin_unlock(&intf->lock);
429 * It is possible the radio was disabled while the work had been
430 * scheduled. If that happens we should return here immediately,
431 * note that in the spinlock protected area above the delayed_flags
432 * have been cleared correctly.
434 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
435 return;
437 if (delayed_flags & DELAYED_UPDATE_BEACON) {
438 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
439 if (skb && rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw,
440 skb, &control))
441 dev_kfree_skb(skb);
444 if (delayed_flags & DELAYED_CONFIG_ERP)
445 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
447 if (delayed_flags & DELAYED_LED_ASSOC)
448 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
451 static void rt2x00lib_intf_scheduled(struct work_struct *work)
453 struct rt2x00_dev *rt2x00dev =
454 container_of(work, struct rt2x00_dev, intf_work);
457 * Iterate over each interface and perform the
458 * requested configurations.
460 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
461 rt2x00lib_intf_scheduled_iter,
462 rt2x00dev);
466 * Interrupt context handlers.
468 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
469 struct ieee80211_vif *vif)
471 struct rt2x00_intf *intf = vif_to_intf(vif);
473 if (vif->type != IEEE80211_IF_TYPE_AP &&
474 vif->type != IEEE80211_IF_TYPE_IBSS)
475 return;
477 spin_lock(&intf->lock);
478 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
479 spin_unlock(&intf->lock);
482 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
484 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
485 return;
487 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
488 rt2x00lib_beacondone_iter,
489 rt2x00dev);
491 queue_work(rt2x00dev->workqueue, &rt2x00dev->intf_work);
493 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
495 void rt2x00lib_txdone(struct queue_entry *entry,
496 struct txdone_entry_desc *txdesc)
498 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
499 struct skb_frame_desc *skbdesc;
500 struct ieee80211_tx_status tx_status;
501 int success = !!(txdesc->status == TX_SUCCESS ||
502 txdesc->status == TX_SUCCESS_RETRY);
503 int fail = !!(txdesc->status == TX_FAIL_RETRY ||
504 txdesc->status == TX_FAIL_INVALID ||
505 txdesc->status == TX_FAIL_OTHER);
508 * Update TX statistics.
510 rt2x00dev->link.qual.tx_success += success;
511 rt2x00dev->link.qual.tx_failed += fail;
514 * Initialize TX status
516 tx_status.flags = 0;
517 tx_status.ack_signal = 0;
518 tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
519 tx_status.retry_count = txdesc->retry;
520 memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
522 if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
523 if (success)
524 tx_status.flags |= IEEE80211_TX_STATUS_ACK;
525 else
526 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
529 tx_status.queue_length = entry->queue->limit;
530 tx_status.queue_number = tx_status.control.queue;
532 if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
533 if (success)
534 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
535 else
536 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
540 * Send the tx_status to debugfs. Only send the status report
541 * to mac80211 when the frame originated from there. If this was
542 * a extra frame coming through a mac80211 library call (RTS/CTS)
543 * then we should not send the status report back.
544 * If send to mac80211, mac80211 will clean up the skb structure,
545 * otherwise we have to do it ourself.
547 skbdesc = get_skb_frame_desc(entry->skb);
548 skbdesc->frame_type = DUMP_FRAME_TXDONE;
550 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
552 if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
553 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
554 entry->skb, &tx_status);
555 else
556 dev_kfree_skb(entry->skb);
557 entry->skb = NULL;
559 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
561 void rt2x00lib_rxdone(struct queue_entry *entry,
562 struct rxdone_entry_desc *rxdesc)
564 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
565 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
566 struct ieee80211_supported_band *sband;
567 struct ieee80211_hdr *hdr;
568 const struct rt2x00_rate *rate;
569 unsigned int i;
570 int idx = -1;
571 u16 fc;
574 * Update RX statistics.
576 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
577 for (i = 0; i < sband->n_bitrates; i++) {
578 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
580 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
581 (rate->plcp == rxdesc->signal)) ||
582 (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
583 (rate->bitrate == rxdesc->signal))) {
584 idx = i;
585 break;
589 if (idx < 0) {
590 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
591 "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
592 !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
593 idx = 0;
597 * Only update link status if this is a beacon frame carrying our bssid.
599 hdr = (struct ieee80211_hdr *)entry->skb->data;
600 fc = le16_to_cpu(hdr->frame_control);
601 if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
602 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
604 rt2x00dev->link.qual.rx_success++;
606 rx_status->rate_idx = idx;
607 rx_status->signal =
608 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
609 rx_status->ssi = rxdesc->rssi;
610 rx_status->flag = rxdesc->flags;
611 rx_status->antenna = rt2x00dev->link.ant.active.rx;
614 * Send frame to mac80211 & debugfs.
615 * mac80211 will clean up the skb structure.
617 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
618 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
619 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
620 entry->skb = NULL;
622 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
625 * TX descriptor initializer
627 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
628 struct sk_buff *skb,
629 struct ieee80211_tx_control *control)
631 struct txentry_desc txdesc;
632 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
633 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
634 const struct rt2x00_rate *rate;
635 int tx_rate;
636 int length;
637 int duration;
638 int residual;
639 u16 frame_control;
640 u16 seq_ctrl;
642 memset(&txdesc, 0, sizeof(txdesc));
644 txdesc.queue = skbdesc->entry->queue->qid;
645 txdesc.cw_min = skbdesc->entry->queue->cw_min;
646 txdesc.cw_max = skbdesc->entry->queue->cw_max;
647 txdesc.aifs = skbdesc->entry->queue->aifs;
650 * Read required fields from ieee80211 header.
652 frame_control = le16_to_cpu(hdr->frame_control);
653 seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
655 tx_rate = control->tx_rate->hw_value;
658 * Check whether this frame is to be acked
660 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
661 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
664 * Check if this is a RTS/CTS frame
666 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
667 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
668 if (is_rts_frame(frame_control)) {
669 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
670 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
671 } else
672 __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
673 if (control->rts_cts_rate)
674 tx_rate = control->rts_cts_rate->hw_value;
677 rate = rt2x00_get_rate(tx_rate);
680 * Check if more fragments are pending
682 if (ieee80211_get_morefrag(hdr)) {
683 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
684 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
688 * Beacons and probe responses require the tsf timestamp
689 * to be inserted into the frame.
691 if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
692 is_probe_resp(frame_control))
693 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
696 * Determine with what IFS priority this frame should be send.
697 * Set ifs to IFS_SIFS when the this is not the first fragment,
698 * or this fragment came after RTS/CTS.
700 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
701 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
702 txdesc.ifs = IFS_SIFS;
703 else
704 txdesc.ifs = IFS_BACKOFF;
707 * PLCP setup
708 * Length calculation depends on OFDM/CCK rate.
710 txdesc.signal = rate->plcp;
711 txdesc.service = 0x04;
713 length = skbdesc->data_len + FCS_LEN;
714 if (rate->flags & DEV_RATE_OFDM) {
715 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
717 txdesc.length_high = (length >> 6) & 0x3f;
718 txdesc.length_low = length & 0x3f;
719 } else {
721 * Convert length to microseconds.
723 residual = get_duration_res(length, rate->bitrate);
724 duration = get_duration(length, rate->bitrate);
726 if (residual != 0) {
727 duration++;
730 * Check if we need to set the Length Extension
732 if (rate->bitrate == 110 && residual <= 30)
733 txdesc.service |= 0x80;
736 txdesc.length_high = (duration >> 8) & 0xff;
737 txdesc.length_low = duration & 0xff;
740 * When preamble is enabled we should set the
741 * preamble bit for the signal.
743 if (rt2x00_get_rate_preamble(tx_rate))
744 txdesc.signal |= 0x08;
747 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
750 * Update queue entry.
752 skbdesc->entry->skb = skb;
755 * The frame has been completely initialized and ready
756 * for sending to the device. The caller will push the
757 * frame to the device, but we are going to push the
758 * frame to debugfs here.
760 skbdesc->frame_type = DUMP_FRAME_TX;
761 rt2x00debug_dump_frame(rt2x00dev, skb);
763 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
766 * Driver initialization handlers.
768 const struct rt2x00_rate rt2x00_supported_rates[12] = {
770 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
771 .bitrate = 10,
772 .ratemask = BIT(0),
773 .plcp = 0x00,
776 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
777 .bitrate = 20,
778 .ratemask = BIT(1),
779 .plcp = 0x01,
782 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
783 .bitrate = 55,
784 .ratemask = BIT(2),
785 .plcp = 0x02,
788 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
789 .bitrate = 110,
790 .ratemask = BIT(3),
791 .plcp = 0x03,
794 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
795 .bitrate = 60,
796 .ratemask = BIT(4),
797 .plcp = 0x0b,
800 .flags = DEV_RATE_OFDM,
801 .bitrate = 90,
802 .ratemask = BIT(5),
803 .plcp = 0x0f,
806 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
807 .bitrate = 120,
808 .ratemask = BIT(6),
809 .plcp = 0x0a,
812 .flags = DEV_RATE_OFDM,
813 .bitrate = 180,
814 .ratemask = BIT(7),
815 .plcp = 0x0e,
818 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
819 .bitrate = 240,
820 .ratemask = BIT(8),
821 .plcp = 0x09,
824 .flags = DEV_RATE_OFDM,
825 .bitrate = 360,
826 .ratemask = BIT(9),
827 .plcp = 0x0d,
830 .flags = DEV_RATE_OFDM,
831 .bitrate = 480,
832 .ratemask = BIT(10),
833 .plcp = 0x08,
836 .flags = DEV_RATE_OFDM,
837 .bitrate = 540,
838 .ratemask = BIT(11),
839 .plcp = 0x0c,
843 static void rt2x00lib_channel(struct ieee80211_channel *entry,
844 const int channel, const int tx_power,
845 const int value)
847 entry->center_freq = ieee80211_channel_to_frequency(channel);
848 entry->hw_value = value;
849 entry->max_power = tx_power;
850 entry->max_antenna_gain = 0xff;
853 static void rt2x00lib_rate(struct ieee80211_rate *entry,
854 const u16 index, const struct rt2x00_rate *rate)
856 entry->flags = 0;
857 entry->bitrate = rate->bitrate;
858 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
859 entry->hw_value_short = entry->hw_value;
861 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
862 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
863 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
867 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
868 struct hw_mode_spec *spec)
870 struct ieee80211_hw *hw = rt2x00dev->hw;
871 struct ieee80211_channel *channels;
872 struct ieee80211_rate *rates;
873 unsigned int num_rates;
874 unsigned int i;
875 unsigned char tx_power;
877 num_rates = 0;
878 if (spec->supported_rates & SUPPORT_RATE_CCK)
879 num_rates += 4;
880 if (spec->supported_rates & SUPPORT_RATE_OFDM)
881 num_rates += 8;
883 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
884 if (!channels)
885 return -ENOMEM;
887 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
888 if (!rates)
889 goto exit_free_channels;
892 * Initialize Rate list.
894 for (i = 0; i < num_rates; i++)
895 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
898 * Initialize Channel list.
900 for (i = 0; i < spec->num_channels; i++) {
901 if (spec->channels[i].channel <= 14) {
902 if (spec->tx_power_bg)
903 tx_power = spec->tx_power_bg[i];
904 else
905 tx_power = spec->tx_power_default;
906 } else {
907 if (spec->tx_power_a)
908 tx_power = spec->tx_power_a[i];
909 else
910 tx_power = spec->tx_power_default;
913 rt2x00lib_channel(&channels[i],
914 spec->channels[i].channel, tx_power, i);
918 * Intitialize 802.11b, 802.11g
919 * Rates: CCK, OFDM.
920 * Channels: 2.4 GHz
922 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
923 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
924 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
925 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
926 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
927 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
928 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
932 * Intitialize 802.11a
933 * Rates: OFDM.
934 * Channels: OFDM, UNII, HiperLAN2.
936 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
937 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
938 spec->num_channels - 14;
939 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
940 num_rates - 4;
941 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
942 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
943 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
944 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
947 return 0;
949 exit_free_channels:
950 kfree(channels);
951 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
952 return -ENOMEM;
955 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
957 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
958 ieee80211_unregister_hw(rt2x00dev->hw);
960 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
961 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
962 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
963 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
964 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
968 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
970 struct hw_mode_spec *spec = &rt2x00dev->spec;
971 int status;
974 * Initialize HW modes.
976 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
977 if (status)
978 return status;
981 * Register HW.
983 status = ieee80211_register_hw(rt2x00dev->hw);
984 if (status) {
985 rt2x00lib_remove_hw(rt2x00dev);
986 return status;
989 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
991 return 0;
995 * Initialization/uninitialization handlers.
997 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
999 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1000 return;
1003 * Unregister extra components.
1005 rt2x00rfkill_unregister(rt2x00dev);
1008 * Allow the HW to uninitialize.
1010 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1013 * Free allocated queue entries.
1015 rt2x00queue_uninitialize(rt2x00dev);
1018 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1020 int status;
1022 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1023 return 0;
1026 * Allocate all queue entries.
1028 status = rt2x00queue_initialize(rt2x00dev);
1029 if (status)
1030 return status;
1033 * Initialize the device.
1035 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1036 if (status) {
1037 rt2x00queue_uninitialize(rt2x00dev);
1038 return status;
1041 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1044 * Register the extra components.
1046 rt2x00rfkill_register(rt2x00dev);
1048 return 0;
1051 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1053 int retval;
1055 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1056 return 0;
1059 * If this is the first interface which is added,
1060 * we should load the firmware now.
1062 retval = rt2x00lib_load_firmware(rt2x00dev);
1063 if (retval)
1064 return retval;
1067 * Initialize the device.
1069 retval = rt2x00lib_initialize(rt2x00dev);
1070 if (retval)
1071 return retval;
1074 * Enable radio.
1076 retval = rt2x00lib_enable_radio(rt2x00dev);
1077 if (retval) {
1078 rt2x00lib_uninitialize(rt2x00dev);
1079 return retval;
1082 rt2x00dev->intf_ap_count = 0;
1083 rt2x00dev->intf_sta_count = 0;
1084 rt2x00dev->intf_associated = 0;
1086 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1088 return 0;
1091 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1093 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1094 return;
1097 * Perhaps we can add something smarter here,
1098 * but for now just disabling the radio should do.
1100 rt2x00lib_disable_radio(rt2x00dev);
1102 rt2x00dev->intf_ap_count = 0;
1103 rt2x00dev->intf_sta_count = 0;
1104 rt2x00dev->intf_associated = 0;
1106 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1110 * driver allocation handlers.
1112 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1114 int retval = -ENOMEM;
1117 * Make room for rt2x00_intf inside the per-interface
1118 * structure ieee80211_vif.
1120 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1123 * Let the driver probe the device to detect the capabilities.
1125 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1126 if (retval) {
1127 ERROR(rt2x00dev, "Failed to allocate device.\n");
1128 goto exit;
1132 * Initialize configuration work.
1134 rt2x00dev->workqueue = create_singlethread_workqueue("rt2x00lib");
1135 if (!rt2x00dev->workqueue)
1136 goto exit;
1138 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1139 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1140 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1143 * Allocate queue array.
1145 retval = rt2x00queue_allocate(rt2x00dev);
1146 if (retval)
1147 goto exit;
1150 * Initialize ieee80211 structure.
1152 retval = rt2x00lib_probe_hw(rt2x00dev);
1153 if (retval) {
1154 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1155 goto exit;
1159 * Register extra components.
1161 rt2x00leds_register(rt2x00dev);
1162 rt2x00rfkill_allocate(rt2x00dev);
1163 rt2x00debug_register(rt2x00dev);
1165 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1167 return 0;
1169 exit:
1170 rt2x00lib_remove_dev(rt2x00dev);
1172 return retval;
1174 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1176 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1178 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1181 * Disable radio.
1183 rt2x00lib_disable_radio(rt2x00dev);
1186 * Uninitialize device.
1188 rt2x00lib_uninitialize(rt2x00dev);
1191 * Free extra components
1193 rt2x00debug_deregister(rt2x00dev);
1194 rt2x00rfkill_free(rt2x00dev);
1195 rt2x00leds_unregister(rt2x00dev);
1198 * Stop all queued work. Note that most tasks will already be halted
1199 * during rt2x00lib_disable_radio() and rt2x00lib_uninitialize().
1201 flush_workqueue(rt2x00dev->workqueue);
1202 destroy_workqueue(rt2x00dev->workqueue);
1205 * Free ieee80211_hw memory.
1207 rt2x00lib_remove_hw(rt2x00dev);
1210 * Free firmware image.
1212 rt2x00lib_free_firmware(rt2x00dev);
1215 * Free queue structures.
1217 rt2x00queue_free(rt2x00dev);
1219 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1222 * Device state handlers
1224 #ifdef CONFIG_PM
1225 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1227 int retval;
1229 NOTICE(rt2x00dev, "Going to sleep.\n");
1230 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1233 * Only continue if mac80211 has open interfaces.
1235 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1236 goto exit;
1237 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1240 * Disable radio.
1242 rt2x00lib_stop(rt2x00dev);
1243 rt2x00lib_uninitialize(rt2x00dev);
1246 * Suspend/disable extra components.
1248 rt2x00leds_suspend(rt2x00dev);
1249 rt2x00rfkill_suspend(rt2x00dev);
1250 rt2x00debug_deregister(rt2x00dev);
1252 exit:
1254 * Set device mode to sleep for power management,
1255 * on some hardware this call seems to consistently fail.
1256 * From the specifications it is hard to tell why it fails,
1257 * and if this is a "bad thing".
1258 * Overall it is safe to just ignore the failure and
1259 * continue suspending. The only downside is that the
1260 * device will not be in optimal power save mode, but with
1261 * the radio and the other components already disabled the
1262 * device is as good as disabled.
1264 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1265 if (retval)
1266 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1267 "continue suspending.\n");
1269 return 0;
1271 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1273 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1274 struct ieee80211_vif *vif)
1276 struct rt2x00_dev *rt2x00dev = data;
1277 struct rt2x00_intf *intf = vif_to_intf(vif);
1279 spin_lock(&intf->lock);
1281 rt2x00lib_config_intf(rt2x00dev, intf,
1282 vif->type, intf->mac, intf->bssid);
1286 * Master or Ad-hoc mode require a new beacon update.
1288 if (vif->type == IEEE80211_IF_TYPE_AP ||
1289 vif->type == IEEE80211_IF_TYPE_IBSS)
1290 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1292 spin_unlock(&intf->lock);
1295 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1297 int retval;
1299 NOTICE(rt2x00dev, "Waking up.\n");
1302 * Restore/enable extra components.
1304 rt2x00debug_register(rt2x00dev);
1305 rt2x00rfkill_resume(rt2x00dev);
1306 rt2x00leds_resume(rt2x00dev);
1309 * Only continue if mac80211 had open interfaces.
1311 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1312 return 0;
1315 * Reinitialize device and all active interfaces.
1317 retval = rt2x00lib_start(rt2x00dev);
1318 if (retval)
1319 goto exit;
1322 * Reconfigure device.
1324 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1325 if (!rt2x00dev->hw->conf.radio_enabled)
1326 rt2x00lib_disable_radio(rt2x00dev);
1329 * Iterator over each active interface to
1330 * reconfigure the hardware.
1332 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1333 rt2x00lib_resume_intf, rt2x00dev);
1336 * We are ready again to receive requests from mac80211.
1338 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1341 * It is possible that during that mac80211 has attempted
1342 * to send frames while we were suspending or resuming.
1343 * In that case we have disabled the TX queue and should
1344 * now enable it again
1346 ieee80211_start_queues(rt2x00dev->hw);
1349 * During interface iteration we might have changed the
1350 * delayed_flags, time to handles the event by calling
1351 * the work handler directly.
1353 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1355 return 0;
1357 exit:
1358 rt2x00lib_disable_radio(rt2x00dev);
1359 rt2x00lib_uninitialize(rt2x00dev);
1360 rt2x00debug_deregister(rt2x00dev);
1362 return retval;
1364 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1365 #endif /* CONFIG_PM */
1368 * rt2x00lib module information.
1370 MODULE_AUTHOR(DRV_PROJECT);
1371 MODULE_VERSION(DRV_VERSION);
1372 MODULE_DESCRIPTION("rt2x00 library");
1373 MODULE_LICENSE("GPL");