USB: CP210x Add two device IDs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmalloc.c
blob680dcbb2d91ee75ddaaa1d0236962974a96d4696
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
35 /*** Page table manipulation functions ***/
37 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
39 pte_t *pte;
41 pte = pte_offset_kernel(pmd, addr);
42 do {
43 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
44 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
45 } while (pte++, addr += PAGE_SIZE, addr != end);
48 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
50 pmd_t *pmd;
51 unsigned long next;
53 pmd = pmd_offset(pud, addr);
54 do {
55 next = pmd_addr_end(addr, end);
56 if (pmd_none_or_clear_bad(pmd))
57 continue;
58 vunmap_pte_range(pmd, addr, next);
59 } while (pmd++, addr = next, addr != end);
62 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
64 pud_t *pud;
65 unsigned long next;
67 pud = pud_offset(pgd, addr);
68 do {
69 next = pud_addr_end(addr, end);
70 if (pud_none_or_clear_bad(pud))
71 continue;
72 vunmap_pmd_range(pud, addr, next);
73 } while (pud++, addr = next, addr != end);
76 static void vunmap_page_range(unsigned long addr, unsigned long end)
78 pgd_t *pgd;
79 unsigned long next;
81 BUG_ON(addr >= end);
82 pgd = pgd_offset_k(addr);
83 do {
84 next = pgd_addr_end(addr, end);
85 if (pgd_none_or_clear_bad(pgd))
86 continue;
87 vunmap_pud_range(pgd, addr, next);
88 } while (pgd++, addr = next, addr != end);
91 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
92 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
94 pte_t *pte;
97 * nr is a running index into the array which helps higher level
98 * callers keep track of where we're up to.
101 pte = pte_alloc_kernel(pmd, addr);
102 if (!pte)
103 return -ENOMEM;
104 do {
105 struct page *page = pages[*nr];
107 if (WARN_ON(!pte_none(*pte)))
108 return -EBUSY;
109 if (WARN_ON(!page))
110 return -ENOMEM;
111 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
112 (*nr)++;
113 } while (pte++, addr += PAGE_SIZE, addr != end);
114 return 0;
117 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
118 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
120 pmd_t *pmd;
121 unsigned long next;
123 pmd = pmd_alloc(&init_mm, pud, addr);
124 if (!pmd)
125 return -ENOMEM;
126 do {
127 next = pmd_addr_end(addr, end);
128 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
129 return -ENOMEM;
130 } while (pmd++, addr = next, addr != end);
131 return 0;
134 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
135 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
137 pud_t *pud;
138 unsigned long next;
140 pud = pud_alloc(&init_mm, pgd, addr);
141 if (!pud)
142 return -ENOMEM;
143 do {
144 next = pud_addr_end(addr, end);
145 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
146 return -ENOMEM;
147 } while (pud++, addr = next, addr != end);
148 return 0;
152 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
153 * will have pfns corresponding to the "pages" array.
155 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
157 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
158 pgprot_t prot, struct page **pages)
160 pgd_t *pgd;
161 unsigned long next;
162 unsigned long addr = start;
163 int err = 0;
164 int nr = 0;
166 BUG_ON(addr >= end);
167 pgd = pgd_offset_k(addr);
168 do {
169 next = pgd_addr_end(addr, end);
170 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
171 if (err)
172 return err;
173 } while (pgd++, addr = next, addr != end);
175 return nr;
178 static int vmap_page_range(unsigned long start, unsigned long end,
179 pgprot_t prot, struct page **pages)
181 int ret;
183 ret = vmap_page_range_noflush(start, end, prot, pages);
184 flush_cache_vmap(start, end);
185 return ret;
188 int is_vmalloc_or_module_addr(const void *x)
191 * ARM, x86-64 and sparc64 put modules in a special place,
192 * and fall back on vmalloc() if that fails. Others
193 * just put it in the vmalloc space.
195 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
196 unsigned long addr = (unsigned long)x;
197 if (addr >= MODULES_VADDR && addr < MODULES_END)
198 return 1;
199 #endif
200 return is_vmalloc_addr(x);
204 * Walk a vmap address to the struct page it maps.
206 struct page *vmalloc_to_page(const void *vmalloc_addr)
208 unsigned long addr = (unsigned long) vmalloc_addr;
209 struct page *page = NULL;
210 pgd_t *pgd = pgd_offset_k(addr);
213 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
214 * architectures that do not vmalloc module space
216 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
218 if (!pgd_none(*pgd)) {
219 pud_t *pud = pud_offset(pgd, addr);
220 if (!pud_none(*pud)) {
221 pmd_t *pmd = pmd_offset(pud, addr);
222 if (!pmd_none(*pmd)) {
223 pte_t *ptep, pte;
225 ptep = pte_offset_map(pmd, addr);
226 pte = *ptep;
227 if (pte_present(pte))
228 page = pte_page(pte);
229 pte_unmap(ptep);
233 return page;
235 EXPORT_SYMBOL(vmalloc_to_page);
238 * Map a vmalloc()-space virtual address to the physical page frame number.
240 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
242 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
244 EXPORT_SYMBOL(vmalloc_to_pfn);
247 /*** Global kva allocator ***/
249 #define VM_LAZY_FREE 0x01
250 #define VM_LAZY_FREEING 0x02
251 #define VM_VM_AREA 0x04
253 struct vmap_area {
254 unsigned long va_start;
255 unsigned long va_end;
256 unsigned long flags;
257 struct rb_node rb_node; /* address sorted rbtree */
258 struct list_head list; /* address sorted list */
259 struct list_head purge_list; /* "lazy purge" list */
260 void *private;
261 struct rcu_head rcu_head;
264 static DEFINE_SPINLOCK(vmap_area_lock);
265 static struct rb_root vmap_area_root = RB_ROOT;
266 static LIST_HEAD(vmap_area_list);
267 static unsigned long vmap_area_pcpu_hole;
269 static struct vmap_area *__find_vmap_area(unsigned long addr)
271 struct rb_node *n = vmap_area_root.rb_node;
273 while (n) {
274 struct vmap_area *va;
276 va = rb_entry(n, struct vmap_area, rb_node);
277 if (addr < va->va_start)
278 n = n->rb_left;
279 else if (addr > va->va_start)
280 n = n->rb_right;
281 else
282 return va;
285 return NULL;
288 static void __insert_vmap_area(struct vmap_area *va)
290 struct rb_node **p = &vmap_area_root.rb_node;
291 struct rb_node *parent = NULL;
292 struct rb_node *tmp;
294 while (*p) {
295 struct vmap_area *tmp;
297 parent = *p;
298 tmp = rb_entry(parent, struct vmap_area, rb_node);
299 if (va->va_start < tmp->va_end)
300 p = &(*p)->rb_left;
301 else if (va->va_end > tmp->va_start)
302 p = &(*p)->rb_right;
303 else
304 BUG();
307 rb_link_node(&va->rb_node, parent, p);
308 rb_insert_color(&va->rb_node, &vmap_area_root);
310 /* address-sort this list so it is usable like the vmlist */
311 tmp = rb_prev(&va->rb_node);
312 if (tmp) {
313 struct vmap_area *prev;
314 prev = rb_entry(tmp, struct vmap_area, rb_node);
315 list_add_rcu(&va->list, &prev->list);
316 } else
317 list_add_rcu(&va->list, &vmap_area_list);
320 static void purge_vmap_area_lazy(void);
323 * Allocate a region of KVA of the specified size and alignment, within the
324 * vstart and vend.
326 static struct vmap_area *alloc_vmap_area(unsigned long size,
327 unsigned long align,
328 unsigned long vstart, unsigned long vend,
329 int node, gfp_t gfp_mask)
331 struct vmap_area *va;
332 struct rb_node *n;
333 unsigned long addr;
334 int purged = 0;
336 BUG_ON(!size);
337 BUG_ON(size & ~PAGE_MASK);
339 va = kmalloc_node(sizeof(struct vmap_area),
340 gfp_mask & GFP_RECLAIM_MASK, node);
341 if (unlikely(!va))
342 return ERR_PTR(-ENOMEM);
344 retry:
345 addr = ALIGN(vstart, align);
347 spin_lock(&vmap_area_lock);
348 if (addr + size - 1 < addr)
349 goto overflow;
351 /* XXX: could have a last_hole cache */
352 n = vmap_area_root.rb_node;
353 if (n) {
354 struct vmap_area *first = NULL;
356 do {
357 struct vmap_area *tmp;
358 tmp = rb_entry(n, struct vmap_area, rb_node);
359 if (tmp->va_end >= addr) {
360 if (!first && tmp->va_start < addr + size)
361 first = tmp;
362 n = n->rb_left;
363 } else {
364 first = tmp;
365 n = n->rb_right;
367 } while (n);
369 if (!first)
370 goto found;
372 if (first->va_end < addr) {
373 n = rb_next(&first->rb_node);
374 if (n)
375 first = rb_entry(n, struct vmap_area, rb_node);
376 else
377 goto found;
380 while (addr + size > first->va_start && addr + size <= vend) {
381 addr = ALIGN(first->va_end + PAGE_SIZE, align);
382 if (addr + size - 1 < addr)
383 goto overflow;
385 n = rb_next(&first->rb_node);
386 if (n)
387 first = rb_entry(n, struct vmap_area, rb_node);
388 else
389 goto found;
392 found:
393 if (addr + size > vend) {
394 overflow:
395 spin_unlock(&vmap_area_lock);
396 if (!purged) {
397 purge_vmap_area_lazy();
398 purged = 1;
399 goto retry;
401 if (printk_ratelimit())
402 printk(KERN_WARNING
403 "vmap allocation for size %lu failed: "
404 "use vmalloc=<size> to increase size.\n", size);
405 kfree(va);
406 return ERR_PTR(-EBUSY);
409 BUG_ON(addr & (align-1));
411 va->va_start = addr;
412 va->va_end = addr + size;
413 va->flags = 0;
414 __insert_vmap_area(va);
415 spin_unlock(&vmap_area_lock);
417 return va;
420 static void rcu_free_va(struct rcu_head *head)
422 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
424 kfree(va);
427 static void __free_vmap_area(struct vmap_area *va)
429 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
430 rb_erase(&va->rb_node, &vmap_area_root);
431 RB_CLEAR_NODE(&va->rb_node);
432 list_del_rcu(&va->list);
435 * Track the highest possible candidate for pcpu area
436 * allocation. Areas outside of vmalloc area can be returned
437 * here too, consider only end addresses which fall inside
438 * vmalloc area proper.
440 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
441 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
443 call_rcu(&va->rcu_head, rcu_free_va);
447 * Free a region of KVA allocated by alloc_vmap_area
449 static void free_vmap_area(struct vmap_area *va)
451 spin_lock(&vmap_area_lock);
452 __free_vmap_area(va);
453 spin_unlock(&vmap_area_lock);
457 * Clear the pagetable entries of a given vmap_area
459 static void unmap_vmap_area(struct vmap_area *va)
461 vunmap_page_range(va->va_start, va->va_end);
464 static void vmap_debug_free_range(unsigned long start, unsigned long end)
467 * Unmap page tables and force a TLB flush immediately if
468 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
469 * bugs similarly to those in linear kernel virtual address
470 * space after a page has been freed.
472 * All the lazy freeing logic is still retained, in order to
473 * minimise intrusiveness of this debugging feature.
475 * This is going to be *slow* (linear kernel virtual address
476 * debugging doesn't do a broadcast TLB flush so it is a lot
477 * faster).
479 #ifdef CONFIG_DEBUG_PAGEALLOC
480 vunmap_page_range(start, end);
481 flush_tlb_kernel_range(start, end);
482 #endif
486 * lazy_max_pages is the maximum amount of virtual address space we gather up
487 * before attempting to purge with a TLB flush.
489 * There is a tradeoff here: a larger number will cover more kernel page tables
490 * and take slightly longer to purge, but it will linearly reduce the number of
491 * global TLB flushes that must be performed. It would seem natural to scale
492 * this number up linearly with the number of CPUs (because vmapping activity
493 * could also scale linearly with the number of CPUs), however it is likely
494 * that in practice, workloads might be constrained in other ways that mean
495 * vmap activity will not scale linearly with CPUs. Also, I want to be
496 * conservative and not introduce a big latency on huge systems, so go with
497 * a less aggressive log scale. It will still be an improvement over the old
498 * code, and it will be simple to change the scale factor if we find that it
499 * becomes a problem on bigger systems.
501 static unsigned long lazy_max_pages(void)
503 unsigned int log;
505 log = fls(num_online_cpus());
507 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
510 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
512 /* for per-CPU blocks */
513 static void purge_fragmented_blocks_allcpus(void);
516 * called before a call to iounmap() if the caller wants vm_area_struct's
517 * immediately freed.
519 void set_iounmap_nonlazy(void)
521 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
525 * Purges all lazily-freed vmap areas.
527 * If sync is 0 then don't purge if there is already a purge in progress.
528 * If force_flush is 1, then flush kernel TLBs between *start and *end even
529 * if we found no lazy vmap areas to unmap (callers can use this to optimise
530 * their own TLB flushing).
531 * Returns with *start = min(*start, lowest purged address)
532 * *end = max(*end, highest purged address)
534 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
535 int sync, int force_flush)
537 static DEFINE_SPINLOCK(purge_lock);
538 LIST_HEAD(valist);
539 struct vmap_area *va;
540 struct vmap_area *n_va;
541 int nr = 0;
544 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
545 * should not expect such behaviour. This just simplifies locking for
546 * the case that isn't actually used at the moment anyway.
548 if (!sync && !force_flush) {
549 if (!spin_trylock(&purge_lock))
550 return;
551 } else
552 spin_lock(&purge_lock);
554 if (sync)
555 purge_fragmented_blocks_allcpus();
557 rcu_read_lock();
558 list_for_each_entry_rcu(va, &vmap_area_list, list) {
559 if (va->flags & VM_LAZY_FREE) {
560 if (va->va_start < *start)
561 *start = va->va_start;
562 if (va->va_end > *end)
563 *end = va->va_end;
564 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
565 unmap_vmap_area(va);
566 list_add_tail(&va->purge_list, &valist);
567 va->flags |= VM_LAZY_FREEING;
568 va->flags &= ~VM_LAZY_FREE;
571 rcu_read_unlock();
573 if (nr)
574 atomic_sub(nr, &vmap_lazy_nr);
576 if (nr || force_flush)
577 flush_tlb_kernel_range(*start, *end);
579 if (nr) {
580 spin_lock(&vmap_area_lock);
581 list_for_each_entry_safe(va, n_va, &valist, purge_list)
582 __free_vmap_area(va);
583 spin_unlock(&vmap_area_lock);
585 spin_unlock(&purge_lock);
589 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
590 * is already purging.
592 static void try_purge_vmap_area_lazy(void)
594 unsigned long start = ULONG_MAX, end = 0;
596 __purge_vmap_area_lazy(&start, &end, 0, 0);
600 * Kick off a purge of the outstanding lazy areas.
602 static void purge_vmap_area_lazy(void)
604 unsigned long start = ULONG_MAX, end = 0;
606 __purge_vmap_area_lazy(&start, &end, 1, 0);
610 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
611 * called for the correct range previously.
613 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
615 va->flags |= VM_LAZY_FREE;
616 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
617 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
618 try_purge_vmap_area_lazy();
622 * Free and unmap a vmap area
624 static void free_unmap_vmap_area(struct vmap_area *va)
626 flush_cache_vunmap(va->va_start, va->va_end);
627 free_unmap_vmap_area_noflush(va);
630 static struct vmap_area *find_vmap_area(unsigned long addr)
632 struct vmap_area *va;
634 spin_lock(&vmap_area_lock);
635 va = __find_vmap_area(addr);
636 spin_unlock(&vmap_area_lock);
638 return va;
641 static void free_unmap_vmap_area_addr(unsigned long addr)
643 struct vmap_area *va;
645 va = find_vmap_area(addr);
646 BUG_ON(!va);
647 free_unmap_vmap_area(va);
651 /*** Per cpu kva allocator ***/
654 * vmap space is limited especially on 32 bit architectures. Ensure there is
655 * room for at least 16 percpu vmap blocks per CPU.
658 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
659 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
660 * instead (we just need a rough idea)
662 #if BITS_PER_LONG == 32
663 #define VMALLOC_SPACE (128UL*1024*1024)
664 #else
665 #define VMALLOC_SPACE (128UL*1024*1024*1024)
666 #endif
668 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
669 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
670 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
671 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
672 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
673 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
674 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
675 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
676 VMALLOC_PAGES / NR_CPUS / 16))
678 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
680 static bool vmap_initialized __read_mostly = false;
682 struct vmap_block_queue {
683 spinlock_t lock;
684 struct list_head free;
687 struct vmap_block {
688 spinlock_t lock;
689 struct vmap_area *va;
690 struct vmap_block_queue *vbq;
691 unsigned long free, dirty;
692 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
693 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
694 struct list_head free_list;
695 struct rcu_head rcu_head;
696 struct list_head purge;
699 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
700 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
703 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
704 * in the free path. Could get rid of this if we change the API to return a
705 * "cookie" from alloc, to be passed to free. But no big deal yet.
707 static DEFINE_SPINLOCK(vmap_block_tree_lock);
708 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
711 * We should probably have a fallback mechanism to allocate virtual memory
712 * out of partially filled vmap blocks. However vmap block sizing should be
713 * fairly reasonable according to the vmalloc size, so it shouldn't be a
714 * big problem.
717 static unsigned long addr_to_vb_idx(unsigned long addr)
719 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
720 addr /= VMAP_BLOCK_SIZE;
721 return addr;
724 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
726 struct vmap_block_queue *vbq;
727 struct vmap_block *vb;
728 struct vmap_area *va;
729 unsigned long vb_idx;
730 int node, err;
732 node = numa_node_id();
734 vb = kmalloc_node(sizeof(struct vmap_block),
735 gfp_mask & GFP_RECLAIM_MASK, node);
736 if (unlikely(!vb))
737 return ERR_PTR(-ENOMEM);
739 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
740 VMALLOC_START, VMALLOC_END,
741 node, gfp_mask);
742 if (unlikely(IS_ERR(va))) {
743 kfree(vb);
744 return ERR_PTR(PTR_ERR(va));
747 err = radix_tree_preload(gfp_mask);
748 if (unlikely(err)) {
749 kfree(vb);
750 free_vmap_area(va);
751 return ERR_PTR(err);
754 spin_lock_init(&vb->lock);
755 vb->va = va;
756 vb->free = VMAP_BBMAP_BITS;
757 vb->dirty = 0;
758 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
759 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
760 INIT_LIST_HEAD(&vb->free_list);
762 vb_idx = addr_to_vb_idx(va->va_start);
763 spin_lock(&vmap_block_tree_lock);
764 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
765 spin_unlock(&vmap_block_tree_lock);
766 BUG_ON(err);
767 radix_tree_preload_end();
769 vbq = &get_cpu_var(vmap_block_queue);
770 vb->vbq = vbq;
771 spin_lock(&vbq->lock);
772 list_add_rcu(&vb->free_list, &vbq->free);
773 spin_unlock(&vbq->lock);
774 put_cpu_var(vmap_cpu_blocks);
776 return vb;
779 static void rcu_free_vb(struct rcu_head *head)
781 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
783 kfree(vb);
786 static void free_vmap_block(struct vmap_block *vb)
788 struct vmap_block *tmp;
789 unsigned long vb_idx;
791 vb_idx = addr_to_vb_idx(vb->va->va_start);
792 spin_lock(&vmap_block_tree_lock);
793 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
794 spin_unlock(&vmap_block_tree_lock);
795 BUG_ON(tmp != vb);
797 free_unmap_vmap_area_noflush(vb->va);
798 call_rcu(&vb->rcu_head, rcu_free_vb);
801 static void purge_fragmented_blocks(int cpu)
803 LIST_HEAD(purge);
804 struct vmap_block *vb;
805 struct vmap_block *n_vb;
806 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
808 rcu_read_lock();
809 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
811 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
812 continue;
814 spin_lock(&vb->lock);
815 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
816 vb->free = 0; /* prevent further allocs after releasing lock */
817 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
818 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
819 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
820 spin_lock(&vbq->lock);
821 list_del_rcu(&vb->free_list);
822 spin_unlock(&vbq->lock);
823 spin_unlock(&vb->lock);
824 list_add_tail(&vb->purge, &purge);
825 } else
826 spin_unlock(&vb->lock);
828 rcu_read_unlock();
830 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
831 list_del(&vb->purge);
832 free_vmap_block(vb);
836 static void purge_fragmented_blocks_thiscpu(void)
838 purge_fragmented_blocks(smp_processor_id());
841 static void purge_fragmented_blocks_allcpus(void)
843 int cpu;
845 for_each_possible_cpu(cpu)
846 purge_fragmented_blocks(cpu);
849 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
851 struct vmap_block_queue *vbq;
852 struct vmap_block *vb;
853 unsigned long addr = 0;
854 unsigned int order;
855 int purge = 0;
857 BUG_ON(size & ~PAGE_MASK);
858 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
859 order = get_order(size);
861 again:
862 rcu_read_lock();
863 vbq = &get_cpu_var(vmap_block_queue);
864 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
865 int i;
867 spin_lock(&vb->lock);
868 if (vb->free < 1UL << order)
869 goto next;
870 i = bitmap_find_free_region(vb->alloc_map,
871 VMAP_BBMAP_BITS, order);
873 if (i < 0) {
874 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
875 /* fragmented and no outstanding allocations */
876 BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
877 purge = 1;
879 goto next;
881 addr = vb->va->va_start + (i << PAGE_SHIFT);
882 BUG_ON(addr_to_vb_idx(addr) !=
883 addr_to_vb_idx(vb->va->va_start));
884 vb->free -= 1UL << order;
885 if (vb->free == 0) {
886 spin_lock(&vbq->lock);
887 list_del_rcu(&vb->free_list);
888 spin_unlock(&vbq->lock);
890 spin_unlock(&vb->lock);
891 break;
892 next:
893 spin_unlock(&vb->lock);
896 if (purge)
897 purge_fragmented_blocks_thiscpu();
899 put_cpu_var(vmap_cpu_blocks);
900 rcu_read_unlock();
902 if (!addr) {
903 vb = new_vmap_block(gfp_mask);
904 if (IS_ERR(vb))
905 return vb;
906 goto again;
909 return (void *)addr;
912 static void vb_free(const void *addr, unsigned long size)
914 unsigned long offset;
915 unsigned long vb_idx;
916 unsigned int order;
917 struct vmap_block *vb;
919 BUG_ON(size & ~PAGE_MASK);
920 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
922 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
924 order = get_order(size);
926 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
928 vb_idx = addr_to_vb_idx((unsigned long)addr);
929 rcu_read_lock();
930 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
931 rcu_read_unlock();
932 BUG_ON(!vb);
934 spin_lock(&vb->lock);
935 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
937 vb->dirty += 1UL << order;
938 if (vb->dirty == VMAP_BBMAP_BITS) {
939 BUG_ON(vb->free);
940 spin_unlock(&vb->lock);
941 free_vmap_block(vb);
942 } else
943 spin_unlock(&vb->lock);
947 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
949 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
950 * to amortize TLB flushing overheads. What this means is that any page you
951 * have now, may, in a former life, have been mapped into kernel virtual
952 * address by the vmap layer and so there might be some CPUs with TLB entries
953 * still referencing that page (additional to the regular 1:1 kernel mapping).
955 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
956 * be sure that none of the pages we have control over will have any aliases
957 * from the vmap layer.
959 void vm_unmap_aliases(void)
961 unsigned long start = ULONG_MAX, end = 0;
962 int cpu;
963 int flush = 0;
965 if (unlikely(!vmap_initialized))
966 return;
968 for_each_possible_cpu(cpu) {
969 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
970 struct vmap_block *vb;
972 rcu_read_lock();
973 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
974 int i;
976 spin_lock(&vb->lock);
977 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
978 while (i < VMAP_BBMAP_BITS) {
979 unsigned long s, e;
980 int j;
981 j = find_next_zero_bit(vb->dirty_map,
982 VMAP_BBMAP_BITS, i);
984 s = vb->va->va_start + (i << PAGE_SHIFT);
985 e = vb->va->va_start + (j << PAGE_SHIFT);
986 vunmap_page_range(s, e);
987 flush = 1;
989 if (s < start)
990 start = s;
991 if (e > end)
992 end = e;
994 i = j;
995 i = find_next_bit(vb->dirty_map,
996 VMAP_BBMAP_BITS, i);
998 spin_unlock(&vb->lock);
1000 rcu_read_unlock();
1003 __purge_vmap_area_lazy(&start, &end, 1, flush);
1005 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1008 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1009 * @mem: the pointer returned by vm_map_ram
1010 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1012 void vm_unmap_ram(const void *mem, unsigned int count)
1014 unsigned long size = count << PAGE_SHIFT;
1015 unsigned long addr = (unsigned long)mem;
1017 BUG_ON(!addr);
1018 BUG_ON(addr < VMALLOC_START);
1019 BUG_ON(addr > VMALLOC_END);
1020 BUG_ON(addr & (PAGE_SIZE-1));
1022 debug_check_no_locks_freed(mem, size);
1023 vmap_debug_free_range(addr, addr+size);
1025 if (likely(count <= VMAP_MAX_ALLOC))
1026 vb_free(mem, size);
1027 else
1028 free_unmap_vmap_area_addr(addr);
1030 EXPORT_SYMBOL(vm_unmap_ram);
1033 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1034 * @pages: an array of pointers to the pages to be mapped
1035 * @count: number of pages
1036 * @node: prefer to allocate data structures on this node
1037 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1039 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1041 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1043 unsigned long size = count << PAGE_SHIFT;
1044 unsigned long addr;
1045 void *mem;
1047 if (likely(count <= VMAP_MAX_ALLOC)) {
1048 mem = vb_alloc(size, GFP_KERNEL);
1049 if (IS_ERR(mem))
1050 return NULL;
1051 addr = (unsigned long)mem;
1052 } else {
1053 struct vmap_area *va;
1054 va = alloc_vmap_area(size, PAGE_SIZE,
1055 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1056 if (IS_ERR(va))
1057 return NULL;
1059 addr = va->va_start;
1060 mem = (void *)addr;
1062 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1063 vm_unmap_ram(mem, count);
1064 return NULL;
1066 return mem;
1068 EXPORT_SYMBOL(vm_map_ram);
1071 * vm_area_register_early - register vmap area early during boot
1072 * @vm: vm_struct to register
1073 * @align: requested alignment
1075 * This function is used to register kernel vm area before
1076 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1077 * proper values on entry and other fields should be zero. On return,
1078 * vm->addr contains the allocated address.
1080 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1082 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1084 static size_t vm_init_off __initdata;
1085 unsigned long addr;
1087 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1088 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1090 vm->addr = (void *)addr;
1092 vm->next = vmlist;
1093 vmlist = vm;
1096 void __init vmalloc_init(void)
1098 struct vmap_area *va;
1099 struct vm_struct *tmp;
1100 int i;
1102 for_each_possible_cpu(i) {
1103 struct vmap_block_queue *vbq;
1105 vbq = &per_cpu(vmap_block_queue, i);
1106 spin_lock_init(&vbq->lock);
1107 INIT_LIST_HEAD(&vbq->free);
1110 /* Import existing vmlist entries. */
1111 for (tmp = vmlist; tmp; tmp = tmp->next) {
1112 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1113 va->flags = tmp->flags | VM_VM_AREA;
1114 va->va_start = (unsigned long)tmp->addr;
1115 va->va_end = va->va_start + tmp->size;
1116 __insert_vmap_area(va);
1119 vmap_area_pcpu_hole = VMALLOC_END;
1121 vmap_initialized = true;
1125 * map_kernel_range_noflush - map kernel VM area with the specified pages
1126 * @addr: start of the VM area to map
1127 * @size: size of the VM area to map
1128 * @prot: page protection flags to use
1129 * @pages: pages to map
1131 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1132 * specify should have been allocated using get_vm_area() and its
1133 * friends.
1135 * NOTE:
1136 * This function does NOT do any cache flushing. The caller is
1137 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1138 * before calling this function.
1140 * RETURNS:
1141 * The number of pages mapped on success, -errno on failure.
1143 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1144 pgprot_t prot, struct page **pages)
1146 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1150 * unmap_kernel_range_noflush - unmap kernel VM area
1151 * @addr: start of the VM area to unmap
1152 * @size: size of the VM area to unmap
1154 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1155 * specify should have been allocated using get_vm_area() and its
1156 * friends.
1158 * NOTE:
1159 * This function does NOT do any cache flushing. The caller is
1160 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1161 * before calling this function and flush_tlb_kernel_range() after.
1163 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1165 vunmap_page_range(addr, addr + size);
1169 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1170 * @addr: start of the VM area to unmap
1171 * @size: size of the VM area to unmap
1173 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1174 * the unmapping and tlb after.
1176 void unmap_kernel_range(unsigned long addr, unsigned long size)
1178 unsigned long end = addr + size;
1180 flush_cache_vunmap(addr, end);
1181 vunmap_page_range(addr, end);
1182 flush_tlb_kernel_range(addr, end);
1185 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1187 unsigned long addr = (unsigned long)area->addr;
1188 unsigned long end = addr + area->size - PAGE_SIZE;
1189 int err;
1191 err = vmap_page_range(addr, end, prot, *pages);
1192 if (err > 0) {
1193 *pages += err;
1194 err = 0;
1197 return err;
1199 EXPORT_SYMBOL_GPL(map_vm_area);
1201 /*** Old vmalloc interfaces ***/
1202 DEFINE_RWLOCK(vmlist_lock);
1203 struct vm_struct *vmlist;
1205 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1206 unsigned long flags, void *caller)
1208 struct vm_struct *tmp, **p;
1210 vm->flags = flags;
1211 vm->addr = (void *)va->va_start;
1212 vm->size = va->va_end - va->va_start;
1213 vm->caller = caller;
1214 va->private = vm;
1215 va->flags |= VM_VM_AREA;
1217 write_lock(&vmlist_lock);
1218 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1219 if (tmp->addr >= vm->addr)
1220 break;
1222 vm->next = *p;
1223 *p = vm;
1224 write_unlock(&vmlist_lock);
1227 static struct vm_struct *__get_vm_area_node(unsigned long size,
1228 unsigned long align, unsigned long flags, unsigned long start,
1229 unsigned long end, int node, gfp_t gfp_mask, void *caller)
1231 static struct vmap_area *va;
1232 struct vm_struct *area;
1234 BUG_ON(in_interrupt());
1235 if (flags & VM_IOREMAP) {
1236 int bit = fls(size);
1238 if (bit > IOREMAP_MAX_ORDER)
1239 bit = IOREMAP_MAX_ORDER;
1240 else if (bit < PAGE_SHIFT)
1241 bit = PAGE_SHIFT;
1243 align = 1ul << bit;
1246 size = PAGE_ALIGN(size);
1247 if (unlikely(!size))
1248 return NULL;
1250 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1251 if (unlikely(!area))
1252 return NULL;
1255 * We always allocate a guard page.
1257 size += PAGE_SIZE;
1259 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1260 if (IS_ERR(va)) {
1261 kfree(area);
1262 return NULL;
1265 insert_vmalloc_vm(area, va, flags, caller);
1266 return area;
1269 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1270 unsigned long start, unsigned long end)
1272 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1273 __builtin_return_address(0));
1275 EXPORT_SYMBOL_GPL(__get_vm_area);
1277 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1278 unsigned long start, unsigned long end,
1279 void *caller)
1281 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1282 caller);
1286 * get_vm_area - reserve a contiguous kernel virtual area
1287 * @size: size of the area
1288 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1290 * Search an area of @size in the kernel virtual mapping area,
1291 * and reserved it for out purposes. Returns the area descriptor
1292 * on success or %NULL on failure.
1294 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1296 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1297 -1, GFP_KERNEL, __builtin_return_address(0));
1300 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1301 void *caller)
1303 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1304 -1, GFP_KERNEL, caller);
1307 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1308 int node, gfp_t gfp_mask)
1310 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1311 node, gfp_mask, __builtin_return_address(0));
1314 static struct vm_struct *find_vm_area(const void *addr)
1316 struct vmap_area *va;
1318 va = find_vmap_area((unsigned long)addr);
1319 if (va && va->flags & VM_VM_AREA)
1320 return va->private;
1322 return NULL;
1326 * remove_vm_area - find and remove a continuous kernel virtual area
1327 * @addr: base address
1329 * Search for the kernel VM area starting at @addr, and remove it.
1330 * This function returns the found VM area, but using it is NOT safe
1331 * on SMP machines, except for its size or flags.
1333 struct vm_struct *remove_vm_area(const void *addr)
1335 struct vmap_area *va;
1337 va = find_vmap_area((unsigned long)addr);
1338 if (va && va->flags & VM_VM_AREA) {
1339 struct vm_struct *vm = va->private;
1340 struct vm_struct *tmp, **p;
1342 * remove from list and disallow access to this vm_struct
1343 * before unmap. (address range confliction is maintained by
1344 * vmap.)
1346 write_lock(&vmlist_lock);
1347 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1349 *p = tmp->next;
1350 write_unlock(&vmlist_lock);
1352 vmap_debug_free_range(va->va_start, va->va_end);
1353 free_unmap_vmap_area(va);
1354 vm->size -= PAGE_SIZE;
1356 return vm;
1358 return NULL;
1361 static void __vunmap(const void *addr, int deallocate_pages)
1363 struct vm_struct *area;
1365 if (!addr)
1366 return;
1368 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1369 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1370 return;
1373 area = remove_vm_area(addr);
1374 if (unlikely(!area)) {
1375 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1376 addr);
1377 return;
1380 debug_check_no_locks_freed(addr, area->size);
1381 debug_check_no_obj_freed(addr, area->size);
1383 if (deallocate_pages) {
1384 int i;
1386 for (i = 0; i < area->nr_pages; i++) {
1387 struct page *page = area->pages[i];
1389 BUG_ON(!page);
1390 __free_page(page);
1393 if (area->flags & VM_VPAGES)
1394 vfree(area->pages);
1395 else
1396 kfree(area->pages);
1399 kfree(area);
1400 return;
1404 * vfree - release memory allocated by vmalloc()
1405 * @addr: memory base address
1407 * Free the virtually continuous memory area starting at @addr, as
1408 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1409 * NULL, no operation is performed.
1411 * Must not be called in interrupt context.
1413 void vfree(const void *addr)
1415 BUG_ON(in_interrupt());
1417 kmemleak_free(addr);
1419 __vunmap(addr, 1);
1421 EXPORT_SYMBOL(vfree);
1424 * vunmap - release virtual mapping obtained by vmap()
1425 * @addr: memory base address
1427 * Free the virtually contiguous memory area starting at @addr,
1428 * which was created from the page array passed to vmap().
1430 * Must not be called in interrupt context.
1432 void vunmap(const void *addr)
1434 BUG_ON(in_interrupt());
1435 might_sleep();
1436 __vunmap(addr, 0);
1438 EXPORT_SYMBOL(vunmap);
1441 * vmap - map an array of pages into virtually contiguous space
1442 * @pages: array of page pointers
1443 * @count: number of pages to map
1444 * @flags: vm_area->flags
1445 * @prot: page protection for the mapping
1447 * Maps @count pages from @pages into contiguous kernel virtual
1448 * space.
1450 void *vmap(struct page **pages, unsigned int count,
1451 unsigned long flags, pgprot_t prot)
1453 struct vm_struct *area;
1455 might_sleep();
1457 if (count > totalram_pages)
1458 return NULL;
1460 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1461 __builtin_return_address(0));
1462 if (!area)
1463 return NULL;
1465 if (map_vm_area(area, prot, &pages)) {
1466 vunmap(area->addr);
1467 return NULL;
1470 return area->addr;
1472 EXPORT_SYMBOL(vmap);
1474 static void *__vmalloc_node(unsigned long size, unsigned long align,
1475 gfp_t gfp_mask, pgprot_t prot,
1476 int node, void *caller);
1477 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1478 pgprot_t prot, int node, void *caller)
1480 struct page **pages;
1481 unsigned int nr_pages, array_size, i;
1483 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1484 array_size = (nr_pages * sizeof(struct page *));
1486 area->nr_pages = nr_pages;
1487 /* Please note that the recursion is strictly bounded. */
1488 if (array_size > PAGE_SIZE) {
1489 pages = __vmalloc_node(array_size, 1, gfp_mask | __GFP_ZERO,
1490 PAGE_KERNEL, node, caller);
1491 area->flags |= VM_VPAGES;
1492 } else {
1493 pages = kmalloc_node(array_size,
1494 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1495 node);
1497 area->pages = pages;
1498 area->caller = caller;
1499 if (!area->pages) {
1500 remove_vm_area(area->addr);
1501 kfree(area);
1502 return NULL;
1505 for (i = 0; i < area->nr_pages; i++) {
1506 struct page *page;
1508 if (node < 0)
1509 page = alloc_page(gfp_mask);
1510 else
1511 page = alloc_pages_node(node, gfp_mask, 0);
1513 if (unlikely(!page)) {
1514 /* Successfully allocated i pages, free them in __vunmap() */
1515 area->nr_pages = i;
1516 goto fail;
1518 area->pages[i] = page;
1521 if (map_vm_area(area, prot, &pages))
1522 goto fail;
1523 return area->addr;
1525 fail:
1526 vfree(area->addr);
1527 return NULL;
1530 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1532 void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1533 __builtin_return_address(0));
1536 * A ref_count = 3 is needed because the vm_struct and vmap_area
1537 * structures allocated in the __get_vm_area_node() function contain
1538 * references to the virtual address of the vmalloc'ed block.
1540 kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1542 return addr;
1546 * __vmalloc_node - allocate virtually contiguous memory
1547 * @size: allocation size
1548 * @align: desired alignment
1549 * @gfp_mask: flags for the page level allocator
1550 * @prot: protection mask for the allocated pages
1551 * @node: node to use for allocation or -1
1552 * @caller: caller's return address
1554 * Allocate enough pages to cover @size from the page level
1555 * allocator with @gfp_mask flags. Map them into contiguous
1556 * kernel virtual space, using a pagetable protection of @prot.
1558 static void *__vmalloc_node(unsigned long size, unsigned long align,
1559 gfp_t gfp_mask, pgprot_t prot,
1560 int node, void *caller)
1562 struct vm_struct *area;
1563 void *addr;
1564 unsigned long real_size = size;
1566 size = PAGE_ALIGN(size);
1567 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1568 return NULL;
1570 area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1571 VMALLOC_END, node, gfp_mask, caller);
1573 if (!area)
1574 return NULL;
1576 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1579 * A ref_count = 3 is needed because the vm_struct and vmap_area
1580 * structures allocated in the __get_vm_area_node() function contain
1581 * references to the virtual address of the vmalloc'ed block.
1583 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1585 return addr;
1588 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1590 return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1591 __builtin_return_address(0));
1593 EXPORT_SYMBOL(__vmalloc);
1596 * vmalloc - allocate virtually contiguous memory
1597 * @size: allocation size
1598 * Allocate enough pages to cover @size from the page level
1599 * allocator and map them into contiguous kernel virtual space.
1601 * For tight control over page level allocator and protection flags
1602 * use __vmalloc() instead.
1604 void *vmalloc(unsigned long size)
1606 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1607 -1, __builtin_return_address(0));
1609 EXPORT_SYMBOL(vmalloc);
1612 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1613 * @size: allocation size
1615 * The resulting memory area is zeroed so it can be mapped to userspace
1616 * without leaking data.
1618 void *vmalloc_user(unsigned long size)
1620 struct vm_struct *area;
1621 void *ret;
1623 ret = __vmalloc_node(size, SHMLBA,
1624 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1625 PAGE_KERNEL, -1, __builtin_return_address(0));
1626 if (ret) {
1627 area = find_vm_area(ret);
1628 area->flags |= VM_USERMAP;
1630 return ret;
1632 EXPORT_SYMBOL(vmalloc_user);
1635 * vmalloc_node - allocate memory on a specific node
1636 * @size: allocation size
1637 * @node: numa node
1639 * Allocate enough pages to cover @size from the page level
1640 * allocator and map them into contiguous kernel virtual space.
1642 * For tight control over page level allocator and protection flags
1643 * use __vmalloc() instead.
1645 void *vmalloc_node(unsigned long size, int node)
1647 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1648 node, __builtin_return_address(0));
1650 EXPORT_SYMBOL(vmalloc_node);
1652 #ifndef PAGE_KERNEL_EXEC
1653 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1654 #endif
1657 * vmalloc_exec - allocate virtually contiguous, executable memory
1658 * @size: allocation size
1660 * Kernel-internal function to allocate enough pages to cover @size
1661 * the page level allocator and map them into contiguous and
1662 * executable kernel virtual space.
1664 * For tight control over page level allocator and protection flags
1665 * use __vmalloc() instead.
1668 void *vmalloc_exec(unsigned long size)
1670 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1671 -1, __builtin_return_address(0));
1674 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1675 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1676 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1677 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1678 #else
1679 #define GFP_VMALLOC32 GFP_KERNEL
1680 #endif
1683 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1684 * @size: allocation size
1686 * Allocate enough 32bit PA addressable pages to cover @size from the
1687 * page level allocator and map them into contiguous kernel virtual space.
1689 void *vmalloc_32(unsigned long size)
1691 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1692 -1, __builtin_return_address(0));
1694 EXPORT_SYMBOL(vmalloc_32);
1697 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1698 * @size: allocation size
1700 * The resulting memory area is 32bit addressable and zeroed so it can be
1701 * mapped to userspace without leaking data.
1703 void *vmalloc_32_user(unsigned long size)
1705 struct vm_struct *area;
1706 void *ret;
1708 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1709 -1, __builtin_return_address(0));
1710 if (ret) {
1711 area = find_vm_area(ret);
1712 area->flags |= VM_USERMAP;
1714 return ret;
1716 EXPORT_SYMBOL(vmalloc_32_user);
1719 * small helper routine , copy contents to buf from addr.
1720 * If the page is not present, fill zero.
1723 static int aligned_vread(char *buf, char *addr, unsigned long count)
1725 struct page *p;
1726 int copied = 0;
1728 while (count) {
1729 unsigned long offset, length;
1731 offset = (unsigned long)addr & ~PAGE_MASK;
1732 length = PAGE_SIZE - offset;
1733 if (length > count)
1734 length = count;
1735 p = vmalloc_to_page(addr);
1737 * To do safe access to this _mapped_ area, we need
1738 * lock. But adding lock here means that we need to add
1739 * overhead of vmalloc()/vfree() calles for this _debug_
1740 * interface, rarely used. Instead of that, we'll use
1741 * kmap() and get small overhead in this access function.
1743 if (p) {
1745 * we can expect USER0 is not used (see vread/vwrite's
1746 * function description)
1748 void *map = kmap_atomic(p, KM_USER0);
1749 memcpy(buf, map + offset, length);
1750 kunmap_atomic(map, KM_USER0);
1751 } else
1752 memset(buf, 0, length);
1754 addr += length;
1755 buf += length;
1756 copied += length;
1757 count -= length;
1759 return copied;
1762 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1764 struct page *p;
1765 int copied = 0;
1767 while (count) {
1768 unsigned long offset, length;
1770 offset = (unsigned long)addr & ~PAGE_MASK;
1771 length = PAGE_SIZE - offset;
1772 if (length > count)
1773 length = count;
1774 p = vmalloc_to_page(addr);
1776 * To do safe access to this _mapped_ area, we need
1777 * lock. But adding lock here means that we need to add
1778 * overhead of vmalloc()/vfree() calles for this _debug_
1779 * interface, rarely used. Instead of that, we'll use
1780 * kmap() and get small overhead in this access function.
1782 if (p) {
1784 * we can expect USER0 is not used (see vread/vwrite's
1785 * function description)
1787 void *map = kmap_atomic(p, KM_USER0);
1788 memcpy(map + offset, buf, length);
1789 kunmap_atomic(map, KM_USER0);
1791 addr += length;
1792 buf += length;
1793 copied += length;
1794 count -= length;
1796 return copied;
1800 * vread() - read vmalloc area in a safe way.
1801 * @buf: buffer for reading data
1802 * @addr: vm address.
1803 * @count: number of bytes to be read.
1805 * Returns # of bytes which addr and buf should be increased.
1806 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1807 * includes any intersect with alive vmalloc area.
1809 * This function checks that addr is a valid vmalloc'ed area, and
1810 * copy data from that area to a given buffer. If the given memory range
1811 * of [addr...addr+count) includes some valid address, data is copied to
1812 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1813 * IOREMAP area is treated as memory hole and no copy is done.
1815 * If [addr...addr+count) doesn't includes any intersects with alive
1816 * vm_struct area, returns 0.
1817 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1818 * the caller should guarantee KM_USER0 is not used.
1820 * Note: In usual ops, vread() is never necessary because the caller
1821 * should know vmalloc() area is valid and can use memcpy().
1822 * This is for routines which have to access vmalloc area without
1823 * any informaion, as /dev/kmem.
1827 long vread(char *buf, char *addr, unsigned long count)
1829 struct vm_struct *tmp;
1830 char *vaddr, *buf_start = buf;
1831 unsigned long buflen = count;
1832 unsigned long n;
1834 /* Don't allow overflow */
1835 if ((unsigned long) addr + count < count)
1836 count = -(unsigned long) addr;
1838 read_lock(&vmlist_lock);
1839 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1840 vaddr = (char *) tmp->addr;
1841 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1842 continue;
1843 while (addr < vaddr) {
1844 if (count == 0)
1845 goto finished;
1846 *buf = '\0';
1847 buf++;
1848 addr++;
1849 count--;
1851 n = vaddr + tmp->size - PAGE_SIZE - addr;
1852 if (n > count)
1853 n = count;
1854 if (!(tmp->flags & VM_IOREMAP))
1855 aligned_vread(buf, addr, n);
1856 else /* IOREMAP area is treated as memory hole */
1857 memset(buf, 0, n);
1858 buf += n;
1859 addr += n;
1860 count -= n;
1862 finished:
1863 read_unlock(&vmlist_lock);
1865 if (buf == buf_start)
1866 return 0;
1867 /* zero-fill memory holes */
1868 if (buf != buf_start + buflen)
1869 memset(buf, 0, buflen - (buf - buf_start));
1871 return buflen;
1875 * vwrite() - write vmalloc area in a safe way.
1876 * @buf: buffer for source data
1877 * @addr: vm address.
1878 * @count: number of bytes to be read.
1880 * Returns # of bytes which addr and buf should be incresed.
1881 * (same number to @count).
1882 * If [addr...addr+count) doesn't includes any intersect with valid
1883 * vmalloc area, returns 0.
1885 * This function checks that addr is a valid vmalloc'ed area, and
1886 * copy data from a buffer to the given addr. If specified range of
1887 * [addr...addr+count) includes some valid address, data is copied from
1888 * proper area of @buf. If there are memory holes, no copy to hole.
1889 * IOREMAP area is treated as memory hole and no copy is done.
1891 * If [addr...addr+count) doesn't includes any intersects with alive
1892 * vm_struct area, returns 0.
1893 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1894 * the caller should guarantee KM_USER0 is not used.
1896 * Note: In usual ops, vwrite() is never necessary because the caller
1897 * should know vmalloc() area is valid and can use memcpy().
1898 * This is for routines which have to access vmalloc area without
1899 * any informaion, as /dev/kmem.
1901 * The caller should guarantee KM_USER1 is not used.
1904 long vwrite(char *buf, char *addr, unsigned long count)
1906 struct vm_struct *tmp;
1907 char *vaddr;
1908 unsigned long n, buflen;
1909 int copied = 0;
1911 /* Don't allow overflow */
1912 if ((unsigned long) addr + count < count)
1913 count = -(unsigned long) addr;
1914 buflen = count;
1916 read_lock(&vmlist_lock);
1917 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1918 vaddr = (char *) tmp->addr;
1919 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1920 continue;
1921 while (addr < vaddr) {
1922 if (count == 0)
1923 goto finished;
1924 buf++;
1925 addr++;
1926 count--;
1928 n = vaddr + tmp->size - PAGE_SIZE - addr;
1929 if (n > count)
1930 n = count;
1931 if (!(tmp->flags & VM_IOREMAP)) {
1932 aligned_vwrite(buf, addr, n);
1933 copied++;
1935 buf += n;
1936 addr += n;
1937 count -= n;
1939 finished:
1940 read_unlock(&vmlist_lock);
1941 if (!copied)
1942 return 0;
1943 return buflen;
1947 * remap_vmalloc_range - map vmalloc pages to userspace
1948 * @vma: vma to cover (map full range of vma)
1949 * @addr: vmalloc memory
1950 * @pgoff: number of pages into addr before first page to map
1952 * Returns: 0 for success, -Exxx on failure
1954 * This function checks that addr is a valid vmalloc'ed area, and
1955 * that it is big enough to cover the vma. Will return failure if
1956 * that criteria isn't met.
1958 * Similar to remap_pfn_range() (see mm/memory.c)
1960 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1961 unsigned long pgoff)
1963 struct vm_struct *area;
1964 unsigned long uaddr = vma->vm_start;
1965 unsigned long usize = vma->vm_end - vma->vm_start;
1967 if ((PAGE_SIZE-1) & (unsigned long)addr)
1968 return -EINVAL;
1970 area = find_vm_area(addr);
1971 if (!area)
1972 return -EINVAL;
1974 if (!(area->flags & VM_USERMAP))
1975 return -EINVAL;
1977 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1978 return -EINVAL;
1980 addr += pgoff << PAGE_SHIFT;
1981 do {
1982 struct page *page = vmalloc_to_page(addr);
1983 int ret;
1985 ret = vm_insert_page(vma, uaddr, page);
1986 if (ret)
1987 return ret;
1989 uaddr += PAGE_SIZE;
1990 addr += PAGE_SIZE;
1991 usize -= PAGE_SIZE;
1992 } while (usize > 0);
1994 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1995 vma->vm_flags |= VM_RESERVED;
1997 return 0;
1999 EXPORT_SYMBOL(remap_vmalloc_range);
2002 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2003 * have one.
2005 void __attribute__((weak)) vmalloc_sync_all(void)
2010 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2012 /* apply_to_page_range() does all the hard work. */
2013 return 0;
2017 * alloc_vm_area - allocate a range of kernel address space
2018 * @size: size of the area
2020 * Returns: NULL on failure, vm_struct on success
2022 * This function reserves a range of kernel address space, and
2023 * allocates pagetables to map that range. No actual mappings
2024 * are created. If the kernel address space is not shared
2025 * between processes, it syncs the pagetable across all
2026 * processes.
2028 struct vm_struct *alloc_vm_area(size_t size)
2030 struct vm_struct *area;
2032 area = get_vm_area_caller(size, VM_IOREMAP,
2033 __builtin_return_address(0));
2034 if (area == NULL)
2035 return NULL;
2038 * This ensures that page tables are constructed for this region
2039 * of kernel virtual address space and mapped into init_mm.
2041 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2042 area->size, f, NULL)) {
2043 free_vm_area(area);
2044 return NULL;
2047 /* Make sure the pagetables are constructed in process kernel
2048 mappings */
2049 vmalloc_sync_all();
2051 return area;
2053 EXPORT_SYMBOL_GPL(alloc_vm_area);
2055 void free_vm_area(struct vm_struct *area)
2057 struct vm_struct *ret;
2058 ret = remove_vm_area(area->addr);
2059 BUG_ON(ret != area);
2060 kfree(area);
2062 EXPORT_SYMBOL_GPL(free_vm_area);
2064 #ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA
2065 static struct vmap_area *node_to_va(struct rb_node *n)
2067 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2071 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2072 * @end: target address
2073 * @pnext: out arg for the next vmap_area
2074 * @pprev: out arg for the previous vmap_area
2076 * Returns: %true if either or both of next and prev are found,
2077 * %false if no vmap_area exists
2079 * Find vmap_areas end addresses of which enclose @end. ie. if not
2080 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2082 static bool pvm_find_next_prev(unsigned long end,
2083 struct vmap_area **pnext,
2084 struct vmap_area **pprev)
2086 struct rb_node *n = vmap_area_root.rb_node;
2087 struct vmap_area *va = NULL;
2089 while (n) {
2090 va = rb_entry(n, struct vmap_area, rb_node);
2091 if (end < va->va_end)
2092 n = n->rb_left;
2093 else if (end > va->va_end)
2094 n = n->rb_right;
2095 else
2096 break;
2099 if (!va)
2100 return false;
2102 if (va->va_end > end) {
2103 *pnext = va;
2104 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2105 } else {
2106 *pprev = va;
2107 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2109 return true;
2113 * pvm_determine_end - find the highest aligned address between two vmap_areas
2114 * @pnext: in/out arg for the next vmap_area
2115 * @pprev: in/out arg for the previous vmap_area
2116 * @align: alignment
2118 * Returns: determined end address
2120 * Find the highest aligned address between *@pnext and *@pprev below
2121 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2122 * down address is between the end addresses of the two vmap_areas.
2124 * Please note that the address returned by this function may fall
2125 * inside *@pnext vmap_area. The caller is responsible for checking
2126 * that.
2128 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2129 struct vmap_area **pprev,
2130 unsigned long align)
2132 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2133 unsigned long addr;
2135 if (*pnext)
2136 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2137 else
2138 addr = vmalloc_end;
2140 while (*pprev && (*pprev)->va_end > addr) {
2141 *pnext = *pprev;
2142 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2145 return addr;
2149 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2150 * @offsets: array containing offset of each area
2151 * @sizes: array containing size of each area
2152 * @nr_vms: the number of areas to allocate
2153 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2154 * @gfp_mask: allocation mask
2156 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2157 * vm_structs on success, %NULL on failure
2159 * Percpu allocator wants to use congruent vm areas so that it can
2160 * maintain the offsets among percpu areas. This function allocates
2161 * congruent vmalloc areas for it. These areas tend to be scattered
2162 * pretty far, distance between two areas easily going up to
2163 * gigabytes. To avoid interacting with regular vmallocs, these areas
2164 * are allocated from top.
2166 * Despite its complicated look, this allocator is rather simple. It
2167 * does everything top-down and scans areas from the end looking for
2168 * matching slot. While scanning, if any of the areas overlaps with
2169 * existing vmap_area, the base address is pulled down to fit the
2170 * area. Scanning is repeated till all the areas fit and then all
2171 * necessary data structres are inserted and the result is returned.
2173 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2174 const size_t *sizes, int nr_vms,
2175 size_t align, gfp_t gfp_mask)
2177 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2178 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2179 struct vmap_area **vas, *prev, *next;
2180 struct vm_struct **vms;
2181 int area, area2, last_area, term_area;
2182 unsigned long base, start, end, last_end;
2183 bool purged = false;
2185 gfp_mask &= GFP_RECLAIM_MASK;
2187 /* verify parameters and allocate data structures */
2188 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2189 for (last_area = 0, area = 0; area < nr_vms; area++) {
2190 start = offsets[area];
2191 end = start + sizes[area];
2193 /* is everything aligned properly? */
2194 BUG_ON(!IS_ALIGNED(offsets[area], align));
2195 BUG_ON(!IS_ALIGNED(sizes[area], align));
2197 /* detect the area with the highest address */
2198 if (start > offsets[last_area])
2199 last_area = area;
2201 for (area2 = 0; area2 < nr_vms; area2++) {
2202 unsigned long start2 = offsets[area2];
2203 unsigned long end2 = start2 + sizes[area2];
2205 if (area2 == area)
2206 continue;
2208 BUG_ON(start2 >= start && start2 < end);
2209 BUG_ON(end2 <= end && end2 > start);
2212 last_end = offsets[last_area] + sizes[last_area];
2214 if (vmalloc_end - vmalloc_start < last_end) {
2215 WARN_ON(true);
2216 return NULL;
2219 vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2220 vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2221 if (!vas || !vms)
2222 goto err_free;
2224 for (area = 0; area < nr_vms; area++) {
2225 vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2226 vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2227 if (!vas[area] || !vms[area])
2228 goto err_free;
2230 retry:
2231 spin_lock(&vmap_area_lock);
2233 /* start scanning - we scan from the top, begin with the last area */
2234 area = term_area = last_area;
2235 start = offsets[area];
2236 end = start + sizes[area];
2238 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2239 base = vmalloc_end - last_end;
2240 goto found;
2242 base = pvm_determine_end(&next, &prev, align) - end;
2244 while (true) {
2245 BUG_ON(next && next->va_end <= base + end);
2246 BUG_ON(prev && prev->va_end > base + end);
2249 * base might have underflowed, add last_end before
2250 * comparing.
2252 if (base + last_end < vmalloc_start + last_end) {
2253 spin_unlock(&vmap_area_lock);
2254 if (!purged) {
2255 purge_vmap_area_lazy();
2256 purged = true;
2257 goto retry;
2259 goto err_free;
2263 * If next overlaps, move base downwards so that it's
2264 * right below next and then recheck.
2266 if (next && next->va_start < base + end) {
2267 base = pvm_determine_end(&next, &prev, align) - end;
2268 term_area = area;
2269 continue;
2273 * If prev overlaps, shift down next and prev and move
2274 * base so that it's right below new next and then
2275 * recheck.
2277 if (prev && prev->va_end > base + start) {
2278 next = prev;
2279 prev = node_to_va(rb_prev(&next->rb_node));
2280 base = pvm_determine_end(&next, &prev, align) - end;
2281 term_area = area;
2282 continue;
2286 * This area fits, move on to the previous one. If
2287 * the previous one is the terminal one, we're done.
2289 area = (area + nr_vms - 1) % nr_vms;
2290 if (area == term_area)
2291 break;
2292 start = offsets[area];
2293 end = start + sizes[area];
2294 pvm_find_next_prev(base + end, &next, &prev);
2296 found:
2297 /* we've found a fitting base, insert all va's */
2298 for (area = 0; area < nr_vms; area++) {
2299 struct vmap_area *va = vas[area];
2301 va->va_start = base + offsets[area];
2302 va->va_end = va->va_start + sizes[area];
2303 __insert_vmap_area(va);
2306 vmap_area_pcpu_hole = base + offsets[last_area];
2308 spin_unlock(&vmap_area_lock);
2310 /* insert all vm's */
2311 for (area = 0; area < nr_vms; area++)
2312 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2313 pcpu_get_vm_areas);
2315 kfree(vas);
2316 return vms;
2318 err_free:
2319 for (area = 0; area < nr_vms; area++) {
2320 if (vas)
2321 kfree(vas[area]);
2322 if (vms)
2323 kfree(vms[area]);
2325 kfree(vas);
2326 kfree(vms);
2327 return NULL;
2329 #endif
2332 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2333 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2334 * @nr_vms: the number of allocated areas
2336 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2338 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2340 int i;
2342 for (i = 0; i < nr_vms; i++)
2343 free_vm_area(vms[i]);
2344 kfree(vms);
2347 #ifdef CONFIG_PROC_FS
2348 static void *s_start(struct seq_file *m, loff_t *pos)
2350 loff_t n = *pos;
2351 struct vm_struct *v;
2353 read_lock(&vmlist_lock);
2354 v = vmlist;
2355 while (n > 0 && v) {
2356 n--;
2357 v = v->next;
2359 if (!n)
2360 return v;
2362 return NULL;
2366 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2368 struct vm_struct *v = p;
2370 ++*pos;
2371 return v->next;
2374 static void s_stop(struct seq_file *m, void *p)
2376 read_unlock(&vmlist_lock);
2379 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2381 if (NUMA_BUILD) {
2382 unsigned int nr, *counters = m->private;
2384 if (!counters)
2385 return;
2387 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2389 for (nr = 0; nr < v->nr_pages; nr++)
2390 counters[page_to_nid(v->pages[nr])]++;
2392 for_each_node_state(nr, N_HIGH_MEMORY)
2393 if (counters[nr])
2394 seq_printf(m, " N%u=%u", nr, counters[nr]);
2398 static int s_show(struct seq_file *m, void *p)
2400 struct vm_struct *v = p;
2402 seq_printf(m, "0x%p-0x%p %7ld",
2403 v->addr, v->addr + v->size, v->size);
2405 if (v->caller) {
2406 char buff[KSYM_SYMBOL_LEN];
2408 seq_putc(m, ' ');
2409 sprint_symbol(buff, (unsigned long)v->caller);
2410 seq_puts(m, buff);
2413 if (v->nr_pages)
2414 seq_printf(m, " pages=%d", v->nr_pages);
2416 if (v->phys_addr)
2417 seq_printf(m, " phys=%lx", v->phys_addr);
2419 if (v->flags & VM_IOREMAP)
2420 seq_printf(m, " ioremap");
2422 if (v->flags & VM_ALLOC)
2423 seq_printf(m, " vmalloc");
2425 if (v->flags & VM_MAP)
2426 seq_printf(m, " vmap");
2428 if (v->flags & VM_USERMAP)
2429 seq_printf(m, " user");
2431 if (v->flags & VM_VPAGES)
2432 seq_printf(m, " vpages");
2434 show_numa_info(m, v);
2435 seq_putc(m, '\n');
2436 return 0;
2439 static const struct seq_operations vmalloc_op = {
2440 .start = s_start,
2441 .next = s_next,
2442 .stop = s_stop,
2443 .show = s_show,
2446 static int vmalloc_open(struct inode *inode, struct file *file)
2448 unsigned int *ptr = NULL;
2449 int ret;
2451 if (NUMA_BUILD)
2452 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2453 ret = seq_open(file, &vmalloc_op);
2454 if (!ret) {
2455 struct seq_file *m = file->private_data;
2456 m->private = ptr;
2457 } else
2458 kfree(ptr);
2459 return ret;
2462 static const struct file_operations proc_vmalloc_operations = {
2463 .open = vmalloc_open,
2464 .read = seq_read,
2465 .llseek = seq_lseek,
2466 .release = seq_release_private,
2469 static int __init proc_vmalloc_init(void)
2471 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2472 return 0;
2474 module_init(proc_vmalloc_init);
2475 #endif