[PATCH] hrtimer: switch clock_nanosleep to hrtimer nanosleep API
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / posix-timers.c
blobba900587b815b01592ecb8a9c5e4539222666a5a
1 /*
2 * linux/kernel/posix_timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/slab.h>
37 #include <linux/time.h>
38 #include <linux/calc64.h>
40 #include <asm/uaccess.h>
41 #include <asm/semaphore.h>
42 #include <linux/list.h>
43 #include <linux/init.h>
44 #include <linux/compiler.h>
45 #include <linux/idr.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/module.h>
52 #define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */
54 static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2)
56 return (u64)mpy1 * mpy2;
59 * Management arrays for POSIX timers. Timers are kept in slab memory
60 * Timer ids are allocated by an external routine that keeps track of the
61 * id and the timer. The external interface is:
63 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
64 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
65 * related it to <ptr>
66 * void idr_remove(struct idr *idp, int id); to release <id>
67 * void idr_init(struct idr *idp); to initialize <idp>
68 * which we supply.
69 * The idr_get_new *may* call slab for more memory so it must not be
70 * called under a spin lock. Likewise idr_remore may release memory
71 * (but it may be ok to do this under a lock...).
72 * idr_find is just a memory look up and is quite fast. A -1 return
73 * indicates that the requested id does not exist.
77 * Lets keep our timers in a slab cache :-)
79 static kmem_cache_t *posix_timers_cache;
80 static struct idr posix_timers_id;
81 static DEFINE_SPINLOCK(idr_lock);
84 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
85 * SIGEV values. Here we put out an error if this assumption fails.
87 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
88 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
89 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
90 #endif
94 * The timer ID is turned into a timer address by idr_find().
95 * Verifying a valid ID consists of:
97 * a) checking that idr_find() returns other than -1.
98 * b) checking that the timer id matches the one in the timer itself.
99 * c) that the timer owner is in the callers thread group.
103 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
104 * to implement others. This structure defines the various
105 * clocks and allows the possibility of adding others. We
106 * provide an interface to add clocks to the table and expect
107 * the "arch" code to add at least one clock that is high
108 * resolution. Here we define the standard CLOCK_REALTIME as a
109 * 1/HZ resolution clock.
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
119 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
120 * various clock functions. For clocks that use the standard
121 * system timer code these entries should be NULL. This will
122 * allow dispatch without the overhead of indirect function
123 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
124 * must supply functions here, even if the function just returns
125 * ENOSYS. The standard POSIX timer management code assumes the
126 * following: 1.) The k_itimer struct (sched.h) is used for the
127 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
128 * fields are not modified by timer code.
130 * At this time all functions EXCEPT clock_nanosleep can be
131 * redirected by the CLOCKS structure. Clock_nanosleep is in
132 * there, but the code ignores it.
134 * Permissions: It is assumed that the clock_settime() function defined
135 * for each clock will take care of permission checks. Some
136 * clocks may be set able by any user (i.e. local process
137 * clocks) others not. Currently the only set able clock we
138 * have is CLOCK_REALTIME and its high res counter part, both of
139 * which we beg off on and pass to do_sys_settimeofday().
142 static struct k_clock posix_clocks[MAX_CLOCKS];
144 * We only have one real clock that can be set so we need only one abs list,
145 * even if we should want to have several clocks with differing resolutions.
147 static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list),
148 .lock = SPIN_LOCK_UNLOCKED};
150 static void posix_timer_fn(unsigned long);
151 static u64 do_posix_clock_monotonic_gettime_parts(
152 struct timespec *tp, struct timespec *mo);
153 int do_posix_clock_monotonic_gettime(struct timespec *tp);
154 static int do_posix_clock_monotonic_get(const clockid_t, struct timespec *tp);
156 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
158 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
160 spin_unlock_irqrestore(&timr->it_lock, flags);
164 * Call the k_clock hook function if non-null, or the default function.
166 #define CLOCK_DISPATCH(clock, call, arglist) \
167 ((clock) < 0 ? posix_cpu_##call arglist : \
168 (posix_clocks[clock].call != NULL \
169 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
172 * Default clock hook functions when the struct k_clock passed
173 * to register_posix_clock leaves a function pointer null.
175 * The function common_CALL is the default implementation for
176 * the function pointer CALL in struct k_clock.
179 static inline int common_clock_getres(const clockid_t which_clock,
180 struct timespec *tp)
182 tp->tv_sec = 0;
183 tp->tv_nsec = posix_clocks[which_clock].res;
184 return 0;
187 static inline int common_clock_get(const clockid_t which_clock,
188 struct timespec *tp)
190 getnstimeofday(tp);
191 return 0;
194 static inline int common_clock_set(const clockid_t which_clock,
195 struct timespec *tp)
197 return do_sys_settimeofday(tp, NULL);
200 static inline int common_timer_create(struct k_itimer *new_timer)
202 INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry);
203 init_timer(&new_timer->it.real.timer);
204 new_timer->it.real.timer.data = (unsigned long) new_timer;
205 new_timer->it.real.timer.function = posix_timer_fn;
206 return 0;
210 * These ones are defined below.
212 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
213 struct timespec __user *rmtp);
214 static void common_timer_get(struct k_itimer *, struct itimerspec *);
215 static int common_timer_set(struct k_itimer *, int,
216 struct itimerspec *, struct itimerspec *);
217 static int common_timer_del(struct k_itimer *timer);
220 * Return nonzero iff we know a priori this clockid_t value is bogus.
222 static inline int invalid_clockid(const clockid_t which_clock)
224 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
225 return 0;
226 if ((unsigned) which_clock >= MAX_CLOCKS)
227 return 1;
228 if (posix_clocks[which_clock].clock_getres != NULL)
229 return 0;
230 #ifndef CLOCK_DISPATCH_DIRECT
231 if (posix_clocks[which_clock].res != 0)
232 return 0;
233 #endif
234 return 1;
239 * Initialize everything, well, just everything in Posix clocks/timers ;)
241 static __init int init_posix_timers(void)
243 struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES,
244 .abs_struct = &abs_list
246 struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES,
247 .abs_struct = NULL,
248 .clock_get = do_posix_clock_monotonic_get,
249 .clock_set = do_posix_clock_nosettime
252 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
253 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
255 posix_timers_cache = kmem_cache_create("posix_timers_cache",
256 sizeof (struct k_itimer), 0, 0, NULL, NULL);
257 idr_init(&posix_timers_id);
258 return 0;
261 __initcall(init_posix_timers);
263 static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
265 long sec = tp->tv_sec;
266 long nsec = tp->tv_nsec + res - 1;
268 if (nsec >= NSEC_PER_SEC) {
269 sec++;
270 nsec -= NSEC_PER_SEC;
274 * The scaling constants are defined in <linux/time.h>
275 * The difference between there and here is that we do the
276 * res rounding and compute a 64-bit result (well so does that
277 * but it then throws away the high bits).
279 *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) +
280 (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >>
281 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
285 * This function adjusts the timer as needed as a result of the clock
286 * being set. It should only be called for absolute timers, and then
287 * under the abs_list lock. It computes the time difference and sets
288 * the new jiffies value in the timer. It also updates the timers
289 * reference wall_to_monotonic value. It is complicated by the fact
290 * that tstojiffies() only handles positive times and it needs to work
291 * with both positive and negative times. Also, for negative offsets,
292 * we need to defeat the res round up.
294 * Return is true if there is a new time, else false.
296 static long add_clockset_delta(struct k_itimer *timr,
297 struct timespec *new_wall_to)
299 struct timespec delta;
300 int sign = 0;
301 u64 exp;
303 set_normalized_timespec(&delta,
304 new_wall_to->tv_sec -
305 timr->it.real.wall_to_prev.tv_sec,
306 new_wall_to->tv_nsec -
307 timr->it.real.wall_to_prev.tv_nsec);
308 if (likely(!(delta.tv_sec | delta.tv_nsec)))
309 return 0;
310 if (delta.tv_sec < 0) {
311 set_normalized_timespec(&delta,
312 -delta.tv_sec,
313 1 - delta.tv_nsec -
314 posix_clocks[timr->it_clock].res);
315 sign++;
317 tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp);
318 timr->it.real.wall_to_prev = *new_wall_to;
319 timr->it.real.timer.expires += (sign ? -exp : exp);
320 return 1;
323 static void remove_from_abslist(struct k_itimer *timr)
325 if (!list_empty(&timr->it.real.abs_timer_entry)) {
326 spin_lock(&abs_list.lock);
327 list_del_init(&timr->it.real.abs_timer_entry);
328 spin_unlock(&abs_list.lock);
332 static void schedule_next_timer(struct k_itimer *timr)
334 struct timespec new_wall_to;
335 struct now_struct now;
336 unsigned long seq;
339 * Set up the timer for the next interval (if there is one).
340 * Note: this code uses the abs_timer_lock to protect
341 * it.real.wall_to_prev and must hold it until exp is set, not exactly
342 * obvious...
344 * This function is used for CLOCK_REALTIME* and
345 * CLOCK_MONOTONIC* timers. If we ever want to handle other
346 * CLOCKs, the calling code (do_schedule_next_timer) would need
347 * to pull the "clock" info from the timer and dispatch the
348 * "other" CLOCKs "next timer" code (which, I suppose should
349 * also be added to the k_clock structure).
351 if (!timr->it.real.incr)
352 return;
354 do {
355 seq = read_seqbegin(&xtime_lock);
356 new_wall_to = wall_to_monotonic;
357 posix_get_now(&now);
358 } while (read_seqretry(&xtime_lock, seq));
360 if (!list_empty(&timr->it.real.abs_timer_entry)) {
361 spin_lock(&abs_list.lock);
362 add_clockset_delta(timr, &new_wall_to);
364 posix_bump_timer(timr, now);
366 spin_unlock(&abs_list.lock);
367 } else {
368 posix_bump_timer(timr, now);
370 timr->it_overrun_last = timr->it_overrun;
371 timr->it_overrun = -1;
372 ++timr->it_requeue_pending;
373 add_timer(&timr->it.real.timer);
377 * This function is exported for use by the signal deliver code. It is
378 * called just prior to the info block being released and passes that
379 * block to us. It's function is to update the overrun entry AND to
380 * restart the timer. It should only be called if the timer is to be
381 * restarted (i.e. we have flagged this in the sys_private entry of the
382 * info block).
384 * To protect aginst the timer going away while the interrupt is queued,
385 * we require that the it_requeue_pending flag be set.
387 void do_schedule_next_timer(struct siginfo *info)
389 struct k_itimer *timr;
390 unsigned long flags;
392 timr = lock_timer(info->si_tid, &flags);
394 if (!timr || timr->it_requeue_pending != info->si_sys_private)
395 goto exit;
397 if (timr->it_clock < 0) /* CPU clock */
398 posix_cpu_timer_schedule(timr);
399 else
400 schedule_next_timer(timr);
401 info->si_overrun = timr->it_overrun_last;
402 exit:
403 if (timr)
404 unlock_timer(timr, flags);
407 int posix_timer_event(struct k_itimer *timr,int si_private)
409 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
410 timr->sigq->info.si_sys_private = si_private;
412 * Send signal to the process that owns this timer.
414 * This code assumes that all the possible abs_lists share the
415 * same lock (there is only one list at this time). If this is
416 * not the case, the CLOCK info would need to be used to find
417 * the proper abs list lock.
420 timr->sigq->info.si_signo = timr->it_sigev_signo;
421 timr->sigq->info.si_errno = 0;
422 timr->sigq->info.si_code = SI_TIMER;
423 timr->sigq->info.si_tid = timr->it_id;
424 timr->sigq->info.si_value = timr->it_sigev_value;
426 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
427 struct task_struct *leader;
428 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
429 timr->it_process);
431 if (likely(ret >= 0))
432 return ret;
434 timr->it_sigev_notify = SIGEV_SIGNAL;
435 leader = timr->it_process->group_leader;
436 put_task_struct(timr->it_process);
437 timr->it_process = leader;
440 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
441 timr->it_process);
443 EXPORT_SYMBOL_GPL(posix_timer_event);
446 * This function gets called when a POSIX.1b interval timer expires. It
447 * is used as a callback from the kernel internal timer. The
448 * run_timer_list code ALWAYS calls with interrupts on.
450 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
452 static void posix_timer_fn(unsigned long __data)
454 struct k_itimer *timr = (struct k_itimer *) __data;
455 unsigned long flags;
456 unsigned long seq;
457 struct timespec delta, new_wall_to;
458 u64 exp = 0;
459 int do_notify = 1;
461 spin_lock_irqsave(&timr->it_lock, flags);
462 if (!list_empty(&timr->it.real.abs_timer_entry)) {
463 spin_lock(&abs_list.lock);
464 do {
465 seq = read_seqbegin(&xtime_lock);
466 new_wall_to = wall_to_monotonic;
467 } while (read_seqretry(&xtime_lock, seq));
468 set_normalized_timespec(&delta,
469 new_wall_to.tv_sec -
470 timr->it.real.wall_to_prev.tv_sec,
471 new_wall_to.tv_nsec -
472 timr->it.real.wall_to_prev.tv_nsec);
473 if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) {
474 /* do nothing, timer is on time */
475 } else if (delta.tv_sec < 0) {
476 /* do nothing, timer is already late */
477 } else {
478 /* timer is early due to a clock set */
479 tstojiffie(&delta,
480 posix_clocks[timr->it_clock].res,
481 &exp);
482 timr->it.real.wall_to_prev = new_wall_to;
483 timr->it.real.timer.expires += exp;
484 add_timer(&timr->it.real.timer);
485 do_notify = 0;
487 spin_unlock(&abs_list.lock);
490 if (do_notify) {
491 int si_private=0;
493 if (timr->it.real.incr)
494 si_private = ++timr->it_requeue_pending;
495 else {
496 remove_from_abslist(timr);
499 if (posix_timer_event(timr, si_private))
501 * signal was not sent because of sig_ignor
502 * we will not get a call back to restart it AND
503 * it should be restarted.
505 schedule_next_timer(timr);
507 unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */
511 static inline struct task_struct * good_sigevent(sigevent_t * event)
513 struct task_struct *rtn = current->group_leader;
515 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
516 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
517 rtn->tgid != current->tgid ||
518 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
519 return NULL;
521 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
522 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
523 return NULL;
525 return rtn;
528 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
530 if ((unsigned) clock_id >= MAX_CLOCKS) {
531 printk("POSIX clock register failed for clock_id %d\n",
532 clock_id);
533 return;
536 posix_clocks[clock_id] = *new_clock;
538 EXPORT_SYMBOL_GPL(register_posix_clock);
540 static struct k_itimer * alloc_posix_timer(void)
542 struct k_itimer *tmr;
543 tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
544 if (!tmr)
545 return tmr;
546 memset(tmr, 0, sizeof (struct k_itimer));
547 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
548 kmem_cache_free(posix_timers_cache, tmr);
549 tmr = NULL;
551 return tmr;
554 #define IT_ID_SET 1
555 #define IT_ID_NOT_SET 0
556 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
558 if (it_id_set) {
559 unsigned long flags;
560 spin_lock_irqsave(&idr_lock, flags);
561 idr_remove(&posix_timers_id, tmr->it_id);
562 spin_unlock_irqrestore(&idr_lock, flags);
564 sigqueue_free(tmr->sigq);
565 if (unlikely(tmr->it_process) &&
566 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
567 put_task_struct(tmr->it_process);
568 kmem_cache_free(posix_timers_cache, tmr);
571 /* Create a POSIX.1b interval timer. */
573 asmlinkage long
574 sys_timer_create(const clockid_t which_clock,
575 struct sigevent __user *timer_event_spec,
576 timer_t __user * created_timer_id)
578 int error = 0;
579 struct k_itimer *new_timer = NULL;
580 int new_timer_id;
581 struct task_struct *process = NULL;
582 unsigned long flags;
583 sigevent_t event;
584 int it_id_set = IT_ID_NOT_SET;
586 if (invalid_clockid(which_clock))
587 return -EINVAL;
589 new_timer = alloc_posix_timer();
590 if (unlikely(!new_timer))
591 return -EAGAIN;
593 spin_lock_init(&new_timer->it_lock);
594 retry:
595 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
596 error = -EAGAIN;
597 goto out;
599 spin_lock_irq(&idr_lock);
600 error = idr_get_new(&posix_timers_id,
601 (void *) new_timer,
602 &new_timer_id);
603 spin_unlock_irq(&idr_lock);
604 if (error == -EAGAIN)
605 goto retry;
606 else if (error) {
608 * Wierd looking, but we return EAGAIN if the IDR is
609 * full (proper POSIX return value for this)
611 error = -EAGAIN;
612 goto out;
615 it_id_set = IT_ID_SET;
616 new_timer->it_id = (timer_t) new_timer_id;
617 new_timer->it_clock = which_clock;
618 new_timer->it_overrun = -1;
619 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
620 if (error)
621 goto out;
624 * return the timer_id now. The next step is hard to
625 * back out if there is an error.
627 if (copy_to_user(created_timer_id,
628 &new_timer_id, sizeof (new_timer_id))) {
629 error = -EFAULT;
630 goto out;
632 if (timer_event_spec) {
633 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
634 error = -EFAULT;
635 goto out;
637 new_timer->it_sigev_notify = event.sigev_notify;
638 new_timer->it_sigev_signo = event.sigev_signo;
639 new_timer->it_sigev_value = event.sigev_value;
641 read_lock(&tasklist_lock);
642 if ((process = good_sigevent(&event))) {
644 * We may be setting up this process for another
645 * thread. It may be exiting. To catch this
646 * case the we check the PF_EXITING flag. If
647 * the flag is not set, the siglock will catch
648 * him before it is too late (in exit_itimers).
650 * The exec case is a bit more invloved but easy
651 * to code. If the process is in our thread
652 * group (and it must be or we would not allow
653 * it here) and is doing an exec, it will cause
654 * us to be killed. In this case it will wait
655 * for us to die which means we can finish this
656 * linkage with our last gasp. I.e. no code :)
658 spin_lock_irqsave(&process->sighand->siglock, flags);
659 if (!(process->flags & PF_EXITING)) {
660 new_timer->it_process = process;
661 list_add(&new_timer->list,
662 &process->signal->posix_timers);
663 spin_unlock_irqrestore(&process->sighand->siglock, flags);
664 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
665 get_task_struct(process);
666 } else {
667 spin_unlock_irqrestore(&process->sighand->siglock, flags);
668 process = NULL;
671 read_unlock(&tasklist_lock);
672 if (!process) {
673 error = -EINVAL;
674 goto out;
676 } else {
677 new_timer->it_sigev_notify = SIGEV_SIGNAL;
678 new_timer->it_sigev_signo = SIGALRM;
679 new_timer->it_sigev_value.sival_int = new_timer->it_id;
680 process = current->group_leader;
681 spin_lock_irqsave(&process->sighand->siglock, flags);
682 new_timer->it_process = process;
683 list_add(&new_timer->list, &process->signal->posix_timers);
684 spin_unlock_irqrestore(&process->sighand->siglock, flags);
688 * In the case of the timer belonging to another task, after
689 * the task is unlocked, the timer is owned by the other task
690 * and may cease to exist at any time. Don't use or modify
691 * new_timer after the unlock call.
694 out:
695 if (error)
696 release_posix_timer(new_timer, it_id_set);
698 return error;
702 * good_timespec
704 * This function checks the elements of a timespec structure.
706 * Arguments:
707 * ts : Pointer to the timespec structure to check
709 * Return value:
710 * If a NULL pointer was passed in, or the tv_nsec field was less than 0
711 * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
712 * this function returns 0. Otherwise it returns 1.
714 static int good_timespec(const struct timespec *ts)
716 if ((!ts) || !timespec_valid(ts))
717 return 0;
718 return 1;
722 * Locking issues: We need to protect the result of the id look up until
723 * we get the timer locked down so it is not deleted under us. The
724 * removal is done under the idr spinlock so we use that here to bridge
725 * the find to the timer lock. To avoid a dead lock, the timer id MUST
726 * be release with out holding the timer lock.
728 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
730 struct k_itimer *timr;
732 * Watch out here. We do a irqsave on the idr_lock and pass the
733 * flags part over to the timer lock. Must not let interrupts in
734 * while we are moving the lock.
737 spin_lock_irqsave(&idr_lock, *flags);
738 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
739 if (timr) {
740 spin_lock(&timr->it_lock);
741 spin_unlock(&idr_lock);
743 if ((timr->it_id != timer_id) || !(timr->it_process) ||
744 timr->it_process->tgid != current->tgid) {
745 unlock_timer(timr, *flags);
746 timr = NULL;
748 } else
749 spin_unlock_irqrestore(&idr_lock, *flags);
751 return timr;
755 * Get the time remaining on a POSIX.1b interval timer. This function
756 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
757 * mess with irq.
759 * We have a couple of messes to clean up here. First there is the case
760 * of a timer that has a requeue pending. These timers should appear to
761 * be in the timer list with an expiry as if we were to requeue them
762 * now.
764 * The second issue is the SIGEV_NONE timer which may be active but is
765 * not really ever put in the timer list (to save system resources).
766 * This timer may be expired, and if so, we will do it here. Otherwise
767 * it is the same as a requeue pending timer WRT to what we should
768 * report.
770 static void
771 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
773 unsigned long expires;
774 struct now_struct now;
777 expires = timr->it.real.timer.expires;
778 while ((volatile long) (timr->it.real.timer.expires) != expires);
780 posix_get_now(&now);
782 if (expires &&
783 ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) &&
784 !timr->it.real.incr &&
785 posix_time_before(&timr->it.real.timer, &now))
786 timr->it.real.timer.expires = expires = 0;
787 if (expires) {
788 if (timr->it_requeue_pending & REQUEUE_PENDING ||
789 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
790 posix_bump_timer(timr, now);
791 expires = timr->it.real.timer.expires;
793 else
794 if (!timer_pending(&timr->it.real.timer))
795 expires = 0;
796 if (expires)
797 expires -= now.jiffies;
799 jiffies_to_timespec(expires, &cur_setting->it_value);
800 jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval);
802 if (cur_setting->it_value.tv_sec < 0) {
803 cur_setting->it_value.tv_nsec = 1;
804 cur_setting->it_value.tv_sec = 0;
808 /* Get the time remaining on a POSIX.1b interval timer. */
809 asmlinkage long
810 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
812 struct k_itimer *timr;
813 struct itimerspec cur_setting;
814 unsigned long flags;
816 timr = lock_timer(timer_id, &flags);
817 if (!timr)
818 return -EINVAL;
820 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
822 unlock_timer(timr, flags);
824 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
825 return -EFAULT;
827 return 0;
830 * Get the number of overruns of a POSIX.1b interval timer. This is to
831 * be the overrun of the timer last delivered. At the same time we are
832 * accumulating overruns on the next timer. The overrun is frozen when
833 * the signal is delivered, either at the notify time (if the info block
834 * is not queued) or at the actual delivery time (as we are informed by
835 * the call back to do_schedule_next_timer(). So all we need to do is
836 * to pick up the frozen overrun.
839 asmlinkage long
840 sys_timer_getoverrun(timer_t timer_id)
842 struct k_itimer *timr;
843 int overrun;
844 long flags;
846 timr = lock_timer(timer_id, &flags);
847 if (!timr)
848 return -EINVAL;
850 overrun = timr->it_overrun_last;
851 unlock_timer(timr, flags);
853 return overrun;
856 * Adjust for absolute time
858 * If absolute time is given and it is not CLOCK_MONOTONIC, we need to
859 * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
860 * what ever clock he is using.
862 * If it is relative time, we need to add the current (CLOCK_MONOTONIC)
863 * time to it to get the proper time for the timer.
865 static int adjust_abs_time(struct k_clock *clock, struct timespec *tp,
866 int abs, u64 *exp, struct timespec *wall_to)
868 struct timespec now;
869 struct timespec oc = *tp;
870 u64 jiffies_64_f;
871 int rtn =0;
873 if (abs) {
875 * The mask pick up the 4 basic clocks
877 if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) {
878 jiffies_64_f = do_posix_clock_monotonic_gettime_parts(
879 &now, wall_to);
881 * If we are doing a MONOTONIC clock
883 if((clock - &posix_clocks[0]) & CLOCKS_MONO){
884 now.tv_sec += wall_to->tv_sec;
885 now.tv_nsec += wall_to->tv_nsec;
887 } else {
889 * Not one of the basic clocks
891 clock->clock_get(clock - posix_clocks, &now);
892 jiffies_64_f = get_jiffies_64();
895 * Take away now to get delta and normalize
897 set_normalized_timespec(&oc, oc.tv_sec - now.tv_sec,
898 oc.tv_nsec - now.tv_nsec);
899 }else{
900 jiffies_64_f = get_jiffies_64();
903 * Check if the requested time is prior to now (if so set now)
905 if (oc.tv_sec < 0)
906 oc.tv_sec = oc.tv_nsec = 0;
908 if (oc.tv_sec | oc.tv_nsec)
909 set_normalized_timespec(&oc, oc.tv_sec,
910 oc.tv_nsec + clock->res);
911 tstojiffie(&oc, clock->res, exp);
914 * Check if the requested time is more than the timer code
915 * can handle (if so we error out but return the value too).
917 if (*exp > ((u64)MAX_JIFFY_OFFSET))
919 * This is a considered response, not exactly in
920 * line with the standard (in fact it is silent on
921 * possible overflows). We assume such a large
922 * value is ALMOST always a programming error and
923 * try not to compound it by setting a really dumb
924 * value.
926 rtn = -EINVAL;
928 * return the actual jiffies expire time, full 64 bits
930 *exp += jiffies_64_f;
931 return rtn;
934 /* Set a POSIX.1b interval timer. */
935 /* timr->it_lock is taken. */
936 static inline int
937 common_timer_set(struct k_itimer *timr, int flags,
938 struct itimerspec *new_setting, struct itimerspec *old_setting)
940 struct k_clock *clock = &posix_clocks[timr->it_clock];
941 u64 expire_64;
943 if (old_setting)
944 common_timer_get(timr, old_setting);
946 /* disable the timer */
947 timr->it.real.incr = 0;
949 * careful here. If smp we could be in the "fire" routine which will
950 * be spinning as we hold the lock. But this is ONLY an SMP issue.
952 if (try_to_del_timer_sync(&timr->it.real.timer) < 0) {
953 #ifdef CONFIG_SMP
955 * It can only be active if on an other cpu. Since
956 * we have cleared the interval stuff above, it should
957 * clear once we release the spin lock. Of course once
958 * we do that anything could happen, including the
959 * complete melt down of the timer. So return with
960 * a "retry" exit status.
962 return TIMER_RETRY;
963 #endif
966 remove_from_abslist(timr);
968 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
969 ~REQUEUE_PENDING;
970 timr->it_overrun_last = 0;
971 timr->it_overrun = -1;
973 *switch off the timer when it_value is zero
975 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) {
976 timr->it.real.timer.expires = 0;
977 return 0;
980 if (adjust_abs_time(clock,
981 &new_setting->it_value, flags & TIMER_ABSTIME,
982 &expire_64, &(timr->it.real.wall_to_prev))) {
983 return -EINVAL;
985 timr->it.real.timer.expires = (unsigned long)expire_64;
986 tstojiffie(&new_setting->it_interval, clock->res, &expire_64);
987 timr->it.real.incr = (unsigned long)expire_64;
990 * We do not even queue SIGEV_NONE timers! But we do put them
991 * in the abs list so we can do that right.
993 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE))
994 add_timer(&timr->it.real.timer);
996 if (flags & TIMER_ABSTIME && clock->abs_struct) {
997 spin_lock(&clock->abs_struct->lock);
998 list_add_tail(&(timr->it.real.abs_timer_entry),
999 &(clock->abs_struct->list));
1000 spin_unlock(&clock->abs_struct->lock);
1002 return 0;
1005 /* Set a POSIX.1b interval timer */
1006 asmlinkage long
1007 sys_timer_settime(timer_t timer_id, int flags,
1008 const struct itimerspec __user *new_setting,
1009 struct itimerspec __user *old_setting)
1011 struct k_itimer *timr;
1012 struct itimerspec new_spec, old_spec;
1013 int error = 0;
1014 long flag;
1015 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
1017 if (!new_setting)
1018 return -EINVAL;
1020 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
1021 return -EFAULT;
1023 if ((!good_timespec(&new_spec.it_interval)) ||
1024 (!good_timespec(&new_spec.it_value)))
1025 return -EINVAL;
1026 retry:
1027 timr = lock_timer(timer_id, &flag);
1028 if (!timr)
1029 return -EINVAL;
1031 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
1032 (timr, flags, &new_spec, rtn));
1034 unlock_timer(timr, flag);
1035 if (error == TIMER_RETRY) {
1036 rtn = NULL; // We already got the old time...
1037 goto retry;
1040 if (old_setting && !error && copy_to_user(old_setting,
1041 &old_spec, sizeof (old_spec)))
1042 error = -EFAULT;
1044 return error;
1047 static inline int common_timer_del(struct k_itimer *timer)
1049 timer->it.real.incr = 0;
1051 if (try_to_del_timer_sync(&timer->it.real.timer) < 0) {
1052 #ifdef CONFIG_SMP
1054 * It can only be active if on an other cpu. Since
1055 * we have cleared the interval stuff above, it should
1056 * clear once we release the spin lock. Of course once
1057 * we do that anything could happen, including the
1058 * complete melt down of the timer. So return with
1059 * a "retry" exit status.
1061 return TIMER_RETRY;
1062 #endif
1065 remove_from_abslist(timer);
1067 return 0;
1070 static inline int timer_delete_hook(struct k_itimer *timer)
1072 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
1075 /* Delete a POSIX.1b interval timer. */
1076 asmlinkage long
1077 sys_timer_delete(timer_t timer_id)
1079 struct k_itimer *timer;
1080 long flags;
1082 #ifdef CONFIG_SMP
1083 int error;
1084 retry_delete:
1085 #endif
1086 timer = lock_timer(timer_id, &flags);
1087 if (!timer)
1088 return -EINVAL;
1090 #ifdef CONFIG_SMP
1091 error = timer_delete_hook(timer);
1093 if (error == TIMER_RETRY) {
1094 unlock_timer(timer, flags);
1095 goto retry_delete;
1097 #else
1098 timer_delete_hook(timer);
1099 #endif
1100 spin_lock(&current->sighand->siglock);
1101 list_del(&timer->list);
1102 spin_unlock(&current->sighand->siglock);
1104 * This keeps any tasks waiting on the spin lock from thinking
1105 * they got something (see the lock code above).
1107 if (timer->it_process) {
1108 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
1109 put_task_struct(timer->it_process);
1110 timer->it_process = NULL;
1112 unlock_timer(timer, flags);
1113 release_posix_timer(timer, IT_ID_SET);
1114 return 0;
1117 * return timer owned by the process, used by exit_itimers
1119 static inline void itimer_delete(struct k_itimer *timer)
1121 unsigned long flags;
1123 #ifdef CONFIG_SMP
1124 int error;
1125 retry_delete:
1126 #endif
1127 spin_lock_irqsave(&timer->it_lock, flags);
1129 #ifdef CONFIG_SMP
1130 error = timer_delete_hook(timer);
1132 if (error == TIMER_RETRY) {
1133 unlock_timer(timer, flags);
1134 goto retry_delete;
1136 #else
1137 timer_delete_hook(timer);
1138 #endif
1139 list_del(&timer->list);
1141 * This keeps any tasks waiting on the spin lock from thinking
1142 * they got something (see the lock code above).
1144 if (timer->it_process) {
1145 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
1146 put_task_struct(timer->it_process);
1147 timer->it_process = NULL;
1149 unlock_timer(timer, flags);
1150 release_posix_timer(timer, IT_ID_SET);
1154 * This is called by do_exit or de_thread, only when there are no more
1155 * references to the shared signal_struct.
1157 void exit_itimers(struct signal_struct *sig)
1159 struct k_itimer *tmr;
1161 while (!list_empty(&sig->posix_timers)) {
1162 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1163 itimer_delete(tmr);
1168 * And now for the "clock" calls
1170 * These functions are called both from timer functions (with the timer
1171 * spin_lock_irq() held and from clock calls with no locking. They must
1172 * use the save flags versions of locks.
1176 * We do ticks here to avoid the irq lock ( they take sooo long).
1177 * The seqlock is great here. Since we a reader, we don't really care
1178 * if we are interrupted since we don't take lock that will stall us or
1179 * any other cpu. Voila, no irq lock is needed.
1183 static u64 do_posix_clock_monotonic_gettime_parts(
1184 struct timespec *tp, struct timespec *mo)
1186 u64 jiff;
1187 unsigned int seq;
1189 do {
1190 seq = read_seqbegin(&xtime_lock);
1191 getnstimeofday(tp);
1192 *mo = wall_to_monotonic;
1193 jiff = jiffies_64;
1195 } while(read_seqretry(&xtime_lock, seq));
1197 return jiff;
1200 static int do_posix_clock_monotonic_get(const clockid_t clock,
1201 struct timespec *tp)
1203 struct timespec wall_to_mono;
1205 do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono);
1207 set_normalized_timespec(tp, tp->tv_sec + wall_to_mono.tv_sec,
1208 tp->tv_nsec + wall_to_mono.tv_nsec);
1210 return 0;
1213 int do_posix_clock_monotonic_gettime(struct timespec *tp)
1215 return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp);
1218 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
1220 return -EINVAL;
1222 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
1224 int do_posix_clock_notimer_create(struct k_itimer *timer)
1226 return -EINVAL;
1228 EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create);
1230 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
1231 struct timespec *t, struct timespec __user *r)
1233 #ifndef ENOTSUP
1234 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
1235 #else /* parisc does define it separately. */
1236 return -ENOTSUP;
1237 #endif
1239 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
1241 asmlinkage long sys_clock_settime(const clockid_t which_clock,
1242 const struct timespec __user *tp)
1244 struct timespec new_tp;
1246 if (invalid_clockid(which_clock))
1247 return -EINVAL;
1248 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1249 return -EFAULT;
1251 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
1254 asmlinkage long
1255 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
1257 struct timespec kernel_tp;
1258 int error;
1260 if (invalid_clockid(which_clock))
1261 return -EINVAL;
1262 error = CLOCK_DISPATCH(which_clock, clock_get,
1263 (which_clock, &kernel_tp));
1264 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1265 error = -EFAULT;
1267 return error;
1271 asmlinkage long
1272 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
1274 struct timespec rtn_tp;
1275 int error;
1277 if (invalid_clockid(which_clock))
1278 return -EINVAL;
1280 error = CLOCK_DISPATCH(which_clock, clock_getres,
1281 (which_clock, &rtn_tp));
1283 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
1284 error = -EFAULT;
1287 return error;
1291 * The standard says that an absolute nanosleep call MUST wake up at
1292 * the requested time in spite of clock settings. Here is what we do:
1293 * For each nanosleep call that needs it (only absolute and not on
1294 * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
1295 * into the "nanosleep_abs_list". All we need is the task_struct pointer.
1296 * When ever the clock is set we just wake up all those tasks. The rest
1297 * is done by the while loop in clock_nanosleep().
1299 * On locking, clock_was_set() is called from update_wall_clock which
1300 * holds (or has held for it) a write_lock_irq( xtime_lock) and is
1301 * called from the timer bh code. Thus we need the irq save locks.
1303 * Also, on the call from update_wall_clock, that is done as part of a
1304 * softirq thing. We don't want to delay the system that much (possibly
1305 * long list of timers to fix), so we defer that work to keventd.
1308 static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue);
1309 static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL);
1311 static DECLARE_MUTEX(clock_was_set_lock);
1313 void clock_was_set(void)
1315 struct k_itimer *timr;
1316 struct timespec new_wall_to;
1317 LIST_HEAD(cws_list);
1318 unsigned long seq;
1321 if (unlikely(in_interrupt())) {
1322 schedule_work(&clock_was_set_work);
1323 return;
1325 wake_up_all(&nanosleep_abs_wqueue);
1328 * Check if there exist TIMER_ABSTIME timers to correct.
1330 * Notes on locking: This code is run in task context with irq
1331 * on. We CAN be interrupted! All other usage of the abs list
1332 * lock is under the timer lock which holds the irq lock as
1333 * well. We REALLY don't want to scan the whole list with the
1334 * interrupt system off, AND we would like a sequence lock on
1335 * this code as well. Since we assume that the clock will not
1336 * be set often, it seems ok to take and release the irq lock
1337 * for each timer. In fact add_timer will do this, so this is
1338 * not an issue. So we know when we are done, we will move the
1339 * whole list to a new location. Then as we process each entry,
1340 * we will move it to the actual list again. This way, when our
1341 * copy is empty, we are done. We are not all that concerned
1342 * about preemption so we will use a semaphore lock to protect
1343 * aginst reentry. This way we will not stall another
1344 * processor. It is possible that this may delay some timers
1345 * that should have expired, given the new clock, but even this
1346 * will be minimal as we will always update to the current time,
1347 * even if it was set by a task that is waiting for entry to
1348 * this code. Timers that expire too early will be caught by
1349 * the expire code and restarted.
1351 * Absolute timers that repeat are left in the abs list while
1352 * waiting for the task to pick up the signal. This means we
1353 * may find timers that are not in the "add_timer" list, but are
1354 * in the abs list. We do the same thing for these, save
1355 * putting them back in the "add_timer" list. (Note, these are
1356 * left in the abs list mainly to indicate that they are
1357 * ABSOLUTE timers, a fact that is used by the re-arm code, and
1358 * for which we have no other flag.)
1362 down(&clock_was_set_lock);
1363 spin_lock_irq(&abs_list.lock);
1364 list_splice_init(&abs_list.list, &cws_list);
1365 spin_unlock_irq(&abs_list.lock);
1366 do {
1367 do {
1368 seq = read_seqbegin(&xtime_lock);
1369 new_wall_to = wall_to_monotonic;
1370 } while (read_seqretry(&xtime_lock, seq));
1372 spin_lock_irq(&abs_list.lock);
1373 if (list_empty(&cws_list)) {
1374 spin_unlock_irq(&abs_list.lock);
1375 break;
1377 timr = list_entry(cws_list.next, struct k_itimer,
1378 it.real.abs_timer_entry);
1380 list_del_init(&timr->it.real.abs_timer_entry);
1381 if (add_clockset_delta(timr, &new_wall_to) &&
1382 del_timer(&timr->it.real.timer)) /* timer run yet? */
1383 add_timer(&timr->it.real.timer);
1384 list_add(&timr->it.real.abs_timer_entry, &abs_list.list);
1385 spin_unlock_irq(&abs_list.lock);
1386 } while (1);
1388 up(&clock_was_set_lock);
1392 * nanosleep for monotonic and realtime clocks
1394 static int common_nsleep(const clockid_t which_clock, int flags,
1395 struct timespec *tsave, struct timespec __user *rmtp)
1397 int mode = flags & TIMER_ABSTIME ? HRTIMER_ABS : HRTIMER_REL;
1398 int clockid = which_clock;
1400 switch (which_clock) {
1401 case CLOCK_REALTIME:
1402 /* Posix madness. Only absolute timers on clock realtime
1403 are affected by clock set. */
1404 if (mode == HRTIMER_ABS)
1405 clockid = CLOCK_MONOTONIC;
1406 case CLOCK_MONOTONIC:
1407 break;
1408 default:
1409 return -EINVAL;
1411 return hrtimer_nanosleep(tsave, rmtp, mode, clockid);
1414 asmlinkage long
1415 sys_clock_nanosleep(const clockid_t which_clock, int flags,
1416 const struct timespec __user *rqtp,
1417 struct timespec __user *rmtp)
1419 struct timespec t;
1421 if (invalid_clockid(which_clock))
1422 return -EINVAL;
1424 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1425 return -EFAULT;
1427 if (!timespec_valid(&t))
1428 return -EINVAL;
1430 return CLOCK_DISPATCH(which_clock, nsleep,
1431 (which_clock, flags, &t, rmtp));