4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
35 /*** Page table manipulation functions ***/
37 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
41 pte
= pte_offset_kernel(pmd
, addr
);
43 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
44 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
45 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
48 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
53 pmd
= pmd_offset(pud
, addr
);
55 next
= pmd_addr_end(addr
, end
);
56 if (pmd_none_or_clear_bad(pmd
))
58 vunmap_pte_range(pmd
, addr
, next
);
59 } while (pmd
++, addr
= next
, addr
!= end
);
62 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
67 pud
= pud_offset(pgd
, addr
);
69 next
= pud_addr_end(addr
, end
);
70 if (pud_none_or_clear_bad(pud
))
72 vunmap_pmd_range(pud
, addr
, next
);
73 } while (pud
++, addr
= next
, addr
!= end
);
76 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
82 pgd
= pgd_offset_k(addr
);
84 next
= pgd_addr_end(addr
, end
);
85 if (pgd_none_or_clear_bad(pgd
))
87 vunmap_pud_range(pgd
, addr
, next
);
88 } while (pgd
++, addr
= next
, addr
!= end
);
91 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
92 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
97 * nr is a running index into the array which helps higher level
98 * callers keep track of where we're up to.
101 pte
= pte_alloc_kernel(pmd
, addr
);
105 struct page
*page
= pages
[*nr
];
107 if (WARN_ON(!pte_none(*pte
)))
111 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
113 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
117 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
118 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
123 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
127 next
= pmd_addr_end(addr
, end
);
128 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
130 } while (pmd
++, addr
= next
, addr
!= end
);
134 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
135 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
140 pud
= pud_alloc(&init_mm
, pgd
, addr
);
144 next
= pud_addr_end(addr
, end
);
145 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
147 } while (pud
++, addr
= next
, addr
!= end
);
152 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
153 * will have pfns corresponding to the "pages" array.
155 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
157 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
158 pgprot_t prot
, struct page
**pages
)
162 unsigned long addr
= start
;
167 pgd
= pgd_offset_k(addr
);
169 next
= pgd_addr_end(addr
, end
);
170 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
173 } while (pgd
++, addr
= next
, addr
!= end
);
178 static int vmap_page_range(unsigned long start
, unsigned long end
,
179 pgprot_t prot
, struct page
**pages
)
183 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
184 flush_cache_vmap(start
, end
);
188 int is_vmalloc_or_module_addr(const void *x
)
191 * ARM, x86-64 and sparc64 put modules in a special place,
192 * and fall back on vmalloc() if that fails. Others
193 * just put it in the vmalloc space.
195 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
196 unsigned long addr
= (unsigned long)x
;
197 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
200 return is_vmalloc_addr(x
);
204 * Walk a vmap address to the struct page it maps.
206 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
208 unsigned long addr
= (unsigned long) vmalloc_addr
;
209 struct page
*page
= NULL
;
210 pgd_t
*pgd
= pgd_offset_k(addr
);
213 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
214 * architectures that do not vmalloc module space
216 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
218 if (!pgd_none(*pgd
)) {
219 pud_t
*pud
= pud_offset(pgd
, addr
);
220 if (!pud_none(*pud
)) {
221 pmd_t
*pmd
= pmd_offset(pud
, addr
);
222 if (!pmd_none(*pmd
)) {
225 ptep
= pte_offset_map(pmd
, addr
);
227 if (pte_present(pte
))
228 page
= pte_page(pte
);
235 EXPORT_SYMBOL(vmalloc_to_page
);
238 * Map a vmalloc()-space virtual address to the physical page frame number.
240 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
242 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
244 EXPORT_SYMBOL(vmalloc_to_pfn
);
247 /*** Global kva allocator ***/
249 #define VM_LAZY_FREE 0x01
250 #define VM_LAZY_FREEING 0x02
251 #define VM_VM_AREA 0x04
254 unsigned long va_start
;
255 unsigned long va_end
;
257 struct rb_node rb_node
; /* address sorted rbtree */
258 struct list_head list
; /* address sorted list */
259 struct list_head purge_list
; /* "lazy purge" list */
261 struct rcu_head rcu_head
;
264 static DEFINE_SPINLOCK(vmap_area_lock
);
265 static struct rb_root vmap_area_root
= RB_ROOT
;
266 static LIST_HEAD(vmap_area_list
);
267 static unsigned long vmap_area_pcpu_hole
;
269 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
271 struct rb_node
*n
= vmap_area_root
.rb_node
;
274 struct vmap_area
*va
;
276 va
= rb_entry(n
, struct vmap_area
, rb_node
);
277 if (addr
< va
->va_start
)
279 else if (addr
> va
->va_start
)
288 static void __insert_vmap_area(struct vmap_area
*va
)
290 struct rb_node
**p
= &vmap_area_root
.rb_node
;
291 struct rb_node
*parent
= NULL
;
295 struct vmap_area
*tmp
;
298 tmp
= rb_entry(parent
, struct vmap_area
, rb_node
);
299 if (va
->va_start
< tmp
->va_end
)
301 else if (va
->va_end
> tmp
->va_start
)
307 rb_link_node(&va
->rb_node
, parent
, p
);
308 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
310 /* address-sort this list so it is usable like the vmlist */
311 tmp
= rb_prev(&va
->rb_node
);
313 struct vmap_area
*prev
;
314 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
315 list_add_rcu(&va
->list
, &prev
->list
);
317 list_add_rcu(&va
->list
, &vmap_area_list
);
320 static void purge_vmap_area_lazy(void);
323 * Allocate a region of KVA of the specified size and alignment, within the
326 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
328 unsigned long vstart
, unsigned long vend
,
329 int node
, gfp_t gfp_mask
)
331 struct vmap_area
*va
;
337 BUG_ON(size
& ~PAGE_MASK
);
339 va
= kmalloc_node(sizeof(struct vmap_area
),
340 gfp_mask
& GFP_RECLAIM_MASK
, node
);
342 return ERR_PTR(-ENOMEM
);
345 addr
= ALIGN(vstart
, align
);
347 spin_lock(&vmap_area_lock
);
348 if (addr
+ size
- 1 < addr
)
351 /* XXX: could have a last_hole cache */
352 n
= vmap_area_root
.rb_node
;
354 struct vmap_area
*first
= NULL
;
357 struct vmap_area
*tmp
;
358 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
359 if (tmp
->va_end
>= addr
) {
360 if (!first
&& tmp
->va_start
< addr
+ size
)
372 if (first
->va_end
< addr
) {
373 n
= rb_next(&first
->rb_node
);
375 first
= rb_entry(n
, struct vmap_area
, rb_node
);
380 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
381 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
382 if (addr
+ size
- 1 < addr
)
385 n
= rb_next(&first
->rb_node
);
387 first
= rb_entry(n
, struct vmap_area
, rb_node
);
393 if (addr
+ size
> vend
) {
395 spin_unlock(&vmap_area_lock
);
397 purge_vmap_area_lazy();
401 if (printk_ratelimit())
403 "vmap allocation for size %lu failed: "
404 "use vmalloc=<size> to increase size.\n", size
);
406 return ERR_PTR(-EBUSY
);
409 BUG_ON(addr
& (align
-1));
412 va
->va_end
= addr
+ size
;
414 __insert_vmap_area(va
);
415 spin_unlock(&vmap_area_lock
);
420 static void rcu_free_va(struct rcu_head
*head
)
422 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
427 static void __free_vmap_area(struct vmap_area
*va
)
429 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
430 rb_erase(&va
->rb_node
, &vmap_area_root
);
431 RB_CLEAR_NODE(&va
->rb_node
);
432 list_del_rcu(&va
->list
);
435 * Track the highest possible candidate for pcpu area
436 * allocation. Areas outside of vmalloc area can be returned
437 * here too, consider only end addresses which fall inside
438 * vmalloc area proper.
440 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
441 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
443 call_rcu(&va
->rcu_head
, rcu_free_va
);
447 * Free a region of KVA allocated by alloc_vmap_area
449 static void free_vmap_area(struct vmap_area
*va
)
451 spin_lock(&vmap_area_lock
);
452 __free_vmap_area(va
);
453 spin_unlock(&vmap_area_lock
);
457 * Clear the pagetable entries of a given vmap_area
459 static void unmap_vmap_area(struct vmap_area
*va
)
461 vunmap_page_range(va
->va_start
, va
->va_end
);
464 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
467 * Unmap page tables and force a TLB flush immediately if
468 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
469 * bugs similarly to those in linear kernel virtual address
470 * space after a page has been freed.
472 * All the lazy freeing logic is still retained, in order to
473 * minimise intrusiveness of this debugging feature.
475 * This is going to be *slow* (linear kernel virtual address
476 * debugging doesn't do a broadcast TLB flush so it is a lot
479 #ifdef CONFIG_DEBUG_PAGEALLOC
480 vunmap_page_range(start
, end
);
481 flush_tlb_kernel_range(start
, end
);
486 * lazy_max_pages is the maximum amount of virtual address space we gather up
487 * before attempting to purge with a TLB flush.
489 * There is a tradeoff here: a larger number will cover more kernel page tables
490 * and take slightly longer to purge, but it will linearly reduce the number of
491 * global TLB flushes that must be performed. It would seem natural to scale
492 * this number up linearly with the number of CPUs (because vmapping activity
493 * could also scale linearly with the number of CPUs), however it is likely
494 * that in practice, workloads might be constrained in other ways that mean
495 * vmap activity will not scale linearly with CPUs. Also, I want to be
496 * conservative and not introduce a big latency on huge systems, so go with
497 * a less aggressive log scale. It will still be an improvement over the old
498 * code, and it will be simple to change the scale factor if we find that it
499 * becomes a problem on bigger systems.
501 static unsigned long lazy_max_pages(void)
505 log
= fls(num_online_cpus());
507 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
510 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
512 /* for per-CPU blocks */
513 static void purge_fragmented_blocks_allcpus(void);
516 * called before a call to iounmap() if the caller wants vm_area_struct's
519 void set_iounmap_nonlazy(void)
521 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
525 * Purges all lazily-freed vmap areas.
527 * If sync is 0 then don't purge if there is already a purge in progress.
528 * If force_flush is 1, then flush kernel TLBs between *start and *end even
529 * if we found no lazy vmap areas to unmap (callers can use this to optimise
530 * their own TLB flushing).
531 * Returns with *start = min(*start, lowest purged address)
532 * *end = max(*end, highest purged address)
534 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
535 int sync
, int force_flush
)
537 static DEFINE_SPINLOCK(purge_lock
);
539 struct vmap_area
*va
;
540 struct vmap_area
*n_va
;
544 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
545 * should not expect such behaviour. This just simplifies locking for
546 * the case that isn't actually used at the moment anyway.
548 if (!sync
&& !force_flush
) {
549 if (!spin_trylock(&purge_lock
))
552 spin_lock(&purge_lock
);
555 purge_fragmented_blocks_allcpus();
558 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
559 if (va
->flags
& VM_LAZY_FREE
) {
560 if (va
->va_start
< *start
)
561 *start
= va
->va_start
;
562 if (va
->va_end
> *end
)
564 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
566 list_add_tail(&va
->purge_list
, &valist
);
567 va
->flags
|= VM_LAZY_FREEING
;
568 va
->flags
&= ~VM_LAZY_FREE
;
574 atomic_sub(nr
, &vmap_lazy_nr
);
576 if (nr
|| force_flush
)
577 flush_tlb_kernel_range(*start
, *end
);
580 spin_lock(&vmap_area_lock
);
581 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
582 __free_vmap_area(va
);
583 spin_unlock(&vmap_area_lock
);
585 spin_unlock(&purge_lock
);
589 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
590 * is already purging.
592 static void try_purge_vmap_area_lazy(void)
594 unsigned long start
= ULONG_MAX
, end
= 0;
596 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
600 * Kick off a purge of the outstanding lazy areas.
602 static void purge_vmap_area_lazy(void)
604 unsigned long start
= ULONG_MAX
, end
= 0;
606 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
610 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
611 * called for the correct range previously.
613 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
615 va
->flags
|= VM_LAZY_FREE
;
616 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
617 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
618 try_purge_vmap_area_lazy();
622 * Free and unmap a vmap area
624 static void free_unmap_vmap_area(struct vmap_area
*va
)
626 flush_cache_vunmap(va
->va_start
, va
->va_end
);
627 free_unmap_vmap_area_noflush(va
);
630 static struct vmap_area
*find_vmap_area(unsigned long addr
)
632 struct vmap_area
*va
;
634 spin_lock(&vmap_area_lock
);
635 va
= __find_vmap_area(addr
);
636 spin_unlock(&vmap_area_lock
);
641 static void free_unmap_vmap_area_addr(unsigned long addr
)
643 struct vmap_area
*va
;
645 va
= find_vmap_area(addr
);
647 free_unmap_vmap_area(va
);
651 /*** Per cpu kva allocator ***/
654 * vmap space is limited especially on 32 bit architectures. Ensure there is
655 * room for at least 16 percpu vmap blocks per CPU.
658 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
659 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
660 * instead (we just need a rough idea)
662 #if BITS_PER_LONG == 32
663 #define VMALLOC_SPACE (128UL*1024*1024)
665 #define VMALLOC_SPACE (128UL*1024*1024*1024)
668 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
669 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
670 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
671 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
672 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
673 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
674 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
675 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
676 VMALLOC_PAGES / NR_CPUS / 16))
678 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
680 static bool vmap_initialized __read_mostly
= false;
682 struct vmap_block_queue
{
684 struct list_head free
;
689 struct vmap_area
*va
;
690 struct vmap_block_queue
*vbq
;
691 unsigned long free
, dirty
;
692 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
693 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
694 struct list_head free_list
;
695 struct rcu_head rcu_head
;
696 struct list_head purge
;
699 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
700 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
703 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
704 * in the free path. Could get rid of this if we change the API to return a
705 * "cookie" from alloc, to be passed to free. But no big deal yet.
707 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
708 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
711 * We should probably have a fallback mechanism to allocate virtual memory
712 * out of partially filled vmap blocks. However vmap block sizing should be
713 * fairly reasonable according to the vmalloc size, so it shouldn't be a
717 static unsigned long addr_to_vb_idx(unsigned long addr
)
719 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
720 addr
/= VMAP_BLOCK_SIZE
;
724 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
726 struct vmap_block_queue
*vbq
;
727 struct vmap_block
*vb
;
728 struct vmap_area
*va
;
729 unsigned long vb_idx
;
732 node
= numa_node_id();
734 vb
= kmalloc_node(sizeof(struct vmap_block
),
735 gfp_mask
& GFP_RECLAIM_MASK
, node
);
737 return ERR_PTR(-ENOMEM
);
739 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
740 VMALLOC_START
, VMALLOC_END
,
742 if (unlikely(IS_ERR(va
))) {
744 return ERR_PTR(PTR_ERR(va
));
747 err
= radix_tree_preload(gfp_mask
);
754 spin_lock_init(&vb
->lock
);
756 vb
->free
= VMAP_BBMAP_BITS
;
758 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
759 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
760 INIT_LIST_HEAD(&vb
->free_list
);
762 vb_idx
= addr_to_vb_idx(va
->va_start
);
763 spin_lock(&vmap_block_tree_lock
);
764 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
765 spin_unlock(&vmap_block_tree_lock
);
767 radix_tree_preload_end();
769 vbq
= &get_cpu_var(vmap_block_queue
);
771 spin_lock(&vbq
->lock
);
772 list_add_rcu(&vb
->free_list
, &vbq
->free
);
773 spin_unlock(&vbq
->lock
);
774 put_cpu_var(vmap_cpu_blocks
);
779 static void rcu_free_vb(struct rcu_head
*head
)
781 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
786 static void free_vmap_block(struct vmap_block
*vb
)
788 struct vmap_block
*tmp
;
789 unsigned long vb_idx
;
791 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
792 spin_lock(&vmap_block_tree_lock
);
793 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
794 spin_unlock(&vmap_block_tree_lock
);
797 free_unmap_vmap_area_noflush(vb
->va
);
798 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
801 static void purge_fragmented_blocks(int cpu
)
804 struct vmap_block
*vb
;
805 struct vmap_block
*n_vb
;
806 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
809 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
811 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
814 spin_lock(&vb
->lock
);
815 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
816 vb
->free
= 0; /* prevent further allocs after releasing lock */
817 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
818 bitmap_fill(vb
->alloc_map
, VMAP_BBMAP_BITS
);
819 bitmap_fill(vb
->dirty_map
, VMAP_BBMAP_BITS
);
820 spin_lock(&vbq
->lock
);
821 list_del_rcu(&vb
->free_list
);
822 spin_unlock(&vbq
->lock
);
823 spin_unlock(&vb
->lock
);
824 list_add_tail(&vb
->purge
, &purge
);
826 spin_unlock(&vb
->lock
);
830 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
831 list_del(&vb
->purge
);
836 static void purge_fragmented_blocks_thiscpu(void)
838 purge_fragmented_blocks(smp_processor_id());
841 static void purge_fragmented_blocks_allcpus(void)
845 for_each_possible_cpu(cpu
)
846 purge_fragmented_blocks(cpu
);
849 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
851 struct vmap_block_queue
*vbq
;
852 struct vmap_block
*vb
;
853 unsigned long addr
= 0;
857 BUG_ON(size
& ~PAGE_MASK
);
858 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
859 order
= get_order(size
);
863 vbq
= &get_cpu_var(vmap_block_queue
);
864 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
867 spin_lock(&vb
->lock
);
868 if (vb
->free
< 1UL << order
)
870 i
= bitmap_find_free_region(vb
->alloc_map
,
871 VMAP_BBMAP_BITS
, order
);
874 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
) {
875 /* fragmented and no outstanding allocations */
876 BUG_ON(vb
->dirty
!= VMAP_BBMAP_BITS
);
881 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
882 BUG_ON(addr_to_vb_idx(addr
) !=
883 addr_to_vb_idx(vb
->va
->va_start
));
884 vb
->free
-= 1UL << order
;
886 spin_lock(&vbq
->lock
);
887 list_del_rcu(&vb
->free_list
);
888 spin_unlock(&vbq
->lock
);
890 spin_unlock(&vb
->lock
);
893 spin_unlock(&vb
->lock
);
897 purge_fragmented_blocks_thiscpu();
899 put_cpu_var(vmap_cpu_blocks
);
903 vb
= new_vmap_block(gfp_mask
);
912 static void vb_free(const void *addr
, unsigned long size
)
914 unsigned long offset
;
915 unsigned long vb_idx
;
917 struct vmap_block
*vb
;
919 BUG_ON(size
& ~PAGE_MASK
);
920 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
922 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
924 order
= get_order(size
);
926 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
928 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
930 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
934 spin_lock(&vb
->lock
);
935 BUG_ON(bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
));
937 vb
->dirty
+= 1UL << order
;
938 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
940 spin_unlock(&vb
->lock
);
943 spin_unlock(&vb
->lock
);
947 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
949 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
950 * to amortize TLB flushing overheads. What this means is that any page you
951 * have now, may, in a former life, have been mapped into kernel virtual
952 * address by the vmap layer and so there might be some CPUs with TLB entries
953 * still referencing that page (additional to the regular 1:1 kernel mapping).
955 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
956 * be sure that none of the pages we have control over will have any aliases
957 * from the vmap layer.
959 void vm_unmap_aliases(void)
961 unsigned long start
= ULONG_MAX
, end
= 0;
965 if (unlikely(!vmap_initialized
))
968 for_each_possible_cpu(cpu
) {
969 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
970 struct vmap_block
*vb
;
973 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
976 spin_lock(&vb
->lock
);
977 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
978 while (i
< VMAP_BBMAP_BITS
) {
981 j
= find_next_zero_bit(vb
->dirty_map
,
984 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
985 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
986 vunmap_page_range(s
, e
);
995 i
= find_next_bit(vb
->dirty_map
,
998 spin_unlock(&vb
->lock
);
1003 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1005 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1008 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1009 * @mem: the pointer returned by vm_map_ram
1010 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1012 void vm_unmap_ram(const void *mem
, unsigned int count
)
1014 unsigned long size
= count
<< PAGE_SHIFT
;
1015 unsigned long addr
= (unsigned long)mem
;
1018 BUG_ON(addr
< VMALLOC_START
);
1019 BUG_ON(addr
> VMALLOC_END
);
1020 BUG_ON(addr
& (PAGE_SIZE
-1));
1022 debug_check_no_locks_freed(mem
, size
);
1023 vmap_debug_free_range(addr
, addr
+size
);
1025 if (likely(count
<= VMAP_MAX_ALLOC
))
1028 free_unmap_vmap_area_addr(addr
);
1030 EXPORT_SYMBOL(vm_unmap_ram
);
1033 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1034 * @pages: an array of pointers to the pages to be mapped
1035 * @count: number of pages
1036 * @node: prefer to allocate data structures on this node
1037 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1039 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1041 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1043 unsigned long size
= count
<< PAGE_SHIFT
;
1047 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1048 mem
= vb_alloc(size
, GFP_KERNEL
);
1051 addr
= (unsigned long)mem
;
1053 struct vmap_area
*va
;
1054 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1055 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1059 addr
= va
->va_start
;
1062 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1063 vm_unmap_ram(mem
, count
);
1068 EXPORT_SYMBOL(vm_map_ram
);
1071 * vm_area_register_early - register vmap area early during boot
1072 * @vm: vm_struct to register
1073 * @align: requested alignment
1075 * This function is used to register kernel vm area before
1076 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1077 * proper values on entry and other fields should be zero. On return,
1078 * vm->addr contains the allocated address.
1080 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1082 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1084 static size_t vm_init_off __initdata
;
1087 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1088 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1090 vm
->addr
= (void *)addr
;
1096 void __init
vmalloc_init(void)
1098 struct vmap_area
*va
;
1099 struct vm_struct
*tmp
;
1102 for_each_possible_cpu(i
) {
1103 struct vmap_block_queue
*vbq
;
1105 vbq
= &per_cpu(vmap_block_queue
, i
);
1106 spin_lock_init(&vbq
->lock
);
1107 INIT_LIST_HEAD(&vbq
->free
);
1110 /* Import existing vmlist entries. */
1111 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1112 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1113 va
->flags
= tmp
->flags
| VM_VM_AREA
;
1114 va
->va_start
= (unsigned long)tmp
->addr
;
1115 va
->va_end
= va
->va_start
+ tmp
->size
;
1116 __insert_vmap_area(va
);
1119 vmap_area_pcpu_hole
= VMALLOC_END
;
1121 vmap_initialized
= true;
1125 * map_kernel_range_noflush - map kernel VM area with the specified pages
1126 * @addr: start of the VM area to map
1127 * @size: size of the VM area to map
1128 * @prot: page protection flags to use
1129 * @pages: pages to map
1131 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1132 * specify should have been allocated using get_vm_area() and its
1136 * This function does NOT do any cache flushing. The caller is
1137 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1138 * before calling this function.
1141 * The number of pages mapped on success, -errno on failure.
1143 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1144 pgprot_t prot
, struct page
**pages
)
1146 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1150 * unmap_kernel_range_noflush - unmap kernel VM area
1151 * @addr: start of the VM area to unmap
1152 * @size: size of the VM area to unmap
1154 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1155 * specify should have been allocated using get_vm_area() and its
1159 * This function does NOT do any cache flushing. The caller is
1160 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1161 * before calling this function and flush_tlb_kernel_range() after.
1163 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1165 vunmap_page_range(addr
, addr
+ size
);
1169 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1170 * @addr: start of the VM area to unmap
1171 * @size: size of the VM area to unmap
1173 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1174 * the unmapping and tlb after.
1176 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1178 unsigned long end
= addr
+ size
;
1180 flush_cache_vunmap(addr
, end
);
1181 vunmap_page_range(addr
, end
);
1182 flush_tlb_kernel_range(addr
, end
);
1185 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1187 unsigned long addr
= (unsigned long)area
->addr
;
1188 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1191 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1199 EXPORT_SYMBOL_GPL(map_vm_area
);
1201 /*** Old vmalloc interfaces ***/
1202 DEFINE_RWLOCK(vmlist_lock
);
1203 struct vm_struct
*vmlist
;
1205 static void insert_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1206 unsigned long flags
, void *caller
)
1208 struct vm_struct
*tmp
, **p
;
1211 vm
->addr
= (void *)va
->va_start
;
1212 vm
->size
= va
->va_end
- va
->va_start
;
1213 vm
->caller
= caller
;
1215 va
->flags
|= VM_VM_AREA
;
1217 write_lock(&vmlist_lock
);
1218 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1219 if (tmp
->addr
>= vm
->addr
)
1224 write_unlock(&vmlist_lock
);
1227 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1228 unsigned long align
, unsigned long flags
, unsigned long start
,
1229 unsigned long end
, int node
, gfp_t gfp_mask
, void *caller
)
1231 static struct vmap_area
*va
;
1232 struct vm_struct
*area
;
1234 BUG_ON(in_interrupt());
1235 if (flags
& VM_IOREMAP
) {
1236 int bit
= fls(size
);
1238 if (bit
> IOREMAP_MAX_ORDER
)
1239 bit
= IOREMAP_MAX_ORDER
;
1240 else if (bit
< PAGE_SHIFT
)
1246 size
= PAGE_ALIGN(size
);
1247 if (unlikely(!size
))
1250 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1251 if (unlikely(!area
))
1255 * We always allocate a guard page.
1259 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1265 insert_vmalloc_vm(area
, va
, flags
, caller
);
1269 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1270 unsigned long start
, unsigned long end
)
1272 return __get_vm_area_node(size
, 1, flags
, start
, end
, -1, GFP_KERNEL
,
1273 __builtin_return_address(0));
1275 EXPORT_SYMBOL_GPL(__get_vm_area
);
1277 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1278 unsigned long start
, unsigned long end
,
1281 return __get_vm_area_node(size
, 1, flags
, start
, end
, -1, GFP_KERNEL
,
1286 * get_vm_area - reserve a contiguous kernel virtual area
1287 * @size: size of the area
1288 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1290 * Search an area of @size in the kernel virtual mapping area,
1291 * and reserved it for out purposes. Returns the area descriptor
1292 * on success or %NULL on failure.
1294 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1296 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1297 -1, GFP_KERNEL
, __builtin_return_address(0));
1300 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1303 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1304 -1, GFP_KERNEL
, caller
);
1307 struct vm_struct
*get_vm_area_node(unsigned long size
, unsigned long flags
,
1308 int node
, gfp_t gfp_mask
)
1310 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1311 node
, gfp_mask
, __builtin_return_address(0));
1314 static struct vm_struct
*find_vm_area(const void *addr
)
1316 struct vmap_area
*va
;
1318 va
= find_vmap_area((unsigned long)addr
);
1319 if (va
&& va
->flags
& VM_VM_AREA
)
1326 * remove_vm_area - find and remove a continuous kernel virtual area
1327 * @addr: base address
1329 * Search for the kernel VM area starting at @addr, and remove it.
1330 * This function returns the found VM area, but using it is NOT safe
1331 * on SMP machines, except for its size or flags.
1333 struct vm_struct
*remove_vm_area(const void *addr
)
1335 struct vmap_area
*va
;
1337 va
= find_vmap_area((unsigned long)addr
);
1338 if (va
&& va
->flags
& VM_VM_AREA
) {
1339 struct vm_struct
*vm
= va
->private;
1340 struct vm_struct
*tmp
, **p
;
1342 * remove from list and disallow access to this vm_struct
1343 * before unmap. (address range confliction is maintained by
1346 write_lock(&vmlist_lock
);
1347 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1350 write_unlock(&vmlist_lock
);
1352 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1353 free_unmap_vmap_area(va
);
1354 vm
->size
-= PAGE_SIZE
;
1361 static void __vunmap(const void *addr
, int deallocate_pages
)
1363 struct vm_struct
*area
;
1368 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1369 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1373 area
= remove_vm_area(addr
);
1374 if (unlikely(!area
)) {
1375 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1380 debug_check_no_locks_freed(addr
, area
->size
);
1381 debug_check_no_obj_freed(addr
, area
->size
);
1383 if (deallocate_pages
) {
1386 for (i
= 0; i
< area
->nr_pages
; i
++) {
1387 struct page
*page
= area
->pages
[i
];
1393 if (area
->flags
& VM_VPAGES
)
1404 * vfree - release memory allocated by vmalloc()
1405 * @addr: memory base address
1407 * Free the virtually continuous memory area starting at @addr, as
1408 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1409 * NULL, no operation is performed.
1411 * Must not be called in interrupt context.
1413 void vfree(const void *addr
)
1415 BUG_ON(in_interrupt());
1417 kmemleak_free(addr
);
1421 EXPORT_SYMBOL(vfree
);
1424 * vunmap - release virtual mapping obtained by vmap()
1425 * @addr: memory base address
1427 * Free the virtually contiguous memory area starting at @addr,
1428 * which was created from the page array passed to vmap().
1430 * Must not be called in interrupt context.
1432 void vunmap(const void *addr
)
1434 BUG_ON(in_interrupt());
1438 EXPORT_SYMBOL(vunmap
);
1441 * vmap - map an array of pages into virtually contiguous space
1442 * @pages: array of page pointers
1443 * @count: number of pages to map
1444 * @flags: vm_area->flags
1445 * @prot: page protection for the mapping
1447 * Maps @count pages from @pages into contiguous kernel virtual
1450 void *vmap(struct page
**pages
, unsigned int count
,
1451 unsigned long flags
, pgprot_t prot
)
1453 struct vm_struct
*area
;
1457 if (count
> totalram_pages
)
1460 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1461 __builtin_return_address(0));
1465 if (map_vm_area(area
, prot
, &pages
)) {
1472 EXPORT_SYMBOL(vmap
);
1474 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1475 gfp_t gfp_mask
, pgprot_t prot
,
1476 int node
, void *caller
);
1477 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1478 pgprot_t prot
, int node
, void *caller
)
1480 struct page
**pages
;
1481 unsigned int nr_pages
, array_size
, i
;
1483 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1484 array_size
= (nr_pages
* sizeof(struct page
*));
1486 area
->nr_pages
= nr_pages
;
1487 /* Please note that the recursion is strictly bounded. */
1488 if (array_size
> PAGE_SIZE
) {
1489 pages
= __vmalloc_node(array_size
, 1, gfp_mask
| __GFP_ZERO
,
1490 PAGE_KERNEL
, node
, caller
);
1491 area
->flags
|= VM_VPAGES
;
1493 pages
= kmalloc_node(array_size
,
1494 (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
,
1497 area
->pages
= pages
;
1498 area
->caller
= caller
;
1500 remove_vm_area(area
->addr
);
1505 for (i
= 0; i
< area
->nr_pages
; i
++) {
1509 page
= alloc_page(gfp_mask
);
1511 page
= alloc_pages_node(node
, gfp_mask
, 0);
1513 if (unlikely(!page
)) {
1514 /* Successfully allocated i pages, free them in __vunmap() */
1518 area
->pages
[i
] = page
;
1521 if (map_vm_area(area
, prot
, &pages
))
1530 void *__vmalloc_area(struct vm_struct
*area
, gfp_t gfp_mask
, pgprot_t prot
)
1532 void *addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, -1,
1533 __builtin_return_address(0));
1536 * A ref_count = 3 is needed because the vm_struct and vmap_area
1537 * structures allocated in the __get_vm_area_node() function contain
1538 * references to the virtual address of the vmalloc'ed block.
1540 kmemleak_alloc(addr
, area
->size
- PAGE_SIZE
, 3, gfp_mask
);
1546 * __vmalloc_node - allocate virtually contiguous memory
1547 * @size: allocation size
1548 * @align: desired alignment
1549 * @gfp_mask: flags for the page level allocator
1550 * @prot: protection mask for the allocated pages
1551 * @node: node to use for allocation or -1
1552 * @caller: caller's return address
1554 * Allocate enough pages to cover @size from the page level
1555 * allocator with @gfp_mask flags. Map them into contiguous
1556 * kernel virtual space, using a pagetable protection of @prot.
1558 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1559 gfp_t gfp_mask
, pgprot_t prot
,
1560 int node
, void *caller
)
1562 struct vm_struct
*area
;
1564 unsigned long real_size
= size
;
1566 size
= PAGE_ALIGN(size
);
1567 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1570 area
= __get_vm_area_node(size
, align
, VM_ALLOC
, VMALLOC_START
,
1571 VMALLOC_END
, node
, gfp_mask
, caller
);
1576 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1579 * A ref_count = 3 is needed because the vm_struct and vmap_area
1580 * structures allocated in the __get_vm_area_node() function contain
1581 * references to the virtual address of the vmalloc'ed block.
1583 kmemleak_alloc(addr
, real_size
, 3, gfp_mask
);
1588 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1590 return __vmalloc_node(size
, 1, gfp_mask
, prot
, -1,
1591 __builtin_return_address(0));
1593 EXPORT_SYMBOL(__vmalloc
);
1596 * vmalloc - allocate virtually contiguous memory
1597 * @size: allocation size
1598 * Allocate enough pages to cover @size from the page level
1599 * allocator and map them into contiguous kernel virtual space.
1601 * For tight control over page level allocator and protection flags
1602 * use __vmalloc() instead.
1604 void *vmalloc(unsigned long size
)
1606 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1607 -1, __builtin_return_address(0));
1609 EXPORT_SYMBOL(vmalloc
);
1612 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1613 * @size: allocation size
1615 * The resulting memory area is zeroed so it can be mapped to userspace
1616 * without leaking data.
1618 void *vmalloc_user(unsigned long size
)
1620 struct vm_struct
*area
;
1623 ret
= __vmalloc_node(size
, SHMLBA
,
1624 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1625 PAGE_KERNEL
, -1, __builtin_return_address(0));
1627 area
= find_vm_area(ret
);
1628 area
->flags
|= VM_USERMAP
;
1632 EXPORT_SYMBOL(vmalloc_user
);
1635 * vmalloc_node - allocate memory on a specific node
1636 * @size: allocation size
1639 * Allocate enough pages to cover @size from the page level
1640 * allocator and map them into contiguous kernel virtual space.
1642 * For tight control over page level allocator and protection flags
1643 * use __vmalloc() instead.
1645 void *vmalloc_node(unsigned long size
, int node
)
1647 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1648 node
, __builtin_return_address(0));
1650 EXPORT_SYMBOL(vmalloc_node
);
1652 #ifndef PAGE_KERNEL_EXEC
1653 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1657 * vmalloc_exec - allocate virtually contiguous, executable memory
1658 * @size: allocation size
1660 * Kernel-internal function to allocate enough pages to cover @size
1661 * the page level allocator and map them into contiguous and
1662 * executable kernel virtual space.
1664 * For tight control over page level allocator and protection flags
1665 * use __vmalloc() instead.
1668 void *vmalloc_exec(unsigned long size
)
1670 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1671 -1, __builtin_return_address(0));
1674 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1675 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1676 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1677 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1679 #define GFP_VMALLOC32 GFP_KERNEL
1683 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1684 * @size: allocation size
1686 * Allocate enough 32bit PA addressable pages to cover @size from the
1687 * page level allocator and map them into contiguous kernel virtual space.
1689 void *vmalloc_32(unsigned long size
)
1691 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1692 -1, __builtin_return_address(0));
1694 EXPORT_SYMBOL(vmalloc_32
);
1697 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1698 * @size: allocation size
1700 * The resulting memory area is 32bit addressable and zeroed so it can be
1701 * mapped to userspace without leaking data.
1703 void *vmalloc_32_user(unsigned long size
)
1705 struct vm_struct
*area
;
1708 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1709 -1, __builtin_return_address(0));
1711 area
= find_vm_area(ret
);
1712 area
->flags
|= VM_USERMAP
;
1716 EXPORT_SYMBOL(vmalloc_32_user
);
1719 * small helper routine , copy contents to buf from addr.
1720 * If the page is not present, fill zero.
1723 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1729 unsigned long offset
, length
;
1731 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1732 length
= PAGE_SIZE
- offset
;
1735 p
= vmalloc_to_page(addr
);
1737 * To do safe access to this _mapped_ area, we need
1738 * lock. But adding lock here means that we need to add
1739 * overhead of vmalloc()/vfree() calles for this _debug_
1740 * interface, rarely used. Instead of that, we'll use
1741 * kmap() and get small overhead in this access function.
1745 * we can expect USER0 is not used (see vread/vwrite's
1746 * function description)
1748 void *map
= kmap_atomic(p
, KM_USER0
);
1749 memcpy(buf
, map
+ offset
, length
);
1750 kunmap_atomic(map
, KM_USER0
);
1752 memset(buf
, 0, length
);
1762 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1768 unsigned long offset
, length
;
1770 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1771 length
= PAGE_SIZE
- offset
;
1774 p
= vmalloc_to_page(addr
);
1776 * To do safe access to this _mapped_ area, we need
1777 * lock. But adding lock here means that we need to add
1778 * overhead of vmalloc()/vfree() calles for this _debug_
1779 * interface, rarely used. Instead of that, we'll use
1780 * kmap() and get small overhead in this access function.
1784 * we can expect USER0 is not used (see vread/vwrite's
1785 * function description)
1787 void *map
= kmap_atomic(p
, KM_USER0
);
1788 memcpy(map
+ offset
, buf
, length
);
1789 kunmap_atomic(map
, KM_USER0
);
1800 * vread() - read vmalloc area in a safe way.
1801 * @buf: buffer for reading data
1802 * @addr: vm address.
1803 * @count: number of bytes to be read.
1805 * Returns # of bytes which addr and buf should be increased.
1806 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1807 * includes any intersect with alive vmalloc area.
1809 * This function checks that addr is a valid vmalloc'ed area, and
1810 * copy data from that area to a given buffer. If the given memory range
1811 * of [addr...addr+count) includes some valid address, data is copied to
1812 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1813 * IOREMAP area is treated as memory hole and no copy is done.
1815 * If [addr...addr+count) doesn't includes any intersects with alive
1816 * vm_struct area, returns 0.
1817 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1818 * the caller should guarantee KM_USER0 is not used.
1820 * Note: In usual ops, vread() is never necessary because the caller
1821 * should know vmalloc() area is valid and can use memcpy().
1822 * This is for routines which have to access vmalloc area without
1823 * any informaion, as /dev/kmem.
1827 long vread(char *buf
, char *addr
, unsigned long count
)
1829 struct vm_struct
*tmp
;
1830 char *vaddr
, *buf_start
= buf
;
1831 unsigned long buflen
= count
;
1834 /* Don't allow overflow */
1835 if ((unsigned long) addr
+ count
< count
)
1836 count
= -(unsigned long) addr
;
1838 read_lock(&vmlist_lock
);
1839 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
1840 vaddr
= (char *) tmp
->addr
;
1841 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1843 while (addr
< vaddr
) {
1851 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1854 if (!(tmp
->flags
& VM_IOREMAP
))
1855 aligned_vread(buf
, addr
, n
);
1856 else /* IOREMAP area is treated as memory hole */
1863 read_unlock(&vmlist_lock
);
1865 if (buf
== buf_start
)
1867 /* zero-fill memory holes */
1868 if (buf
!= buf_start
+ buflen
)
1869 memset(buf
, 0, buflen
- (buf
- buf_start
));
1875 * vwrite() - write vmalloc area in a safe way.
1876 * @buf: buffer for source data
1877 * @addr: vm address.
1878 * @count: number of bytes to be read.
1880 * Returns # of bytes which addr and buf should be incresed.
1881 * (same number to @count).
1882 * If [addr...addr+count) doesn't includes any intersect with valid
1883 * vmalloc area, returns 0.
1885 * This function checks that addr is a valid vmalloc'ed area, and
1886 * copy data from a buffer to the given addr. If specified range of
1887 * [addr...addr+count) includes some valid address, data is copied from
1888 * proper area of @buf. If there are memory holes, no copy to hole.
1889 * IOREMAP area is treated as memory hole and no copy is done.
1891 * If [addr...addr+count) doesn't includes any intersects with alive
1892 * vm_struct area, returns 0.
1893 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1894 * the caller should guarantee KM_USER0 is not used.
1896 * Note: In usual ops, vwrite() is never necessary because the caller
1897 * should know vmalloc() area is valid and can use memcpy().
1898 * This is for routines which have to access vmalloc area without
1899 * any informaion, as /dev/kmem.
1901 * The caller should guarantee KM_USER1 is not used.
1904 long vwrite(char *buf
, char *addr
, unsigned long count
)
1906 struct vm_struct
*tmp
;
1908 unsigned long n
, buflen
;
1911 /* Don't allow overflow */
1912 if ((unsigned long) addr
+ count
< count
)
1913 count
= -(unsigned long) addr
;
1916 read_lock(&vmlist_lock
);
1917 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
1918 vaddr
= (char *) tmp
->addr
;
1919 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1921 while (addr
< vaddr
) {
1928 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1931 if (!(tmp
->flags
& VM_IOREMAP
)) {
1932 aligned_vwrite(buf
, addr
, n
);
1940 read_unlock(&vmlist_lock
);
1947 * remap_vmalloc_range - map vmalloc pages to userspace
1948 * @vma: vma to cover (map full range of vma)
1949 * @addr: vmalloc memory
1950 * @pgoff: number of pages into addr before first page to map
1952 * Returns: 0 for success, -Exxx on failure
1954 * This function checks that addr is a valid vmalloc'ed area, and
1955 * that it is big enough to cover the vma. Will return failure if
1956 * that criteria isn't met.
1958 * Similar to remap_pfn_range() (see mm/memory.c)
1960 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1961 unsigned long pgoff
)
1963 struct vm_struct
*area
;
1964 unsigned long uaddr
= vma
->vm_start
;
1965 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1967 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
1970 area
= find_vm_area(addr
);
1974 if (!(area
->flags
& VM_USERMAP
))
1977 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
1980 addr
+= pgoff
<< PAGE_SHIFT
;
1982 struct page
*page
= vmalloc_to_page(addr
);
1985 ret
= vm_insert_page(vma
, uaddr
, page
);
1992 } while (usize
> 0);
1994 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1995 vma
->vm_flags
|= VM_RESERVED
;
1999 EXPORT_SYMBOL(remap_vmalloc_range
);
2002 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2005 void __attribute__((weak
)) vmalloc_sync_all(void)
2010 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2012 /* apply_to_page_range() does all the hard work. */
2017 * alloc_vm_area - allocate a range of kernel address space
2018 * @size: size of the area
2020 * Returns: NULL on failure, vm_struct on success
2022 * This function reserves a range of kernel address space, and
2023 * allocates pagetables to map that range. No actual mappings
2024 * are created. If the kernel address space is not shared
2025 * between processes, it syncs the pagetable across all
2028 struct vm_struct
*alloc_vm_area(size_t size
)
2030 struct vm_struct
*area
;
2032 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2033 __builtin_return_address(0));
2038 * This ensures that page tables are constructed for this region
2039 * of kernel virtual address space and mapped into init_mm.
2041 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2042 area
->size
, f
, NULL
)) {
2047 /* Make sure the pagetables are constructed in process kernel
2053 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2055 void free_vm_area(struct vm_struct
*area
)
2057 struct vm_struct
*ret
;
2058 ret
= remove_vm_area(area
->addr
);
2059 BUG_ON(ret
!= area
);
2062 EXPORT_SYMBOL_GPL(free_vm_area
);
2064 #ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA
2065 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2067 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2071 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2072 * @end: target address
2073 * @pnext: out arg for the next vmap_area
2074 * @pprev: out arg for the previous vmap_area
2076 * Returns: %true if either or both of next and prev are found,
2077 * %false if no vmap_area exists
2079 * Find vmap_areas end addresses of which enclose @end. ie. if not
2080 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2082 static bool pvm_find_next_prev(unsigned long end
,
2083 struct vmap_area
**pnext
,
2084 struct vmap_area
**pprev
)
2086 struct rb_node
*n
= vmap_area_root
.rb_node
;
2087 struct vmap_area
*va
= NULL
;
2090 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2091 if (end
< va
->va_end
)
2093 else if (end
> va
->va_end
)
2102 if (va
->va_end
> end
) {
2104 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2107 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2113 * pvm_determine_end - find the highest aligned address between two vmap_areas
2114 * @pnext: in/out arg for the next vmap_area
2115 * @pprev: in/out arg for the previous vmap_area
2118 * Returns: determined end address
2120 * Find the highest aligned address between *@pnext and *@pprev below
2121 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2122 * down address is between the end addresses of the two vmap_areas.
2124 * Please note that the address returned by this function may fall
2125 * inside *@pnext vmap_area. The caller is responsible for checking
2128 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2129 struct vmap_area
**pprev
,
2130 unsigned long align
)
2132 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2136 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2140 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2142 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2149 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2150 * @offsets: array containing offset of each area
2151 * @sizes: array containing size of each area
2152 * @nr_vms: the number of areas to allocate
2153 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2154 * @gfp_mask: allocation mask
2156 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2157 * vm_structs on success, %NULL on failure
2159 * Percpu allocator wants to use congruent vm areas so that it can
2160 * maintain the offsets among percpu areas. This function allocates
2161 * congruent vmalloc areas for it. These areas tend to be scattered
2162 * pretty far, distance between two areas easily going up to
2163 * gigabytes. To avoid interacting with regular vmallocs, these areas
2164 * are allocated from top.
2166 * Despite its complicated look, this allocator is rather simple. It
2167 * does everything top-down and scans areas from the end looking for
2168 * matching slot. While scanning, if any of the areas overlaps with
2169 * existing vmap_area, the base address is pulled down to fit the
2170 * area. Scanning is repeated till all the areas fit and then all
2171 * necessary data structres are inserted and the result is returned.
2173 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2174 const size_t *sizes
, int nr_vms
,
2175 size_t align
, gfp_t gfp_mask
)
2177 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2178 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2179 struct vmap_area
**vas
, *prev
, *next
;
2180 struct vm_struct
**vms
;
2181 int area
, area2
, last_area
, term_area
;
2182 unsigned long base
, start
, end
, last_end
;
2183 bool purged
= false;
2185 gfp_mask
&= GFP_RECLAIM_MASK
;
2187 /* verify parameters and allocate data structures */
2188 BUG_ON(align
& ~PAGE_MASK
|| !is_power_of_2(align
));
2189 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2190 start
= offsets
[area
];
2191 end
= start
+ sizes
[area
];
2193 /* is everything aligned properly? */
2194 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2195 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2197 /* detect the area with the highest address */
2198 if (start
> offsets
[last_area
])
2201 for (area2
= 0; area2
< nr_vms
; area2
++) {
2202 unsigned long start2
= offsets
[area2
];
2203 unsigned long end2
= start2
+ sizes
[area2
];
2208 BUG_ON(start2
>= start
&& start2
< end
);
2209 BUG_ON(end2
<= end
&& end2
> start
);
2212 last_end
= offsets
[last_area
] + sizes
[last_area
];
2214 if (vmalloc_end
- vmalloc_start
< last_end
) {
2219 vms
= kzalloc(sizeof(vms
[0]) * nr_vms
, gfp_mask
);
2220 vas
= kzalloc(sizeof(vas
[0]) * nr_vms
, gfp_mask
);
2224 for (area
= 0; area
< nr_vms
; area
++) {
2225 vas
[area
] = kzalloc(sizeof(struct vmap_area
), gfp_mask
);
2226 vms
[area
] = kzalloc(sizeof(struct vm_struct
), gfp_mask
);
2227 if (!vas
[area
] || !vms
[area
])
2231 spin_lock(&vmap_area_lock
);
2233 /* start scanning - we scan from the top, begin with the last area */
2234 area
= term_area
= last_area
;
2235 start
= offsets
[area
];
2236 end
= start
+ sizes
[area
];
2238 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2239 base
= vmalloc_end
- last_end
;
2242 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2245 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2246 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2249 * base might have underflowed, add last_end before
2252 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2253 spin_unlock(&vmap_area_lock
);
2255 purge_vmap_area_lazy();
2263 * If next overlaps, move base downwards so that it's
2264 * right below next and then recheck.
2266 if (next
&& next
->va_start
< base
+ end
) {
2267 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2273 * If prev overlaps, shift down next and prev and move
2274 * base so that it's right below new next and then
2277 if (prev
&& prev
->va_end
> base
+ start
) {
2279 prev
= node_to_va(rb_prev(&next
->rb_node
));
2280 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2286 * This area fits, move on to the previous one. If
2287 * the previous one is the terminal one, we're done.
2289 area
= (area
+ nr_vms
- 1) % nr_vms
;
2290 if (area
== term_area
)
2292 start
= offsets
[area
];
2293 end
= start
+ sizes
[area
];
2294 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2297 /* we've found a fitting base, insert all va's */
2298 for (area
= 0; area
< nr_vms
; area
++) {
2299 struct vmap_area
*va
= vas
[area
];
2301 va
->va_start
= base
+ offsets
[area
];
2302 va
->va_end
= va
->va_start
+ sizes
[area
];
2303 __insert_vmap_area(va
);
2306 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2308 spin_unlock(&vmap_area_lock
);
2310 /* insert all vm's */
2311 for (area
= 0; area
< nr_vms
; area
++)
2312 insert_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2319 for (area
= 0; area
< nr_vms
; area
++) {
2332 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2333 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2334 * @nr_vms: the number of allocated areas
2336 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2338 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2342 for (i
= 0; i
< nr_vms
; i
++)
2343 free_vm_area(vms
[i
]);
2347 #ifdef CONFIG_PROC_FS
2348 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2351 struct vm_struct
*v
;
2353 read_lock(&vmlist_lock
);
2355 while (n
> 0 && v
) {
2366 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2368 struct vm_struct
*v
= p
;
2374 static void s_stop(struct seq_file
*m
, void *p
)
2376 read_unlock(&vmlist_lock
);
2379 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2382 unsigned int nr
, *counters
= m
->private;
2387 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2389 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2390 counters
[page_to_nid(v
->pages
[nr
])]++;
2392 for_each_node_state(nr
, N_HIGH_MEMORY
)
2394 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2398 static int s_show(struct seq_file
*m
, void *p
)
2400 struct vm_struct
*v
= p
;
2402 seq_printf(m
, "0x%p-0x%p %7ld",
2403 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2406 char buff
[KSYM_SYMBOL_LEN
];
2409 sprint_symbol(buff
, (unsigned long)v
->caller
);
2414 seq_printf(m
, " pages=%d", v
->nr_pages
);
2417 seq_printf(m
, " phys=%lx", v
->phys_addr
);
2419 if (v
->flags
& VM_IOREMAP
)
2420 seq_printf(m
, " ioremap");
2422 if (v
->flags
& VM_ALLOC
)
2423 seq_printf(m
, " vmalloc");
2425 if (v
->flags
& VM_MAP
)
2426 seq_printf(m
, " vmap");
2428 if (v
->flags
& VM_USERMAP
)
2429 seq_printf(m
, " user");
2431 if (v
->flags
& VM_VPAGES
)
2432 seq_printf(m
, " vpages");
2434 show_numa_info(m
, v
);
2439 static const struct seq_operations vmalloc_op
= {
2446 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2448 unsigned int *ptr
= NULL
;
2452 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
2453 ret
= seq_open(file
, &vmalloc_op
);
2455 struct seq_file
*m
= file
->private_data
;
2462 static const struct file_operations proc_vmalloc_operations
= {
2463 .open
= vmalloc_open
,
2465 .llseek
= seq_lseek
,
2466 .release
= seq_release_private
,
2469 static int __init
proc_vmalloc_init(void)
2471 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2474 module_init(proc_vmalloc_init
);