Btrfs: check return value of read_tree_block()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / firewire / core-card.c
blob24ff35511e2b1b6a890e7fc9f9499e75c74459d1
1 /*
2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/workqueue.h>
35 #include <asm/atomic.h>
36 #include <asm/byteorder.h>
38 #include "core.h"
40 int fw_compute_block_crc(__be32 *block)
42 int length;
43 u16 crc;
45 length = (be32_to_cpu(block[0]) >> 16) & 0xff;
46 crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
47 *block |= cpu_to_be32(crc);
49 return length;
52 static DEFINE_MUTEX(card_mutex);
53 static LIST_HEAD(card_list);
55 static LIST_HEAD(descriptor_list);
56 static int descriptor_count;
58 static __be32 tmp_config_rom[256];
59 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
60 static size_t config_rom_length = 1 + 4 + 1 + 1;
62 #define BIB_CRC(v) ((v) << 0)
63 #define BIB_CRC_LENGTH(v) ((v) << 16)
64 #define BIB_INFO_LENGTH(v) ((v) << 24)
65 #define BIB_BUS_NAME 0x31333934 /* "1394" */
66 #define BIB_LINK_SPEED(v) ((v) << 0)
67 #define BIB_GENERATION(v) ((v) << 4)
68 #define BIB_MAX_ROM(v) ((v) << 8)
69 #define BIB_MAX_RECEIVE(v) ((v) << 12)
70 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
71 #define BIB_PMC ((1) << 27)
72 #define BIB_BMC ((1) << 28)
73 #define BIB_ISC ((1) << 29)
74 #define BIB_CMC ((1) << 30)
75 #define BIB_IRMC ((1) << 31)
76 #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
78 #define CANON_OUI 0x000085
80 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
82 struct fw_descriptor *desc;
83 int i, j, k, length;
86 * Initialize contents of config rom buffer. On the OHCI
87 * controller, block reads to the config rom accesses the host
88 * memory, but quadlet read access the hardware bus info block
89 * registers. That's just crack, but it means we should make
90 * sure the contents of bus info block in host memory matches
91 * the version stored in the OHCI registers.
94 config_rom[0] = cpu_to_be32(
95 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
96 config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
97 config_rom[2] = cpu_to_be32(
98 BIB_LINK_SPEED(card->link_speed) |
99 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
100 BIB_MAX_ROM(2) |
101 BIB_MAX_RECEIVE(card->max_receive) |
102 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
103 config_rom[3] = cpu_to_be32(card->guid >> 32);
104 config_rom[4] = cpu_to_be32(card->guid);
106 /* Generate root directory. */
107 config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
108 i = 7;
109 j = 7 + descriptor_count;
111 /* Generate root directory entries for descriptors. */
112 list_for_each_entry (desc, &descriptor_list, link) {
113 if (desc->immediate > 0)
114 config_rom[i++] = cpu_to_be32(desc->immediate);
115 config_rom[i] = cpu_to_be32(desc->key | (j - i));
116 i++;
117 j += desc->length;
120 /* Update root directory length. */
121 config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
123 /* End of root directory, now copy in descriptors. */
124 list_for_each_entry (desc, &descriptor_list, link) {
125 for (k = 0; k < desc->length; k++)
126 config_rom[i + k] = cpu_to_be32(desc->data[k]);
127 i += desc->length;
130 /* Calculate CRCs for all blocks in the config rom. This
131 * assumes that CRC length and info length are identical for
132 * the bus info block, which is always the case for this
133 * implementation. */
134 for (i = 0; i < j; i += length + 1)
135 length = fw_compute_block_crc(config_rom + i);
137 WARN_ON(j != config_rom_length);
140 static void update_config_roms(void)
142 struct fw_card *card;
144 list_for_each_entry (card, &card_list, link) {
145 generate_config_rom(card, tmp_config_rom);
146 card->driver->set_config_rom(card, tmp_config_rom,
147 config_rom_length);
151 static size_t required_space(struct fw_descriptor *desc)
153 /* descriptor + entry into root dir + optional immediate entry */
154 return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
157 int fw_core_add_descriptor(struct fw_descriptor *desc)
159 size_t i;
160 int ret;
163 * Check descriptor is valid; the length of all blocks in the
164 * descriptor has to add up to exactly the length of the
165 * block.
167 i = 0;
168 while (i < desc->length)
169 i += (desc->data[i] >> 16) + 1;
171 if (i != desc->length)
172 return -EINVAL;
174 mutex_lock(&card_mutex);
176 if (config_rom_length + required_space(desc) > 256) {
177 ret = -EBUSY;
178 } else {
179 list_add_tail(&desc->link, &descriptor_list);
180 config_rom_length += required_space(desc);
181 descriptor_count++;
182 if (desc->immediate > 0)
183 descriptor_count++;
184 update_config_roms();
185 ret = 0;
188 mutex_unlock(&card_mutex);
190 return ret;
192 EXPORT_SYMBOL(fw_core_add_descriptor);
194 void fw_core_remove_descriptor(struct fw_descriptor *desc)
196 mutex_lock(&card_mutex);
198 list_del(&desc->link);
199 config_rom_length -= required_space(desc);
200 descriptor_count--;
201 if (desc->immediate > 0)
202 descriptor_count--;
203 update_config_roms();
205 mutex_unlock(&card_mutex);
207 EXPORT_SYMBOL(fw_core_remove_descriptor);
209 static int reset_bus(struct fw_card *card, bool short_reset)
211 int reg = short_reset ? 5 : 1;
212 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
214 return card->driver->update_phy_reg(card, reg, 0, bit);
217 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
219 /* We don't try hard to sort out requests of long vs. short resets. */
220 card->br_short = short_reset;
222 /* Use an arbitrary short delay to combine multiple reset requests. */
223 fw_card_get(card);
224 if (!schedule_delayed_work(&card->br_work,
225 delayed ? DIV_ROUND_UP(HZ, 100) : 0))
226 fw_card_put(card);
228 EXPORT_SYMBOL(fw_schedule_bus_reset);
230 static void br_work(struct work_struct *work)
232 struct fw_card *card = container_of(work, struct fw_card, br_work.work);
234 /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
235 if (card->reset_jiffies != 0 &&
236 time_is_after_jiffies(card->reset_jiffies + 2 * HZ)) {
237 if (!schedule_delayed_work(&card->br_work, 2 * HZ))
238 fw_card_put(card);
239 return;
242 fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
243 FW_PHY_CONFIG_CURRENT_GAP_COUNT);
244 reset_bus(card, card->br_short);
245 fw_card_put(card);
248 static void allocate_broadcast_channel(struct fw_card *card, int generation)
250 int channel, bandwidth = 0;
252 if (!card->broadcast_channel_allocated) {
253 fw_iso_resource_manage(card, generation, 1ULL << 31,
254 &channel, &bandwidth, true,
255 card->bm_transaction_data);
256 if (channel != 31) {
257 fw_notify("failed to allocate broadcast channel\n");
258 return;
260 card->broadcast_channel_allocated = true;
263 device_for_each_child(card->device, (void *)(long)generation,
264 fw_device_set_broadcast_channel);
267 static const char gap_count_table[] = {
268 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
271 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
273 fw_card_get(card);
274 if (!schedule_delayed_work(&card->bm_work, delay))
275 fw_card_put(card);
278 static void bm_work(struct work_struct *work)
280 struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
281 struct fw_device *root_device, *irm_device;
282 struct fw_node *root_node;
283 int root_id, new_root_id, irm_id, bm_id, local_id;
284 int gap_count, generation, grace, rcode;
285 bool do_reset = false;
286 bool root_device_is_running;
287 bool root_device_is_cmc;
288 bool irm_is_1394_1995_only;
289 bool keep_this_irm;
291 spin_lock_irq(&card->lock);
293 if (card->local_node == NULL) {
294 spin_unlock_irq(&card->lock);
295 goto out_put_card;
298 generation = card->generation;
300 root_node = card->root_node;
301 fw_node_get(root_node);
302 root_device = root_node->data;
303 root_device_is_running = root_device &&
304 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
305 root_device_is_cmc = root_device && root_device->cmc;
307 irm_device = card->irm_node->data;
308 irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
309 (irm_device->config_rom[2] & 0x000000f0) == 0;
311 /* Canon MV5i works unreliably if it is not root node. */
312 keep_this_irm = irm_device && irm_device->config_rom &&
313 irm_device->config_rom[3] >> 8 == CANON_OUI;
315 root_id = root_node->node_id;
316 irm_id = card->irm_node->node_id;
317 local_id = card->local_node->node_id;
319 grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
321 if ((is_next_generation(generation, card->bm_generation) &&
322 !card->bm_abdicate) ||
323 (card->bm_generation != generation && grace)) {
325 * This first step is to figure out who is IRM and
326 * then try to become bus manager. If the IRM is not
327 * well defined (e.g. does not have an active link
328 * layer or does not responds to our lock request, we
329 * will have to do a little vigilante bus management.
330 * In that case, we do a goto into the gap count logic
331 * so that when we do the reset, we still optimize the
332 * gap count. That could well save a reset in the
333 * next generation.
336 if (!card->irm_node->link_on) {
337 new_root_id = local_id;
338 fw_notify("%s, making local node (%02x) root.\n",
339 "IRM has link off", new_root_id);
340 goto pick_me;
343 if (irm_is_1394_1995_only && !keep_this_irm) {
344 new_root_id = local_id;
345 fw_notify("%s, making local node (%02x) root.\n",
346 "IRM is not 1394a compliant", new_root_id);
347 goto pick_me;
350 card->bm_transaction_data[0] = cpu_to_be32(0x3f);
351 card->bm_transaction_data[1] = cpu_to_be32(local_id);
353 spin_unlock_irq(&card->lock);
355 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
356 irm_id, generation, SCODE_100,
357 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
358 card->bm_transaction_data, 8);
360 if (rcode == RCODE_GENERATION)
361 /* Another bus reset, BM work has been rescheduled. */
362 goto out;
364 bm_id = be32_to_cpu(card->bm_transaction_data[0]);
366 spin_lock_irq(&card->lock);
367 if (rcode == RCODE_COMPLETE && generation == card->generation)
368 card->bm_node_id =
369 bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
370 spin_unlock_irq(&card->lock);
372 if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
373 /* Somebody else is BM. Only act as IRM. */
374 if (local_id == irm_id)
375 allocate_broadcast_channel(card, generation);
377 goto out;
380 if (rcode == RCODE_SEND_ERROR) {
382 * We have been unable to send the lock request due to
383 * some local problem. Let's try again later and hope
384 * that the problem has gone away by then.
386 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
387 goto out;
390 spin_lock_irq(&card->lock);
392 if (rcode != RCODE_COMPLETE && !keep_this_irm) {
394 * The lock request failed, maybe the IRM
395 * isn't really IRM capable after all. Let's
396 * do a bus reset and pick the local node as
397 * root, and thus, IRM.
399 new_root_id = local_id;
400 fw_notify("%s, making local node (%02x) root.\n",
401 "BM lock failed", new_root_id);
402 goto pick_me;
404 } else if (card->bm_generation != generation) {
406 * We weren't BM in the last generation, and the last
407 * bus reset is less than 125ms ago. Reschedule this job.
409 spin_unlock_irq(&card->lock);
410 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
411 goto out;
415 * We're bus manager for this generation, so next step is to
416 * make sure we have an active cycle master and do gap count
417 * optimization.
419 card->bm_generation = generation;
421 if (root_device == NULL) {
423 * Either link_on is false, or we failed to read the
424 * config rom. In either case, pick another root.
426 new_root_id = local_id;
427 } else if (!root_device_is_running) {
429 * If we haven't probed this device yet, bail out now
430 * and let's try again once that's done.
432 spin_unlock_irq(&card->lock);
433 goto out;
434 } else if (root_device_is_cmc) {
436 * We will send out a force root packet for this
437 * node as part of the gap count optimization.
439 new_root_id = root_id;
440 } else {
442 * Current root has an active link layer and we
443 * successfully read the config rom, but it's not
444 * cycle master capable.
446 new_root_id = local_id;
449 pick_me:
451 * Pick a gap count from 1394a table E-1. The table doesn't cover
452 * the typically much larger 1394b beta repeater delays though.
454 if (!card->beta_repeaters_present &&
455 root_node->max_hops < ARRAY_SIZE(gap_count_table))
456 gap_count = gap_count_table[root_node->max_hops];
457 else
458 gap_count = 63;
461 * Finally, figure out if we should do a reset or not. If we have
462 * done less than 5 resets with the same physical topology and we
463 * have either a new root or a new gap count setting, let's do it.
466 if (card->bm_retries++ < 5 &&
467 (card->gap_count != gap_count || new_root_id != root_id))
468 do_reset = true;
470 spin_unlock_irq(&card->lock);
472 if (do_reset) {
473 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
474 card->index, new_root_id, gap_count);
475 fw_send_phy_config(card, new_root_id, generation, gap_count);
476 reset_bus(card, true);
477 /* Will allocate broadcast channel after the reset. */
478 goto out;
481 if (root_device_is_cmc) {
483 * Make sure that the cycle master sends cycle start packets.
485 card->bm_transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
486 rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
487 root_id, generation, SCODE_100,
488 CSR_REGISTER_BASE + CSR_STATE_SET,
489 card->bm_transaction_data, 4);
490 if (rcode == RCODE_GENERATION)
491 goto out;
494 if (local_id == irm_id)
495 allocate_broadcast_channel(card, generation);
497 out:
498 fw_node_put(root_node);
499 out_put_card:
500 fw_card_put(card);
503 void fw_card_initialize(struct fw_card *card,
504 const struct fw_card_driver *driver,
505 struct device *device)
507 static atomic_t index = ATOMIC_INIT(-1);
509 card->index = atomic_inc_return(&index);
510 card->driver = driver;
511 card->device = device;
512 card->current_tlabel = 0;
513 card->tlabel_mask = 0;
514 card->split_timeout_hi = 0;
515 card->split_timeout_lo = 800 << 19;
516 card->split_timeout_cycles = 800;
517 card->split_timeout_jiffies = DIV_ROUND_UP(HZ, 10);
518 card->color = 0;
519 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
521 kref_init(&card->kref);
522 init_completion(&card->done);
523 INIT_LIST_HEAD(&card->transaction_list);
524 INIT_LIST_HEAD(&card->phy_receiver_list);
525 spin_lock_init(&card->lock);
527 card->local_node = NULL;
529 INIT_DELAYED_WORK(&card->br_work, br_work);
530 INIT_DELAYED_WORK(&card->bm_work, bm_work);
532 EXPORT_SYMBOL(fw_card_initialize);
534 int fw_card_add(struct fw_card *card,
535 u32 max_receive, u32 link_speed, u64 guid)
537 int ret;
539 card->max_receive = max_receive;
540 card->link_speed = link_speed;
541 card->guid = guid;
543 mutex_lock(&card_mutex);
545 generate_config_rom(card, tmp_config_rom);
546 ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
547 if (ret == 0)
548 list_add_tail(&card->link, &card_list);
550 mutex_unlock(&card_mutex);
552 return ret;
554 EXPORT_SYMBOL(fw_card_add);
557 * The next few functions implement a dummy driver that is used once a card
558 * driver shuts down an fw_card. This allows the driver to cleanly unload,
559 * as all IO to the card will be handled (and failed) by the dummy driver
560 * instead of calling into the module. Only functions for iso context
561 * shutdown still need to be provided by the card driver.
563 * .read/write_csr() should never be called anymore after the dummy driver
564 * was bound since they are only used within request handler context.
565 * .set_config_rom() is never called since the card is taken out of card_list
566 * before switching to the dummy driver.
569 static int dummy_read_phy_reg(struct fw_card *card, int address)
571 return -ENODEV;
574 static int dummy_update_phy_reg(struct fw_card *card, int address,
575 int clear_bits, int set_bits)
577 return -ENODEV;
580 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
582 packet->callback(packet, card, RCODE_CANCELLED);
585 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
587 packet->callback(packet, card, RCODE_CANCELLED);
590 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
592 return -ENOENT;
595 static int dummy_enable_phys_dma(struct fw_card *card,
596 int node_id, int generation)
598 return -ENODEV;
601 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
602 int type, int channel, size_t header_size)
604 return ERR_PTR(-ENODEV);
607 static int dummy_start_iso(struct fw_iso_context *ctx,
608 s32 cycle, u32 sync, u32 tags)
610 return -ENODEV;
613 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
615 return -ENODEV;
618 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
619 struct fw_iso_buffer *buffer, unsigned long payload)
621 return -ENODEV;
624 static const struct fw_card_driver dummy_driver_template = {
625 .read_phy_reg = dummy_read_phy_reg,
626 .update_phy_reg = dummy_update_phy_reg,
627 .send_request = dummy_send_request,
628 .send_response = dummy_send_response,
629 .cancel_packet = dummy_cancel_packet,
630 .enable_phys_dma = dummy_enable_phys_dma,
631 .allocate_iso_context = dummy_allocate_iso_context,
632 .start_iso = dummy_start_iso,
633 .set_iso_channels = dummy_set_iso_channels,
634 .queue_iso = dummy_queue_iso,
637 void fw_card_release(struct kref *kref)
639 struct fw_card *card = container_of(kref, struct fw_card, kref);
641 complete(&card->done);
644 void fw_core_remove_card(struct fw_card *card)
646 struct fw_card_driver dummy_driver = dummy_driver_template;
648 card->driver->update_phy_reg(card, 4,
649 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
650 fw_schedule_bus_reset(card, false, true);
652 mutex_lock(&card_mutex);
653 list_del_init(&card->link);
654 mutex_unlock(&card_mutex);
656 /* Switch off most of the card driver interface. */
657 dummy_driver.free_iso_context = card->driver->free_iso_context;
658 dummy_driver.stop_iso = card->driver->stop_iso;
659 card->driver = &dummy_driver;
661 fw_destroy_nodes(card);
663 /* Wait for all users, especially device workqueue jobs, to finish. */
664 fw_card_put(card);
665 wait_for_completion(&card->done);
667 WARN_ON(!list_empty(&card->transaction_list));
669 EXPORT_SYMBOL(fw_core_remove_card);