2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
32 * The slab_lock protects operations on the object of a particular
33 * slab and its metadata in the page struct. If the slab lock
34 * has been taken then no allocations nor frees can be performed
35 * on the objects in the slab nor can the slab be added or removed
36 * from the partial or full lists since this would mean modifying
37 * the page_struct of the slab.
39 * The list_lock protects the partial and full list on each node and
40 * the partial slab counter. If taken then no new slabs may be added or
41 * removed from the lists nor make the number of partial slabs be modified.
42 * (Note that the total number of slabs is an atomic value that may be
43 * modified without taking the list lock).
45 * The list_lock is a centralized lock and thus we avoid taking it as
46 * much as possible. As long as SLUB does not have to handle partial
47 * slabs, operations can continue without any centralized lock. F.e.
48 * allocating a long series of objects that fill up slabs does not require
51 * The lock order is sometimes inverted when we are trying to get a slab
52 * off a list. We take the list_lock and then look for a page on the list
53 * to use. While we do that objects in the slabs may be freed. We can
54 * only operate on the slab if we have also taken the slab_lock. So we use
55 * a slab_trylock() on the slab. If trylock was successful then no frees
56 * can occur anymore and we can use the slab for allocations etc. If the
57 * slab_trylock() does not succeed then frees are in progress in the slab and
58 * we must stay away from it for a while since we may cause a bouncing
59 * cacheline if we try to acquire the lock. So go onto the next slab.
60 * If all pages are busy then we may allocate a new slab instead of reusing
61 * a partial slab. A new slab has noone operating on it and thus there is
62 * no danger of cacheline contention.
64 * Interrupts are disabled during allocation and deallocation in order to
65 * make the slab allocator safe to use in the context of an irq. In addition
66 * interrupts are disabled to ensure that the processor does not change
67 * while handling per_cpu slabs, due to kernel preemption.
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
82 * Overloading of page flags that are otherwise used for LRU management.
84 * PageActive The slab is frozen and exempt from list processing.
85 * This means that the slab is dedicated to a purpose
86 * such as satisfying allocations for a specific
87 * processor. Objects may be freed in the slab while
88 * it is frozen but slab_free will then skip the usual
89 * list operations. It is up to the processor holding
90 * the slab to integrate the slab into the slab lists
91 * when the slab is no longer needed.
93 * One use of this flag is to mark slabs that are
94 * used for allocations. Then such a slab becomes a cpu
95 * slab. The cpu slab may be equipped with an additional
96 * freelist that allows lockless access to
97 * free objects in addition to the regular freelist
98 * that requires the slab lock.
100 * PageError Slab requires special handling due to debug
101 * options set. This moves slab handling out of
102 * the fast path and disables lockless freelists.
105 #define FROZEN (1 << PG_active)
107 #ifdef CONFIG_SLUB_DEBUG
108 #define SLABDEBUG (1 << PG_error)
113 static inline int SlabFrozen(struct page
*page
)
115 return page
->flags
& FROZEN
;
118 static inline void SetSlabFrozen(struct page
*page
)
120 page
->flags
|= FROZEN
;
123 static inline void ClearSlabFrozen(struct page
*page
)
125 page
->flags
&= ~FROZEN
;
128 static inline int SlabDebug(struct page
*page
)
130 return page
->flags
& SLABDEBUG
;
133 static inline void SetSlabDebug(struct page
*page
)
135 page
->flags
|= SLABDEBUG
;
138 static inline void ClearSlabDebug(struct page
*page
)
140 page
->flags
&= ~SLABDEBUG
;
144 * Issues still to be resolved:
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 * - Variable sizing of the per node arrays
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
155 * Mininum number of partial slabs. These will be left on the partial
156 * lists even if they are empty. kmem_cache_shrink may reclaim them.
158 #define MIN_PARTIAL 5
161 * Maximum number of desirable partial slabs.
162 * The existence of more partial slabs makes kmem_cache_shrink
163 * sort the partial list by the number of objects in the.
165 #define MAX_PARTIAL 10
167 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_STORE_USER)
171 * Set of flags that will prevent slab merging
173 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
174 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
176 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
179 #ifndef ARCH_KMALLOC_MINALIGN
180 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
183 #ifndef ARCH_SLAB_MINALIGN
184 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
187 /* Internal SLUB flags */
188 #define __OBJECT_POISON 0x80000000 /* Poison object */
189 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
191 static int kmem_size
= sizeof(struct kmem_cache
);
194 static struct notifier_block slab_notifier
;
198 DOWN
, /* No slab functionality available */
199 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
200 UP
, /* Everything works but does not show up in sysfs */
204 /* A list of all slab caches on the system */
205 static DECLARE_RWSEM(slub_lock
);
206 static LIST_HEAD(slab_caches
);
209 * Tracking user of a slab.
212 void *addr
; /* Called from address */
213 int cpu
; /* Was running on cpu */
214 int pid
; /* Pid context */
215 unsigned long when
; /* When did the operation occur */
218 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
220 #ifdef CONFIG_SLUB_DEBUG
221 static int sysfs_slab_add(struct kmem_cache
*);
222 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
223 static void sysfs_slab_remove(struct kmem_cache
*);
226 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
227 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
229 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
236 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
238 #ifdef CONFIG_SLUB_STATS
243 /********************************************************************
244 * Core slab cache functions
245 *******************************************************************/
247 int slab_is_available(void)
249 return slab_state
>= UP
;
252 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
255 return s
->node
[node
];
257 return &s
->local_node
;
261 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
264 return s
->cpu_slab
[cpu
];
270 /* Verify that a pointer has an address that is valid within a slab page */
271 static inline int check_valid_pointer(struct kmem_cache
*s
,
272 struct page
*page
, const void *object
)
279 base
= page_address(page
);
280 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
281 (object
- base
) % s
->size
) {
289 * Slow version of get and set free pointer.
291 * This version requires touching the cache lines of kmem_cache which
292 * we avoid to do in the fast alloc free paths. There we obtain the offset
293 * from the page struct.
295 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
297 return *(void **)(object
+ s
->offset
);
300 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
302 *(void **)(object
+ s
->offset
) = fp
;
305 /* Loop over all objects in a slab */
306 #define for_each_object(__p, __s, __addr, __objects) \
307 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
311 #define for_each_free_object(__p, __s, __free) \
312 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
314 /* Determine object index from a given position */
315 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
317 return (p
- addr
) / s
->size
;
320 static inline struct kmem_cache_order_objects
oo_make(int order
,
323 struct kmem_cache_order_objects x
= {
324 (order
<< 16) + (PAGE_SIZE
<< order
) / size
330 static inline int oo_order(struct kmem_cache_order_objects x
)
335 static inline int oo_objects(struct kmem_cache_order_objects x
)
337 return x
.x
& ((1 << 16) - 1);
340 #ifdef CONFIG_SLUB_DEBUG
344 #ifdef CONFIG_SLUB_DEBUG_ON
345 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
347 static int slub_debug
;
350 static char *slub_debug_slabs
;
355 static void print_section(char *text
, u8
*addr
, unsigned int length
)
363 for (i
= 0; i
< length
; i
++) {
365 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
368 printk(KERN_CONT
" %02x", addr
[i
]);
370 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
372 printk(KERN_CONT
" %s\n", ascii
);
379 printk(KERN_CONT
" ");
383 printk(KERN_CONT
" %s\n", ascii
);
387 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
388 enum track_item alloc
)
393 p
= object
+ s
->offset
+ sizeof(void *);
395 p
= object
+ s
->inuse
;
400 static void set_track(struct kmem_cache
*s
, void *object
,
401 enum track_item alloc
, void *addr
)
406 p
= object
+ s
->offset
+ sizeof(void *);
408 p
= object
+ s
->inuse
;
413 p
->cpu
= smp_processor_id();
414 p
->pid
= current
? current
->pid
: -1;
417 memset(p
, 0, sizeof(struct track
));
420 static void init_tracking(struct kmem_cache
*s
, void *object
)
422 if (!(s
->flags
& SLAB_STORE_USER
))
425 set_track(s
, object
, TRACK_FREE
, NULL
);
426 set_track(s
, object
, TRACK_ALLOC
, NULL
);
429 static void print_track(const char *s
, struct track
*t
)
434 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
435 s
, t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
438 static void print_tracking(struct kmem_cache
*s
, void *object
)
440 if (!(s
->flags
& SLAB_STORE_USER
))
443 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
444 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
447 static void print_page_info(struct page
*page
)
449 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
450 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
454 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
460 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
462 printk(KERN_ERR
"========================================"
463 "=====================================\n");
464 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
465 printk(KERN_ERR
"----------------------------------------"
466 "-------------------------------------\n\n");
469 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
475 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
477 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
480 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
482 unsigned int off
; /* Offset of last byte */
483 u8
*addr
= page_address(page
);
485 print_tracking(s
, p
);
487 print_page_info(page
);
489 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
490 p
, p
- addr
, get_freepointer(s
, p
));
493 print_section("Bytes b4", p
- 16, 16);
495 print_section("Object", p
, min(s
->objsize
, 128));
497 if (s
->flags
& SLAB_RED_ZONE
)
498 print_section("Redzone", p
+ s
->objsize
,
499 s
->inuse
- s
->objsize
);
502 off
= s
->offset
+ sizeof(void *);
506 if (s
->flags
& SLAB_STORE_USER
)
507 off
+= 2 * sizeof(struct track
);
510 /* Beginning of the filler is the free pointer */
511 print_section("Padding", p
+ off
, s
->size
- off
);
516 static void object_err(struct kmem_cache
*s
, struct page
*page
,
517 u8
*object
, char *reason
)
519 slab_bug(s
, "%s", reason
);
520 print_trailer(s
, page
, object
);
523 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
529 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
531 slab_bug(s
, "%s", buf
);
532 print_page_info(page
);
536 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
540 if (s
->flags
& __OBJECT_POISON
) {
541 memset(p
, POISON_FREE
, s
->objsize
- 1);
542 p
[s
->objsize
- 1] = POISON_END
;
545 if (s
->flags
& SLAB_RED_ZONE
)
546 memset(p
+ s
->objsize
,
547 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
548 s
->inuse
- s
->objsize
);
551 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
554 if (*start
!= (u8
)value
)
562 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
563 void *from
, void *to
)
565 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
566 memset(from
, data
, to
- from
);
569 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
570 u8
*object
, char *what
,
571 u8
*start
, unsigned int value
, unsigned int bytes
)
576 fault
= check_bytes(start
, value
, bytes
);
581 while (end
> fault
&& end
[-1] == value
)
584 slab_bug(s
, "%s overwritten", what
);
585 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
586 fault
, end
- 1, fault
[0], value
);
587 print_trailer(s
, page
, object
);
589 restore_bytes(s
, what
, value
, fault
, end
);
597 * Bytes of the object to be managed.
598 * If the freepointer may overlay the object then the free
599 * pointer is the first word of the object.
601 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
604 * object + s->objsize
605 * Padding to reach word boundary. This is also used for Redzoning.
606 * Padding is extended by another word if Redzoning is enabled and
609 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
610 * 0xcc (RED_ACTIVE) for objects in use.
613 * Meta data starts here.
615 * A. Free pointer (if we cannot overwrite object on free)
616 * B. Tracking data for SLAB_STORE_USER
617 * C. Padding to reach required alignment boundary or at mininum
618 * one word if debugging is on to be able to detect writes
619 * before the word boundary.
621 * Padding is done using 0x5a (POISON_INUSE)
624 * Nothing is used beyond s->size.
626 * If slabcaches are merged then the objsize and inuse boundaries are mostly
627 * ignored. And therefore no slab options that rely on these boundaries
628 * may be used with merged slabcaches.
631 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
633 unsigned long off
= s
->inuse
; /* The end of info */
636 /* Freepointer is placed after the object. */
637 off
+= sizeof(void *);
639 if (s
->flags
& SLAB_STORE_USER
)
640 /* We also have user information there */
641 off
+= 2 * sizeof(struct track
);
646 return check_bytes_and_report(s
, page
, p
, "Object padding",
647 p
+ off
, POISON_INUSE
, s
->size
- off
);
650 /* Check the pad bytes at the end of a slab page */
651 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
659 if (!(s
->flags
& SLAB_POISON
))
662 start
= page_address(page
);
663 length
= (PAGE_SIZE
<< compound_order(page
));
664 end
= start
+ length
;
665 remainder
= length
% s
->size
;
669 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
672 while (end
> fault
&& end
[-1] == POISON_INUSE
)
675 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
676 print_section("Padding", end
- remainder
, remainder
);
678 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
682 static int check_object(struct kmem_cache
*s
, struct page
*page
,
683 void *object
, int active
)
686 u8
*endobject
= object
+ s
->objsize
;
688 if (s
->flags
& SLAB_RED_ZONE
) {
690 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
692 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
693 endobject
, red
, s
->inuse
- s
->objsize
))
696 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
697 check_bytes_and_report(s
, page
, p
, "Alignment padding",
698 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
702 if (s
->flags
& SLAB_POISON
) {
703 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
704 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
705 POISON_FREE
, s
->objsize
- 1) ||
706 !check_bytes_and_report(s
, page
, p
, "Poison",
707 p
+ s
->objsize
- 1, POISON_END
, 1)))
710 * check_pad_bytes cleans up on its own.
712 check_pad_bytes(s
, page
, p
);
715 if (!s
->offset
&& active
)
717 * Object and freepointer overlap. Cannot check
718 * freepointer while object is allocated.
722 /* Check free pointer validity */
723 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
724 object_err(s
, page
, p
, "Freepointer corrupt");
726 * No choice but to zap it and thus loose the remainder
727 * of the free objects in this slab. May cause
728 * another error because the object count is now wrong.
730 set_freepointer(s
, p
, NULL
);
736 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
740 VM_BUG_ON(!irqs_disabled());
742 if (!PageSlab(page
)) {
743 slab_err(s
, page
, "Not a valid slab page");
747 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
748 if (page
->objects
> maxobj
) {
749 slab_err(s
, page
, "objects %u > max %u",
750 s
->name
, page
->objects
, maxobj
);
753 if (page
->inuse
> page
->objects
) {
754 slab_err(s
, page
, "inuse %u > max %u",
755 s
->name
, page
->inuse
, page
->objects
);
758 /* Slab_pad_check fixes things up after itself */
759 slab_pad_check(s
, page
);
764 * Determine if a certain object on a page is on the freelist. Must hold the
765 * slab lock to guarantee that the chains are in a consistent state.
767 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
770 void *fp
= page
->freelist
;
772 unsigned long max_objects
;
774 while (fp
&& nr
<= page
->objects
) {
777 if (!check_valid_pointer(s
, page
, fp
)) {
779 object_err(s
, page
, object
,
780 "Freechain corrupt");
781 set_freepointer(s
, object
, NULL
);
784 slab_err(s
, page
, "Freepointer corrupt");
785 page
->freelist
= NULL
;
786 page
->inuse
= page
->objects
;
787 slab_fix(s
, "Freelist cleared");
793 fp
= get_freepointer(s
, object
);
797 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
798 if (max_objects
> 65535)
801 if (page
->objects
!= max_objects
) {
802 slab_err(s
, page
, "Wrong number of objects. Found %d but "
803 "should be %d", page
->objects
, max_objects
);
804 page
->objects
= max_objects
;
805 slab_fix(s
, "Number of objects adjusted.");
807 if (page
->inuse
!= page
->objects
- nr
) {
808 slab_err(s
, page
, "Wrong object count. Counter is %d but "
809 "counted were %d", page
->inuse
, page
->objects
- nr
);
810 page
->inuse
= page
->objects
- nr
;
811 slab_fix(s
, "Object count adjusted.");
813 return search
== NULL
;
816 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
819 if (s
->flags
& SLAB_TRACE
) {
820 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
822 alloc
? "alloc" : "free",
827 print_section("Object", (void *)object
, s
->objsize
);
834 * Tracking of fully allocated slabs for debugging purposes.
836 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
838 spin_lock(&n
->list_lock
);
839 list_add(&page
->lru
, &n
->full
);
840 spin_unlock(&n
->list_lock
);
843 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
845 struct kmem_cache_node
*n
;
847 if (!(s
->flags
& SLAB_STORE_USER
))
850 n
= get_node(s
, page_to_nid(page
));
852 spin_lock(&n
->list_lock
);
853 list_del(&page
->lru
);
854 spin_unlock(&n
->list_lock
);
857 /* Tracking of the number of slabs for debugging purposes */
858 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
860 struct kmem_cache_node
*n
= get_node(s
, node
);
862 return atomic_long_read(&n
->nr_slabs
);
865 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
867 struct kmem_cache_node
*n
= get_node(s
, node
);
870 * May be called early in order to allocate a slab for the
871 * kmem_cache_node structure. Solve the chicken-egg
872 * dilemma by deferring the increment of the count during
873 * bootstrap (see early_kmem_cache_node_alloc).
875 if (!NUMA_BUILD
|| n
) {
876 atomic_long_inc(&n
->nr_slabs
);
877 atomic_long_add(objects
, &n
->total_objects
);
880 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
882 struct kmem_cache_node
*n
= get_node(s
, node
);
884 atomic_long_dec(&n
->nr_slabs
);
885 atomic_long_sub(objects
, &n
->total_objects
);
888 /* Object debug checks for alloc/free paths */
889 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
892 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
895 init_object(s
, object
, 0);
896 init_tracking(s
, object
);
899 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
900 void *object
, void *addr
)
902 if (!check_slab(s
, page
))
905 if (!on_freelist(s
, page
, object
)) {
906 object_err(s
, page
, object
, "Object already allocated");
910 if (!check_valid_pointer(s
, page
, object
)) {
911 object_err(s
, page
, object
, "Freelist Pointer check fails");
915 if (!check_object(s
, page
, object
, 0))
918 /* Success perform special debug activities for allocs */
919 if (s
->flags
& SLAB_STORE_USER
)
920 set_track(s
, object
, TRACK_ALLOC
, addr
);
921 trace(s
, page
, object
, 1);
922 init_object(s
, object
, 1);
926 if (PageSlab(page
)) {
928 * If this is a slab page then lets do the best we can
929 * to avoid issues in the future. Marking all objects
930 * as used avoids touching the remaining objects.
932 slab_fix(s
, "Marking all objects used");
933 page
->inuse
= page
->objects
;
934 page
->freelist
= NULL
;
939 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
940 void *object
, void *addr
)
942 if (!check_slab(s
, page
))
945 if (!check_valid_pointer(s
, page
, object
)) {
946 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
950 if (on_freelist(s
, page
, object
)) {
951 object_err(s
, page
, object
, "Object already free");
955 if (!check_object(s
, page
, object
, 1))
958 if (unlikely(s
!= page
->slab
)) {
959 if (!PageSlab(page
)) {
960 slab_err(s
, page
, "Attempt to free object(0x%p) "
961 "outside of slab", object
);
962 } else if (!page
->slab
) {
964 "SLUB <none>: no slab for object 0x%p.\n",
968 object_err(s
, page
, object
,
969 "page slab pointer corrupt.");
973 /* Special debug activities for freeing objects */
974 if (!SlabFrozen(page
) && !page
->freelist
)
975 remove_full(s
, page
);
976 if (s
->flags
& SLAB_STORE_USER
)
977 set_track(s
, object
, TRACK_FREE
, addr
);
978 trace(s
, page
, object
, 0);
979 init_object(s
, object
, 0);
983 slab_fix(s
, "Object at 0x%p not freed", object
);
987 static int __init
setup_slub_debug(char *str
)
989 slub_debug
= DEBUG_DEFAULT_FLAGS
;
990 if (*str
++ != '=' || !*str
)
992 * No options specified. Switch on full debugging.
998 * No options but restriction on slabs. This means full
999 * debugging for slabs matching a pattern.
1006 * Switch off all debugging measures.
1011 * Determine which debug features should be switched on
1013 for (; *str
&& *str
!= ','; str
++) {
1014 switch (tolower(*str
)) {
1016 slub_debug
|= SLAB_DEBUG_FREE
;
1019 slub_debug
|= SLAB_RED_ZONE
;
1022 slub_debug
|= SLAB_POISON
;
1025 slub_debug
|= SLAB_STORE_USER
;
1028 slub_debug
|= SLAB_TRACE
;
1031 printk(KERN_ERR
"slub_debug option '%c' "
1032 "unknown. skipped\n", *str
);
1038 slub_debug_slabs
= str
+ 1;
1043 __setup("slub_debug", setup_slub_debug
);
1045 static unsigned long kmem_cache_flags(unsigned long objsize
,
1046 unsigned long flags
, const char *name
,
1047 void (*ctor
)(struct kmem_cache
*, void *))
1050 * Enable debugging if selected on the kernel commandline.
1052 if (slub_debug
&& (!slub_debug_slabs
||
1053 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1054 flags
|= slub_debug
;
1059 static inline void setup_object_debug(struct kmem_cache
*s
,
1060 struct page
*page
, void *object
) {}
1062 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1063 struct page
*page
, void *object
, void *addr
) { return 0; }
1065 static inline int free_debug_processing(struct kmem_cache
*s
,
1066 struct page
*page
, void *object
, void *addr
) { return 0; }
1068 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1070 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1071 void *object
, int active
) { return 1; }
1072 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1073 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1074 unsigned long flags
, const char *name
,
1075 void (*ctor
)(struct kmem_cache
*, void *))
1079 #define slub_debug 0
1081 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1083 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1085 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1090 * Slab allocation and freeing
1092 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1093 struct kmem_cache_order_objects oo
)
1095 int order
= oo_order(oo
);
1098 return alloc_pages(flags
, order
);
1100 return alloc_pages_node(node
, flags
, order
);
1103 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1106 struct kmem_cache_order_objects oo
= s
->oo
;
1108 flags
|= s
->allocflags
;
1110 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1112 if (unlikely(!page
)) {
1115 * Allocation may have failed due to fragmentation.
1116 * Try a lower order alloc if possible
1118 page
= alloc_slab_page(flags
, node
, oo
);
1122 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1124 page
->objects
= oo_objects(oo
);
1125 mod_zone_page_state(page_zone(page
),
1126 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1127 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1133 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1136 setup_object_debug(s
, page
, object
);
1137 if (unlikely(s
->ctor
))
1141 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1148 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1150 page
= allocate_slab(s
,
1151 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1155 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1157 page
->flags
|= 1 << PG_slab
;
1158 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1159 SLAB_STORE_USER
| SLAB_TRACE
))
1162 start
= page_address(page
);
1164 if (unlikely(s
->flags
& SLAB_POISON
))
1165 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1168 for_each_object(p
, s
, start
, page
->objects
) {
1169 setup_object(s
, page
, last
);
1170 set_freepointer(s
, last
, p
);
1173 setup_object(s
, page
, last
);
1174 set_freepointer(s
, last
, NULL
);
1176 page
->freelist
= start
;
1182 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1184 int order
= compound_order(page
);
1185 int pages
= 1 << order
;
1187 if (unlikely(SlabDebug(page
))) {
1190 slab_pad_check(s
, page
);
1191 for_each_object(p
, s
, page_address(page
),
1193 check_object(s
, page
, p
, 0);
1194 ClearSlabDebug(page
);
1197 mod_zone_page_state(page_zone(page
),
1198 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1199 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1202 __ClearPageSlab(page
);
1203 reset_page_mapcount(page
);
1204 __free_pages(page
, order
);
1207 static void rcu_free_slab(struct rcu_head
*h
)
1211 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1212 __free_slab(page
->slab
, page
);
1215 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1217 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1219 * RCU free overloads the RCU head over the LRU
1221 struct rcu_head
*head
= (void *)&page
->lru
;
1223 call_rcu(head
, rcu_free_slab
);
1225 __free_slab(s
, page
);
1228 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1230 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1235 * Per slab locking using the pagelock
1237 static __always_inline
void slab_lock(struct page
*page
)
1239 bit_spin_lock(PG_locked
, &page
->flags
);
1242 static __always_inline
void slab_unlock(struct page
*page
)
1244 __bit_spin_unlock(PG_locked
, &page
->flags
);
1247 static __always_inline
int slab_trylock(struct page
*page
)
1251 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1256 * Management of partially allocated slabs
1258 static void add_partial(struct kmem_cache_node
*n
,
1259 struct page
*page
, int tail
)
1261 spin_lock(&n
->list_lock
);
1264 list_add_tail(&page
->lru
, &n
->partial
);
1266 list_add(&page
->lru
, &n
->partial
);
1267 spin_unlock(&n
->list_lock
);
1270 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1272 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1274 spin_lock(&n
->list_lock
);
1275 list_del(&page
->lru
);
1277 spin_unlock(&n
->list_lock
);
1281 * Lock slab and remove from the partial list.
1283 * Must hold list_lock.
1285 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1288 if (slab_trylock(page
)) {
1289 list_del(&page
->lru
);
1291 SetSlabFrozen(page
);
1298 * Try to allocate a partial slab from a specific node.
1300 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1305 * Racy check. If we mistakenly see no partial slabs then we
1306 * just allocate an empty slab. If we mistakenly try to get a
1307 * partial slab and there is none available then get_partials()
1310 if (!n
|| !n
->nr_partial
)
1313 spin_lock(&n
->list_lock
);
1314 list_for_each_entry(page
, &n
->partial
, lru
)
1315 if (lock_and_freeze_slab(n
, page
))
1319 spin_unlock(&n
->list_lock
);
1324 * Get a page from somewhere. Search in increasing NUMA distances.
1326 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1329 struct zonelist
*zonelist
;
1332 enum zone_type high_zoneidx
= gfp_zone(flags
);
1336 * The defrag ratio allows a configuration of the tradeoffs between
1337 * inter node defragmentation and node local allocations. A lower
1338 * defrag_ratio increases the tendency to do local allocations
1339 * instead of attempting to obtain partial slabs from other nodes.
1341 * If the defrag_ratio is set to 0 then kmalloc() always
1342 * returns node local objects. If the ratio is higher then kmalloc()
1343 * may return off node objects because partial slabs are obtained
1344 * from other nodes and filled up.
1346 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1347 * defrag_ratio = 1000) then every (well almost) allocation will
1348 * first attempt to defrag slab caches on other nodes. This means
1349 * scanning over all nodes to look for partial slabs which may be
1350 * expensive if we do it every time we are trying to find a slab
1351 * with available objects.
1353 if (!s
->remote_node_defrag_ratio
||
1354 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1357 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1358 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1359 struct kmem_cache_node
*n
;
1361 n
= get_node(s
, zone_to_nid(zone
));
1363 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1364 n
->nr_partial
> MIN_PARTIAL
) {
1365 page
= get_partial_node(n
);
1375 * Get a partial page, lock it and return it.
1377 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1380 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1382 page
= get_partial_node(get_node(s
, searchnode
));
1383 if (page
|| (flags
& __GFP_THISNODE
))
1386 return get_any_partial(s
, flags
);
1390 * Move a page back to the lists.
1392 * Must be called with the slab lock held.
1394 * On exit the slab lock will have been dropped.
1396 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1398 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1399 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1401 ClearSlabFrozen(page
);
1404 if (page
->freelist
) {
1405 add_partial(n
, page
, tail
);
1406 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1408 stat(c
, DEACTIVATE_FULL
);
1409 if (SlabDebug(page
) && (s
->flags
& SLAB_STORE_USER
))
1414 stat(c
, DEACTIVATE_EMPTY
);
1415 if (n
->nr_partial
< MIN_PARTIAL
) {
1417 * Adding an empty slab to the partial slabs in order
1418 * to avoid page allocator overhead. This slab needs
1419 * to come after the other slabs with objects in
1420 * so that the others get filled first. That way the
1421 * size of the partial list stays small.
1423 * kmem_cache_shrink can reclaim any empty slabs from
1426 add_partial(n
, page
, 1);
1430 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1431 discard_slab(s
, page
);
1437 * Remove the cpu slab
1439 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1441 struct page
*page
= c
->page
;
1445 stat(c
, DEACTIVATE_REMOTE_FREES
);
1447 * Merge cpu freelist into slab freelist. Typically we get here
1448 * because both freelists are empty. So this is unlikely
1451 while (unlikely(c
->freelist
)) {
1454 tail
= 0; /* Hot objects. Put the slab first */
1456 /* Retrieve object from cpu_freelist */
1457 object
= c
->freelist
;
1458 c
->freelist
= c
->freelist
[c
->offset
];
1460 /* And put onto the regular freelist */
1461 object
[c
->offset
] = page
->freelist
;
1462 page
->freelist
= object
;
1466 unfreeze_slab(s
, page
, tail
);
1469 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1471 stat(c
, CPUSLAB_FLUSH
);
1473 deactivate_slab(s
, c
);
1479 * Called from IPI handler with interrupts disabled.
1481 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1483 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1485 if (likely(c
&& c
->page
))
1489 static void flush_cpu_slab(void *d
)
1491 struct kmem_cache
*s
= d
;
1493 __flush_cpu_slab(s
, smp_processor_id());
1496 static void flush_all(struct kmem_cache
*s
)
1499 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1501 unsigned long flags
;
1503 local_irq_save(flags
);
1505 local_irq_restore(flags
);
1510 * Check if the objects in a per cpu structure fit numa
1511 * locality expectations.
1513 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1516 if (node
!= -1 && c
->node
!= node
)
1523 * Slow path. The lockless freelist is empty or we need to perform
1526 * Interrupts are disabled.
1528 * Processing is still very fast if new objects have been freed to the
1529 * regular freelist. In that case we simply take over the regular freelist
1530 * as the lockless freelist and zap the regular freelist.
1532 * If that is not working then we fall back to the partial lists. We take the
1533 * first element of the freelist as the object to allocate now and move the
1534 * rest of the freelist to the lockless freelist.
1536 * And if we were unable to get a new slab from the partial slab lists then
1537 * we need to allocate a new slab. This is the slowest path since it involves
1538 * a call to the page allocator and the setup of a new slab.
1540 static void *__slab_alloc(struct kmem_cache
*s
,
1541 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1546 /* We handle __GFP_ZERO in the caller */
1547 gfpflags
&= ~__GFP_ZERO
;
1553 if (unlikely(!node_match(c
, node
)))
1556 stat(c
, ALLOC_REFILL
);
1559 object
= c
->page
->freelist
;
1560 if (unlikely(!object
))
1562 if (unlikely(SlabDebug(c
->page
)))
1565 c
->freelist
= object
[c
->offset
];
1566 c
->page
->inuse
= c
->page
->objects
;
1567 c
->page
->freelist
= NULL
;
1568 c
->node
= page_to_nid(c
->page
);
1570 slab_unlock(c
->page
);
1571 stat(c
, ALLOC_SLOWPATH
);
1575 deactivate_slab(s
, c
);
1578 new = get_partial(s
, gfpflags
, node
);
1581 stat(c
, ALLOC_FROM_PARTIAL
);
1585 if (gfpflags
& __GFP_WAIT
)
1588 new = new_slab(s
, gfpflags
, node
);
1590 if (gfpflags
& __GFP_WAIT
)
1591 local_irq_disable();
1594 c
= get_cpu_slab(s
, smp_processor_id());
1595 stat(c
, ALLOC_SLAB
);
1605 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1609 c
->page
->freelist
= object
[c
->offset
];
1615 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1616 * have the fastpath folded into their functions. So no function call
1617 * overhead for requests that can be satisfied on the fastpath.
1619 * The fastpath works by first checking if the lockless freelist can be used.
1620 * If not then __slab_alloc is called for slow processing.
1622 * Otherwise we can simply pick the next object from the lockless free list.
1624 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1625 gfp_t gfpflags
, int node
, void *addr
)
1628 struct kmem_cache_cpu
*c
;
1629 unsigned long flags
;
1630 unsigned int objsize
;
1632 local_irq_save(flags
);
1633 c
= get_cpu_slab(s
, smp_processor_id());
1634 objsize
= c
->objsize
;
1635 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1637 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1640 object
= c
->freelist
;
1641 c
->freelist
= object
[c
->offset
];
1642 stat(c
, ALLOC_FASTPATH
);
1644 local_irq_restore(flags
);
1646 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1647 memset(object
, 0, objsize
);
1652 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1654 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1656 EXPORT_SYMBOL(kmem_cache_alloc
);
1659 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1661 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1663 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1667 * Slow patch handling. This may still be called frequently since objects
1668 * have a longer lifetime than the cpu slabs in most processing loads.
1670 * So we still attempt to reduce cache line usage. Just take the slab
1671 * lock and free the item. If there is no additional partial page
1672 * handling required then we can return immediately.
1674 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1675 void *x
, void *addr
, unsigned int offset
)
1678 void **object
= (void *)x
;
1679 struct kmem_cache_cpu
*c
;
1681 c
= get_cpu_slab(s
, raw_smp_processor_id());
1682 stat(c
, FREE_SLOWPATH
);
1685 if (unlikely(SlabDebug(page
)))
1689 prior
= object
[offset
] = page
->freelist
;
1690 page
->freelist
= object
;
1693 if (unlikely(SlabFrozen(page
))) {
1694 stat(c
, FREE_FROZEN
);
1698 if (unlikely(!page
->inuse
))
1702 * Objects left in the slab. If it was not on the partial list before
1705 if (unlikely(!prior
)) {
1706 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1707 stat(c
, FREE_ADD_PARTIAL
);
1717 * Slab still on the partial list.
1719 remove_partial(s
, page
);
1720 stat(c
, FREE_REMOVE_PARTIAL
);
1724 discard_slab(s
, page
);
1728 if (!free_debug_processing(s
, page
, x
, addr
))
1734 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1735 * can perform fastpath freeing without additional function calls.
1737 * The fastpath is only possible if we are freeing to the current cpu slab
1738 * of this processor. This typically the case if we have just allocated
1741 * If fastpath is not possible then fall back to __slab_free where we deal
1742 * with all sorts of special processing.
1744 static __always_inline
void slab_free(struct kmem_cache
*s
,
1745 struct page
*page
, void *x
, void *addr
)
1747 void **object
= (void *)x
;
1748 struct kmem_cache_cpu
*c
;
1749 unsigned long flags
;
1751 local_irq_save(flags
);
1752 c
= get_cpu_slab(s
, smp_processor_id());
1753 debug_check_no_locks_freed(object
, c
->objsize
);
1754 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1755 debug_check_no_obj_freed(object
, s
->objsize
);
1756 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1757 object
[c
->offset
] = c
->freelist
;
1758 c
->freelist
= object
;
1759 stat(c
, FREE_FASTPATH
);
1761 __slab_free(s
, page
, x
, addr
, c
->offset
);
1763 local_irq_restore(flags
);
1766 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1770 page
= virt_to_head_page(x
);
1772 slab_free(s
, page
, x
, __builtin_return_address(0));
1774 EXPORT_SYMBOL(kmem_cache_free
);
1776 /* Figure out on which slab object the object resides */
1777 static struct page
*get_object_page(const void *x
)
1779 struct page
*page
= virt_to_head_page(x
);
1781 if (!PageSlab(page
))
1788 * Object placement in a slab is made very easy because we always start at
1789 * offset 0. If we tune the size of the object to the alignment then we can
1790 * get the required alignment by putting one properly sized object after
1793 * Notice that the allocation order determines the sizes of the per cpu
1794 * caches. Each processor has always one slab available for allocations.
1795 * Increasing the allocation order reduces the number of times that slabs
1796 * must be moved on and off the partial lists and is therefore a factor in
1801 * Mininum / Maximum order of slab pages. This influences locking overhead
1802 * and slab fragmentation. A higher order reduces the number of partial slabs
1803 * and increases the number of allocations possible without having to
1804 * take the list_lock.
1806 static int slub_min_order
;
1807 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1808 static int slub_min_objects
;
1811 * Merge control. If this is set then no merging of slab caches will occur.
1812 * (Could be removed. This was introduced to pacify the merge skeptics.)
1814 static int slub_nomerge
;
1817 * Calculate the order of allocation given an slab object size.
1819 * The order of allocation has significant impact on performance and other
1820 * system components. Generally order 0 allocations should be preferred since
1821 * order 0 does not cause fragmentation in the page allocator. Larger objects
1822 * be problematic to put into order 0 slabs because there may be too much
1823 * unused space left. We go to a higher order if more than 1/16th of the slab
1826 * In order to reach satisfactory performance we must ensure that a minimum
1827 * number of objects is in one slab. Otherwise we may generate too much
1828 * activity on the partial lists which requires taking the list_lock. This is
1829 * less a concern for large slabs though which are rarely used.
1831 * slub_max_order specifies the order where we begin to stop considering the
1832 * number of objects in a slab as critical. If we reach slub_max_order then
1833 * we try to keep the page order as low as possible. So we accept more waste
1834 * of space in favor of a small page order.
1836 * Higher order allocations also allow the placement of more objects in a
1837 * slab and thereby reduce object handling overhead. If the user has
1838 * requested a higher mininum order then we start with that one instead of
1839 * the smallest order which will fit the object.
1841 static inline int slab_order(int size
, int min_objects
,
1842 int max_order
, int fract_leftover
)
1846 int min_order
= slub_min_order
;
1848 if ((PAGE_SIZE
<< min_order
) / size
> 65535)
1849 return get_order(size
* 65535) - 1;
1851 for (order
= max(min_order
,
1852 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1853 order
<= max_order
; order
++) {
1855 unsigned long slab_size
= PAGE_SIZE
<< order
;
1857 if (slab_size
< min_objects
* size
)
1860 rem
= slab_size
% size
;
1862 if (rem
<= slab_size
/ fract_leftover
)
1870 static inline int calculate_order(int size
)
1877 * Attempt to find best configuration for a slab. This
1878 * works by first attempting to generate a layout with
1879 * the best configuration and backing off gradually.
1881 * First we reduce the acceptable waste in a slab. Then
1882 * we reduce the minimum objects required in a slab.
1884 min_objects
= slub_min_objects
;
1886 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1887 while (min_objects
> 1) {
1889 while (fraction
>= 4) {
1890 order
= slab_order(size
, min_objects
,
1891 slub_max_order
, fraction
);
1892 if (order
<= slub_max_order
)
1900 * We were unable to place multiple objects in a slab. Now
1901 * lets see if we can place a single object there.
1903 order
= slab_order(size
, 1, slub_max_order
, 1);
1904 if (order
<= slub_max_order
)
1908 * Doh this slab cannot be placed using slub_max_order.
1910 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1911 if (order
<= MAX_ORDER
)
1917 * Figure out what the alignment of the objects will be.
1919 static unsigned long calculate_alignment(unsigned long flags
,
1920 unsigned long align
, unsigned long size
)
1923 * If the user wants hardware cache aligned objects then follow that
1924 * suggestion if the object is sufficiently large.
1926 * The hardware cache alignment cannot override the specified
1927 * alignment though. If that is greater then use it.
1929 if (flags
& SLAB_HWCACHE_ALIGN
) {
1930 unsigned long ralign
= cache_line_size();
1931 while (size
<= ralign
/ 2)
1933 align
= max(align
, ralign
);
1936 if (align
< ARCH_SLAB_MINALIGN
)
1937 align
= ARCH_SLAB_MINALIGN
;
1939 return ALIGN(align
, sizeof(void *));
1942 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1943 struct kmem_cache_cpu
*c
)
1948 c
->offset
= s
->offset
/ sizeof(void *);
1949 c
->objsize
= s
->objsize
;
1950 #ifdef CONFIG_SLUB_STATS
1951 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1955 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
1958 spin_lock_init(&n
->list_lock
);
1959 INIT_LIST_HEAD(&n
->partial
);
1960 #ifdef CONFIG_SLUB_DEBUG
1961 atomic_long_set(&n
->nr_slabs
, 0);
1962 INIT_LIST_HEAD(&n
->full
);
1968 * Per cpu array for per cpu structures.
1970 * The per cpu array places all kmem_cache_cpu structures from one processor
1971 * close together meaning that it becomes possible that multiple per cpu
1972 * structures are contained in one cacheline. This may be particularly
1973 * beneficial for the kmalloc caches.
1975 * A desktop system typically has around 60-80 slabs. With 100 here we are
1976 * likely able to get per cpu structures for all caches from the array defined
1977 * here. We must be able to cover all kmalloc caches during bootstrap.
1979 * If the per cpu array is exhausted then fall back to kmalloc
1980 * of individual cachelines. No sharing is possible then.
1982 #define NR_KMEM_CACHE_CPU 100
1984 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1985 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1987 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1988 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
1990 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1991 int cpu
, gfp_t flags
)
1993 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1996 per_cpu(kmem_cache_cpu_free
, cpu
) =
1997 (void *)c
->freelist
;
1999 /* Table overflow: So allocate ourselves */
2001 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
2002 flags
, cpu_to_node(cpu
));
2007 init_kmem_cache_cpu(s
, c
);
2011 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2013 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2014 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2018 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2019 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2022 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2026 for_each_online_cpu(cpu
) {
2027 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2030 s
->cpu_slab
[cpu
] = NULL
;
2031 free_kmem_cache_cpu(c
, cpu
);
2036 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2040 for_each_online_cpu(cpu
) {
2041 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2046 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2048 free_kmem_cache_cpus(s
);
2051 s
->cpu_slab
[cpu
] = c
;
2057 * Initialize the per cpu array.
2059 static void init_alloc_cpu_cpu(int cpu
)
2063 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
2066 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2067 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2069 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
2072 static void __init
init_alloc_cpu(void)
2076 for_each_online_cpu(cpu
)
2077 init_alloc_cpu_cpu(cpu
);
2081 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2082 static inline void init_alloc_cpu(void) {}
2084 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2086 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2093 * No kmalloc_node yet so do it by hand. We know that this is the first
2094 * slab on the node for this slabcache. There are no concurrent accesses
2097 * Note that this function only works on the kmalloc_node_cache
2098 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2099 * memory on a fresh node that has no slab structures yet.
2101 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2105 struct kmem_cache_node
*n
;
2106 unsigned long flags
;
2108 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2110 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2113 if (page_to_nid(page
) != node
) {
2114 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2116 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2117 "in order to be able to continue\n");
2122 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2124 kmalloc_caches
->node
[node
] = n
;
2125 #ifdef CONFIG_SLUB_DEBUG
2126 init_object(kmalloc_caches
, n
, 1);
2127 init_tracking(kmalloc_caches
, n
);
2129 init_kmem_cache_node(n
);
2130 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2133 * lockdep requires consistent irq usage for each lock
2134 * so even though there cannot be a race this early in
2135 * the boot sequence, we still disable irqs.
2137 local_irq_save(flags
);
2138 add_partial(n
, page
, 0);
2139 local_irq_restore(flags
);
2143 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2147 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2148 struct kmem_cache_node
*n
= s
->node
[node
];
2149 if (n
&& n
!= &s
->local_node
)
2150 kmem_cache_free(kmalloc_caches
, n
);
2151 s
->node
[node
] = NULL
;
2155 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2160 if (slab_state
>= UP
)
2161 local_node
= page_to_nid(virt_to_page(s
));
2165 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2166 struct kmem_cache_node
*n
;
2168 if (local_node
== node
)
2171 if (slab_state
== DOWN
) {
2172 n
= early_kmem_cache_node_alloc(gfpflags
,
2176 n
= kmem_cache_alloc_node(kmalloc_caches
,
2180 free_kmem_cache_nodes(s
);
2186 init_kmem_cache_node(n
);
2191 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2195 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2197 init_kmem_cache_node(&s
->local_node
);
2203 * calculate_sizes() determines the order and the distribution of data within
2206 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2208 unsigned long flags
= s
->flags
;
2209 unsigned long size
= s
->objsize
;
2210 unsigned long align
= s
->align
;
2214 * Round up object size to the next word boundary. We can only
2215 * place the free pointer at word boundaries and this determines
2216 * the possible location of the free pointer.
2218 size
= ALIGN(size
, sizeof(void *));
2220 #ifdef CONFIG_SLUB_DEBUG
2222 * Determine if we can poison the object itself. If the user of
2223 * the slab may touch the object after free or before allocation
2224 * then we should never poison the object itself.
2226 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2228 s
->flags
|= __OBJECT_POISON
;
2230 s
->flags
&= ~__OBJECT_POISON
;
2234 * If we are Redzoning then check if there is some space between the
2235 * end of the object and the free pointer. If not then add an
2236 * additional word to have some bytes to store Redzone information.
2238 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2239 size
+= sizeof(void *);
2243 * With that we have determined the number of bytes in actual use
2244 * by the object. This is the potential offset to the free pointer.
2248 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2251 * Relocate free pointer after the object if it is not
2252 * permitted to overwrite the first word of the object on
2255 * This is the case if we do RCU, have a constructor or
2256 * destructor or are poisoning the objects.
2259 size
+= sizeof(void *);
2262 #ifdef CONFIG_SLUB_DEBUG
2263 if (flags
& SLAB_STORE_USER
)
2265 * Need to store information about allocs and frees after
2268 size
+= 2 * sizeof(struct track
);
2270 if (flags
& SLAB_RED_ZONE
)
2272 * Add some empty padding so that we can catch
2273 * overwrites from earlier objects rather than let
2274 * tracking information or the free pointer be
2275 * corrupted if an user writes before the start
2278 size
+= sizeof(void *);
2282 * Determine the alignment based on various parameters that the
2283 * user specified and the dynamic determination of cache line size
2286 align
= calculate_alignment(flags
, align
, s
->objsize
);
2289 * SLUB stores one object immediately after another beginning from
2290 * offset 0. In order to align the objects we have to simply size
2291 * each object to conform to the alignment.
2293 size
= ALIGN(size
, align
);
2295 if (forced_order
>= 0)
2296 order
= forced_order
;
2298 order
= calculate_order(size
);
2305 s
->allocflags
|= __GFP_COMP
;
2307 if (s
->flags
& SLAB_CACHE_DMA
)
2308 s
->allocflags
|= SLUB_DMA
;
2310 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2311 s
->allocflags
|= __GFP_RECLAIMABLE
;
2314 * Determine the number of objects per slab
2316 s
->oo
= oo_make(order
, size
);
2317 s
->min
= oo_make(get_order(size
), size
);
2318 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2321 return !!oo_objects(s
->oo
);
2325 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2326 const char *name
, size_t size
,
2327 size_t align
, unsigned long flags
,
2328 void (*ctor
)(struct kmem_cache
*, void *))
2330 memset(s
, 0, kmem_size
);
2335 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2337 if (!calculate_sizes(s
, -1))
2342 s
->remote_node_defrag_ratio
= 100;
2344 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2347 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2349 free_kmem_cache_nodes(s
);
2351 if (flags
& SLAB_PANIC
)
2352 panic("Cannot create slab %s size=%lu realsize=%u "
2353 "order=%u offset=%u flags=%lx\n",
2354 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2360 * Check if a given pointer is valid
2362 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2366 page
= get_object_page(object
);
2368 if (!page
|| s
!= page
->slab
)
2369 /* No slab or wrong slab */
2372 if (!check_valid_pointer(s
, page
, object
))
2376 * We could also check if the object is on the slabs freelist.
2377 * But this would be too expensive and it seems that the main
2378 * purpose of kmem_ptr_valid() is to check if the object belongs
2379 * to a certain slab.
2383 EXPORT_SYMBOL(kmem_ptr_validate
);
2386 * Determine the size of a slab object
2388 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2392 EXPORT_SYMBOL(kmem_cache_size
);
2394 const char *kmem_cache_name(struct kmem_cache
*s
)
2398 EXPORT_SYMBOL(kmem_cache_name
);
2400 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2403 #ifdef CONFIG_SLUB_DEBUG
2404 void *addr
= page_address(page
);
2406 DECLARE_BITMAP(map
, page
->objects
);
2408 bitmap_zero(map
, page
->objects
);
2409 slab_err(s
, page
, "%s", text
);
2411 for_each_free_object(p
, s
, page
->freelist
)
2412 set_bit(slab_index(p
, s
, addr
), map
);
2414 for_each_object(p
, s
, addr
, page
->objects
) {
2416 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2417 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2419 print_tracking(s
, p
);
2427 * Attempt to free all partial slabs on a node.
2429 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2431 unsigned long flags
;
2432 struct page
*page
, *h
;
2434 spin_lock_irqsave(&n
->list_lock
, flags
);
2435 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2437 list_del(&page
->lru
);
2438 discard_slab(s
, page
);
2441 list_slab_objects(s
, page
,
2442 "Objects remaining on kmem_cache_close()");
2445 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2449 * Release all resources used by a slab cache.
2451 static inline int kmem_cache_close(struct kmem_cache
*s
)
2457 /* Attempt to free all objects */
2458 free_kmem_cache_cpus(s
);
2459 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2460 struct kmem_cache_node
*n
= get_node(s
, node
);
2463 if (n
->nr_partial
|| slabs_node(s
, node
))
2466 free_kmem_cache_nodes(s
);
2471 * Close a cache and release the kmem_cache structure
2472 * (must be used for caches created using kmem_cache_create)
2474 void kmem_cache_destroy(struct kmem_cache
*s
)
2476 down_write(&slub_lock
);
2480 up_write(&slub_lock
);
2481 if (kmem_cache_close(s
)) {
2482 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2483 "still has objects.\n", s
->name
, __func__
);
2486 sysfs_slab_remove(s
);
2488 up_write(&slub_lock
);
2490 EXPORT_SYMBOL(kmem_cache_destroy
);
2492 /********************************************************************
2494 *******************************************************************/
2496 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
+ 1] __cacheline_aligned
;
2497 EXPORT_SYMBOL(kmalloc_caches
);
2499 static int __init
setup_slub_min_order(char *str
)
2501 get_option(&str
, &slub_min_order
);
2506 __setup("slub_min_order=", setup_slub_min_order
);
2508 static int __init
setup_slub_max_order(char *str
)
2510 get_option(&str
, &slub_max_order
);
2515 __setup("slub_max_order=", setup_slub_max_order
);
2517 static int __init
setup_slub_min_objects(char *str
)
2519 get_option(&str
, &slub_min_objects
);
2524 __setup("slub_min_objects=", setup_slub_min_objects
);
2526 static int __init
setup_slub_nomerge(char *str
)
2532 __setup("slub_nomerge", setup_slub_nomerge
);
2534 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2535 const char *name
, int size
, gfp_t gfp_flags
)
2537 unsigned int flags
= 0;
2539 if (gfp_flags
& SLUB_DMA
)
2540 flags
= SLAB_CACHE_DMA
;
2542 down_write(&slub_lock
);
2543 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2547 list_add(&s
->list
, &slab_caches
);
2548 up_write(&slub_lock
);
2549 if (sysfs_slab_add(s
))
2554 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2557 #ifdef CONFIG_ZONE_DMA
2558 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
+ 1];
2560 static void sysfs_add_func(struct work_struct
*w
)
2562 struct kmem_cache
*s
;
2564 down_write(&slub_lock
);
2565 list_for_each_entry(s
, &slab_caches
, list
) {
2566 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2567 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2571 up_write(&slub_lock
);
2574 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2576 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2578 struct kmem_cache
*s
;
2582 s
= kmalloc_caches_dma
[index
];
2586 /* Dynamically create dma cache */
2587 if (flags
& __GFP_WAIT
)
2588 down_write(&slub_lock
);
2590 if (!down_write_trylock(&slub_lock
))
2594 if (kmalloc_caches_dma
[index
])
2597 realsize
= kmalloc_caches
[index
].objsize
;
2598 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2599 (unsigned int)realsize
);
2600 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2602 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2603 realsize
, ARCH_KMALLOC_MINALIGN
,
2604 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2610 list_add(&s
->list
, &slab_caches
);
2611 kmalloc_caches_dma
[index
] = s
;
2613 schedule_work(&sysfs_add_work
);
2616 up_write(&slub_lock
);
2618 return kmalloc_caches_dma
[index
];
2623 * Conversion table for small slabs sizes / 8 to the index in the
2624 * kmalloc array. This is necessary for slabs < 192 since we have non power
2625 * of two cache sizes there. The size of larger slabs can be determined using
2628 static s8 size_index
[24] = {
2655 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2661 return ZERO_SIZE_PTR
;
2663 index
= size_index
[(size
- 1) / 8];
2665 index
= fls(size
- 1);
2667 #ifdef CONFIG_ZONE_DMA
2668 if (unlikely((flags
& SLUB_DMA
)))
2669 return dma_kmalloc_cache(index
, flags
);
2672 return &kmalloc_caches
[index
];
2675 void *__kmalloc(size_t size
, gfp_t flags
)
2677 struct kmem_cache
*s
;
2679 if (unlikely(size
> PAGE_SIZE
))
2680 return kmalloc_large(size
, flags
);
2682 s
= get_slab(size
, flags
);
2684 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2687 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2689 EXPORT_SYMBOL(__kmalloc
);
2691 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2693 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2697 return page_address(page
);
2703 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2705 struct kmem_cache
*s
;
2707 if (unlikely(size
> PAGE_SIZE
))
2708 return kmalloc_large_node(size
, flags
, node
);
2710 s
= get_slab(size
, flags
);
2712 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2715 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2717 EXPORT_SYMBOL(__kmalloc_node
);
2720 size_t ksize(const void *object
)
2723 struct kmem_cache
*s
;
2725 if (unlikely(object
== ZERO_SIZE_PTR
))
2728 page
= virt_to_head_page(object
);
2730 if (unlikely(!PageSlab(page
))) {
2731 WARN_ON(!PageCompound(page
));
2732 return PAGE_SIZE
<< compound_order(page
);
2736 #ifdef CONFIG_SLUB_DEBUG
2738 * Debugging requires use of the padding between object
2739 * and whatever may come after it.
2741 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2746 * If we have the need to store the freelist pointer
2747 * back there or track user information then we can
2748 * only use the space before that information.
2750 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2753 * Else we can use all the padding etc for the allocation
2757 EXPORT_SYMBOL(ksize
);
2759 void kfree(const void *x
)
2762 void *object
= (void *)x
;
2764 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2767 page
= virt_to_head_page(x
);
2768 if (unlikely(!PageSlab(page
))) {
2772 slab_free(page
->slab
, page
, object
, __builtin_return_address(0));
2774 EXPORT_SYMBOL(kfree
);
2777 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2778 * the remaining slabs by the number of items in use. The slabs with the
2779 * most items in use come first. New allocations will then fill those up
2780 * and thus they can be removed from the partial lists.
2782 * The slabs with the least items are placed last. This results in them
2783 * being allocated from last increasing the chance that the last objects
2784 * are freed in them.
2786 int kmem_cache_shrink(struct kmem_cache
*s
)
2790 struct kmem_cache_node
*n
;
2793 int objects
= oo_objects(s
->max
);
2794 struct list_head
*slabs_by_inuse
=
2795 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2796 unsigned long flags
;
2798 if (!slabs_by_inuse
)
2802 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2803 n
= get_node(s
, node
);
2808 for (i
= 0; i
< objects
; i
++)
2809 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2811 spin_lock_irqsave(&n
->list_lock
, flags
);
2814 * Build lists indexed by the items in use in each slab.
2816 * Note that concurrent frees may occur while we hold the
2817 * list_lock. page->inuse here is the upper limit.
2819 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2820 if (!page
->inuse
&& slab_trylock(page
)) {
2822 * Must hold slab lock here because slab_free
2823 * may have freed the last object and be
2824 * waiting to release the slab.
2826 list_del(&page
->lru
);
2829 discard_slab(s
, page
);
2831 list_move(&page
->lru
,
2832 slabs_by_inuse
+ page
->inuse
);
2837 * Rebuild the partial list with the slabs filled up most
2838 * first and the least used slabs at the end.
2840 for (i
= objects
- 1; i
>= 0; i
--)
2841 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2843 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2846 kfree(slabs_by_inuse
);
2849 EXPORT_SYMBOL(kmem_cache_shrink
);
2851 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2852 static int slab_mem_going_offline_callback(void *arg
)
2854 struct kmem_cache
*s
;
2856 down_read(&slub_lock
);
2857 list_for_each_entry(s
, &slab_caches
, list
)
2858 kmem_cache_shrink(s
);
2859 up_read(&slub_lock
);
2864 static void slab_mem_offline_callback(void *arg
)
2866 struct kmem_cache_node
*n
;
2867 struct kmem_cache
*s
;
2868 struct memory_notify
*marg
= arg
;
2871 offline_node
= marg
->status_change_nid
;
2874 * If the node still has available memory. we need kmem_cache_node
2877 if (offline_node
< 0)
2880 down_read(&slub_lock
);
2881 list_for_each_entry(s
, &slab_caches
, list
) {
2882 n
= get_node(s
, offline_node
);
2885 * if n->nr_slabs > 0, slabs still exist on the node
2886 * that is going down. We were unable to free them,
2887 * and offline_pages() function shoudn't call this
2888 * callback. So, we must fail.
2890 BUG_ON(slabs_node(s
, offline_node
));
2892 s
->node
[offline_node
] = NULL
;
2893 kmem_cache_free(kmalloc_caches
, n
);
2896 up_read(&slub_lock
);
2899 static int slab_mem_going_online_callback(void *arg
)
2901 struct kmem_cache_node
*n
;
2902 struct kmem_cache
*s
;
2903 struct memory_notify
*marg
= arg
;
2904 int nid
= marg
->status_change_nid
;
2908 * If the node's memory is already available, then kmem_cache_node is
2909 * already created. Nothing to do.
2915 * We are bringing a node online. No memory is available yet. We must
2916 * allocate a kmem_cache_node structure in order to bring the node
2919 down_read(&slub_lock
);
2920 list_for_each_entry(s
, &slab_caches
, list
) {
2922 * XXX: kmem_cache_alloc_node will fallback to other nodes
2923 * since memory is not yet available from the node that
2926 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2931 init_kmem_cache_node(n
);
2935 up_read(&slub_lock
);
2939 static int slab_memory_callback(struct notifier_block
*self
,
2940 unsigned long action
, void *arg
)
2945 case MEM_GOING_ONLINE
:
2946 ret
= slab_mem_going_online_callback(arg
);
2948 case MEM_GOING_OFFLINE
:
2949 ret
= slab_mem_going_offline_callback(arg
);
2952 case MEM_CANCEL_ONLINE
:
2953 slab_mem_offline_callback(arg
);
2956 case MEM_CANCEL_OFFLINE
:
2960 ret
= notifier_from_errno(ret
);
2964 #endif /* CONFIG_MEMORY_HOTPLUG */
2966 /********************************************************************
2967 * Basic setup of slabs
2968 *******************************************************************/
2970 void __init
kmem_cache_init(void)
2979 * Must first have the slab cache available for the allocations of the
2980 * struct kmem_cache_node's. There is special bootstrap code in
2981 * kmem_cache_open for slab_state == DOWN.
2983 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2984 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2985 kmalloc_caches
[0].refcount
= -1;
2988 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
2991 /* Able to allocate the per node structures */
2992 slab_state
= PARTIAL
;
2994 /* Caches that are not of the two-to-the-power-of size */
2995 if (KMALLOC_MIN_SIZE
<= 64) {
2996 create_kmalloc_cache(&kmalloc_caches
[1],
2997 "kmalloc-96", 96, GFP_KERNEL
);
2999 create_kmalloc_cache(&kmalloc_caches
[2],
3000 "kmalloc-192", 192, GFP_KERNEL
);
3004 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++) {
3005 create_kmalloc_cache(&kmalloc_caches
[i
],
3006 "kmalloc", 1 << i
, GFP_KERNEL
);
3012 * Patch up the size_index table if we have strange large alignment
3013 * requirements for the kmalloc array. This is only the case for
3014 * MIPS it seems. The standard arches will not generate any code here.
3016 * Largest permitted alignment is 256 bytes due to the way we
3017 * handle the index determination for the smaller caches.
3019 * Make sure that nothing crazy happens if someone starts tinkering
3020 * around with ARCH_KMALLOC_MINALIGN
3022 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3023 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3025 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3026 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3028 if (KMALLOC_MIN_SIZE
== 128) {
3030 * The 192 byte sized cache is not used if the alignment
3031 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3034 for (i
= 128 + 8; i
<= 192; i
+= 8)
3035 size_index
[(i
- 1) / 8] = 8;
3040 /* Provide the correct kmalloc names now that the caches are up */
3041 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++)
3042 kmalloc_caches
[i
]. name
=
3043 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3046 register_cpu_notifier(&slab_notifier
);
3047 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3048 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3050 kmem_size
= sizeof(struct kmem_cache
);
3054 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3055 " CPUs=%d, Nodes=%d\n",
3056 caches
, cache_line_size(),
3057 slub_min_order
, slub_max_order
, slub_min_objects
,
3058 nr_cpu_ids
, nr_node_ids
);
3062 * Find a mergeable slab cache
3064 static int slab_unmergeable(struct kmem_cache
*s
)
3066 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3073 * We may have set a slab to be unmergeable during bootstrap.
3075 if (s
->refcount
< 0)
3081 static struct kmem_cache
*find_mergeable(size_t size
,
3082 size_t align
, unsigned long flags
, const char *name
,
3083 void (*ctor
)(struct kmem_cache
*, void *))
3085 struct kmem_cache
*s
;
3087 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3093 size
= ALIGN(size
, sizeof(void *));
3094 align
= calculate_alignment(flags
, align
, size
);
3095 size
= ALIGN(size
, align
);
3096 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3098 list_for_each_entry(s
, &slab_caches
, list
) {
3099 if (slab_unmergeable(s
))
3105 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3108 * Check if alignment is compatible.
3109 * Courtesy of Adrian Drzewiecki
3111 if ((s
->size
& ~(align
- 1)) != s
->size
)
3114 if (s
->size
- size
>= sizeof(void *))
3122 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3123 size_t align
, unsigned long flags
,
3124 void (*ctor
)(struct kmem_cache
*, void *))
3126 struct kmem_cache
*s
;
3128 down_write(&slub_lock
);
3129 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3135 * Adjust the object sizes so that we clear
3136 * the complete object on kzalloc.
3138 s
->objsize
= max(s
->objsize
, (int)size
);
3141 * And then we need to update the object size in the
3142 * per cpu structures
3144 for_each_online_cpu(cpu
)
3145 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3147 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3148 up_write(&slub_lock
);
3150 if (sysfs_slab_alias(s
, name
))
3155 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3157 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3158 size
, align
, flags
, ctor
)) {
3159 list_add(&s
->list
, &slab_caches
);
3160 up_write(&slub_lock
);
3161 if (sysfs_slab_add(s
))
3167 up_write(&slub_lock
);
3170 if (flags
& SLAB_PANIC
)
3171 panic("Cannot create slabcache %s\n", name
);
3176 EXPORT_SYMBOL(kmem_cache_create
);
3180 * Use the cpu notifier to insure that the cpu slabs are flushed when
3183 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3184 unsigned long action
, void *hcpu
)
3186 long cpu
= (long)hcpu
;
3187 struct kmem_cache
*s
;
3188 unsigned long flags
;
3191 case CPU_UP_PREPARE
:
3192 case CPU_UP_PREPARE_FROZEN
:
3193 init_alloc_cpu_cpu(cpu
);
3194 down_read(&slub_lock
);
3195 list_for_each_entry(s
, &slab_caches
, list
)
3196 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3198 up_read(&slub_lock
);
3201 case CPU_UP_CANCELED
:
3202 case CPU_UP_CANCELED_FROZEN
:
3204 case CPU_DEAD_FROZEN
:
3205 down_read(&slub_lock
);
3206 list_for_each_entry(s
, &slab_caches
, list
) {
3207 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3209 local_irq_save(flags
);
3210 __flush_cpu_slab(s
, cpu
);
3211 local_irq_restore(flags
);
3212 free_kmem_cache_cpu(c
, cpu
);
3213 s
->cpu_slab
[cpu
] = NULL
;
3215 up_read(&slub_lock
);
3223 static struct notifier_block __cpuinitdata slab_notifier
= {
3224 .notifier_call
= slab_cpuup_callback
3229 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
3231 struct kmem_cache
*s
;
3233 if (unlikely(size
> PAGE_SIZE
))
3234 return kmalloc_large(size
, gfpflags
);
3236 s
= get_slab(size
, gfpflags
);
3238 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3241 return slab_alloc(s
, gfpflags
, -1, caller
);
3244 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3245 int node
, void *caller
)
3247 struct kmem_cache
*s
;
3249 if (unlikely(size
> PAGE_SIZE
))
3250 return kmalloc_large_node(size
, gfpflags
, node
);
3252 s
= get_slab(size
, gfpflags
);
3254 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3257 return slab_alloc(s
, gfpflags
, node
, caller
);
3260 #ifdef CONFIG_SLUB_DEBUG
3261 static unsigned long count_partial(struct kmem_cache_node
*n
,
3262 int (*get_count
)(struct page
*))
3264 unsigned long flags
;
3265 unsigned long x
= 0;
3268 spin_lock_irqsave(&n
->list_lock
, flags
);
3269 list_for_each_entry(page
, &n
->partial
, lru
)
3270 x
+= get_count(page
);
3271 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3275 static int count_inuse(struct page
*page
)
3280 static int count_total(struct page
*page
)
3282 return page
->objects
;
3285 static int count_free(struct page
*page
)
3287 return page
->objects
- page
->inuse
;
3290 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3294 void *addr
= page_address(page
);
3296 if (!check_slab(s
, page
) ||
3297 !on_freelist(s
, page
, NULL
))
3300 /* Now we know that a valid freelist exists */
3301 bitmap_zero(map
, page
->objects
);
3303 for_each_free_object(p
, s
, page
->freelist
) {
3304 set_bit(slab_index(p
, s
, addr
), map
);
3305 if (!check_object(s
, page
, p
, 0))
3309 for_each_object(p
, s
, addr
, page
->objects
)
3310 if (!test_bit(slab_index(p
, s
, addr
), map
))
3311 if (!check_object(s
, page
, p
, 1))
3316 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3319 if (slab_trylock(page
)) {
3320 validate_slab(s
, page
, map
);
3323 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3326 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3327 if (!SlabDebug(page
))
3328 printk(KERN_ERR
"SLUB %s: SlabDebug not set "
3329 "on slab 0x%p\n", s
->name
, page
);
3331 if (SlabDebug(page
))
3332 printk(KERN_ERR
"SLUB %s: SlabDebug set on "
3333 "slab 0x%p\n", s
->name
, page
);
3337 static int validate_slab_node(struct kmem_cache
*s
,
3338 struct kmem_cache_node
*n
, unsigned long *map
)
3340 unsigned long count
= 0;
3342 unsigned long flags
;
3344 spin_lock_irqsave(&n
->list_lock
, flags
);
3346 list_for_each_entry(page
, &n
->partial
, lru
) {
3347 validate_slab_slab(s
, page
, map
);
3350 if (count
!= n
->nr_partial
)
3351 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3352 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3354 if (!(s
->flags
& SLAB_STORE_USER
))
3357 list_for_each_entry(page
, &n
->full
, lru
) {
3358 validate_slab_slab(s
, page
, map
);
3361 if (count
!= atomic_long_read(&n
->nr_slabs
))
3362 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3363 "counter=%ld\n", s
->name
, count
,
3364 atomic_long_read(&n
->nr_slabs
));
3367 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3371 static long validate_slab_cache(struct kmem_cache
*s
)
3374 unsigned long count
= 0;
3375 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3376 sizeof(unsigned long), GFP_KERNEL
);
3382 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3383 struct kmem_cache_node
*n
= get_node(s
, node
);
3385 count
+= validate_slab_node(s
, n
, map
);
3391 #ifdef SLUB_RESILIENCY_TEST
3392 static void resiliency_test(void)
3396 printk(KERN_ERR
"SLUB resiliency testing\n");
3397 printk(KERN_ERR
"-----------------------\n");
3398 printk(KERN_ERR
"A. Corruption after allocation\n");
3400 p
= kzalloc(16, GFP_KERNEL
);
3402 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3403 " 0x12->0x%p\n\n", p
+ 16);
3405 validate_slab_cache(kmalloc_caches
+ 4);
3407 /* Hmmm... The next two are dangerous */
3408 p
= kzalloc(32, GFP_KERNEL
);
3409 p
[32 + sizeof(void *)] = 0x34;
3410 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3411 " 0x34 -> -0x%p\n", p
);
3413 "If allocated object is overwritten then not detectable\n\n");
3415 validate_slab_cache(kmalloc_caches
+ 5);
3416 p
= kzalloc(64, GFP_KERNEL
);
3417 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3419 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3422 "If allocated object is overwritten then not detectable\n\n");
3423 validate_slab_cache(kmalloc_caches
+ 6);
3425 printk(KERN_ERR
"\nB. Corruption after free\n");
3426 p
= kzalloc(128, GFP_KERNEL
);
3429 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3430 validate_slab_cache(kmalloc_caches
+ 7);
3432 p
= kzalloc(256, GFP_KERNEL
);
3435 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3437 validate_slab_cache(kmalloc_caches
+ 8);
3439 p
= kzalloc(512, GFP_KERNEL
);
3442 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3443 validate_slab_cache(kmalloc_caches
+ 9);
3446 static void resiliency_test(void) {};
3450 * Generate lists of code addresses where slabcache objects are allocated
3455 unsigned long count
;
3468 unsigned long count
;
3469 struct location
*loc
;
3472 static void free_loc_track(struct loc_track
*t
)
3475 free_pages((unsigned long)t
->loc
,
3476 get_order(sizeof(struct location
) * t
->max
));
3479 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3484 order
= get_order(sizeof(struct location
) * max
);
3486 l
= (void *)__get_free_pages(flags
, order
);
3491 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3499 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3500 const struct track
*track
)
3502 long start
, end
, pos
;
3505 unsigned long age
= jiffies
- track
->when
;
3511 pos
= start
+ (end
- start
+ 1) / 2;
3514 * There is nothing at "end". If we end up there
3515 * we need to add something to before end.
3520 caddr
= t
->loc
[pos
].addr
;
3521 if (track
->addr
== caddr
) {
3527 if (age
< l
->min_time
)
3529 if (age
> l
->max_time
)
3532 if (track
->pid
< l
->min_pid
)
3533 l
->min_pid
= track
->pid
;
3534 if (track
->pid
> l
->max_pid
)
3535 l
->max_pid
= track
->pid
;
3537 cpu_set(track
->cpu
, l
->cpus
);
3539 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3543 if (track
->addr
< caddr
)
3550 * Not found. Insert new tracking element.
3552 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3558 (t
->count
- pos
) * sizeof(struct location
));
3561 l
->addr
= track
->addr
;
3565 l
->min_pid
= track
->pid
;
3566 l
->max_pid
= track
->pid
;
3567 cpus_clear(l
->cpus
);
3568 cpu_set(track
->cpu
, l
->cpus
);
3569 nodes_clear(l
->nodes
);
3570 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3574 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3575 struct page
*page
, enum track_item alloc
)
3577 void *addr
= page_address(page
);
3578 DECLARE_BITMAP(map
, page
->objects
);
3581 bitmap_zero(map
, page
->objects
);
3582 for_each_free_object(p
, s
, page
->freelist
)
3583 set_bit(slab_index(p
, s
, addr
), map
);
3585 for_each_object(p
, s
, addr
, page
->objects
)
3586 if (!test_bit(slab_index(p
, s
, addr
), map
))
3587 add_location(t
, s
, get_track(s
, p
, alloc
));
3590 static int list_locations(struct kmem_cache
*s
, char *buf
,
3591 enum track_item alloc
)
3595 struct loc_track t
= { 0, 0, NULL
};
3598 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3600 return sprintf(buf
, "Out of memory\n");
3602 /* Push back cpu slabs */
3605 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3606 struct kmem_cache_node
*n
= get_node(s
, node
);
3607 unsigned long flags
;
3610 if (!atomic_long_read(&n
->nr_slabs
))
3613 spin_lock_irqsave(&n
->list_lock
, flags
);
3614 list_for_each_entry(page
, &n
->partial
, lru
)
3615 process_slab(&t
, s
, page
, alloc
);
3616 list_for_each_entry(page
, &n
->full
, lru
)
3617 process_slab(&t
, s
, page
, alloc
);
3618 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3621 for (i
= 0; i
< t
.count
; i
++) {
3622 struct location
*l
= &t
.loc
[i
];
3624 if (len
> PAGE_SIZE
- 100)
3626 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3629 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3631 len
+= sprintf(buf
+ len
, "<not-available>");
3633 if (l
->sum_time
!= l
->min_time
) {
3634 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3636 (long)div_u64(l
->sum_time
, l
->count
),
3639 len
+= sprintf(buf
+ len
, " age=%ld",
3642 if (l
->min_pid
!= l
->max_pid
)
3643 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3644 l
->min_pid
, l
->max_pid
);
3646 len
+= sprintf(buf
+ len
, " pid=%ld",
3649 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3650 len
< PAGE_SIZE
- 60) {
3651 len
+= sprintf(buf
+ len
, " cpus=");
3652 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3656 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3657 len
< PAGE_SIZE
- 60) {
3658 len
+= sprintf(buf
+ len
, " nodes=");
3659 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3663 len
+= sprintf(buf
+ len
, "\n");
3668 len
+= sprintf(buf
, "No data\n");
3672 enum slab_stat_type
{
3673 SL_ALL
, /* All slabs */
3674 SL_PARTIAL
, /* Only partially allocated slabs */
3675 SL_CPU
, /* Only slabs used for cpu caches */
3676 SL_OBJECTS
, /* Determine allocated objects not slabs */
3677 SL_TOTAL
/* Determine object capacity not slabs */
3680 #define SO_ALL (1 << SL_ALL)
3681 #define SO_PARTIAL (1 << SL_PARTIAL)
3682 #define SO_CPU (1 << SL_CPU)
3683 #define SO_OBJECTS (1 << SL_OBJECTS)
3684 #define SO_TOTAL (1 << SL_TOTAL)
3686 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3687 char *buf
, unsigned long flags
)
3689 unsigned long total
= 0;
3692 unsigned long *nodes
;
3693 unsigned long *per_cpu
;
3695 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3698 per_cpu
= nodes
+ nr_node_ids
;
3700 if (flags
& SO_CPU
) {
3703 for_each_possible_cpu(cpu
) {
3704 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3706 if (!c
|| c
->node
< 0)
3710 if (flags
& SO_TOTAL
)
3711 x
= c
->page
->objects
;
3712 else if (flags
& SO_OBJECTS
)
3718 nodes
[c
->node
] += x
;
3724 if (flags
& SO_ALL
) {
3725 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3726 struct kmem_cache_node
*n
= get_node(s
, node
);
3728 if (flags
& SO_TOTAL
)
3729 x
= atomic_long_read(&n
->total_objects
);
3730 else if (flags
& SO_OBJECTS
)
3731 x
= atomic_long_read(&n
->total_objects
) -
3732 count_partial(n
, count_free
);
3735 x
= atomic_long_read(&n
->nr_slabs
);
3740 } else if (flags
& SO_PARTIAL
) {
3741 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3742 struct kmem_cache_node
*n
= get_node(s
, node
);
3744 if (flags
& SO_TOTAL
)
3745 x
= count_partial(n
, count_total
);
3746 else if (flags
& SO_OBJECTS
)
3747 x
= count_partial(n
, count_inuse
);
3754 x
= sprintf(buf
, "%lu", total
);
3756 for_each_node_state(node
, N_NORMAL_MEMORY
)
3758 x
+= sprintf(buf
+ x
, " N%d=%lu",
3762 return x
+ sprintf(buf
+ x
, "\n");
3765 static int any_slab_objects(struct kmem_cache
*s
)
3769 for_each_online_node(node
) {
3770 struct kmem_cache_node
*n
= get_node(s
, node
);
3775 if (atomic_long_read(&n
->total_objects
))
3781 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3782 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3784 struct slab_attribute
{
3785 struct attribute attr
;
3786 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3787 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3790 #define SLAB_ATTR_RO(_name) \
3791 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3793 #define SLAB_ATTR(_name) \
3794 static struct slab_attribute _name##_attr = \
3795 __ATTR(_name, 0644, _name##_show, _name##_store)
3797 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3799 return sprintf(buf
, "%d\n", s
->size
);
3801 SLAB_ATTR_RO(slab_size
);
3803 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3805 return sprintf(buf
, "%d\n", s
->align
);
3807 SLAB_ATTR_RO(align
);
3809 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3811 return sprintf(buf
, "%d\n", s
->objsize
);
3813 SLAB_ATTR_RO(object_size
);
3815 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3817 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3819 SLAB_ATTR_RO(objs_per_slab
);
3821 static ssize_t
order_store(struct kmem_cache
*s
,
3822 const char *buf
, size_t length
)
3824 unsigned long order
;
3827 err
= strict_strtoul(buf
, 10, &order
);
3831 if (order
> slub_max_order
|| order
< slub_min_order
)
3834 calculate_sizes(s
, order
);
3838 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3840 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3844 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3847 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3849 return n
+ sprintf(buf
+ n
, "\n");
3855 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3857 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3859 SLAB_ATTR_RO(aliases
);
3861 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3863 return show_slab_objects(s
, buf
, SO_ALL
);
3865 SLAB_ATTR_RO(slabs
);
3867 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3869 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3871 SLAB_ATTR_RO(partial
);
3873 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3875 return show_slab_objects(s
, buf
, SO_CPU
);
3877 SLAB_ATTR_RO(cpu_slabs
);
3879 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3881 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3883 SLAB_ATTR_RO(objects
);
3885 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3887 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3889 SLAB_ATTR_RO(objects_partial
);
3891 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3893 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3895 SLAB_ATTR_RO(total_objects
);
3897 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3899 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3902 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3903 const char *buf
, size_t length
)
3905 s
->flags
&= ~SLAB_DEBUG_FREE
;
3907 s
->flags
|= SLAB_DEBUG_FREE
;
3910 SLAB_ATTR(sanity_checks
);
3912 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3914 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3917 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3920 s
->flags
&= ~SLAB_TRACE
;
3922 s
->flags
|= SLAB_TRACE
;
3927 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3929 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3932 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3933 const char *buf
, size_t length
)
3935 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3937 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3940 SLAB_ATTR(reclaim_account
);
3942 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3944 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3946 SLAB_ATTR_RO(hwcache_align
);
3948 #ifdef CONFIG_ZONE_DMA
3949 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3951 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3953 SLAB_ATTR_RO(cache_dma
);
3956 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3958 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3960 SLAB_ATTR_RO(destroy_by_rcu
);
3962 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3964 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3967 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3968 const char *buf
, size_t length
)
3970 if (any_slab_objects(s
))
3973 s
->flags
&= ~SLAB_RED_ZONE
;
3975 s
->flags
|= SLAB_RED_ZONE
;
3976 calculate_sizes(s
, -1);
3979 SLAB_ATTR(red_zone
);
3981 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3983 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3986 static ssize_t
poison_store(struct kmem_cache
*s
,
3987 const char *buf
, size_t length
)
3989 if (any_slab_objects(s
))
3992 s
->flags
&= ~SLAB_POISON
;
3994 s
->flags
|= SLAB_POISON
;
3995 calculate_sizes(s
, -1);
4000 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4002 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4005 static ssize_t
store_user_store(struct kmem_cache
*s
,
4006 const char *buf
, size_t length
)
4008 if (any_slab_objects(s
))
4011 s
->flags
&= ~SLAB_STORE_USER
;
4013 s
->flags
|= SLAB_STORE_USER
;
4014 calculate_sizes(s
, -1);
4017 SLAB_ATTR(store_user
);
4019 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4024 static ssize_t
validate_store(struct kmem_cache
*s
,
4025 const char *buf
, size_t length
)
4029 if (buf
[0] == '1') {
4030 ret
= validate_slab_cache(s
);
4036 SLAB_ATTR(validate
);
4038 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4043 static ssize_t
shrink_store(struct kmem_cache
*s
,
4044 const char *buf
, size_t length
)
4046 if (buf
[0] == '1') {
4047 int rc
= kmem_cache_shrink(s
);
4057 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4059 if (!(s
->flags
& SLAB_STORE_USER
))
4061 return list_locations(s
, buf
, TRACK_ALLOC
);
4063 SLAB_ATTR_RO(alloc_calls
);
4065 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4067 if (!(s
->flags
& SLAB_STORE_USER
))
4069 return list_locations(s
, buf
, TRACK_FREE
);
4071 SLAB_ATTR_RO(free_calls
);
4074 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4076 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4079 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4080 const char *buf
, size_t length
)
4082 unsigned long ratio
;
4085 err
= strict_strtoul(buf
, 10, &ratio
);
4090 s
->remote_node_defrag_ratio
= ratio
* 10;
4094 SLAB_ATTR(remote_node_defrag_ratio
);
4097 #ifdef CONFIG_SLUB_STATS
4098 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4100 unsigned long sum
= 0;
4103 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4108 for_each_online_cpu(cpu
) {
4109 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4115 len
= sprintf(buf
, "%lu", sum
);
4118 for_each_online_cpu(cpu
) {
4119 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4120 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4124 return len
+ sprintf(buf
+ len
, "\n");
4127 #define STAT_ATTR(si, text) \
4128 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4130 return show_stat(s, buf, si); \
4132 SLAB_ATTR_RO(text); \
4134 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4135 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4136 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4137 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4138 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4139 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4140 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4141 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4142 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4143 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4144 STAT_ATTR(FREE_SLAB
, free_slab
);
4145 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4146 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4147 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4148 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4149 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4150 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4151 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4154 static struct attribute
*slab_attrs
[] = {
4155 &slab_size_attr
.attr
,
4156 &object_size_attr
.attr
,
4157 &objs_per_slab_attr
.attr
,
4160 &objects_partial_attr
.attr
,
4161 &total_objects_attr
.attr
,
4164 &cpu_slabs_attr
.attr
,
4168 &sanity_checks_attr
.attr
,
4170 &hwcache_align_attr
.attr
,
4171 &reclaim_account_attr
.attr
,
4172 &destroy_by_rcu_attr
.attr
,
4173 &red_zone_attr
.attr
,
4175 &store_user_attr
.attr
,
4176 &validate_attr
.attr
,
4178 &alloc_calls_attr
.attr
,
4179 &free_calls_attr
.attr
,
4180 #ifdef CONFIG_ZONE_DMA
4181 &cache_dma_attr
.attr
,
4184 &remote_node_defrag_ratio_attr
.attr
,
4186 #ifdef CONFIG_SLUB_STATS
4187 &alloc_fastpath_attr
.attr
,
4188 &alloc_slowpath_attr
.attr
,
4189 &free_fastpath_attr
.attr
,
4190 &free_slowpath_attr
.attr
,
4191 &free_frozen_attr
.attr
,
4192 &free_add_partial_attr
.attr
,
4193 &free_remove_partial_attr
.attr
,
4194 &alloc_from_partial_attr
.attr
,
4195 &alloc_slab_attr
.attr
,
4196 &alloc_refill_attr
.attr
,
4197 &free_slab_attr
.attr
,
4198 &cpuslab_flush_attr
.attr
,
4199 &deactivate_full_attr
.attr
,
4200 &deactivate_empty_attr
.attr
,
4201 &deactivate_to_head_attr
.attr
,
4202 &deactivate_to_tail_attr
.attr
,
4203 &deactivate_remote_frees_attr
.attr
,
4204 &order_fallback_attr
.attr
,
4209 static struct attribute_group slab_attr_group
= {
4210 .attrs
= slab_attrs
,
4213 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4214 struct attribute
*attr
,
4217 struct slab_attribute
*attribute
;
4218 struct kmem_cache
*s
;
4221 attribute
= to_slab_attr(attr
);
4224 if (!attribute
->show
)
4227 err
= attribute
->show(s
, buf
);
4232 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4233 struct attribute
*attr
,
4234 const char *buf
, size_t len
)
4236 struct slab_attribute
*attribute
;
4237 struct kmem_cache
*s
;
4240 attribute
= to_slab_attr(attr
);
4243 if (!attribute
->store
)
4246 err
= attribute
->store(s
, buf
, len
);
4251 static void kmem_cache_release(struct kobject
*kobj
)
4253 struct kmem_cache
*s
= to_slab(kobj
);
4258 static struct sysfs_ops slab_sysfs_ops
= {
4259 .show
= slab_attr_show
,
4260 .store
= slab_attr_store
,
4263 static struct kobj_type slab_ktype
= {
4264 .sysfs_ops
= &slab_sysfs_ops
,
4265 .release
= kmem_cache_release
4268 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4270 struct kobj_type
*ktype
= get_ktype(kobj
);
4272 if (ktype
== &slab_ktype
)
4277 static struct kset_uevent_ops slab_uevent_ops
= {
4278 .filter
= uevent_filter
,
4281 static struct kset
*slab_kset
;
4283 #define ID_STR_LENGTH 64
4285 /* Create a unique string id for a slab cache:
4287 * Format :[flags-]size
4289 static char *create_unique_id(struct kmem_cache
*s
)
4291 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4298 * First flags affecting slabcache operations. We will only
4299 * get here for aliasable slabs so we do not need to support
4300 * too many flags. The flags here must cover all flags that
4301 * are matched during merging to guarantee that the id is
4304 if (s
->flags
& SLAB_CACHE_DMA
)
4306 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4308 if (s
->flags
& SLAB_DEBUG_FREE
)
4312 p
+= sprintf(p
, "%07d", s
->size
);
4313 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4317 static int sysfs_slab_add(struct kmem_cache
*s
)
4323 if (slab_state
< SYSFS
)
4324 /* Defer until later */
4327 unmergeable
= slab_unmergeable(s
);
4330 * Slabcache can never be merged so we can use the name proper.
4331 * This is typically the case for debug situations. In that
4332 * case we can catch duplicate names easily.
4334 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4338 * Create a unique name for the slab as a target
4341 name
= create_unique_id(s
);
4344 s
->kobj
.kset
= slab_kset
;
4345 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4347 kobject_put(&s
->kobj
);
4351 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4354 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4356 /* Setup first alias */
4357 sysfs_slab_alias(s
, s
->name
);
4363 static void sysfs_slab_remove(struct kmem_cache
*s
)
4365 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4366 kobject_del(&s
->kobj
);
4367 kobject_put(&s
->kobj
);
4371 * Need to buffer aliases during bootup until sysfs becomes
4372 * available lest we loose that information.
4374 struct saved_alias
{
4375 struct kmem_cache
*s
;
4377 struct saved_alias
*next
;
4380 static struct saved_alias
*alias_list
;
4382 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4384 struct saved_alias
*al
;
4386 if (slab_state
== SYSFS
) {
4388 * If we have a leftover link then remove it.
4390 sysfs_remove_link(&slab_kset
->kobj
, name
);
4391 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4394 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4400 al
->next
= alias_list
;
4405 static int __init
slab_sysfs_init(void)
4407 struct kmem_cache
*s
;
4410 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4412 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4418 list_for_each_entry(s
, &slab_caches
, list
) {
4419 err
= sysfs_slab_add(s
);
4421 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4422 " to sysfs\n", s
->name
);
4425 while (alias_list
) {
4426 struct saved_alias
*al
= alias_list
;
4428 alias_list
= alias_list
->next
;
4429 err
= sysfs_slab_alias(al
->s
, al
->name
);
4431 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4432 " %s to sysfs\n", s
->name
);
4440 __initcall(slab_sysfs_init
);
4444 * The /proc/slabinfo ABI
4446 #ifdef CONFIG_SLABINFO
4448 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4449 size_t count
, loff_t
*ppos
)
4455 static void print_slabinfo_header(struct seq_file
*m
)
4457 seq_puts(m
, "slabinfo - version: 2.1\n");
4458 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4459 "<objperslab> <pagesperslab>");
4460 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4461 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4465 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4469 down_read(&slub_lock
);
4471 print_slabinfo_header(m
);
4473 return seq_list_start(&slab_caches
, *pos
);
4476 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4478 return seq_list_next(p
, &slab_caches
, pos
);
4481 static void s_stop(struct seq_file
*m
, void *p
)
4483 up_read(&slub_lock
);
4486 static int s_show(struct seq_file
*m
, void *p
)
4488 unsigned long nr_partials
= 0;
4489 unsigned long nr_slabs
= 0;
4490 unsigned long nr_inuse
= 0;
4491 unsigned long nr_objs
= 0;
4492 unsigned long nr_free
= 0;
4493 struct kmem_cache
*s
;
4496 s
= list_entry(p
, struct kmem_cache
, list
);
4498 for_each_online_node(node
) {
4499 struct kmem_cache_node
*n
= get_node(s
, node
);
4504 nr_partials
+= n
->nr_partial
;
4505 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4506 nr_objs
+= atomic_long_read(&n
->total_objects
);
4507 nr_free
+= count_partial(n
, count_free
);
4510 nr_inuse
= nr_objs
- nr_free
;
4512 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4513 nr_objs
, s
->size
, oo_objects(s
->oo
),
4514 (1 << oo_order(s
->oo
)));
4515 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4516 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4522 const struct seq_operations slabinfo_op
= {
4529 #endif /* CONFIG_SLABINFO */