platform-drivers: x86: fix common misspellings
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blob803ad8be830cf3a0f8508d88c856c53b1c97f9ba
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
20 * tunables
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34 static const int cfq_hist_divisor = 4;
37 * offset from end of service tree
39 #define CFQ_IDLE_DELAY (HZ / 5)
42 * below this threshold, we consider thinktime immediate
44 #define CFQ_MIN_TT (2)
46 #define CFQ_SLICE_SCALE (5)
47 #define CFQ_HW_QUEUE_MIN (5)
48 #define CFQ_SERVICE_SHIFT 12
50 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
51 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
52 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
53 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55 #define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
60 static struct kmem_cache *cfq_pool;
61 static struct kmem_cache *cfq_ioc_pool;
63 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
64 static struct completion *ioc_gone;
65 static DEFINE_SPINLOCK(ioc_gone_lock);
67 static DEFINE_SPINLOCK(cic_index_lock);
68 static DEFINE_IDA(cic_index_ida);
70 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
71 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
72 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74 #define sample_valid(samples) ((samples) > 80)
75 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
78 * Most of our rbtree usage is for sorting with min extraction, so
79 * if we cache the leftmost node we don't have to walk down the tree
80 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
81 * move this into the elevator for the rq sorting as well.
83 struct cfq_rb_root {
84 struct rb_root rb;
85 struct rb_node *left;
86 unsigned count;
87 unsigned total_weight;
88 u64 min_vdisktime;
89 struct rb_node *active;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
95 * Per process-grouping structure
97 struct cfq_queue {
98 /* reference count */
99 atomic_t ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
141 pid_t pid;
143 u32 seek_history;
144 sector_t last_request_pos;
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 struct cfq_group *orig_cfqg;
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
156 enum wl_prio_t {
157 BE_WORKLOAD = 0,
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
163 * Second index in the service_trees.
165 enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
171 /* This is per cgroup per device grouping structure */
172 struct cfq_group {
173 /* group service_tree member */
174 struct rb_node rb_node;
176 /* group service_tree key */
177 u64 vdisktime;
178 unsigned int weight;
179 bool on_st;
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
196 struct blkio_group blkg;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
199 atomic_t ref;
200 #endif
204 * Per block device queue structure
206 struct cfq_data {
207 struct request_queue *queue;
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
210 struct cfq_group root_group;
213 * The priority currently being served
215 enum wl_prio_t serving_prio;
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
218 struct cfq_group *serving_group;
219 bool noidle_tree_requires_idle;
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
226 struct rb_root prio_trees[CFQ_PRIO_LISTS];
228 unsigned int busy_queues;
230 int rq_in_driver;
231 int rq_in_flight[2];
234 * queue-depth detection
236 int rq_queued;
237 int hw_tag;
239 * hw_tag can be
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 * 0 => no NCQ
244 int hw_tag_est_depth;
245 unsigned int hw_tag_samples;
248 * idle window management
250 struct timer_list idle_slice_timer;
251 struct work_struct unplug_work;
253 struct cfq_queue *active_queue;
254 struct cfq_io_context *active_cic;
257 * async queue for each priority case
259 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260 struct cfq_queue *async_idle_cfqq;
262 sector_t last_position;
265 * tunables, see top of file
267 unsigned int cfq_quantum;
268 unsigned int cfq_fifo_expire[2];
269 unsigned int cfq_back_penalty;
270 unsigned int cfq_back_max;
271 unsigned int cfq_slice[2];
272 unsigned int cfq_slice_async_rq;
273 unsigned int cfq_slice_idle;
274 unsigned int cfq_latency;
275 unsigned int cfq_group_isolation;
277 unsigned int cic_index;
278 struct list_head cic_list;
281 * Fallback dummy cfqq for extreme OOM conditions
283 struct cfq_queue oom_cfqq;
285 unsigned long last_delayed_sync;
287 /* List of cfq groups being managed on this device*/
288 struct hlist_head cfqg_list;
289 struct rcu_head rcu;
292 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
294 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
295 enum wl_prio_t prio,
296 enum wl_type_t type)
298 if (!cfqg)
299 return NULL;
301 if (prio == IDLE_WORKLOAD)
302 return &cfqg->service_tree_idle;
304 return &cfqg->service_trees[prio][type];
307 enum cfqq_state_flags {
308 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
309 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
310 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
311 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
312 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
313 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
314 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
315 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
316 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
317 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
318 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
319 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
320 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
323 #define CFQ_CFQQ_FNS(name) \
324 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
326 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
328 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
330 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
332 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
334 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
337 CFQ_CFQQ_FNS(on_rr);
338 CFQ_CFQQ_FNS(wait_request);
339 CFQ_CFQQ_FNS(must_dispatch);
340 CFQ_CFQQ_FNS(must_alloc_slice);
341 CFQ_CFQQ_FNS(fifo_expire);
342 CFQ_CFQQ_FNS(idle_window);
343 CFQ_CFQQ_FNS(prio_changed);
344 CFQ_CFQQ_FNS(slice_new);
345 CFQ_CFQQ_FNS(sync);
346 CFQ_CFQQ_FNS(coop);
347 CFQ_CFQQ_FNS(split_coop);
348 CFQ_CFQQ_FNS(deep);
349 CFQ_CFQQ_FNS(wait_busy);
350 #undef CFQ_CFQQ_FNS
352 #ifdef CONFIG_CFQ_GROUP_IOSCHED
353 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
355 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
356 blkg_path(&(cfqq)->cfqg->blkg), ##args);
358 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
360 blkg_path(&(cfqg)->blkg), ##args); \
362 #else
363 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
365 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
366 #endif
367 #define cfq_log(cfqd, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
370 /* Traverses through cfq group service trees */
371 #define for_each_cfqg_st(cfqg, i, j, st) \
372 for (i = 0; i <= IDLE_WORKLOAD; i++) \
373 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
374 : &cfqg->service_tree_idle; \
375 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
376 (i == IDLE_WORKLOAD && j == 0); \
377 j++, st = i < IDLE_WORKLOAD ? \
378 &cfqg->service_trees[i][j]: NULL) \
381 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
383 if (cfq_class_idle(cfqq))
384 return IDLE_WORKLOAD;
385 if (cfq_class_rt(cfqq))
386 return RT_WORKLOAD;
387 return BE_WORKLOAD;
391 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
393 if (!cfq_cfqq_sync(cfqq))
394 return ASYNC_WORKLOAD;
395 if (!cfq_cfqq_idle_window(cfqq))
396 return SYNC_NOIDLE_WORKLOAD;
397 return SYNC_WORKLOAD;
400 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
401 struct cfq_data *cfqd,
402 struct cfq_group *cfqg)
404 if (wl == IDLE_WORKLOAD)
405 return cfqg->service_tree_idle.count;
407 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
408 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
409 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
412 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
413 struct cfq_group *cfqg)
415 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
416 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
419 static void cfq_dispatch_insert(struct request_queue *, struct request *);
420 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
421 struct io_context *, gfp_t);
422 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
423 struct io_context *);
425 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
426 bool is_sync)
428 return cic->cfqq[is_sync];
431 static inline void cic_set_cfqq(struct cfq_io_context *cic,
432 struct cfq_queue *cfqq, bool is_sync)
434 cic->cfqq[is_sync] = cfqq;
437 #define CIC_DEAD_KEY 1ul
438 #define CIC_DEAD_INDEX_SHIFT 1
440 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
442 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
445 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
447 struct cfq_data *cfqd = cic->key;
449 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
450 return NULL;
452 return cfqd;
456 * We regard a request as SYNC, if it's either a read or has the SYNC bit
457 * set (in which case it could also be direct WRITE).
459 static inline bool cfq_bio_sync(struct bio *bio)
461 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
465 * scheduler run of queue, if there are requests pending and no one in the
466 * driver that will restart queueing
468 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
470 if (cfqd->busy_queues) {
471 cfq_log(cfqd, "schedule dispatch");
472 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
476 static int cfq_queue_empty(struct request_queue *q)
478 struct cfq_data *cfqd = q->elevator->elevator_data;
480 return !cfqd->rq_queued;
484 * Scale schedule slice based on io priority. Use the sync time slice only
485 * if a queue is marked sync and has sync io queued. A sync queue with async
486 * io only, should not get full sync slice length.
488 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
489 unsigned short prio)
491 const int base_slice = cfqd->cfq_slice[sync];
493 WARN_ON(prio >= IOPRIO_BE_NR);
495 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
498 static inline int
499 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
501 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
504 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
506 u64 d = delta << CFQ_SERVICE_SHIFT;
508 d = d * BLKIO_WEIGHT_DEFAULT;
509 do_div(d, cfqg->weight);
510 return d;
513 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
515 s64 delta = (s64)(vdisktime - min_vdisktime);
516 if (delta > 0)
517 min_vdisktime = vdisktime;
519 return min_vdisktime;
522 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
524 s64 delta = (s64)(vdisktime - min_vdisktime);
525 if (delta < 0)
526 min_vdisktime = vdisktime;
528 return min_vdisktime;
531 static void update_min_vdisktime(struct cfq_rb_root *st)
533 u64 vdisktime = st->min_vdisktime;
534 struct cfq_group *cfqg;
536 if (st->active) {
537 cfqg = rb_entry_cfqg(st->active);
538 vdisktime = cfqg->vdisktime;
541 if (st->left) {
542 cfqg = rb_entry_cfqg(st->left);
543 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
546 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
550 * get averaged number of queues of RT/BE priority.
551 * average is updated, with a formula that gives more weight to higher numbers,
552 * to quickly follows sudden increases and decrease slowly
555 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
556 struct cfq_group *cfqg, bool rt)
558 unsigned min_q, max_q;
559 unsigned mult = cfq_hist_divisor - 1;
560 unsigned round = cfq_hist_divisor / 2;
561 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
563 min_q = min(cfqg->busy_queues_avg[rt], busy);
564 max_q = max(cfqg->busy_queues_avg[rt], busy);
565 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
566 cfq_hist_divisor;
567 return cfqg->busy_queues_avg[rt];
570 static inline unsigned
571 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
573 struct cfq_rb_root *st = &cfqd->grp_service_tree;
575 return cfq_target_latency * cfqg->weight / st->total_weight;
578 static inline void
579 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
581 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
582 if (cfqd->cfq_latency) {
584 * interested queues (we consider only the ones with the same
585 * priority class in the cfq group)
587 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
588 cfq_class_rt(cfqq));
589 unsigned sync_slice = cfqd->cfq_slice[1];
590 unsigned expect_latency = sync_slice * iq;
591 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
593 if (expect_latency > group_slice) {
594 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
595 /* scale low_slice according to IO priority
596 * and sync vs async */
597 unsigned low_slice =
598 min(slice, base_low_slice * slice / sync_slice);
599 /* the adapted slice value is scaled to fit all iqs
600 * into the target latency */
601 slice = max(slice * group_slice / expect_latency,
602 low_slice);
605 cfqq->slice_start = jiffies;
606 cfqq->slice_end = jiffies + slice;
607 cfqq->allocated_slice = slice;
608 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
612 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
613 * isn't valid until the first request from the dispatch is activated
614 * and the slice time set.
616 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
618 if (cfq_cfqq_slice_new(cfqq))
619 return 0;
620 if (time_before(jiffies, cfqq->slice_end))
621 return 0;
623 return 1;
627 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
628 * We choose the request that is closest to the head right now. Distance
629 * behind the head is penalized and only allowed to a certain extent.
631 static struct request *
632 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
634 sector_t s1, s2, d1 = 0, d2 = 0;
635 unsigned long back_max;
636 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
637 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
638 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
640 if (rq1 == NULL || rq1 == rq2)
641 return rq2;
642 if (rq2 == NULL)
643 return rq1;
645 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
646 return rq1;
647 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
648 return rq2;
649 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
650 return rq1;
651 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
652 return rq2;
654 s1 = blk_rq_pos(rq1);
655 s2 = blk_rq_pos(rq2);
658 * by definition, 1KiB is 2 sectors
660 back_max = cfqd->cfq_back_max * 2;
663 * Strict one way elevator _except_ in the case where we allow
664 * short backward seeks which are biased as twice the cost of a
665 * similar forward seek.
667 if (s1 >= last)
668 d1 = s1 - last;
669 else if (s1 + back_max >= last)
670 d1 = (last - s1) * cfqd->cfq_back_penalty;
671 else
672 wrap |= CFQ_RQ1_WRAP;
674 if (s2 >= last)
675 d2 = s2 - last;
676 else if (s2 + back_max >= last)
677 d2 = (last - s2) * cfqd->cfq_back_penalty;
678 else
679 wrap |= CFQ_RQ2_WRAP;
681 /* Found required data */
684 * By doing switch() on the bit mask "wrap" we avoid having to
685 * check two variables for all permutations: --> faster!
687 switch (wrap) {
688 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
689 if (d1 < d2)
690 return rq1;
691 else if (d2 < d1)
692 return rq2;
693 else {
694 if (s1 >= s2)
695 return rq1;
696 else
697 return rq2;
700 case CFQ_RQ2_WRAP:
701 return rq1;
702 case CFQ_RQ1_WRAP:
703 return rq2;
704 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
705 default:
707 * Since both rqs are wrapped,
708 * start with the one that's further behind head
709 * (--> only *one* back seek required),
710 * since back seek takes more time than forward.
712 if (s1 <= s2)
713 return rq1;
714 else
715 return rq2;
720 * The below is leftmost cache rbtree addon
722 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
724 /* Service tree is empty */
725 if (!root->count)
726 return NULL;
728 if (!root->left)
729 root->left = rb_first(&root->rb);
731 if (root->left)
732 return rb_entry(root->left, struct cfq_queue, rb_node);
734 return NULL;
737 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
739 if (!root->left)
740 root->left = rb_first(&root->rb);
742 if (root->left)
743 return rb_entry_cfqg(root->left);
745 return NULL;
748 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
750 rb_erase(n, root);
751 RB_CLEAR_NODE(n);
754 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
756 if (root->left == n)
757 root->left = NULL;
758 rb_erase_init(n, &root->rb);
759 --root->count;
763 * would be nice to take fifo expire time into account as well
765 static struct request *
766 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
767 struct request *last)
769 struct rb_node *rbnext = rb_next(&last->rb_node);
770 struct rb_node *rbprev = rb_prev(&last->rb_node);
771 struct request *next = NULL, *prev = NULL;
773 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
775 if (rbprev)
776 prev = rb_entry_rq(rbprev);
778 if (rbnext)
779 next = rb_entry_rq(rbnext);
780 else {
781 rbnext = rb_first(&cfqq->sort_list);
782 if (rbnext && rbnext != &last->rb_node)
783 next = rb_entry_rq(rbnext);
786 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
789 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
790 struct cfq_queue *cfqq)
793 * just an approximation, should be ok.
795 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
796 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
799 static inline s64
800 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
802 return cfqg->vdisktime - st->min_vdisktime;
805 static void
806 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
808 struct rb_node **node = &st->rb.rb_node;
809 struct rb_node *parent = NULL;
810 struct cfq_group *__cfqg;
811 s64 key = cfqg_key(st, cfqg);
812 int left = 1;
814 while (*node != NULL) {
815 parent = *node;
816 __cfqg = rb_entry_cfqg(parent);
818 if (key < cfqg_key(st, __cfqg))
819 node = &parent->rb_left;
820 else {
821 node = &parent->rb_right;
822 left = 0;
826 if (left)
827 st->left = &cfqg->rb_node;
829 rb_link_node(&cfqg->rb_node, parent, node);
830 rb_insert_color(&cfqg->rb_node, &st->rb);
833 static void
834 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
836 struct cfq_rb_root *st = &cfqd->grp_service_tree;
837 struct cfq_group *__cfqg;
838 struct rb_node *n;
840 cfqg->nr_cfqq++;
841 if (cfqg->on_st)
842 return;
845 * Currently put the group at the end. Later implement something
846 * so that groups get lesser vtime based on their weights, so that
847 * if group does not loose all if it was not continously backlogged.
849 n = rb_last(&st->rb);
850 if (n) {
851 __cfqg = rb_entry_cfqg(n);
852 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
853 } else
854 cfqg->vdisktime = st->min_vdisktime;
856 __cfq_group_service_tree_add(st, cfqg);
857 cfqg->on_st = true;
858 st->total_weight += cfqg->weight;
861 static void
862 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
864 struct cfq_rb_root *st = &cfqd->grp_service_tree;
866 if (st->active == &cfqg->rb_node)
867 st->active = NULL;
869 BUG_ON(cfqg->nr_cfqq < 1);
870 cfqg->nr_cfqq--;
872 /* If there are other cfq queues under this group, don't delete it */
873 if (cfqg->nr_cfqq)
874 return;
876 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
877 cfqg->on_st = false;
878 st->total_weight -= cfqg->weight;
879 if (!RB_EMPTY_NODE(&cfqg->rb_node))
880 cfq_rb_erase(&cfqg->rb_node, st);
881 cfqg->saved_workload_slice = 0;
882 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
885 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
887 unsigned int slice_used;
890 * Queue got expired before even a single request completed or
891 * got expired immediately after first request completion.
893 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
895 * Also charge the seek time incurred to the group, otherwise
896 * if there are mutiple queues in the group, each can dispatch
897 * a single request on seeky media and cause lots of seek time
898 * and group will never know it.
900 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
902 } else {
903 slice_used = jiffies - cfqq->slice_start;
904 if (slice_used > cfqq->allocated_slice)
905 slice_used = cfqq->allocated_slice;
908 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
909 return slice_used;
912 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
913 struct cfq_queue *cfqq)
915 struct cfq_rb_root *st = &cfqd->grp_service_tree;
916 unsigned int used_sl, charge_sl;
917 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
918 - cfqg->service_tree_idle.count;
920 BUG_ON(nr_sync < 0);
921 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
923 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
924 charge_sl = cfqq->allocated_slice;
926 /* Can't update vdisktime while group is on service tree */
927 cfq_rb_erase(&cfqg->rb_node, st);
928 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
929 __cfq_group_service_tree_add(st, cfqg);
931 /* This group is being expired. Save the context */
932 if (time_after(cfqd->workload_expires, jiffies)) {
933 cfqg->saved_workload_slice = cfqd->workload_expires
934 - jiffies;
935 cfqg->saved_workload = cfqd->serving_type;
936 cfqg->saved_serving_prio = cfqd->serving_prio;
937 } else
938 cfqg->saved_workload_slice = 0;
940 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
941 st->min_vdisktime);
942 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
943 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
946 #ifdef CONFIG_CFQ_GROUP_IOSCHED
947 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
949 if (blkg)
950 return container_of(blkg, struct cfq_group, blkg);
951 return NULL;
954 void
955 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
957 cfqg_of_blkg(blkg)->weight = weight;
960 static struct cfq_group *
961 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
963 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
964 struct cfq_group *cfqg = NULL;
965 void *key = cfqd;
966 int i, j;
967 struct cfq_rb_root *st;
968 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
969 unsigned int major, minor;
971 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
972 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
973 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
974 cfqg->blkg.dev = MKDEV(major, minor);
975 goto done;
977 if (cfqg || !create)
978 goto done;
980 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
981 if (!cfqg)
982 goto done;
984 for_each_cfqg_st(cfqg, i, j, st)
985 *st = CFQ_RB_ROOT;
986 RB_CLEAR_NODE(&cfqg->rb_node);
989 * Take the initial reference that will be released on destroy
990 * This can be thought of a joint reference by cgroup and
991 * elevator which will be dropped by either elevator exit
992 * or cgroup deletion path depending on who is exiting first.
994 atomic_set(&cfqg->ref, 1);
996 /* Add group onto cgroup list */
997 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
998 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
999 MKDEV(major, minor));
1000 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1002 /* Add group on cfqd list */
1003 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1005 done:
1006 return cfqg;
1010 * Search for the cfq group current task belongs to. If create = 1, then also
1011 * create the cfq group if it does not exist. request_queue lock must be held.
1013 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1015 struct cgroup *cgroup;
1016 struct cfq_group *cfqg = NULL;
1018 rcu_read_lock();
1019 cgroup = task_cgroup(current, blkio_subsys_id);
1020 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1021 if (!cfqg && create)
1022 cfqg = &cfqd->root_group;
1023 rcu_read_unlock();
1024 return cfqg;
1027 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1029 atomic_inc(&cfqg->ref);
1030 return cfqg;
1033 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1035 /* Currently, all async queues are mapped to root group */
1036 if (!cfq_cfqq_sync(cfqq))
1037 cfqg = &cfqq->cfqd->root_group;
1039 cfqq->cfqg = cfqg;
1040 /* cfqq reference on cfqg */
1041 atomic_inc(&cfqq->cfqg->ref);
1044 static void cfq_put_cfqg(struct cfq_group *cfqg)
1046 struct cfq_rb_root *st;
1047 int i, j;
1049 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1050 if (!atomic_dec_and_test(&cfqg->ref))
1051 return;
1052 for_each_cfqg_st(cfqg, i, j, st)
1053 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1054 kfree(cfqg);
1057 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1059 /* Something wrong if we are trying to remove same group twice */
1060 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1062 hlist_del_init(&cfqg->cfqd_node);
1065 * Put the reference taken at the time of creation so that when all
1066 * queues are gone, group can be destroyed.
1068 cfq_put_cfqg(cfqg);
1071 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1073 struct hlist_node *pos, *n;
1074 struct cfq_group *cfqg;
1076 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1078 * If cgroup removal path got to blk_group first and removed
1079 * it from cgroup list, then it will take care of destroying
1080 * cfqg also.
1082 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1083 cfq_destroy_cfqg(cfqd, cfqg);
1088 * Blk cgroup controller notification saying that blkio_group object is being
1089 * delinked as associated cgroup object is going away. That also means that
1090 * no new IO will come in this group. So get rid of this group as soon as
1091 * any pending IO in the group is finished.
1093 * This function is called under rcu_read_lock(). key is the rcu protected
1094 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1095 * read lock.
1097 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1098 * it should not be NULL as even if elevator was exiting, cgroup deltion
1099 * path got to it first.
1101 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1103 unsigned long flags;
1104 struct cfq_data *cfqd = key;
1106 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1107 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1108 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1111 #else /* GROUP_IOSCHED */
1112 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1114 return &cfqd->root_group;
1117 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1119 return cfqg;
1122 static inline void
1123 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1124 cfqq->cfqg = cfqg;
1127 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1128 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1130 #endif /* GROUP_IOSCHED */
1133 * The cfqd->service_trees holds all pending cfq_queue's that have
1134 * requests waiting to be processed. It is sorted in the order that
1135 * we will service the queues.
1137 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1138 bool add_front)
1140 struct rb_node **p, *parent;
1141 struct cfq_queue *__cfqq;
1142 unsigned long rb_key;
1143 struct cfq_rb_root *service_tree;
1144 int left;
1145 int new_cfqq = 1;
1146 int group_changed = 0;
1148 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1149 if (!cfqd->cfq_group_isolation
1150 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1151 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1152 /* Move this cfq to root group */
1153 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1154 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1155 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1156 cfqq->orig_cfqg = cfqq->cfqg;
1157 cfqq->cfqg = &cfqd->root_group;
1158 atomic_inc(&cfqd->root_group.ref);
1159 group_changed = 1;
1160 } else if (!cfqd->cfq_group_isolation
1161 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1162 /* cfqq is sequential now needs to go to its original group */
1163 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1164 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1165 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1166 cfq_put_cfqg(cfqq->cfqg);
1167 cfqq->cfqg = cfqq->orig_cfqg;
1168 cfqq->orig_cfqg = NULL;
1169 group_changed = 1;
1170 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1172 #endif
1174 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1175 cfqq_type(cfqq));
1176 if (cfq_class_idle(cfqq)) {
1177 rb_key = CFQ_IDLE_DELAY;
1178 parent = rb_last(&service_tree->rb);
1179 if (parent && parent != &cfqq->rb_node) {
1180 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1181 rb_key += __cfqq->rb_key;
1182 } else
1183 rb_key += jiffies;
1184 } else if (!add_front) {
1186 * Get our rb key offset. Subtract any residual slice
1187 * value carried from last service. A negative resid
1188 * count indicates slice overrun, and this should position
1189 * the next service time further away in the tree.
1191 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1192 rb_key -= cfqq->slice_resid;
1193 cfqq->slice_resid = 0;
1194 } else {
1195 rb_key = -HZ;
1196 __cfqq = cfq_rb_first(service_tree);
1197 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1200 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1201 new_cfqq = 0;
1203 * same position, nothing more to do
1205 if (rb_key == cfqq->rb_key &&
1206 cfqq->service_tree == service_tree)
1207 return;
1209 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1210 cfqq->service_tree = NULL;
1213 left = 1;
1214 parent = NULL;
1215 cfqq->service_tree = service_tree;
1216 p = &service_tree->rb.rb_node;
1217 while (*p) {
1218 struct rb_node **n;
1220 parent = *p;
1221 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1224 * sort by key, that represents service time.
1226 if (time_before(rb_key, __cfqq->rb_key))
1227 n = &(*p)->rb_left;
1228 else {
1229 n = &(*p)->rb_right;
1230 left = 0;
1233 p = n;
1236 if (left)
1237 service_tree->left = &cfqq->rb_node;
1239 cfqq->rb_key = rb_key;
1240 rb_link_node(&cfqq->rb_node, parent, p);
1241 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1242 service_tree->count++;
1243 if ((add_front || !new_cfqq) && !group_changed)
1244 return;
1245 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1248 static struct cfq_queue *
1249 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1250 sector_t sector, struct rb_node **ret_parent,
1251 struct rb_node ***rb_link)
1253 struct rb_node **p, *parent;
1254 struct cfq_queue *cfqq = NULL;
1256 parent = NULL;
1257 p = &root->rb_node;
1258 while (*p) {
1259 struct rb_node **n;
1261 parent = *p;
1262 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1265 * Sort strictly based on sector. Smallest to the left,
1266 * largest to the right.
1268 if (sector > blk_rq_pos(cfqq->next_rq))
1269 n = &(*p)->rb_right;
1270 else if (sector < blk_rq_pos(cfqq->next_rq))
1271 n = &(*p)->rb_left;
1272 else
1273 break;
1274 p = n;
1275 cfqq = NULL;
1278 *ret_parent = parent;
1279 if (rb_link)
1280 *rb_link = p;
1281 return cfqq;
1284 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1286 struct rb_node **p, *parent;
1287 struct cfq_queue *__cfqq;
1289 if (cfqq->p_root) {
1290 rb_erase(&cfqq->p_node, cfqq->p_root);
1291 cfqq->p_root = NULL;
1294 if (cfq_class_idle(cfqq))
1295 return;
1296 if (!cfqq->next_rq)
1297 return;
1299 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1300 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1301 blk_rq_pos(cfqq->next_rq), &parent, &p);
1302 if (!__cfqq) {
1303 rb_link_node(&cfqq->p_node, parent, p);
1304 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1305 } else
1306 cfqq->p_root = NULL;
1310 * Update cfqq's position in the service tree.
1312 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1315 * Resorting requires the cfqq to be on the RR list already.
1317 if (cfq_cfqq_on_rr(cfqq)) {
1318 cfq_service_tree_add(cfqd, cfqq, 0);
1319 cfq_prio_tree_add(cfqd, cfqq);
1324 * add to busy list of queues for service, trying to be fair in ordering
1325 * the pending list according to last request service
1327 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1329 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1330 BUG_ON(cfq_cfqq_on_rr(cfqq));
1331 cfq_mark_cfqq_on_rr(cfqq);
1332 cfqd->busy_queues++;
1334 cfq_resort_rr_list(cfqd, cfqq);
1338 * Called when the cfqq no longer has requests pending, remove it from
1339 * the service tree.
1341 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1343 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1344 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1345 cfq_clear_cfqq_on_rr(cfqq);
1347 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1348 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1349 cfqq->service_tree = NULL;
1351 if (cfqq->p_root) {
1352 rb_erase(&cfqq->p_node, cfqq->p_root);
1353 cfqq->p_root = NULL;
1356 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1357 BUG_ON(!cfqd->busy_queues);
1358 cfqd->busy_queues--;
1362 * rb tree support functions
1364 static void cfq_del_rq_rb(struct request *rq)
1366 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1367 const int sync = rq_is_sync(rq);
1369 BUG_ON(!cfqq->queued[sync]);
1370 cfqq->queued[sync]--;
1372 elv_rb_del(&cfqq->sort_list, rq);
1374 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1376 * Queue will be deleted from service tree when we actually
1377 * expire it later. Right now just remove it from prio tree
1378 * as it is empty.
1380 if (cfqq->p_root) {
1381 rb_erase(&cfqq->p_node, cfqq->p_root);
1382 cfqq->p_root = NULL;
1387 static void cfq_add_rq_rb(struct request *rq)
1389 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1390 struct cfq_data *cfqd = cfqq->cfqd;
1391 struct request *__alias, *prev;
1393 cfqq->queued[rq_is_sync(rq)]++;
1396 * looks a little odd, but the first insert might return an alias.
1397 * if that happens, put the alias on the dispatch list
1399 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1400 cfq_dispatch_insert(cfqd->queue, __alias);
1402 if (!cfq_cfqq_on_rr(cfqq))
1403 cfq_add_cfqq_rr(cfqd, cfqq);
1406 * check if this request is a better next-serve candidate
1408 prev = cfqq->next_rq;
1409 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1412 * adjust priority tree position, if ->next_rq changes
1414 if (prev != cfqq->next_rq)
1415 cfq_prio_tree_add(cfqd, cfqq);
1417 BUG_ON(!cfqq->next_rq);
1420 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1422 elv_rb_del(&cfqq->sort_list, rq);
1423 cfqq->queued[rq_is_sync(rq)]--;
1424 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1425 rq_data_dir(rq), rq_is_sync(rq));
1426 cfq_add_rq_rb(rq);
1427 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1428 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1429 rq_is_sync(rq));
1432 static struct request *
1433 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1435 struct task_struct *tsk = current;
1436 struct cfq_io_context *cic;
1437 struct cfq_queue *cfqq;
1439 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1440 if (!cic)
1441 return NULL;
1443 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1444 if (cfqq) {
1445 sector_t sector = bio->bi_sector + bio_sectors(bio);
1447 return elv_rb_find(&cfqq->sort_list, sector);
1450 return NULL;
1453 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1455 struct cfq_data *cfqd = q->elevator->elevator_data;
1457 cfqd->rq_in_driver++;
1458 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1459 cfqd->rq_in_driver);
1461 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1464 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1466 struct cfq_data *cfqd = q->elevator->elevator_data;
1468 WARN_ON(!cfqd->rq_in_driver);
1469 cfqd->rq_in_driver--;
1470 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1471 cfqd->rq_in_driver);
1474 static void cfq_remove_request(struct request *rq)
1476 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1478 if (cfqq->next_rq == rq)
1479 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1481 list_del_init(&rq->queuelist);
1482 cfq_del_rq_rb(rq);
1484 cfqq->cfqd->rq_queued--;
1485 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1486 rq_data_dir(rq), rq_is_sync(rq));
1487 if (rq_is_meta(rq)) {
1488 WARN_ON(!cfqq->meta_pending);
1489 cfqq->meta_pending--;
1493 static int cfq_merge(struct request_queue *q, struct request **req,
1494 struct bio *bio)
1496 struct cfq_data *cfqd = q->elevator->elevator_data;
1497 struct request *__rq;
1499 __rq = cfq_find_rq_fmerge(cfqd, bio);
1500 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1501 *req = __rq;
1502 return ELEVATOR_FRONT_MERGE;
1505 return ELEVATOR_NO_MERGE;
1508 static void cfq_merged_request(struct request_queue *q, struct request *req,
1509 int type)
1511 if (type == ELEVATOR_FRONT_MERGE) {
1512 struct cfq_queue *cfqq = RQ_CFQQ(req);
1514 cfq_reposition_rq_rb(cfqq, req);
1518 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1519 struct bio *bio)
1521 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1522 bio_data_dir(bio), cfq_bio_sync(bio));
1525 static void
1526 cfq_merged_requests(struct request_queue *q, struct request *rq,
1527 struct request *next)
1529 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1531 * reposition in fifo if next is older than rq
1533 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1534 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1535 list_move(&rq->queuelist, &next->queuelist);
1536 rq_set_fifo_time(rq, rq_fifo_time(next));
1539 if (cfqq->next_rq == next)
1540 cfqq->next_rq = rq;
1541 cfq_remove_request(next);
1542 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1543 rq_data_dir(next), rq_is_sync(next));
1546 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1547 struct bio *bio)
1549 struct cfq_data *cfqd = q->elevator->elevator_data;
1550 struct cfq_io_context *cic;
1551 struct cfq_queue *cfqq;
1554 * Disallow merge of a sync bio into an async request.
1556 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1557 return false;
1560 * Lookup the cfqq that this bio will be queued with. Allow
1561 * merge only if rq is queued there.
1563 cic = cfq_cic_lookup(cfqd, current->io_context);
1564 if (!cic)
1565 return false;
1567 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1568 return cfqq == RQ_CFQQ(rq);
1571 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1573 del_timer(&cfqd->idle_slice_timer);
1574 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1577 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1578 struct cfq_queue *cfqq)
1580 if (cfqq) {
1581 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1582 cfqd->serving_prio, cfqd->serving_type);
1583 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1584 cfqq->slice_start = 0;
1585 cfqq->dispatch_start = jiffies;
1586 cfqq->allocated_slice = 0;
1587 cfqq->slice_end = 0;
1588 cfqq->slice_dispatch = 0;
1590 cfq_clear_cfqq_wait_request(cfqq);
1591 cfq_clear_cfqq_must_dispatch(cfqq);
1592 cfq_clear_cfqq_must_alloc_slice(cfqq);
1593 cfq_clear_cfqq_fifo_expire(cfqq);
1594 cfq_mark_cfqq_slice_new(cfqq);
1596 cfq_del_timer(cfqd, cfqq);
1599 cfqd->active_queue = cfqq;
1603 * current cfqq expired its slice (or was too idle), select new one
1605 static void
1606 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1607 bool timed_out)
1609 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1611 if (cfq_cfqq_wait_request(cfqq))
1612 cfq_del_timer(cfqd, cfqq);
1614 cfq_clear_cfqq_wait_request(cfqq);
1615 cfq_clear_cfqq_wait_busy(cfqq);
1618 * If this cfqq is shared between multiple processes, check to
1619 * make sure that those processes are still issuing I/Os within
1620 * the mean seek distance. If not, it may be time to break the
1621 * queues apart again.
1623 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1624 cfq_mark_cfqq_split_coop(cfqq);
1627 * store what was left of this slice, if the queue idled/timed out
1629 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1630 cfqq->slice_resid = cfqq->slice_end - jiffies;
1631 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1634 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1636 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1637 cfq_del_cfqq_rr(cfqd, cfqq);
1639 cfq_resort_rr_list(cfqd, cfqq);
1641 if (cfqq == cfqd->active_queue)
1642 cfqd->active_queue = NULL;
1644 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1645 cfqd->grp_service_tree.active = NULL;
1647 if (cfqd->active_cic) {
1648 put_io_context(cfqd->active_cic->ioc);
1649 cfqd->active_cic = NULL;
1653 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1655 struct cfq_queue *cfqq = cfqd->active_queue;
1657 if (cfqq)
1658 __cfq_slice_expired(cfqd, cfqq, timed_out);
1662 * Get next queue for service. Unless we have a queue preemption,
1663 * we'll simply select the first cfqq in the service tree.
1665 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1667 struct cfq_rb_root *service_tree =
1668 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1669 cfqd->serving_type);
1671 if (!cfqd->rq_queued)
1672 return NULL;
1674 /* There is nothing to dispatch */
1675 if (!service_tree)
1676 return NULL;
1677 if (RB_EMPTY_ROOT(&service_tree->rb))
1678 return NULL;
1679 return cfq_rb_first(service_tree);
1682 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1684 struct cfq_group *cfqg;
1685 struct cfq_queue *cfqq;
1686 int i, j;
1687 struct cfq_rb_root *st;
1689 if (!cfqd->rq_queued)
1690 return NULL;
1692 cfqg = cfq_get_next_cfqg(cfqd);
1693 if (!cfqg)
1694 return NULL;
1696 for_each_cfqg_st(cfqg, i, j, st)
1697 if ((cfqq = cfq_rb_first(st)) != NULL)
1698 return cfqq;
1699 return NULL;
1703 * Get and set a new active queue for service.
1705 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1706 struct cfq_queue *cfqq)
1708 if (!cfqq)
1709 cfqq = cfq_get_next_queue(cfqd);
1711 __cfq_set_active_queue(cfqd, cfqq);
1712 return cfqq;
1715 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1716 struct request *rq)
1718 if (blk_rq_pos(rq) >= cfqd->last_position)
1719 return blk_rq_pos(rq) - cfqd->last_position;
1720 else
1721 return cfqd->last_position - blk_rq_pos(rq);
1724 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1725 struct request *rq)
1727 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1730 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1731 struct cfq_queue *cur_cfqq)
1733 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1734 struct rb_node *parent, *node;
1735 struct cfq_queue *__cfqq;
1736 sector_t sector = cfqd->last_position;
1738 if (RB_EMPTY_ROOT(root))
1739 return NULL;
1742 * First, if we find a request starting at the end of the last
1743 * request, choose it.
1745 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1746 if (__cfqq)
1747 return __cfqq;
1750 * If the exact sector wasn't found, the parent of the NULL leaf
1751 * will contain the closest sector.
1753 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1754 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1755 return __cfqq;
1757 if (blk_rq_pos(__cfqq->next_rq) < sector)
1758 node = rb_next(&__cfqq->p_node);
1759 else
1760 node = rb_prev(&__cfqq->p_node);
1761 if (!node)
1762 return NULL;
1764 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1765 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1766 return __cfqq;
1768 return NULL;
1772 * cfqd - obvious
1773 * cur_cfqq - passed in so that we don't decide that the current queue is
1774 * closely cooperating with itself.
1776 * So, basically we're assuming that that cur_cfqq has dispatched at least
1777 * one request, and that cfqd->last_position reflects a position on the disk
1778 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1779 * assumption.
1781 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1782 struct cfq_queue *cur_cfqq)
1784 struct cfq_queue *cfqq;
1786 if (cfq_class_idle(cur_cfqq))
1787 return NULL;
1788 if (!cfq_cfqq_sync(cur_cfqq))
1789 return NULL;
1790 if (CFQQ_SEEKY(cur_cfqq))
1791 return NULL;
1794 * Don't search priority tree if it's the only queue in the group.
1796 if (cur_cfqq->cfqg->nr_cfqq == 1)
1797 return NULL;
1800 * We should notice if some of the queues are cooperating, eg
1801 * working closely on the same area of the disk. In that case,
1802 * we can group them together and don't waste time idling.
1804 cfqq = cfqq_close(cfqd, cur_cfqq);
1805 if (!cfqq)
1806 return NULL;
1808 /* If new queue belongs to different cfq_group, don't choose it */
1809 if (cur_cfqq->cfqg != cfqq->cfqg)
1810 return NULL;
1813 * It only makes sense to merge sync queues.
1815 if (!cfq_cfqq_sync(cfqq))
1816 return NULL;
1817 if (CFQQ_SEEKY(cfqq))
1818 return NULL;
1821 * Do not merge queues of different priority classes
1823 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1824 return NULL;
1826 return cfqq;
1830 * Determine whether we should enforce idle window for this queue.
1833 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1835 enum wl_prio_t prio = cfqq_prio(cfqq);
1836 struct cfq_rb_root *service_tree = cfqq->service_tree;
1838 BUG_ON(!service_tree);
1839 BUG_ON(!service_tree->count);
1841 /* We never do for idle class queues. */
1842 if (prio == IDLE_WORKLOAD)
1843 return false;
1845 /* We do for queues that were marked with idle window flag. */
1846 if (cfq_cfqq_idle_window(cfqq) &&
1847 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1848 return true;
1851 * Otherwise, we do only if they are the last ones
1852 * in their service tree.
1854 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1855 return 1;
1856 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1857 service_tree->count);
1858 return 0;
1861 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1863 struct cfq_queue *cfqq = cfqd->active_queue;
1864 struct cfq_io_context *cic;
1865 unsigned long sl;
1868 * SSD device without seek penalty, disable idling. But only do so
1869 * for devices that support queuing, otherwise we still have a problem
1870 * with sync vs async workloads.
1872 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1873 return;
1875 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1876 WARN_ON(cfq_cfqq_slice_new(cfqq));
1879 * idle is disabled, either manually or by past process history
1881 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1882 return;
1885 * still active requests from this queue, don't idle
1887 if (cfqq->dispatched)
1888 return;
1891 * task has exited, don't wait
1893 cic = cfqd->active_cic;
1894 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1895 return;
1898 * If our average think time is larger than the remaining time
1899 * slice, then don't idle. This avoids overrunning the allotted
1900 * time slice.
1902 if (sample_valid(cic->ttime_samples) &&
1903 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1904 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1905 cic->ttime_mean);
1906 return;
1909 cfq_mark_cfqq_wait_request(cfqq);
1911 sl = cfqd->cfq_slice_idle;
1913 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1914 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1915 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1919 * Move request from internal lists to the request queue dispatch list.
1921 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1923 struct cfq_data *cfqd = q->elevator->elevator_data;
1924 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1926 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1928 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1929 cfq_remove_request(rq);
1930 cfqq->dispatched++;
1931 elv_dispatch_sort(q, rq);
1933 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1934 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1935 rq_data_dir(rq), rq_is_sync(rq));
1939 * return expired entry, or NULL to just start from scratch in rbtree
1941 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1943 struct request *rq = NULL;
1945 if (cfq_cfqq_fifo_expire(cfqq))
1946 return NULL;
1948 cfq_mark_cfqq_fifo_expire(cfqq);
1950 if (list_empty(&cfqq->fifo))
1951 return NULL;
1953 rq = rq_entry_fifo(cfqq->fifo.next);
1954 if (time_before(jiffies, rq_fifo_time(rq)))
1955 rq = NULL;
1957 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1958 return rq;
1961 static inline int
1962 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1964 const int base_rq = cfqd->cfq_slice_async_rq;
1966 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1968 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1972 * Must be called with the queue_lock held.
1974 static int cfqq_process_refs(struct cfq_queue *cfqq)
1976 int process_refs, io_refs;
1978 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1979 process_refs = atomic_read(&cfqq->ref) - io_refs;
1980 BUG_ON(process_refs < 0);
1981 return process_refs;
1984 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1986 int process_refs, new_process_refs;
1987 struct cfq_queue *__cfqq;
1990 * If there are no process references on the new_cfqq, then it is
1991 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
1992 * chain may have dropped their last reference (not just their
1993 * last process reference).
1995 if (!cfqq_process_refs(new_cfqq))
1996 return;
1998 /* Avoid a circular list and skip interim queue merges */
1999 while ((__cfqq = new_cfqq->new_cfqq)) {
2000 if (__cfqq == cfqq)
2001 return;
2002 new_cfqq = __cfqq;
2005 process_refs = cfqq_process_refs(cfqq);
2006 new_process_refs = cfqq_process_refs(new_cfqq);
2008 * If the process for the cfqq has gone away, there is no
2009 * sense in merging the queues.
2011 if (process_refs == 0 || new_process_refs == 0)
2012 return;
2015 * Merge in the direction of the lesser amount of work.
2017 if (new_process_refs >= process_refs) {
2018 cfqq->new_cfqq = new_cfqq;
2019 atomic_add(process_refs, &new_cfqq->ref);
2020 } else {
2021 new_cfqq->new_cfqq = cfqq;
2022 atomic_add(new_process_refs, &cfqq->ref);
2026 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2027 struct cfq_group *cfqg, enum wl_prio_t prio)
2029 struct cfq_queue *queue;
2030 int i;
2031 bool key_valid = false;
2032 unsigned long lowest_key = 0;
2033 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2035 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2036 /* select the one with lowest rb_key */
2037 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2038 if (queue &&
2039 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2040 lowest_key = queue->rb_key;
2041 cur_best = i;
2042 key_valid = true;
2046 return cur_best;
2049 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2051 unsigned slice;
2052 unsigned count;
2053 struct cfq_rb_root *st;
2054 unsigned group_slice;
2056 if (!cfqg) {
2057 cfqd->serving_prio = IDLE_WORKLOAD;
2058 cfqd->workload_expires = jiffies + 1;
2059 return;
2062 /* Choose next priority. RT > BE > IDLE */
2063 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2064 cfqd->serving_prio = RT_WORKLOAD;
2065 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2066 cfqd->serving_prio = BE_WORKLOAD;
2067 else {
2068 cfqd->serving_prio = IDLE_WORKLOAD;
2069 cfqd->workload_expires = jiffies + 1;
2070 return;
2074 * For RT and BE, we have to choose also the type
2075 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2076 * expiration time
2078 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2079 count = st->count;
2082 * check workload expiration, and that we still have other queues ready
2084 if (count && !time_after(jiffies, cfqd->workload_expires))
2085 return;
2087 /* otherwise select new workload type */
2088 cfqd->serving_type =
2089 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2090 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2091 count = st->count;
2094 * the workload slice is computed as a fraction of target latency
2095 * proportional to the number of queues in that workload, over
2096 * all the queues in the same priority class
2098 group_slice = cfq_group_slice(cfqd, cfqg);
2100 slice = group_slice * count /
2101 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2102 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2104 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2105 unsigned int tmp;
2108 * Async queues are currently system wide. Just taking
2109 * proportion of queues with-in same group will lead to higher
2110 * async ratio system wide as generally root group is going
2111 * to have higher weight. A more accurate thing would be to
2112 * calculate system wide asnc/sync ratio.
2114 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2115 tmp = tmp/cfqd->busy_queues;
2116 slice = min_t(unsigned, slice, tmp);
2118 /* async workload slice is scaled down according to
2119 * the sync/async slice ratio. */
2120 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2121 } else
2122 /* sync workload slice is at least 2 * cfq_slice_idle */
2123 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2125 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2126 cfq_log(cfqd, "workload slice:%d", slice);
2127 cfqd->workload_expires = jiffies + slice;
2128 cfqd->noidle_tree_requires_idle = false;
2131 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2133 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2134 struct cfq_group *cfqg;
2136 if (RB_EMPTY_ROOT(&st->rb))
2137 return NULL;
2138 cfqg = cfq_rb_first_group(st);
2139 st->active = &cfqg->rb_node;
2140 update_min_vdisktime(st);
2141 return cfqg;
2144 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2146 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2148 cfqd->serving_group = cfqg;
2150 /* Restore the workload type data */
2151 if (cfqg->saved_workload_slice) {
2152 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2153 cfqd->serving_type = cfqg->saved_workload;
2154 cfqd->serving_prio = cfqg->saved_serving_prio;
2155 } else
2156 cfqd->workload_expires = jiffies - 1;
2158 choose_service_tree(cfqd, cfqg);
2162 * Select a queue for service. If we have a current active queue,
2163 * check whether to continue servicing it, or retrieve and set a new one.
2165 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2167 struct cfq_queue *cfqq, *new_cfqq = NULL;
2169 cfqq = cfqd->active_queue;
2170 if (!cfqq)
2171 goto new_queue;
2173 if (!cfqd->rq_queued)
2174 return NULL;
2177 * We were waiting for group to get backlogged. Expire the queue
2179 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2180 goto expire;
2183 * The active queue has run out of time, expire it and select new.
2185 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2187 * If slice had not expired at the completion of last request
2188 * we might not have turned on wait_busy flag. Don't expire
2189 * the queue yet. Allow the group to get backlogged.
2191 * The very fact that we have used the slice, that means we
2192 * have been idling all along on this queue and it should be
2193 * ok to wait for this request to complete.
2195 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2196 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2197 cfqq = NULL;
2198 goto keep_queue;
2199 } else
2200 goto expire;
2204 * The active queue has requests and isn't expired, allow it to
2205 * dispatch.
2207 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2208 goto keep_queue;
2211 * If another queue has a request waiting within our mean seek
2212 * distance, let it run. The expire code will check for close
2213 * cooperators and put the close queue at the front of the service
2214 * tree. If possible, merge the expiring queue with the new cfqq.
2216 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2217 if (new_cfqq) {
2218 if (!cfqq->new_cfqq)
2219 cfq_setup_merge(cfqq, new_cfqq);
2220 goto expire;
2224 * No requests pending. If the active queue still has requests in
2225 * flight or is idling for a new request, allow either of these
2226 * conditions to happen (or time out) before selecting a new queue.
2228 if (timer_pending(&cfqd->idle_slice_timer) ||
2229 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2230 cfqq = NULL;
2231 goto keep_queue;
2234 expire:
2235 cfq_slice_expired(cfqd, 0);
2236 new_queue:
2238 * Current queue expired. Check if we have to switch to a new
2239 * service tree
2241 if (!new_cfqq)
2242 cfq_choose_cfqg(cfqd);
2244 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2245 keep_queue:
2246 return cfqq;
2249 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2251 int dispatched = 0;
2253 while (cfqq->next_rq) {
2254 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2255 dispatched++;
2258 BUG_ON(!list_empty(&cfqq->fifo));
2260 /* By default cfqq is not expired if it is empty. Do it explicitly */
2261 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2262 return dispatched;
2266 * Drain our current requests. Used for barriers and when switching
2267 * io schedulers on-the-fly.
2269 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2271 struct cfq_queue *cfqq;
2272 int dispatched = 0;
2274 /* Expire the timeslice of the current active queue first */
2275 cfq_slice_expired(cfqd, 0);
2276 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2277 __cfq_set_active_queue(cfqd, cfqq);
2278 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2281 BUG_ON(cfqd->busy_queues);
2283 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2284 return dispatched;
2287 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2288 struct cfq_queue *cfqq)
2290 /* the queue hasn't finished any request, can't estimate */
2291 if (cfq_cfqq_slice_new(cfqq))
2292 return 1;
2293 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2294 cfqq->slice_end))
2295 return 1;
2297 return 0;
2300 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2302 unsigned int max_dispatch;
2305 * Drain async requests before we start sync IO
2307 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2308 return false;
2311 * If this is an async queue and we have sync IO in flight, let it wait
2313 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2314 return false;
2316 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2317 if (cfq_class_idle(cfqq))
2318 max_dispatch = 1;
2321 * Does this cfqq already have too much IO in flight?
2323 if (cfqq->dispatched >= max_dispatch) {
2325 * idle queue must always only have a single IO in flight
2327 if (cfq_class_idle(cfqq))
2328 return false;
2331 * We have other queues, don't allow more IO from this one
2333 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2334 return false;
2337 * Sole queue user, no limit
2339 if (cfqd->busy_queues == 1)
2340 max_dispatch = -1;
2341 else
2343 * Normally we start throttling cfqq when cfq_quantum/2
2344 * requests have been dispatched. But we can drive
2345 * deeper queue depths at the beginning of slice
2346 * subjected to upper limit of cfq_quantum.
2347 * */
2348 max_dispatch = cfqd->cfq_quantum;
2352 * Async queues must wait a bit before being allowed dispatch.
2353 * We also ramp up the dispatch depth gradually for async IO,
2354 * based on the last sync IO we serviced
2356 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2357 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2358 unsigned int depth;
2360 depth = last_sync / cfqd->cfq_slice[1];
2361 if (!depth && !cfqq->dispatched)
2362 depth = 1;
2363 if (depth < max_dispatch)
2364 max_dispatch = depth;
2368 * If we're below the current max, allow a dispatch
2370 return cfqq->dispatched < max_dispatch;
2374 * Dispatch a request from cfqq, moving them to the request queue
2375 * dispatch list.
2377 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2379 struct request *rq;
2381 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2383 if (!cfq_may_dispatch(cfqd, cfqq))
2384 return false;
2387 * follow expired path, else get first next available
2389 rq = cfq_check_fifo(cfqq);
2390 if (!rq)
2391 rq = cfqq->next_rq;
2394 * insert request into driver dispatch list
2396 cfq_dispatch_insert(cfqd->queue, rq);
2398 if (!cfqd->active_cic) {
2399 struct cfq_io_context *cic = RQ_CIC(rq);
2401 atomic_long_inc(&cic->ioc->refcount);
2402 cfqd->active_cic = cic;
2405 return true;
2409 * Find the cfqq that we need to service and move a request from that to the
2410 * dispatch list
2412 static int cfq_dispatch_requests(struct request_queue *q, int force)
2414 struct cfq_data *cfqd = q->elevator->elevator_data;
2415 struct cfq_queue *cfqq;
2417 if (!cfqd->busy_queues)
2418 return 0;
2420 if (unlikely(force))
2421 return cfq_forced_dispatch(cfqd);
2423 cfqq = cfq_select_queue(cfqd);
2424 if (!cfqq)
2425 return 0;
2428 * Dispatch a request from this cfqq, if it is allowed
2430 if (!cfq_dispatch_request(cfqd, cfqq))
2431 return 0;
2433 cfqq->slice_dispatch++;
2434 cfq_clear_cfqq_must_dispatch(cfqq);
2437 * expire an async queue immediately if it has used up its slice. idle
2438 * queue always expire after 1 dispatch round.
2440 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2441 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2442 cfq_class_idle(cfqq))) {
2443 cfqq->slice_end = jiffies + 1;
2444 cfq_slice_expired(cfqd, 0);
2447 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2448 return 1;
2452 * task holds one reference to the queue, dropped when task exits. each rq
2453 * in-flight on this queue also holds a reference, dropped when rq is freed.
2455 * Each cfq queue took a reference on the parent group. Drop it now.
2456 * queue lock must be held here.
2458 static void cfq_put_queue(struct cfq_queue *cfqq)
2460 struct cfq_data *cfqd = cfqq->cfqd;
2461 struct cfq_group *cfqg, *orig_cfqg;
2463 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2465 if (!atomic_dec_and_test(&cfqq->ref))
2466 return;
2468 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2469 BUG_ON(rb_first(&cfqq->sort_list));
2470 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2471 cfqg = cfqq->cfqg;
2472 orig_cfqg = cfqq->orig_cfqg;
2474 if (unlikely(cfqd->active_queue == cfqq)) {
2475 __cfq_slice_expired(cfqd, cfqq, 0);
2476 cfq_schedule_dispatch(cfqd);
2479 BUG_ON(cfq_cfqq_on_rr(cfqq));
2480 kmem_cache_free(cfq_pool, cfqq);
2481 cfq_put_cfqg(cfqg);
2482 if (orig_cfqg)
2483 cfq_put_cfqg(orig_cfqg);
2487 * Must always be called with the rcu_read_lock() held
2489 static void
2490 __call_for_each_cic(struct io_context *ioc,
2491 void (*func)(struct io_context *, struct cfq_io_context *))
2493 struct cfq_io_context *cic;
2494 struct hlist_node *n;
2496 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2497 func(ioc, cic);
2501 * Call func for each cic attached to this ioc.
2503 static void
2504 call_for_each_cic(struct io_context *ioc,
2505 void (*func)(struct io_context *, struct cfq_io_context *))
2507 rcu_read_lock();
2508 __call_for_each_cic(ioc, func);
2509 rcu_read_unlock();
2512 static void cfq_cic_free_rcu(struct rcu_head *head)
2514 struct cfq_io_context *cic;
2516 cic = container_of(head, struct cfq_io_context, rcu_head);
2518 kmem_cache_free(cfq_ioc_pool, cic);
2519 elv_ioc_count_dec(cfq_ioc_count);
2521 if (ioc_gone) {
2523 * CFQ scheduler is exiting, grab exit lock and check
2524 * the pending io context count. If it hits zero,
2525 * complete ioc_gone and set it back to NULL
2527 spin_lock(&ioc_gone_lock);
2528 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2529 complete(ioc_gone);
2530 ioc_gone = NULL;
2532 spin_unlock(&ioc_gone_lock);
2536 static void cfq_cic_free(struct cfq_io_context *cic)
2538 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2541 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2543 unsigned long flags;
2544 unsigned long dead_key = (unsigned long) cic->key;
2546 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2548 spin_lock_irqsave(&ioc->lock, flags);
2549 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2550 hlist_del_rcu(&cic->cic_list);
2551 spin_unlock_irqrestore(&ioc->lock, flags);
2553 cfq_cic_free(cic);
2557 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2558 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2559 * and ->trim() which is called with the task lock held
2561 static void cfq_free_io_context(struct io_context *ioc)
2564 * ioc->refcount is zero here, or we are called from elv_unregister(),
2565 * so no more cic's are allowed to be linked into this ioc. So it
2566 * should be ok to iterate over the known list, we will see all cic's
2567 * since no new ones are added.
2569 __call_for_each_cic(ioc, cic_free_func);
2572 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2574 struct cfq_queue *__cfqq, *next;
2577 * If this queue was scheduled to merge with another queue, be
2578 * sure to drop the reference taken on that queue (and others in
2579 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2581 __cfqq = cfqq->new_cfqq;
2582 while (__cfqq) {
2583 if (__cfqq == cfqq) {
2584 WARN(1, "cfqq->new_cfqq loop detected\n");
2585 break;
2587 next = __cfqq->new_cfqq;
2588 cfq_put_queue(__cfqq);
2589 __cfqq = next;
2593 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2595 if (unlikely(cfqq == cfqd->active_queue)) {
2596 __cfq_slice_expired(cfqd, cfqq, 0);
2597 cfq_schedule_dispatch(cfqd);
2600 cfq_put_cooperator(cfqq);
2602 cfq_put_queue(cfqq);
2605 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2606 struct cfq_io_context *cic)
2608 struct io_context *ioc = cic->ioc;
2610 list_del_init(&cic->queue_list);
2613 * Make sure dead mark is seen for dead queues
2615 smp_wmb();
2616 cic->key = cfqd_dead_key(cfqd);
2618 rcu_read_lock();
2619 if (rcu_dereference(ioc->ioc_data) == cic) {
2620 rcu_read_unlock();
2621 spin_lock(&ioc->lock);
2622 rcu_assign_pointer(ioc->ioc_data, NULL);
2623 spin_unlock(&ioc->lock);
2624 } else
2625 rcu_read_unlock();
2627 if (cic->cfqq[BLK_RW_ASYNC]) {
2628 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2629 cic->cfqq[BLK_RW_ASYNC] = NULL;
2632 if (cic->cfqq[BLK_RW_SYNC]) {
2633 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2634 cic->cfqq[BLK_RW_SYNC] = NULL;
2638 static void cfq_exit_single_io_context(struct io_context *ioc,
2639 struct cfq_io_context *cic)
2641 struct cfq_data *cfqd = cic_to_cfqd(cic);
2643 if (cfqd) {
2644 struct request_queue *q = cfqd->queue;
2645 unsigned long flags;
2647 spin_lock_irqsave(q->queue_lock, flags);
2650 * Ensure we get a fresh copy of the ->key to prevent
2651 * race between exiting task and queue
2653 smp_read_barrier_depends();
2654 if (cic->key == cfqd)
2655 __cfq_exit_single_io_context(cfqd, cic);
2657 spin_unlock_irqrestore(q->queue_lock, flags);
2662 * The process that ioc belongs to has exited, we need to clean up
2663 * and put the internal structures we have that belongs to that process.
2665 static void cfq_exit_io_context(struct io_context *ioc)
2667 call_for_each_cic(ioc, cfq_exit_single_io_context);
2670 static struct cfq_io_context *
2671 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2673 struct cfq_io_context *cic;
2675 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2676 cfqd->queue->node);
2677 if (cic) {
2678 cic->last_end_request = jiffies;
2679 INIT_LIST_HEAD(&cic->queue_list);
2680 INIT_HLIST_NODE(&cic->cic_list);
2681 cic->dtor = cfq_free_io_context;
2682 cic->exit = cfq_exit_io_context;
2683 elv_ioc_count_inc(cfq_ioc_count);
2686 return cic;
2689 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2691 struct task_struct *tsk = current;
2692 int ioprio_class;
2694 if (!cfq_cfqq_prio_changed(cfqq))
2695 return;
2697 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2698 switch (ioprio_class) {
2699 default:
2700 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2701 case IOPRIO_CLASS_NONE:
2703 * no prio set, inherit CPU scheduling settings
2705 cfqq->ioprio = task_nice_ioprio(tsk);
2706 cfqq->ioprio_class = task_nice_ioclass(tsk);
2707 break;
2708 case IOPRIO_CLASS_RT:
2709 cfqq->ioprio = task_ioprio(ioc);
2710 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2711 break;
2712 case IOPRIO_CLASS_BE:
2713 cfqq->ioprio = task_ioprio(ioc);
2714 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2715 break;
2716 case IOPRIO_CLASS_IDLE:
2717 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2718 cfqq->ioprio = 7;
2719 cfq_clear_cfqq_idle_window(cfqq);
2720 break;
2724 * keep track of original prio settings in case we have to temporarily
2725 * elevate the priority of this queue
2727 cfqq->org_ioprio = cfqq->ioprio;
2728 cfqq->org_ioprio_class = cfqq->ioprio_class;
2729 cfq_clear_cfqq_prio_changed(cfqq);
2732 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2734 struct cfq_data *cfqd = cic_to_cfqd(cic);
2735 struct cfq_queue *cfqq;
2736 unsigned long flags;
2738 if (unlikely(!cfqd))
2739 return;
2741 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2743 cfqq = cic->cfqq[BLK_RW_ASYNC];
2744 if (cfqq) {
2745 struct cfq_queue *new_cfqq;
2746 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2747 GFP_ATOMIC);
2748 if (new_cfqq) {
2749 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2750 cfq_put_queue(cfqq);
2754 cfqq = cic->cfqq[BLK_RW_SYNC];
2755 if (cfqq)
2756 cfq_mark_cfqq_prio_changed(cfqq);
2758 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2761 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2763 call_for_each_cic(ioc, changed_ioprio);
2764 ioc->ioprio_changed = 0;
2767 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2768 pid_t pid, bool is_sync)
2770 RB_CLEAR_NODE(&cfqq->rb_node);
2771 RB_CLEAR_NODE(&cfqq->p_node);
2772 INIT_LIST_HEAD(&cfqq->fifo);
2774 atomic_set(&cfqq->ref, 0);
2775 cfqq->cfqd = cfqd;
2777 cfq_mark_cfqq_prio_changed(cfqq);
2779 if (is_sync) {
2780 if (!cfq_class_idle(cfqq))
2781 cfq_mark_cfqq_idle_window(cfqq);
2782 cfq_mark_cfqq_sync(cfqq);
2784 cfqq->pid = pid;
2787 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2788 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2790 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2791 struct cfq_data *cfqd = cic_to_cfqd(cic);
2792 unsigned long flags;
2793 struct request_queue *q;
2795 if (unlikely(!cfqd))
2796 return;
2798 q = cfqd->queue;
2800 spin_lock_irqsave(q->queue_lock, flags);
2802 if (sync_cfqq) {
2804 * Drop reference to sync queue. A new sync queue will be
2805 * assigned in new group upon arrival of a fresh request.
2807 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2808 cic_set_cfqq(cic, NULL, 1);
2809 cfq_put_queue(sync_cfqq);
2812 spin_unlock_irqrestore(q->queue_lock, flags);
2815 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2817 call_for_each_cic(ioc, changed_cgroup);
2818 ioc->cgroup_changed = 0;
2820 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2822 static struct cfq_queue *
2823 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2824 struct io_context *ioc, gfp_t gfp_mask)
2826 struct cfq_queue *cfqq, *new_cfqq = NULL;
2827 struct cfq_io_context *cic;
2828 struct cfq_group *cfqg;
2830 retry:
2831 cfqg = cfq_get_cfqg(cfqd, 1);
2832 cic = cfq_cic_lookup(cfqd, ioc);
2833 /* cic always exists here */
2834 cfqq = cic_to_cfqq(cic, is_sync);
2837 * Always try a new alloc if we fell back to the OOM cfqq
2838 * originally, since it should just be a temporary situation.
2840 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2841 cfqq = NULL;
2842 if (new_cfqq) {
2843 cfqq = new_cfqq;
2844 new_cfqq = NULL;
2845 } else if (gfp_mask & __GFP_WAIT) {
2846 spin_unlock_irq(cfqd->queue->queue_lock);
2847 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2848 gfp_mask | __GFP_ZERO,
2849 cfqd->queue->node);
2850 spin_lock_irq(cfqd->queue->queue_lock);
2851 if (new_cfqq)
2852 goto retry;
2853 } else {
2854 cfqq = kmem_cache_alloc_node(cfq_pool,
2855 gfp_mask | __GFP_ZERO,
2856 cfqd->queue->node);
2859 if (cfqq) {
2860 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2861 cfq_init_prio_data(cfqq, ioc);
2862 cfq_link_cfqq_cfqg(cfqq, cfqg);
2863 cfq_log_cfqq(cfqd, cfqq, "alloced");
2864 } else
2865 cfqq = &cfqd->oom_cfqq;
2868 if (new_cfqq)
2869 kmem_cache_free(cfq_pool, new_cfqq);
2871 return cfqq;
2874 static struct cfq_queue **
2875 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2877 switch (ioprio_class) {
2878 case IOPRIO_CLASS_RT:
2879 return &cfqd->async_cfqq[0][ioprio];
2880 case IOPRIO_CLASS_BE:
2881 return &cfqd->async_cfqq[1][ioprio];
2882 case IOPRIO_CLASS_IDLE:
2883 return &cfqd->async_idle_cfqq;
2884 default:
2885 BUG();
2889 static struct cfq_queue *
2890 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2891 gfp_t gfp_mask)
2893 const int ioprio = task_ioprio(ioc);
2894 const int ioprio_class = task_ioprio_class(ioc);
2895 struct cfq_queue **async_cfqq = NULL;
2896 struct cfq_queue *cfqq = NULL;
2898 if (!is_sync) {
2899 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2900 cfqq = *async_cfqq;
2903 if (!cfqq)
2904 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2907 * pin the queue now that it's allocated, scheduler exit will prune it
2909 if (!is_sync && !(*async_cfqq)) {
2910 atomic_inc(&cfqq->ref);
2911 *async_cfqq = cfqq;
2914 atomic_inc(&cfqq->ref);
2915 return cfqq;
2919 * We drop cfq io contexts lazily, so we may find a dead one.
2921 static void
2922 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2923 struct cfq_io_context *cic)
2925 unsigned long flags;
2927 WARN_ON(!list_empty(&cic->queue_list));
2928 BUG_ON(cic->key != cfqd_dead_key(cfqd));
2930 spin_lock_irqsave(&ioc->lock, flags);
2932 BUG_ON(ioc->ioc_data == cic);
2934 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
2935 hlist_del_rcu(&cic->cic_list);
2936 spin_unlock_irqrestore(&ioc->lock, flags);
2938 cfq_cic_free(cic);
2941 static struct cfq_io_context *
2942 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2944 struct cfq_io_context *cic;
2945 unsigned long flags;
2947 if (unlikely(!ioc))
2948 return NULL;
2950 rcu_read_lock();
2953 * we maintain a last-hit cache, to avoid browsing over the tree
2955 cic = rcu_dereference(ioc->ioc_data);
2956 if (cic && cic->key == cfqd) {
2957 rcu_read_unlock();
2958 return cic;
2961 do {
2962 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
2963 rcu_read_unlock();
2964 if (!cic)
2965 break;
2966 if (unlikely(cic->key != cfqd)) {
2967 cfq_drop_dead_cic(cfqd, ioc, cic);
2968 rcu_read_lock();
2969 continue;
2972 spin_lock_irqsave(&ioc->lock, flags);
2973 rcu_assign_pointer(ioc->ioc_data, cic);
2974 spin_unlock_irqrestore(&ioc->lock, flags);
2975 break;
2976 } while (1);
2978 return cic;
2982 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2983 * the process specific cfq io context when entered from the block layer.
2984 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2986 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2987 struct cfq_io_context *cic, gfp_t gfp_mask)
2989 unsigned long flags;
2990 int ret;
2992 ret = radix_tree_preload(gfp_mask);
2993 if (!ret) {
2994 cic->ioc = ioc;
2995 cic->key = cfqd;
2997 spin_lock_irqsave(&ioc->lock, flags);
2998 ret = radix_tree_insert(&ioc->radix_root,
2999 cfqd->cic_index, cic);
3000 if (!ret)
3001 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3002 spin_unlock_irqrestore(&ioc->lock, flags);
3004 radix_tree_preload_end();
3006 if (!ret) {
3007 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3008 list_add(&cic->queue_list, &cfqd->cic_list);
3009 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3013 if (ret)
3014 printk(KERN_ERR "cfq: cic link failed!\n");
3016 return ret;
3020 * Setup general io context and cfq io context. There can be several cfq
3021 * io contexts per general io context, if this process is doing io to more
3022 * than one device managed by cfq.
3024 static struct cfq_io_context *
3025 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3027 struct io_context *ioc = NULL;
3028 struct cfq_io_context *cic;
3030 might_sleep_if(gfp_mask & __GFP_WAIT);
3032 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3033 if (!ioc)
3034 return NULL;
3036 cic = cfq_cic_lookup(cfqd, ioc);
3037 if (cic)
3038 goto out;
3040 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3041 if (cic == NULL)
3042 goto err;
3044 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3045 goto err_free;
3047 out:
3048 smp_read_barrier_depends();
3049 if (unlikely(ioc->ioprio_changed))
3050 cfq_ioc_set_ioprio(ioc);
3052 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3053 if (unlikely(ioc->cgroup_changed))
3054 cfq_ioc_set_cgroup(ioc);
3055 #endif
3056 return cic;
3057 err_free:
3058 cfq_cic_free(cic);
3059 err:
3060 put_io_context(ioc);
3061 return NULL;
3064 static void
3065 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3067 unsigned long elapsed = jiffies - cic->last_end_request;
3068 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3070 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3071 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3072 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3075 static void
3076 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3077 struct request *rq)
3079 sector_t sdist = 0;
3080 sector_t n_sec = blk_rq_sectors(rq);
3081 if (cfqq->last_request_pos) {
3082 if (cfqq->last_request_pos < blk_rq_pos(rq))
3083 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3084 else
3085 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3088 cfqq->seek_history <<= 1;
3089 if (blk_queue_nonrot(cfqd->queue))
3090 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3091 else
3092 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3096 * Disable idle window if the process thinks too long or seeks so much that
3097 * it doesn't matter
3099 static void
3100 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3101 struct cfq_io_context *cic)
3103 int old_idle, enable_idle;
3106 * Don't idle for async or idle io prio class
3108 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3109 return;
3111 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3113 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3114 cfq_mark_cfqq_deep(cfqq);
3116 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3117 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3118 enable_idle = 0;
3119 else if (sample_valid(cic->ttime_samples)) {
3120 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3121 enable_idle = 0;
3122 else
3123 enable_idle = 1;
3126 if (old_idle != enable_idle) {
3127 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3128 if (enable_idle)
3129 cfq_mark_cfqq_idle_window(cfqq);
3130 else
3131 cfq_clear_cfqq_idle_window(cfqq);
3136 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3137 * no or if we aren't sure, a 1 will cause a preempt.
3139 static bool
3140 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3141 struct request *rq)
3143 struct cfq_queue *cfqq;
3145 cfqq = cfqd->active_queue;
3146 if (!cfqq)
3147 return false;
3149 if (cfq_class_idle(new_cfqq))
3150 return false;
3152 if (cfq_class_idle(cfqq))
3153 return true;
3156 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3158 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3159 return false;
3162 * if the new request is sync, but the currently running queue is
3163 * not, let the sync request have priority.
3165 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3166 return true;
3168 if (new_cfqq->cfqg != cfqq->cfqg)
3169 return false;
3171 if (cfq_slice_used(cfqq))
3172 return true;
3174 /* Allow preemption only if we are idling on sync-noidle tree */
3175 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3176 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3177 new_cfqq->service_tree->count == 2 &&
3178 RB_EMPTY_ROOT(&cfqq->sort_list))
3179 return true;
3182 * So both queues are sync. Let the new request get disk time if
3183 * it's a metadata request and the current queue is doing regular IO.
3185 if (rq_is_meta(rq) && !cfqq->meta_pending)
3186 return true;
3189 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3191 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3192 return true;
3194 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3195 return false;
3198 * if this request is as-good as one we would expect from the
3199 * current cfqq, let it preempt
3201 if (cfq_rq_close(cfqd, cfqq, rq))
3202 return true;
3204 return false;
3208 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3209 * let it have half of its nominal slice.
3211 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3213 cfq_log_cfqq(cfqd, cfqq, "preempt");
3214 cfq_slice_expired(cfqd, 1);
3217 * Put the new queue at the front of the of the current list,
3218 * so we know that it will be selected next.
3220 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3222 cfq_service_tree_add(cfqd, cfqq, 1);
3224 cfqq->slice_end = 0;
3225 cfq_mark_cfqq_slice_new(cfqq);
3229 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3230 * something we should do about it
3232 static void
3233 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3234 struct request *rq)
3236 struct cfq_io_context *cic = RQ_CIC(rq);
3238 cfqd->rq_queued++;
3239 if (rq_is_meta(rq))
3240 cfqq->meta_pending++;
3242 cfq_update_io_thinktime(cfqd, cic);
3243 cfq_update_io_seektime(cfqd, cfqq, rq);
3244 cfq_update_idle_window(cfqd, cfqq, cic);
3246 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3248 if (cfqq == cfqd->active_queue) {
3250 * Remember that we saw a request from this process, but
3251 * don't start queuing just yet. Otherwise we risk seeing lots
3252 * of tiny requests, because we disrupt the normal plugging
3253 * and merging. If the request is already larger than a single
3254 * page, let it rip immediately. For that case we assume that
3255 * merging is already done. Ditto for a busy system that
3256 * has other work pending, don't risk delaying until the
3257 * idle timer unplug to continue working.
3259 if (cfq_cfqq_wait_request(cfqq)) {
3260 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3261 cfqd->busy_queues > 1) {
3262 cfq_del_timer(cfqd, cfqq);
3263 cfq_clear_cfqq_wait_request(cfqq);
3264 __blk_run_queue(cfqd->queue);
3265 } else {
3266 cfq_blkiocg_update_idle_time_stats(
3267 &cfqq->cfqg->blkg);
3268 cfq_mark_cfqq_must_dispatch(cfqq);
3271 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3273 * not the active queue - expire current slice if it is
3274 * idle and has expired it's mean thinktime or this new queue
3275 * has some old slice time left and is of higher priority or
3276 * this new queue is RT and the current one is BE
3278 cfq_preempt_queue(cfqd, cfqq);
3279 __blk_run_queue(cfqd->queue);
3283 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3285 struct cfq_data *cfqd = q->elevator->elevator_data;
3286 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3288 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3289 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3291 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3292 list_add_tail(&rq->queuelist, &cfqq->fifo);
3293 cfq_add_rq_rb(rq);
3294 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3295 &cfqd->serving_group->blkg, rq_data_dir(rq),
3296 rq_is_sync(rq));
3297 cfq_rq_enqueued(cfqd, cfqq, rq);
3301 * Update hw_tag based on peak queue depth over 50 samples under
3302 * sufficient load.
3304 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3306 struct cfq_queue *cfqq = cfqd->active_queue;
3308 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3309 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3311 if (cfqd->hw_tag == 1)
3312 return;
3314 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3315 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3316 return;
3319 * If active queue hasn't enough requests and can idle, cfq might not
3320 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3321 * case
3323 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3324 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3325 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3326 return;
3328 if (cfqd->hw_tag_samples++ < 50)
3329 return;
3331 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3332 cfqd->hw_tag = 1;
3333 else
3334 cfqd->hw_tag = 0;
3337 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3339 struct cfq_io_context *cic = cfqd->active_cic;
3341 /* If there are other queues in the group, don't wait */
3342 if (cfqq->cfqg->nr_cfqq > 1)
3343 return false;
3345 if (cfq_slice_used(cfqq))
3346 return true;
3348 /* if slice left is less than think time, wait busy */
3349 if (cic && sample_valid(cic->ttime_samples)
3350 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3351 return true;
3354 * If think times is less than a jiffy than ttime_mean=0 and above
3355 * will not be true. It might happen that slice has not expired yet
3356 * but will expire soon (4-5 ns) during select_queue(). To cover the
3357 * case where think time is less than a jiffy, mark the queue wait
3358 * busy if only 1 jiffy is left in the slice.
3360 if (cfqq->slice_end - jiffies == 1)
3361 return true;
3363 return false;
3366 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3368 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3369 struct cfq_data *cfqd = cfqq->cfqd;
3370 const int sync = rq_is_sync(rq);
3371 unsigned long now;
3373 now = jiffies;
3374 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3376 cfq_update_hw_tag(cfqd);
3378 WARN_ON(!cfqd->rq_in_driver);
3379 WARN_ON(!cfqq->dispatched);
3380 cfqd->rq_in_driver--;
3381 cfqq->dispatched--;
3382 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3383 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3384 rq_data_dir(rq), rq_is_sync(rq));
3386 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3388 if (sync) {
3389 RQ_CIC(rq)->last_end_request = now;
3390 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3391 cfqd->last_delayed_sync = now;
3395 * If this is the active queue, check if it needs to be expired,
3396 * or if we want to idle in case it has no pending requests.
3398 if (cfqd->active_queue == cfqq) {
3399 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3401 if (cfq_cfqq_slice_new(cfqq)) {
3402 cfq_set_prio_slice(cfqd, cfqq);
3403 cfq_clear_cfqq_slice_new(cfqq);
3407 * Should we wait for next request to come in before we expire
3408 * the queue.
3410 if (cfq_should_wait_busy(cfqd, cfqq)) {
3411 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3412 cfq_mark_cfqq_wait_busy(cfqq);
3413 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3417 * Idling is not enabled on:
3418 * - expired queues
3419 * - idle-priority queues
3420 * - async queues
3421 * - queues with still some requests queued
3422 * - when there is a close cooperator
3424 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3425 cfq_slice_expired(cfqd, 1);
3426 else if (sync && cfqq_empty &&
3427 !cfq_close_cooperator(cfqd, cfqq)) {
3428 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3430 * Idling is enabled for SYNC_WORKLOAD.
3431 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3432 * only if we processed at least one !rq_noidle request
3434 if (cfqd->serving_type == SYNC_WORKLOAD
3435 || cfqd->noidle_tree_requires_idle
3436 || cfqq->cfqg->nr_cfqq == 1)
3437 cfq_arm_slice_timer(cfqd);
3441 if (!cfqd->rq_in_driver)
3442 cfq_schedule_dispatch(cfqd);
3446 * we temporarily boost lower priority queues if they are holding fs exclusive
3447 * resources. they are boosted to normal prio (CLASS_BE/4)
3449 static void cfq_prio_boost(struct cfq_queue *cfqq)
3451 if (has_fs_excl()) {
3453 * boost idle prio on transactions that would lock out other
3454 * users of the filesystem
3456 if (cfq_class_idle(cfqq))
3457 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3458 if (cfqq->ioprio > IOPRIO_NORM)
3459 cfqq->ioprio = IOPRIO_NORM;
3460 } else {
3462 * unboost the queue (if needed)
3464 cfqq->ioprio_class = cfqq->org_ioprio_class;
3465 cfqq->ioprio = cfqq->org_ioprio;
3469 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3471 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3472 cfq_mark_cfqq_must_alloc_slice(cfqq);
3473 return ELV_MQUEUE_MUST;
3476 return ELV_MQUEUE_MAY;
3479 static int cfq_may_queue(struct request_queue *q, int rw)
3481 struct cfq_data *cfqd = q->elevator->elevator_data;
3482 struct task_struct *tsk = current;
3483 struct cfq_io_context *cic;
3484 struct cfq_queue *cfqq;
3487 * don't force setup of a queue from here, as a call to may_queue
3488 * does not necessarily imply that a request actually will be queued.
3489 * so just lookup a possibly existing queue, or return 'may queue'
3490 * if that fails
3492 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3493 if (!cic)
3494 return ELV_MQUEUE_MAY;
3496 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3497 if (cfqq) {
3498 cfq_init_prio_data(cfqq, cic->ioc);
3499 cfq_prio_boost(cfqq);
3501 return __cfq_may_queue(cfqq);
3504 return ELV_MQUEUE_MAY;
3508 * queue lock held here
3510 static void cfq_put_request(struct request *rq)
3512 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3514 if (cfqq) {
3515 const int rw = rq_data_dir(rq);
3517 BUG_ON(!cfqq->allocated[rw]);
3518 cfqq->allocated[rw]--;
3520 put_io_context(RQ_CIC(rq)->ioc);
3522 rq->elevator_private = NULL;
3523 rq->elevator_private2 = NULL;
3525 /* Put down rq reference on cfqg */
3526 cfq_put_cfqg(RQ_CFQG(rq));
3527 rq->elevator_private3 = NULL;
3529 cfq_put_queue(cfqq);
3533 static struct cfq_queue *
3534 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3535 struct cfq_queue *cfqq)
3537 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3538 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3539 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3540 cfq_put_queue(cfqq);
3541 return cic_to_cfqq(cic, 1);
3545 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3546 * was the last process referring to said cfqq.
3548 static struct cfq_queue *
3549 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3551 if (cfqq_process_refs(cfqq) == 1) {
3552 cfqq->pid = current->pid;
3553 cfq_clear_cfqq_coop(cfqq);
3554 cfq_clear_cfqq_split_coop(cfqq);
3555 return cfqq;
3558 cic_set_cfqq(cic, NULL, 1);
3560 cfq_put_cooperator(cfqq);
3562 cfq_put_queue(cfqq);
3563 return NULL;
3566 * Allocate cfq data structures associated with this request.
3568 static int
3569 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3571 struct cfq_data *cfqd = q->elevator->elevator_data;
3572 struct cfq_io_context *cic;
3573 const int rw = rq_data_dir(rq);
3574 const bool is_sync = rq_is_sync(rq);
3575 struct cfq_queue *cfqq;
3576 unsigned long flags;
3578 might_sleep_if(gfp_mask & __GFP_WAIT);
3580 cic = cfq_get_io_context(cfqd, gfp_mask);
3582 spin_lock_irqsave(q->queue_lock, flags);
3584 if (!cic)
3585 goto queue_fail;
3587 new_queue:
3588 cfqq = cic_to_cfqq(cic, is_sync);
3589 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3590 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3591 cic_set_cfqq(cic, cfqq, is_sync);
3592 } else {
3594 * If the queue was seeky for too long, break it apart.
3596 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3597 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3598 cfqq = split_cfqq(cic, cfqq);
3599 if (!cfqq)
3600 goto new_queue;
3604 * Check to see if this queue is scheduled to merge with
3605 * another, closely cooperating queue. The merging of
3606 * queues happens here as it must be done in process context.
3607 * The reference on new_cfqq was taken in merge_cfqqs.
3609 if (cfqq->new_cfqq)
3610 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3613 cfqq->allocated[rw]++;
3614 atomic_inc(&cfqq->ref);
3616 spin_unlock_irqrestore(q->queue_lock, flags);
3618 rq->elevator_private = cic;
3619 rq->elevator_private2 = cfqq;
3620 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3621 return 0;
3623 queue_fail:
3624 if (cic)
3625 put_io_context(cic->ioc);
3627 cfq_schedule_dispatch(cfqd);
3628 spin_unlock_irqrestore(q->queue_lock, flags);
3629 cfq_log(cfqd, "set_request fail");
3630 return 1;
3633 static void cfq_kick_queue(struct work_struct *work)
3635 struct cfq_data *cfqd =
3636 container_of(work, struct cfq_data, unplug_work);
3637 struct request_queue *q = cfqd->queue;
3639 spin_lock_irq(q->queue_lock);
3640 __blk_run_queue(cfqd->queue);
3641 spin_unlock_irq(q->queue_lock);
3645 * Timer running if the active_queue is currently idling inside its time slice
3647 static void cfq_idle_slice_timer(unsigned long data)
3649 struct cfq_data *cfqd = (struct cfq_data *) data;
3650 struct cfq_queue *cfqq;
3651 unsigned long flags;
3652 int timed_out = 1;
3654 cfq_log(cfqd, "idle timer fired");
3656 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3658 cfqq = cfqd->active_queue;
3659 if (cfqq) {
3660 timed_out = 0;
3663 * We saw a request before the queue expired, let it through
3665 if (cfq_cfqq_must_dispatch(cfqq))
3666 goto out_kick;
3669 * expired
3671 if (cfq_slice_used(cfqq))
3672 goto expire;
3675 * only expire and reinvoke request handler, if there are
3676 * other queues with pending requests
3678 if (!cfqd->busy_queues)
3679 goto out_cont;
3682 * not expired and it has a request pending, let it dispatch
3684 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3685 goto out_kick;
3688 * Queue depth flag is reset only when the idle didn't succeed
3690 cfq_clear_cfqq_deep(cfqq);
3692 expire:
3693 cfq_slice_expired(cfqd, timed_out);
3694 out_kick:
3695 cfq_schedule_dispatch(cfqd);
3696 out_cont:
3697 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3700 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3702 del_timer_sync(&cfqd->idle_slice_timer);
3703 cancel_work_sync(&cfqd->unplug_work);
3706 static void cfq_put_async_queues(struct cfq_data *cfqd)
3708 int i;
3710 for (i = 0; i < IOPRIO_BE_NR; i++) {
3711 if (cfqd->async_cfqq[0][i])
3712 cfq_put_queue(cfqd->async_cfqq[0][i]);
3713 if (cfqd->async_cfqq[1][i])
3714 cfq_put_queue(cfqd->async_cfqq[1][i]);
3717 if (cfqd->async_idle_cfqq)
3718 cfq_put_queue(cfqd->async_idle_cfqq);
3721 static void cfq_cfqd_free(struct rcu_head *head)
3723 kfree(container_of(head, struct cfq_data, rcu));
3726 static void cfq_exit_queue(struct elevator_queue *e)
3728 struct cfq_data *cfqd = e->elevator_data;
3729 struct request_queue *q = cfqd->queue;
3731 cfq_shutdown_timer_wq(cfqd);
3733 spin_lock_irq(q->queue_lock);
3735 if (cfqd->active_queue)
3736 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3738 while (!list_empty(&cfqd->cic_list)) {
3739 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3740 struct cfq_io_context,
3741 queue_list);
3743 __cfq_exit_single_io_context(cfqd, cic);
3746 cfq_put_async_queues(cfqd);
3747 cfq_release_cfq_groups(cfqd);
3748 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3750 spin_unlock_irq(q->queue_lock);
3752 cfq_shutdown_timer_wq(cfqd);
3754 spin_lock(&cic_index_lock);
3755 ida_remove(&cic_index_ida, cfqd->cic_index);
3756 spin_unlock(&cic_index_lock);
3758 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3759 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3762 static int cfq_alloc_cic_index(void)
3764 int index, error;
3766 do {
3767 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3768 return -ENOMEM;
3770 spin_lock(&cic_index_lock);
3771 error = ida_get_new(&cic_index_ida, &index);
3772 spin_unlock(&cic_index_lock);
3773 if (error && error != -EAGAIN)
3774 return error;
3775 } while (error);
3777 return index;
3780 static void *cfq_init_queue(struct request_queue *q)
3782 struct cfq_data *cfqd;
3783 int i, j;
3784 struct cfq_group *cfqg;
3785 struct cfq_rb_root *st;
3787 i = cfq_alloc_cic_index();
3788 if (i < 0)
3789 return NULL;
3791 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3792 if (!cfqd)
3793 return NULL;
3795 cfqd->cic_index = i;
3797 /* Init root service tree */
3798 cfqd->grp_service_tree = CFQ_RB_ROOT;
3800 /* Init root group */
3801 cfqg = &cfqd->root_group;
3802 for_each_cfqg_st(cfqg, i, j, st)
3803 *st = CFQ_RB_ROOT;
3804 RB_CLEAR_NODE(&cfqg->rb_node);
3806 /* Give preference to root group over other groups */
3807 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3809 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3811 * Take a reference to root group which we never drop. This is just
3812 * to make sure that cfq_put_cfqg() does not try to kfree root group
3814 atomic_set(&cfqg->ref, 1);
3815 rcu_read_lock();
3816 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3817 (void *)cfqd, 0);
3818 rcu_read_unlock();
3819 #endif
3821 * Not strictly needed (since RB_ROOT just clears the node and we
3822 * zeroed cfqd on alloc), but better be safe in case someone decides
3823 * to add magic to the rb code
3825 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3826 cfqd->prio_trees[i] = RB_ROOT;
3829 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3830 * Grab a permanent reference to it, so that the normal code flow
3831 * will not attempt to free it.
3833 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3834 atomic_inc(&cfqd->oom_cfqq.ref);
3835 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3837 INIT_LIST_HEAD(&cfqd->cic_list);
3839 cfqd->queue = q;
3841 init_timer(&cfqd->idle_slice_timer);
3842 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3843 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3845 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3847 cfqd->cfq_quantum = cfq_quantum;
3848 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3849 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3850 cfqd->cfq_back_max = cfq_back_max;
3851 cfqd->cfq_back_penalty = cfq_back_penalty;
3852 cfqd->cfq_slice[0] = cfq_slice_async;
3853 cfqd->cfq_slice[1] = cfq_slice_sync;
3854 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3855 cfqd->cfq_slice_idle = cfq_slice_idle;
3856 cfqd->cfq_latency = 1;
3857 cfqd->cfq_group_isolation = 0;
3858 cfqd->hw_tag = -1;
3860 * we optimistically start assuming sync ops weren't delayed in last
3861 * second, in order to have larger depth for async operations.
3863 cfqd->last_delayed_sync = jiffies - HZ;
3864 return cfqd;
3867 static void cfq_slab_kill(void)
3870 * Caller already ensured that pending RCU callbacks are completed,
3871 * so we should have no busy allocations at this point.
3873 if (cfq_pool)
3874 kmem_cache_destroy(cfq_pool);
3875 if (cfq_ioc_pool)
3876 kmem_cache_destroy(cfq_ioc_pool);
3879 static int __init cfq_slab_setup(void)
3881 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3882 if (!cfq_pool)
3883 goto fail;
3885 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3886 if (!cfq_ioc_pool)
3887 goto fail;
3889 return 0;
3890 fail:
3891 cfq_slab_kill();
3892 return -ENOMEM;
3896 * sysfs parts below -->
3898 static ssize_t
3899 cfq_var_show(unsigned int var, char *page)
3901 return sprintf(page, "%d\n", var);
3904 static ssize_t
3905 cfq_var_store(unsigned int *var, const char *page, size_t count)
3907 char *p = (char *) page;
3909 *var = simple_strtoul(p, &p, 10);
3910 return count;
3913 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3914 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3916 struct cfq_data *cfqd = e->elevator_data; \
3917 unsigned int __data = __VAR; \
3918 if (__CONV) \
3919 __data = jiffies_to_msecs(__data); \
3920 return cfq_var_show(__data, (page)); \
3922 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3923 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3924 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3925 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3926 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3927 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3928 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3929 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3930 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3931 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3932 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3933 #undef SHOW_FUNCTION
3935 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3936 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3938 struct cfq_data *cfqd = e->elevator_data; \
3939 unsigned int __data; \
3940 int ret = cfq_var_store(&__data, (page), count); \
3941 if (__data < (MIN)) \
3942 __data = (MIN); \
3943 else if (__data > (MAX)) \
3944 __data = (MAX); \
3945 if (__CONV) \
3946 *(__PTR) = msecs_to_jiffies(__data); \
3947 else \
3948 *(__PTR) = __data; \
3949 return ret; \
3951 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3952 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3953 UINT_MAX, 1);
3954 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3955 UINT_MAX, 1);
3956 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3957 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3958 UINT_MAX, 0);
3959 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3960 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3961 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3962 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3963 UINT_MAX, 0);
3964 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3965 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3966 #undef STORE_FUNCTION
3968 #define CFQ_ATTR(name) \
3969 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3971 static struct elv_fs_entry cfq_attrs[] = {
3972 CFQ_ATTR(quantum),
3973 CFQ_ATTR(fifo_expire_sync),
3974 CFQ_ATTR(fifo_expire_async),
3975 CFQ_ATTR(back_seek_max),
3976 CFQ_ATTR(back_seek_penalty),
3977 CFQ_ATTR(slice_sync),
3978 CFQ_ATTR(slice_async),
3979 CFQ_ATTR(slice_async_rq),
3980 CFQ_ATTR(slice_idle),
3981 CFQ_ATTR(low_latency),
3982 CFQ_ATTR(group_isolation),
3983 __ATTR_NULL
3986 static struct elevator_type iosched_cfq = {
3987 .ops = {
3988 .elevator_merge_fn = cfq_merge,
3989 .elevator_merged_fn = cfq_merged_request,
3990 .elevator_merge_req_fn = cfq_merged_requests,
3991 .elevator_allow_merge_fn = cfq_allow_merge,
3992 .elevator_bio_merged_fn = cfq_bio_merged,
3993 .elevator_dispatch_fn = cfq_dispatch_requests,
3994 .elevator_add_req_fn = cfq_insert_request,
3995 .elevator_activate_req_fn = cfq_activate_request,
3996 .elevator_deactivate_req_fn = cfq_deactivate_request,
3997 .elevator_queue_empty_fn = cfq_queue_empty,
3998 .elevator_completed_req_fn = cfq_completed_request,
3999 .elevator_former_req_fn = elv_rb_former_request,
4000 .elevator_latter_req_fn = elv_rb_latter_request,
4001 .elevator_set_req_fn = cfq_set_request,
4002 .elevator_put_req_fn = cfq_put_request,
4003 .elevator_may_queue_fn = cfq_may_queue,
4004 .elevator_init_fn = cfq_init_queue,
4005 .elevator_exit_fn = cfq_exit_queue,
4006 .trim = cfq_free_io_context,
4008 .elevator_attrs = cfq_attrs,
4009 .elevator_name = "cfq",
4010 .elevator_owner = THIS_MODULE,
4013 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4014 static struct blkio_policy_type blkio_policy_cfq = {
4015 .ops = {
4016 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4017 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4020 #else
4021 static struct blkio_policy_type blkio_policy_cfq;
4022 #endif
4024 static int __init cfq_init(void)
4027 * could be 0 on HZ < 1000 setups
4029 if (!cfq_slice_async)
4030 cfq_slice_async = 1;
4031 if (!cfq_slice_idle)
4032 cfq_slice_idle = 1;
4034 if (cfq_slab_setup())
4035 return -ENOMEM;
4037 elv_register(&iosched_cfq);
4038 blkio_policy_register(&blkio_policy_cfq);
4040 return 0;
4043 static void __exit cfq_exit(void)
4045 DECLARE_COMPLETION_ONSTACK(all_gone);
4046 blkio_policy_unregister(&blkio_policy_cfq);
4047 elv_unregister(&iosched_cfq);
4048 ioc_gone = &all_gone;
4049 /* ioc_gone's update must be visible before reading ioc_count */
4050 smp_wmb();
4053 * this also protects us from entering cfq_slab_kill() with
4054 * pending RCU callbacks
4056 if (elv_ioc_count_read(cfq_ioc_count))
4057 wait_for_completion(&all_gone);
4058 ida_destroy(&cic_index_ida);
4059 cfq_slab_kill();
4062 module_init(cfq_init);
4063 module_exit(cfq_exit);
4065 MODULE_AUTHOR("Jens Axboe");
4066 MODULE_LICENSE("GPL");
4067 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");