perf_event: Remove redundant zero fill
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
blobb26cb03c19140bf2a37aad6a58fac8bb0f4ddafb
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly = 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid > -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid > 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid > 1;
74 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
77 * max perf event sample rate
79 int sysctl_perf_event_sample_rate __read_mostly = 100000;
81 static atomic64_t perf_event_id;
84 * Lock for (sysadmin-configurable) event reservations:
86 static DEFINE_SPINLOCK(perf_resource_lock);
89 * Architecture provided APIs - weak aliases:
91 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
93 return NULL;
96 void __weak hw_perf_disable(void) { barrier(); }
97 void __weak hw_perf_enable(void) { barrier(); }
99 void __weak hw_perf_event_setup(int cpu) { barrier(); }
100 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
102 int __weak
103 hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
107 return 0;
110 void __weak perf_event_print_debug(void) { }
112 static DEFINE_PER_CPU(int, perf_disable_count);
114 void __perf_disable(void)
116 __get_cpu_var(perf_disable_count)++;
119 bool __perf_enable(void)
121 return !--__get_cpu_var(perf_disable_count);
124 void perf_disable(void)
126 __perf_disable();
127 hw_perf_disable();
130 void perf_enable(void)
132 if (__perf_enable())
133 hw_perf_enable();
136 static void get_ctx(struct perf_event_context *ctx)
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
141 static void free_ctx(struct rcu_head *head)
143 struct perf_event_context *ctx;
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
149 static void put_ctx(struct perf_event_context *ctx)
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
160 static void unclone_ctx(struct perf_event_context *ctx)
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
169 * If we inherit events we want to return the parent event id
170 * to userspace.
172 static u64 primary_event_id(struct perf_event *event)
174 u64 id = event->id;
176 if (event->parent)
177 id = event->parent->id;
179 return id;
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
187 static struct perf_event_context *
188 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
190 struct perf_event_context *ctx;
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
217 rcu_read_unlock();
218 return ctx;
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
226 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
228 struct perf_event_context *ctx;
229 unsigned long flags;
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
236 return ctx;
239 static void perf_unpin_context(struct perf_event_context *ctx)
241 unsigned long flags;
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
250 * Add a event from the lists for its context.
251 * Must be called with ctx->mutex and ctx->lock held.
253 static void
254 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
256 struct perf_event *group_leader = event->group_leader;
259 * Depending on whether it is a standalone or sibling event,
260 * add it straight to the context's event list, or to the group
261 * leader's sibling list:
263 if (group_leader == event)
264 list_add_tail(&event->group_entry, &ctx->group_list);
265 else {
266 list_add_tail(&event->group_entry, &group_leader->sibling_list);
267 group_leader->nr_siblings++;
270 list_add_rcu(&event->event_entry, &ctx->event_list);
271 ctx->nr_events++;
272 if (event->attr.inherit_stat)
273 ctx->nr_stat++;
277 * Remove a event from the lists for its context.
278 * Must be called with ctx->mutex and ctx->lock held.
280 static void
281 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
283 struct perf_event *sibling, *tmp;
285 if (list_empty(&event->group_entry))
286 return;
287 ctx->nr_events--;
288 if (event->attr.inherit_stat)
289 ctx->nr_stat--;
291 list_del_init(&event->group_entry);
292 list_del_rcu(&event->event_entry);
294 if (event->group_leader != event)
295 event->group_leader->nr_siblings--;
298 * If this was a group event with sibling events then
299 * upgrade the siblings to singleton events by adding them
300 * to the context list directly:
302 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
304 list_move_tail(&sibling->group_entry, &ctx->group_list);
305 sibling->group_leader = sibling;
309 static void
310 event_sched_out(struct perf_event *event,
311 struct perf_cpu_context *cpuctx,
312 struct perf_event_context *ctx)
314 if (event->state != PERF_EVENT_STATE_ACTIVE)
315 return;
317 event->state = PERF_EVENT_STATE_INACTIVE;
318 if (event->pending_disable) {
319 event->pending_disable = 0;
320 event->state = PERF_EVENT_STATE_OFF;
322 event->tstamp_stopped = ctx->time;
323 event->pmu->disable(event);
324 event->oncpu = -1;
326 if (!is_software_event(event))
327 cpuctx->active_oncpu--;
328 ctx->nr_active--;
329 if (event->attr.exclusive || !cpuctx->active_oncpu)
330 cpuctx->exclusive = 0;
333 static void
334 group_sched_out(struct perf_event *group_event,
335 struct perf_cpu_context *cpuctx,
336 struct perf_event_context *ctx)
338 struct perf_event *event;
340 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341 return;
343 event_sched_out(group_event, cpuctx, ctx);
346 * Schedule out siblings (if any):
348 list_for_each_entry(event, &group_event->sibling_list, group_entry)
349 event_sched_out(event, cpuctx, ctx);
351 if (group_event->attr.exclusive)
352 cpuctx->exclusive = 0;
356 * Cross CPU call to remove a performance event
358 * We disable the event on the hardware level first. After that we
359 * remove it from the context list.
361 static void __perf_event_remove_from_context(void *info)
363 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364 struct perf_event *event = info;
365 struct perf_event_context *ctx = event->ctx;
368 * If this is a task context, we need to check whether it is
369 * the current task context of this cpu. If not it has been
370 * scheduled out before the smp call arrived.
372 if (ctx->task && cpuctx->task_ctx != ctx)
373 return;
375 spin_lock(&ctx->lock);
377 * Protect the list operation against NMI by disabling the
378 * events on a global level.
380 perf_disable();
382 event_sched_out(event, cpuctx, ctx);
384 list_del_event(event, ctx);
386 if (!ctx->task) {
388 * Allow more per task events with respect to the
389 * reservation:
391 cpuctx->max_pertask =
392 min(perf_max_events - ctx->nr_events,
393 perf_max_events - perf_reserved_percpu);
396 perf_enable();
397 spin_unlock(&ctx->lock);
402 * Remove the event from a task's (or a CPU's) list of events.
404 * Must be called with ctx->mutex held.
406 * CPU events are removed with a smp call. For task events we only
407 * call when the task is on a CPU.
409 * If event->ctx is a cloned context, callers must make sure that
410 * every task struct that event->ctx->task could possibly point to
411 * remains valid. This is OK when called from perf_release since
412 * that only calls us on the top-level context, which can't be a clone.
413 * When called from perf_event_exit_task, it's OK because the
414 * context has been detached from its task.
416 static void perf_event_remove_from_context(struct perf_event *event)
418 struct perf_event_context *ctx = event->ctx;
419 struct task_struct *task = ctx->task;
421 if (!task) {
423 * Per cpu events are removed via an smp call and
424 * the removal is always sucessful.
426 smp_call_function_single(event->cpu,
427 __perf_event_remove_from_context,
428 event, 1);
429 return;
432 retry:
433 task_oncpu_function_call(task, __perf_event_remove_from_context,
434 event);
436 spin_lock_irq(&ctx->lock);
438 * If the context is active we need to retry the smp call.
440 if (ctx->nr_active && !list_empty(&event->group_entry)) {
441 spin_unlock_irq(&ctx->lock);
442 goto retry;
446 * The lock prevents that this context is scheduled in so we
447 * can remove the event safely, if the call above did not
448 * succeed.
450 if (!list_empty(&event->group_entry)) {
451 list_del_event(event, ctx);
453 spin_unlock_irq(&ctx->lock);
456 static inline u64 perf_clock(void)
458 return cpu_clock(smp_processor_id());
462 * Update the record of the current time in a context.
464 static void update_context_time(struct perf_event_context *ctx)
466 u64 now = perf_clock();
468 ctx->time += now - ctx->timestamp;
469 ctx->timestamp = now;
473 * Update the total_time_enabled and total_time_running fields for a event.
475 static void update_event_times(struct perf_event *event)
477 struct perf_event_context *ctx = event->ctx;
478 u64 run_end;
480 if (event->state < PERF_EVENT_STATE_INACTIVE ||
481 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482 return;
484 event->total_time_enabled = ctx->time - event->tstamp_enabled;
486 if (event->state == PERF_EVENT_STATE_INACTIVE)
487 run_end = event->tstamp_stopped;
488 else
489 run_end = ctx->time;
491 event->total_time_running = run_end - event->tstamp_running;
495 * Update total_time_enabled and total_time_running for all events in a group.
497 static void update_group_times(struct perf_event *leader)
499 struct perf_event *event;
501 update_event_times(leader);
502 list_for_each_entry(event, &leader->sibling_list, group_entry)
503 update_event_times(event);
507 * Cross CPU call to disable a performance event
509 static void __perf_event_disable(void *info)
511 struct perf_event *event = info;
512 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513 struct perf_event_context *ctx = event->ctx;
516 * If this is a per-task event, need to check whether this
517 * event's task is the current task on this cpu.
519 if (ctx->task && cpuctx->task_ctx != ctx)
520 return;
522 spin_lock(&ctx->lock);
525 * If the event is on, turn it off.
526 * If it is in error state, leave it in error state.
528 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529 update_context_time(ctx);
530 update_group_times(event);
531 if (event == event->group_leader)
532 group_sched_out(event, cpuctx, ctx);
533 else
534 event_sched_out(event, cpuctx, ctx);
535 event->state = PERF_EVENT_STATE_OFF;
538 spin_unlock(&ctx->lock);
542 * Disable a event.
544 * If event->ctx is a cloned context, callers must make sure that
545 * every task struct that event->ctx->task could possibly point to
546 * remains valid. This condition is satisifed when called through
547 * perf_event_for_each_child or perf_event_for_each because they
548 * hold the top-level event's child_mutex, so any descendant that
549 * goes to exit will block in sync_child_event.
550 * When called from perf_pending_event it's OK because event->ctx
551 * is the current context on this CPU and preemption is disabled,
552 * hence we can't get into perf_event_task_sched_out for this context.
554 static void perf_event_disable(struct perf_event *event)
556 struct perf_event_context *ctx = event->ctx;
557 struct task_struct *task = ctx->task;
559 if (!task) {
561 * Disable the event on the cpu that it's on
563 smp_call_function_single(event->cpu, __perf_event_disable,
564 event, 1);
565 return;
568 retry:
569 task_oncpu_function_call(task, __perf_event_disable, event);
571 spin_lock_irq(&ctx->lock);
573 * If the event is still active, we need to retry the cross-call.
575 if (event->state == PERF_EVENT_STATE_ACTIVE) {
576 spin_unlock_irq(&ctx->lock);
577 goto retry;
581 * Since we have the lock this context can't be scheduled
582 * in, so we can change the state safely.
584 if (event->state == PERF_EVENT_STATE_INACTIVE) {
585 update_group_times(event);
586 event->state = PERF_EVENT_STATE_OFF;
589 spin_unlock_irq(&ctx->lock);
592 static int
593 event_sched_in(struct perf_event *event,
594 struct perf_cpu_context *cpuctx,
595 struct perf_event_context *ctx,
596 int cpu)
598 if (event->state <= PERF_EVENT_STATE_OFF)
599 return 0;
601 event->state = PERF_EVENT_STATE_ACTIVE;
602 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
604 * The new state must be visible before we turn it on in the hardware:
606 smp_wmb();
608 if (event->pmu->enable(event)) {
609 event->state = PERF_EVENT_STATE_INACTIVE;
610 event->oncpu = -1;
611 return -EAGAIN;
614 event->tstamp_running += ctx->time - event->tstamp_stopped;
616 if (!is_software_event(event))
617 cpuctx->active_oncpu++;
618 ctx->nr_active++;
620 if (event->attr.exclusive)
621 cpuctx->exclusive = 1;
623 return 0;
626 static int
627 group_sched_in(struct perf_event *group_event,
628 struct perf_cpu_context *cpuctx,
629 struct perf_event_context *ctx,
630 int cpu)
632 struct perf_event *event, *partial_group;
633 int ret;
635 if (group_event->state == PERF_EVENT_STATE_OFF)
636 return 0;
638 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639 if (ret)
640 return ret < 0 ? ret : 0;
642 if (event_sched_in(group_event, cpuctx, ctx, cpu))
643 return -EAGAIN;
646 * Schedule in siblings as one group (if any):
648 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
649 if (event_sched_in(event, cpuctx, ctx, cpu)) {
650 partial_group = event;
651 goto group_error;
655 return 0;
657 group_error:
659 * Groups can be scheduled in as one unit only, so undo any
660 * partial group before returning:
662 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
663 if (event == partial_group)
664 break;
665 event_sched_out(event, cpuctx, ctx);
667 event_sched_out(group_event, cpuctx, ctx);
669 return -EAGAIN;
673 * Return 1 for a group consisting entirely of software events,
674 * 0 if the group contains any hardware events.
676 static int is_software_only_group(struct perf_event *leader)
678 struct perf_event *event;
680 if (!is_software_event(leader))
681 return 0;
683 list_for_each_entry(event, &leader->sibling_list, group_entry)
684 if (!is_software_event(event))
685 return 0;
687 return 1;
691 * Work out whether we can put this event group on the CPU now.
693 static int group_can_go_on(struct perf_event *event,
694 struct perf_cpu_context *cpuctx,
695 int can_add_hw)
698 * Groups consisting entirely of software events can always go on.
700 if (is_software_only_group(event))
701 return 1;
703 * If an exclusive group is already on, no other hardware
704 * events can go on.
706 if (cpuctx->exclusive)
707 return 0;
709 * If this group is exclusive and there are already
710 * events on the CPU, it can't go on.
712 if (event->attr.exclusive && cpuctx->active_oncpu)
713 return 0;
715 * Otherwise, try to add it if all previous groups were able
716 * to go on.
718 return can_add_hw;
721 static void add_event_to_ctx(struct perf_event *event,
722 struct perf_event_context *ctx)
724 list_add_event(event, ctx);
725 event->tstamp_enabled = ctx->time;
726 event->tstamp_running = ctx->time;
727 event->tstamp_stopped = ctx->time;
731 * Cross CPU call to install and enable a performance event
733 * Must be called with ctx->mutex held
735 static void __perf_install_in_context(void *info)
737 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 struct perf_event *event = info;
739 struct perf_event_context *ctx = event->ctx;
740 struct perf_event *leader = event->group_leader;
741 int cpu = smp_processor_id();
742 int err;
745 * If this is a task context, we need to check whether it is
746 * the current task context of this cpu. If not it has been
747 * scheduled out before the smp call arrived.
748 * Or possibly this is the right context but it isn't
749 * on this cpu because it had no events.
751 if (ctx->task && cpuctx->task_ctx != ctx) {
752 if (cpuctx->task_ctx || ctx->task != current)
753 return;
754 cpuctx->task_ctx = ctx;
757 spin_lock(&ctx->lock);
758 ctx->is_active = 1;
759 update_context_time(ctx);
762 * Protect the list operation against NMI by disabling the
763 * events on a global level. NOP for non NMI based events.
765 perf_disable();
767 add_event_to_ctx(event, ctx);
770 * Don't put the event on if it is disabled or if
771 * it is in a group and the group isn't on.
773 if (event->state != PERF_EVENT_STATE_INACTIVE ||
774 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775 goto unlock;
778 * An exclusive event can't go on if there are already active
779 * hardware events, and no hardware event can go on if there
780 * is already an exclusive event on.
782 if (!group_can_go_on(event, cpuctx, 1))
783 err = -EEXIST;
784 else
785 err = event_sched_in(event, cpuctx, ctx, cpu);
787 if (err) {
789 * This event couldn't go on. If it is in a group
790 * then we have to pull the whole group off.
791 * If the event group is pinned then put it in error state.
793 if (leader != event)
794 group_sched_out(leader, cpuctx, ctx);
795 if (leader->attr.pinned) {
796 update_group_times(leader);
797 leader->state = PERF_EVENT_STATE_ERROR;
801 if (!err && !ctx->task && cpuctx->max_pertask)
802 cpuctx->max_pertask--;
804 unlock:
805 perf_enable();
807 spin_unlock(&ctx->lock);
811 * Attach a performance event to a context
813 * First we add the event to the list with the hardware enable bit
814 * in event->hw_config cleared.
816 * If the event is attached to a task which is on a CPU we use a smp
817 * call to enable it in the task context. The task might have been
818 * scheduled away, but we check this in the smp call again.
820 * Must be called with ctx->mutex held.
822 static void
823 perf_install_in_context(struct perf_event_context *ctx,
824 struct perf_event *event,
825 int cpu)
827 struct task_struct *task = ctx->task;
829 if (!task) {
831 * Per cpu events are installed via an smp call and
832 * the install is always sucessful.
834 smp_call_function_single(cpu, __perf_install_in_context,
835 event, 1);
836 return;
839 retry:
840 task_oncpu_function_call(task, __perf_install_in_context,
841 event);
843 spin_lock_irq(&ctx->lock);
845 * we need to retry the smp call.
847 if (ctx->is_active && list_empty(&event->group_entry)) {
848 spin_unlock_irq(&ctx->lock);
849 goto retry;
853 * The lock prevents that this context is scheduled in so we
854 * can add the event safely, if it the call above did not
855 * succeed.
857 if (list_empty(&event->group_entry))
858 add_event_to_ctx(event, ctx);
859 spin_unlock_irq(&ctx->lock);
863 * Put a event into inactive state and update time fields.
864 * Enabling the leader of a group effectively enables all
865 * the group members that aren't explicitly disabled, so we
866 * have to update their ->tstamp_enabled also.
867 * Note: this works for group members as well as group leaders
868 * since the non-leader members' sibling_lists will be empty.
870 static void __perf_event_mark_enabled(struct perf_event *event,
871 struct perf_event_context *ctx)
873 struct perf_event *sub;
875 event->state = PERF_EVENT_STATE_INACTIVE;
876 event->tstamp_enabled = ctx->time - event->total_time_enabled;
877 list_for_each_entry(sub, &event->sibling_list, group_entry)
878 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879 sub->tstamp_enabled =
880 ctx->time - sub->total_time_enabled;
884 * Cross CPU call to enable a performance event
886 static void __perf_event_enable(void *info)
888 struct perf_event *event = info;
889 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890 struct perf_event_context *ctx = event->ctx;
891 struct perf_event *leader = event->group_leader;
892 int err;
895 * If this is a per-task event, need to check whether this
896 * event's task is the current task on this cpu.
898 if (ctx->task && cpuctx->task_ctx != ctx) {
899 if (cpuctx->task_ctx || ctx->task != current)
900 return;
901 cpuctx->task_ctx = ctx;
904 spin_lock(&ctx->lock);
905 ctx->is_active = 1;
906 update_context_time(ctx);
908 if (event->state >= PERF_EVENT_STATE_INACTIVE)
909 goto unlock;
910 __perf_event_mark_enabled(event, ctx);
913 * If the event is in a group and isn't the group leader,
914 * then don't put it on unless the group is on.
916 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917 goto unlock;
919 if (!group_can_go_on(event, cpuctx, 1)) {
920 err = -EEXIST;
921 } else {
922 perf_disable();
923 if (event == leader)
924 err = group_sched_in(event, cpuctx, ctx,
925 smp_processor_id());
926 else
927 err = event_sched_in(event, cpuctx, ctx,
928 smp_processor_id());
929 perf_enable();
932 if (err) {
934 * If this event can't go on and it's part of a
935 * group, then the whole group has to come off.
937 if (leader != event)
938 group_sched_out(leader, cpuctx, ctx);
939 if (leader->attr.pinned) {
940 update_group_times(leader);
941 leader->state = PERF_EVENT_STATE_ERROR;
945 unlock:
946 spin_unlock(&ctx->lock);
950 * Enable a event.
952 * If event->ctx is a cloned context, callers must make sure that
953 * every task struct that event->ctx->task could possibly point to
954 * remains valid. This condition is satisfied when called through
955 * perf_event_for_each_child or perf_event_for_each as described
956 * for perf_event_disable.
958 static void perf_event_enable(struct perf_event *event)
960 struct perf_event_context *ctx = event->ctx;
961 struct task_struct *task = ctx->task;
963 if (!task) {
965 * Enable the event on the cpu that it's on
967 smp_call_function_single(event->cpu, __perf_event_enable,
968 event, 1);
969 return;
972 spin_lock_irq(&ctx->lock);
973 if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 goto out;
977 * If the event is in error state, clear that first.
978 * That way, if we see the event in error state below, we
979 * know that it has gone back into error state, as distinct
980 * from the task having been scheduled away before the
981 * cross-call arrived.
983 if (event->state == PERF_EVENT_STATE_ERROR)
984 event->state = PERF_EVENT_STATE_OFF;
986 retry:
987 spin_unlock_irq(&ctx->lock);
988 task_oncpu_function_call(task, __perf_event_enable, event);
990 spin_lock_irq(&ctx->lock);
993 * If the context is active and the event is still off,
994 * we need to retry the cross-call.
996 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 goto retry;
1000 * Since we have the lock this context can't be scheduled
1001 * in, so we can change the state safely.
1003 if (event->state == PERF_EVENT_STATE_OFF)
1004 __perf_event_mark_enabled(event, ctx);
1006 out:
1007 spin_unlock_irq(&ctx->lock);
1010 static int perf_event_refresh(struct perf_event *event, int refresh)
1013 * not supported on inherited events
1015 if (event->attr.inherit)
1016 return -EINVAL;
1018 atomic_add(refresh, &event->event_limit);
1019 perf_event_enable(event);
1021 return 0;
1024 void __perf_event_sched_out(struct perf_event_context *ctx,
1025 struct perf_cpu_context *cpuctx)
1027 struct perf_event *event;
1029 spin_lock(&ctx->lock);
1030 ctx->is_active = 0;
1031 if (likely(!ctx->nr_events))
1032 goto out;
1033 update_context_time(ctx);
1035 perf_disable();
1036 if (ctx->nr_active)
1037 list_for_each_entry(event, &ctx->group_list, group_entry)
1038 group_sched_out(event, cpuctx, ctx);
1040 perf_enable();
1041 out:
1042 spin_unlock(&ctx->lock);
1046 * Test whether two contexts are equivalent, i.e. whether they
1047 * have both been cloned from the same version of the same context
1048 * and they both have the same number of enabled events.
1049 * If the number of enabled events is the same, then the set
1050 * of enabled events should be the same, because these are both
1051 * inherited contexts, therefore we can't access individual events
1052 * in them directly with an fd; we can only enable/disable all
1053 * events via prctl, or enable/disable all events in a family
1054 * via ioctl, which will have the same effect on both contexts.
1056 static int context_equiv(struct perf_event_context *ctx1,
1057 struct perf_event_context *ctx2)
1059 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060 && ctx1->parent_gen == ctx2->parent_gen
1061 && !ctx1->pin_count && !ctx2->pin_count;
1064 static void __perf_event_sync_stat(struct perf_event *event,
1065 struct perf_event *next_event)
1067 u64 value;
1069 if (!event->attr.inherit_stat)
1070 return;
1073 * Update the event value, we cannot use perf_event_read()
1074 * because we're in the middle of a context switch and have IRQs
1075 * disabled, which upsets smp_call_function_single(), however
1076 * we know the event must be on the current CPU, therefore we
1077 * don't need to use it.
1079 switch (event->state) {
1080 case PERF_EVENT_STATE_ACTIVE:
1081 event->pmu->read(event);
1082 /* fall-through */
1084 case PERF_EVENT_STATE_INACTIVE:
1085 update_event_times(event);
1086 break;
1088 default:
1089 break;
1093 * In order to keep per-task stats reliable we need to flip the event
1094 * values when we flip the contexts.
1096 value = atomic64_read(&next_event->count);
1097 value = atomic64_xchg(&event->count, value);
1098 atomic64_set(&next_event->count, value);
1100 swap(event->total_time_enabled, next_event->total_time_enabled);
1101 swap(event->total_time_running, next_event->total_time_running);
1104 * Since we swizzled the values, update the user visible data too.
1106 perf_event_update_userpage(event);
1107 perf_event_update_userpage(next_event);
1110 #define list_next_entry(pos, member) \
1111 list_entry(pos->member.next, typeof(*pos), member)
1113 static void perf_event_sync_stat(struct perf_event_context *ctx,
1114 struct perf_event_context *next_ctx)
1116 struct perf_event *event, *next_event;
1118 if (!ctx->nr_stat)
1119 return;
1121 update_context_time(ctx);
1123 event = list_first_entry(&ctx->event_list,
1124 struct perf_event, event_entry);
1126 next_event = list_first_entry(&next_ctx->event_list,
1127 struct perf_event, event_entry);
1129 while (&event->event_entry != &ctx->event_list &&
1130 &next_event->event_entry != &next_ctx->event_list) {
1132 __perf_event_sync_stat(event, next_event);
1134 event = list_next_entry(event, event_entry);
1135 next_event = list_next_entry(next_event, event_entry);
1140 * Called from scheduler to remove the events of the current task,
1141 * with interrupts disabled.
1143 * We stop each event and update the event value in event->count.
1145 * This does not protect us against NMI, but disable()
1146 * sets the disabled bit in the control field of event _before_
1147 * accessing the event control register. If a NMI hits, then it will
1148 * not restart the event.
1150 void perf_event_task_sched_out(struct task_struct *task,
1151 struct task_struct *next, int cpu)
1153 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1154 struct perf_event_context *ctx = task->perf_event_ctxp;
1155 struct perf_event_context *next_ctx;
1156 struct perf_event_context *parent;
1157 struct pt_regs *regs;
1158 int do_switch = 1;
1160 regs = task_pt_regs(task);
1161 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1163 if (likely(!ctx || !cpuctx->task_ctx))
1164 return;
1166 rcu_read_lock();
1167 parent = rcu_dereference(ctx->parent_ctx);
1168 next_ctx = next->perf_event_ctxp;
1169 if (parent && next_ctx &&
1170 rcu_dereference(next_ctx->parent_ctx) == parent) {
1172 * Looks like the two contexts are clones, so we might be
1173 * able to optimize the context switch. We lock both
1174 * contexts and check that they are clones under the
1175 * lock (including re-checking that neither has been
1176 * uncloned in the meantime). It doesn't matter which
1177 * order we take the locks because no other cpu could
1178 * be trying to lock both of these tasks.
1180 spin_lock(&ctx->lock);
1181 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1182 if (context_equiv(ctx, next_ctx)) {
1184 * XXX do we need a memory barrier of sorts
1185 * wrt to rcu_dereference() of perf_event_ctxp
1187 task->perf_event_ctxp = next_ctx;
1188 next->perf_event_ctxp = ctx;
1189 ctx->task = next;
1190 next_ctx->task = task;
1191 do_switch = 0;
1193 perf_event_sync_stat(ctx, next_ctx);
1195 spin_unlock(&next_ctx->lock);
1196 spin_unlock(&ctx->lock);
1198 rcu_read_unlock();
1200 if (do_switch) {
1201 __perf_event_sched_out(ctx, cpuctx);
1202 cpuctx->task_ctx = NULL;
1207 * Called with IRQs disabled
1209 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1211 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1213 if (!cpuctx->task_ctx)
1214 return;
1216 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1217 return;
1219 __perf_event_sched_out(ctx, cpuctx);
1220 cpuctx->task_ctx = NULL;
1224 * Called with IRQs disabled
1226 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1228 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1231 static void
1232 __perf_event_sched_in(struct perf_event_context *ctx,
1233 struct perf_cpu_context *cpuctx, int cpu)
1235 struct perf_event *event;
1236 int can_add_hw = 1;
1238 spin_lock(&ctx->lock);
1239 ctx->is_active = 1;
1240 if (likely(!ctx->nr_events))
1241 goto out;
1243 ctx->timestamp = perf_clock();
1245 perf_disable();
1248 * First go through the list and put on any pinned groups
1249 * in order to give them the best chance of going on.
1251 list_for_each_entry(event, &ctx->group_list, group_entry) {
1252 if (event->state <= PERF_EVENT_STATE_OFF ||
1253 !event->attr.pinned)
1254 continue;
1255 if (event->cpu != -1 && event->cpu != cpu)
1256 continue;
1258 if (group_can_go_on(event, cpuctx, 1))
1259 group_sched_in(event, cpuctx, ctx, cpu);
1262 * If this pinned group hasn't been scheduled,
1263 * put it in error state.
1265 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266 update_group_times(event);
1267 event->state = PERF_EVENT_STATE_ERROR;
1271 list_for_each_entry(event, &ctx->group_list, group_entry) {
1273 * Ignore events in OFF or ERROR state, and
1274 * ignore pinned events since we did them already.
1276 if (event->state <= PERF_EVENT_STATE_OFF ||
1277 event->attr.pinned)
1278 continue;
1281 * Listen to the 'cpu' scheduling filter constraint
1282 * of events:
1284 if (event->cpu != -1 && event->cpu != cpu)
1285 continue;
1287 if (group_can_go_on(event, cpuctx, can_add_hw))
1288 if (group_sched_in(event, cpuctx, ctx, cpu))
1289 can_add_hw = 0;
1291 perf_enable();
1292 out:
1293 spin_unlock(&ctx->lock);
1297 * Called from scheduler to add the events of the current task
1298 * with interrupts disabled.
1300 * We restore the event value and then enable it.
1302 * This does not protect us against NMI, but enable()
1303 * sets the enabled bit in the control field of event _before_
1304 * accessing the event control register. If a NMI hits, then it will
1305 * keep the event running.
1307 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1309 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310 struct perf_event_context *ctx = task->perf_event_ctxp;
1312 if (likely(!ctx))
1313 return;
1314 if (cpuctx->task_ctx == ctx)
1315 return;
1316 __perf_event_sched_in(ctx, cpuctx, cpu);
1317 cpuctx->task_ctx = ctx;
1320 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1322 struct perf_event_context *ctx = &cpuctx->ctx;
1324 __perf_event_sched_in(ctx, cpuctx, cpu);
1327 #define MAX_INTERRUPTS (~0ULL)
1329 static void perf_log_throttle(struct perf_event *event, int enable);
1331 static void perf_adjust_period(struct perf_event *event, u64 events)
1333 struct hw_perf_event *hwc = &event->hw;
1334 u64 period, sample_period;
1335 s64 delta;
1337 events *= hwc->sample_period;
1338 period = div64_u64(events, event->attr.sample_freq);
1340 delta = (s64)(period - hwc->sample_period);
1341 delta = (delta + 7) / 8; /* low pass filter */
1343 sample_period = hwc->sample_period + delta;
1345 if (!sample_period)
1346 sample_period = 1;
1348 hwc->sample_period = sample_period;
1351 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1353 struct perf_event *event;
1354 struct hw_perf_event *hwc;
1355 u64 interrupts, freq;
1357 spin_lock(&ctx->lock);
1358 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1359 if (event->state != PERF_EVENT_STATE_ACTIVE)
1360 continue;
1362 hwc = &event->hw;
1364 interrupts = hwc->interrupts;
1365 hwc->interrupts = 0;
1368 * unthrottle events on the tick
1370 if (interrupts == MAX_INTERRUPTS) {
1371 perf_log_throttle(event, 1);
1372 event->pmu->unthrottle(event);
1373 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1376 if (!event->attr.freq || !event->attr.sample_freq)
1377 continue;
1380 * if the specified freq < HZ then we need to skip ticks
1382 if (event->attr.sample_freq < HZ) {
1383 freq = event->attr.sample_freq;
1385 hwc->freq_count += freq;
1386 hwc->freq_interrupts += interrupts;
1388 if (hwc->freq_count < HZ)
1389 continue;
1391 interrupts = hwc->freq_interrupts;
1392 hwc->freq_interrupts = 0;
1393 hwc->freq_count -= HZ;
1394 } else
1395 freq = HZ;
1397 perf_adjust_period(event, freq * interrupts);
1400 * In order to avoid being stalled by an (accidental) huge
1401 * sample period, force reset the sample period if we didn't
1402 * get any events in this freq period.
1404 if (!interrupts) {
1405 perf_disable();
1406 event->pmu->disable(event);
1407 atomic64_set(&hwc->period_left, 0);
1408 event->pmu->enable(event);
1409 perf_enable();
1412 spin_unlock(&ctx->lock);
1416 * Round-robin a context's events:
1418 static void rotate_ctx(struct perf_event_context *ctx)
1420 struct perf_event *event;
1422 if (!ctx->nr_events)
1423 return;
1425 spin_lock(&ctx->lock);
1427 * Rotate the first entry last (works just fine for group events too):
1429 perf_disable();
1430 list_for_each_entry(event, &ctx->group_list, group_entry) {
1431 list_move_tail(&event->group_entry, &ctx->group_list);
1432 break;
1434 perf_enable();
1436 spin_unlock(&ctx->lock);
1439 void perf_event_task_tick(struct task_struct *curr, int cpu)
1441 struct perf_cpu_context *cpuctx;
1442 struct perf_event_context *ctx;
1444 if (!atomic_read(&nr_events))
1445 return;
1447 cpuctx = &per_cpu(perf_cpu_context, cpu);
1448 ctx = curr->perf_event_ctxp;
1450 perf_ctx_adjust_freq(&cpuctx->ctx);
1451 if (ctx)
1452 perf_ctx_adjust_freq(ctx);
1454 perf_event_cpu_sched_out(cpuctx);
1455 if (ctx)
1456 __perf_event_task_sched_out(ctx);
1458 rotate_ctx(&cpuctx->ctx);
1459 if (ctx)
1460 rotate_ctx(ctx);
1462 perf_event_cpu_sched_in(cpuctx, cpu);
1463 if (ctx)
1464 perf_event_task_sched_in(curr, cpu);
1468 * Enable all of a task's events that have been marked enable-on-exec.
1469 * This expects task == current.
1471 static void perf_event_enable_on_exec(struct task_struct *task)
1473 struct perf_event_context *ctx;
1474 struct perf_event *event;
1475 unsigned long flags;
1476 int enabled = 0;
1478 local_irq_save(flags);
1479 ctx = task->perf_event_ctxp;
1480 if (!ctx || !ctx->nr_events)
1481 goto out;
1483 __perf_event_task_sched_out(ctx);
1485 spin_lock(&ctx->lock);
1487 list_for_each_entry(event, &ctx->group_list, group_entry) {
1488 if (!event->attr.enable_on_exec)
1489 continue;
1490 event->attr.enable_on_exec = 0;
1491 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1492 continue;
1493 __perf_event_mark_enabled(event, ctx);
1494 enabled = 1;
1498 * Unclone this context if we enabled any event.
1500 if (enabled)
1501 unclone_ctx(ctx);
1503 spin_unlock(&ctx->lock);
1505 perf_event_task_sched_in(task, smp_processor_id());
1506 out:
1507 local_irq_restore(flags);
1511 * Cross CPU call to read the hardware event
1513 static void __perf_event_read(void *info)
1515 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1516 struct perf_event *event = info;
1517 struct perf_event_context *ctx = event->ctx;
1520 * If this is a task context, we need to check whether it is
1521 * the current task context of this cpu. If not it has been
1522 * scheduled out before the smp call arrived. In that case
1523 * event->count would have been updated to a recent sample
1524 * when the event was scheduled out.
1526 if (ctx->task && cpuctx->task_ctx != ctx)
1527 return;
1529 spin_lock(&ctx->lock);
1530 update_context_time(ctx);
1531 update_event_times(event);
1532 spin_unlock(&ctx->lock);
1534 event->pmu->read(event);
1537 static u64 perf_event_read(struct perf_event *event)
1540 * If event is enabled and currently active on a CPU, update the
1541 * value in the event structure:
1543 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1544 smp_call_function_single(event->oncpu,
1545 __perf_event_read, event, 1);
1546 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1547 struct perf_event_context *ctx = event->ctx;
1548 unsigned long flags;
1550 spin_lock_irqsave(&ctx->lock, flags);
1551 update_context_time(ctx);
1552 update_event_times(event);
1553 spin_unlock_irqrestore(&ctx->lock, flags);
1556 return atomic64_read(&event->count);
1560 * Initialize the perf_event context in a task_struct:
1562 static void
1563 __perf_event_init_context(struct perf_event_context *ctx,
1564 struct task_struct *task)
1566 memset(ctx, 0, sizeof(*ctx));
1567 spin_lock_init(&ctx->lock);
1568 mutex_init(&ctx->mutex);
1569 INIT_LIST_HEAD(&ctx->group_list);
1570 INIT_LIST_HEAD(&ctx->event_list);
1571 atomic_set(&ctx->refcount, 1);
1572 ctx->task = task;
1575 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1577 struct perf_event_context *ctx;
1578 struct perf_cpu_context *cpuctx;
1579 struct task_struct *task;
1580 unsigned long flags;
1581 int err;
1584 * If cpu is not a wildcard then this is a percpu event:
1586 if (cpu != -1) {
1587 /* Must be root to operate on a CPU event: */
1588 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1589 return ERR_PTR(-EACCES);
1591 if (cpu < 0 || cpu > num_possible_cpus())
1592 return ERR_PTR(-EINVAL);
1595 * We could be clever and allow to attach a event to an
1596 * offline CPU and activate it when the CPU comes up, but
1597 * that's for later.
1599 if (!cpu_isset(cpu, cpu_online_map))
1600 return ERR_PTR(-ENODEV);
1602 cpuctx = &per_cpu(perf_cpu_context, cpu);
1603 ctx = &cpuctx->ctx;
1604 get_ctx(ctx);
1606 return ctx;
1609 rcu_read_lock();
1610 if (!pid)
1611 task = current;
1612 else
1613 task = find_task_by_vpid(pid);
1614 if (task)
1615 get_task_struct(task);
1616 rcu_read_unlock();
1618 if (!task)
1619 return ERR_PTR(-ESRCH);
1622 * Can't attach events to a dying task.
1624 err = -ESRCH;
1625 if (task->flags & PF_EXITING)
1626 goto errout;
1628 /* Reuse ptrace permission checks for now. */
1629 err = -EACCES;
1630 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1631 goto errout;
1633 retry:
1634 ctx = perf_lock_task_context(task, &flags);
1635 if (ctx) {
1636 unclone_ctx(ctx);
1637 spin_unlock_irqrestore(&ctx->lock, flags);
1640 if (!ctx) {
1641 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1642 err = -ENOMEM;
1643 if (!ctx)
1644 goto errout;
1645 __perf_event_init_context(ctx, task);
1646 get_ctx(ctx);
1647 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1649 * We raced with some other task; use
1650 * the context they set.
1652 kfree(ctx);
1653 goto retry;
1655 get_task_struct(task);
1658 put_task_struct(task);
1659 return ctx;
1661 errout:
1662 put_task_struct(task);
1663 return ERR_PTR(err);
1666 static void perf_event_free_filter(struct perf_event *event);
1668 static void free_event_rcu(struct rcu_head *head)
1670 struct perf_event *event;
1672 event = container_of(head, struct perf_event, rcu_head);
1673 if (event->ns)
1674 put_pid_ns(event->ns);
1675 perf_event_free_filter(event);
1676 kfree(event);
1679 static void perf_pending_sync(struct perf_event *event);
1681 static void free_event(struct perf_event *event)
1683 perf_pending_sync(event);
1685 if (!event->parent) {
1686 atomic_dec(&nr_events);
1687 if (event->attr.mmap)
1688 atomic_dec(&nr_mmap_events);
1689 if (event->attr.comm)
1690 atomic_dec(&nr_comm_events);
1691 if (event->attr.task)
1692 atomic_dec(&nr_task_events);
1695 if (event->output) {
1696 fput(event->output->filp);
1697 event->output = NULL;
1700 if (event->destroy)
1701 event->destroy(event);
1703 put_ctx(event->ctx);
1704 call_rcu(&event->rcu_head, free_event_rcu);
1708 * Called when the last reference to the file is gone.
1710 static int perf_release(struct inode *inode, struct file *file)
1712 struct perf_event *event = file->private_data;
1713 struct perf_event_context *ctx = event->ctx;
1715 file->private_data = NULL;
1717 WARN_ON_ONCE(ctx->parent_ctx);
1718 mutex_lock(&ctx->mutex);
1719 perf_event_remove_from_context(event);
1720 mutex_unlock(&ctx->mutex);
1722 mutex_lock(&event->owner->perf_event_mutex);
1723 list_del_init(&event->owner_entry);
1724 mutex_unlock(&event->owner->perf_event_mutex);
1725 put_task_struct(event->owner);
1727 free_event(event);
1729 return 0;
1732 int perf_event_release_kernel(struct perf_event *event)
1734 struct perf_event_context *ctx = event->ctx;
1736 WARN_ON_ONCE(ctx->parent_ctx);
1737 mutex_lock(&ctx->mutex);
1738 perf_event_remove_from_context(event);
1739 mutex_unlock(&ctx->mutex);
1741 mutex_lock(&event->owner->perf_event_mutex);
1742 list_del_init(&event->owner_entry);
1743 mutex_unlock(&event->owner->perf_event_mutex);
1744 put_task_struct(event->owner);
1746 free_event(event);
1748 return 0;
1750 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1752 static int perf_event_read_size(struct perf_event *event)
1754 int entry = sizeof(u64); /* value */
1755 int size = 0;
1756 int nr = 1;
1758 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1759 size += sizeof(u64);
1761 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1762 size += sizeof(u64);
1764 if (event->attr.read_format & PERF_FORMAT_ID)
1765 entry += sizeof(u64);
1767 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1768 nr += event->group_leader->nr_siblings;
1769 size += sizeof(u64);
1772 size += entry * nr;
1774 return size;
1777 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1779 struct perf_event *child;
1780 u64 total = 0;
1782 *enabled = 0;
1783 *running = 0;
1785 mutex_lock(&event->child_mutex);
1786 total += perf_event_read(event);
1787 *enabled += event->total_time_enabled +
1788 atomic64_read(&event->child_total_time_enabled);
1789 *running += event->total_time_running +
1790 atomic64_read(&event->child_total_time_running);
1792 list_for_each_entry(child, &event->child_list, child_list) {
1793 total += perf_event_read(child);
1794 *enabled += child->total_time_enabled;
1795 *running += child->total_time_running;
1797 mutex_unlock(&event->child_mutex);
1799 return total;
1801 EXPORT_SYMBOL_GPL(perf_event_read_value);
1803 static int perf_event_read_group(struct perf_event *event,
1804 u64 read_format, char __user *buf)
1806 struct perf_event *leader = event->group_leader, *sub;
1807 int n = 0, size = 0, ret = -EFAULT;
1808 struct perf_event_context *ctx = leader->ctx;
1809 u64 values[5];
1810 u64 count, enabled, running;
1812 mutex_lock(&ctx->mutex);
1813 count = perf_event_read_value(leader, &enabled, &running);
1815 values[n++] = 1 + leader->nr_siblings;
1816 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1817 values[n++] = enabled;
1818 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1819 values[n++] = running;
1820 values[n++] = count;
1821 if (read_format & PERF_FORMAT_ID)
1822 values[n++] = primary_event_id(leader);
1824 size = n * sizeof(u64);
1826 if (copy_to_user(buf, values, size))
1827 goto unlock;
1829 ret = size;
1831 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1832 n = 0;
1834 values[n++] = perf_event_read_value(sub, &enabled, &running);
1835 if (read_format & PERF_FORMAT_ID)
1836 values[n++] = primary_event_id(sub);
1838 size = n * sizeof(u64);
1840 if (copy_to_user(buf + size, values, size)) {
1841 ret = -EFAULT;
1842 goto unlock;
1845 ret += size;
1847 unlock:
1848 mutex_unlock(&ctx->mutex);
1850 return ret;
1853 static int perf_event_read_one(struct perf_event *event,
1854 u64 read_format, char __user *buf)
1856 u64 enabled, running;
1857 u64 values[4];
1858 int n = 0;
1860 values[n++] = perf_event_read_value(event, &enabled, &running);
1861 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1862 values[n++] = enabled;
1863 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1864 values[n++] = running;
1865 if (read_format & PERF_FORMAT_ID)
1866 values[n++] = primary_event_id(event);
1868 if (copy_to_user(buf, values, n * sizeof(u64)))
1869 return -EFAULT;
1871 return n * sizeof(u64);
1875 * Read the performance event - simple non blocking version for now
1877 static ssize_t
1878 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1880 u64 read_format = event->attr.read_format;
1881 int ret;
1884 * Return end-of-file for a read on a event that is in
1885 * error state (i.e. because it was pinned but it couldn't be
1886 * scheduled on to the CPU at some point).
1888 if (event->state == PERF_EVENT_STATE_ERROR)
1889 return 0;
1891 if (count < perf_event_read_size(event))
1892 return -ENOSPC;
1894 WARN_ON_ONCE(event->ctx->parent_ctx);
1895 if (read_format & PERF_FORMAT_GROUP)
1896 ret = perf_event_read_group(event, read_format, buf);
1897 else
1898 ret = perf_event_read_one(event, read_format, buf);
1900 return ret;
1903 static ssize_t
1904 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1906 struct perf_event *event = file->private_data;
1908 return perf_read_hw(event, buf, count);
1911 static unsigned int perf_poll(struct file *file, poll_table *wait)
1913 struct perf_event *event = file->private_data;
1914 struct perf_mmap_data *data;
1915 unsigned int events = POLL_HUP;
1917 rcu_read_lock();
1918 data = rcu_dereference(event->data);
1919 if (data)
1920 events = atomic_xchg(&data->poll, 0);
1921 rcu_read_unlock();
1923 poll_wait(file, &event->waitq, wait);
1925 return events;
1928 static void perf_event_reset(struct perf_event *event)
1930 (void)perf_event_read(event);
1931 atomic64_set(&event->count, 0);
1932 perf_event_update_userpage(event);
1936 * Holding the top-level event's child_mutex means that any
1937 * descendant process that has inherited this event will block
1938 * in sync_child_event if it goes to exit, thus satisfying the
1939 * task existence requirements of perf_event_enable/disable.
1941 static void perf_event_for_each_child(struct perf_event *event,
1942 void (*func)(struct perf_event *))
1944 struct perf_event *child;
1946 WARN_ON_ONCE(event->ctx->parent_ctx);
1947 mutex_lock(&event->child_mutex);
1948 func(event);
1949 list_for_each_entry(child, &event->child_list, child_list)
1950 func(child);
1951 mutex_unlock(&event->child_mutex);
1954 static void perf_event_for_each(struct perf_event *event,
1955 void (*func)(struct perf_event *))
1957 struct perf_event_context *ctx = event->ctx;
1958 struct perf_event *sibling;
1960 WARN_ON_ONCE(ctx->parent_ctx);
1961 mutex_lock(&ctx->mutex);
1962 event = event->group_leader;
1964 perf_event_for_each_child(event, func);
1965 func(event);
1966 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1967 perf_event_for_each_child(event, func);
1968 mutex_unlock(&ctx->mutex);
1971 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1973 struct perf_event_context *ctx = event->ctx;
1974 unsigned long size;
1975 int ret = 0;
1976 u64 value;
1978 if (!event->attr.sample_period)
1979 return -EINVAL;
1981 size = copy_from_user(&value, arg, sizeof(value));
1982 if (size != sizeof(value))
1983 return -EFAULT;
1985 if (!value)
1986 return -EINVAL;
1988 spin_lock_irq(&ctx->lock);
1989 if (event->attr.freq) {
1990 if (value > sysctl_perf_event_sample_rate) {
1991 ret = -EINVAL;
1992 goto unlock;
1995 event->attr.sample_freq = value;
1996 } else {
1997 event->attr.sample_period = value;
1998 event->hw.sample_period = value;
2000 unlock:
2001 spin_unlock_irq(&ctx->lock);
2003 return ret;
2006 static int perf_event_set_output(struct perf_event *event, int output_fd);
2007 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2009 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2011 struct perf_event *event = file->private_data;
2012 void (*func)(struct perf_event *);
2013 u32 flags = arg;
2015 switch (cmd) {
2016 case PERF_EVENT_IOC_ENABLE:
2017 func = perf_event_enable;
2018 break;
2019 case PERF_EVENT_IOC_DISABLE:
2020 func = perf_event_disable;
2021 break;
2022 case PERF_EVENT_IOC_RESET:
2023 func = perf_event_reset;
2024 break;
2026 case PERF_EVENT_IOC_REFRESH:
2027 return perf_event_refresh(event, arg);
2029 case PERF_EVENT_IOC_PERIOD:
2030 return perf_event_period(event, (u64 __user *)arg);
2032 case PERF_EVENT_IOC_SET_OUTPUT:
2033 return perf_event_set_output(event, arg);
2035 case PERF_EVENT_IOC_SET_FILTER:
2036 return perf_event_set_filter(event, (void __user *)arg);
2038 default:
2039 return -ENOTTY;
2042 if (flags & PERF_IOC_FLAG_GROUP)
2043 perf_event_for_each(event, func);
2044 else
2045 perf_event_for_each_child(event, func);
2047 return 0;
2050 int perf_event_task_enable(void)
2052 struct perf_event *event;
2054 mutex_lock(&current->perf_event_mutex);
2055 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2056 perf_event_for_each_child(event, perf_event_enable);
2057 mutex_unlock(&current->perf_event_mutex);
2059 return 0;
2062 int perf_event_task_disable(void)
2064 struct perf_event *event;
2066 mutex_lock(&current->perf_event_mutex);
2067 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2068 perf_event_for_each_child(event, perf_event_disable);
2069 mutex_unlock(&current->perf_event_mutex);
2071 return 0;
2074 #ifndef PERF_EVENT_INDEX_OFFSET
2075 # define PERF_EVENT_INDEX_OFFSET 0
2076 #endif
2078 static int perf_event_index(struct perf_event *event)
2080 if (event->state != PERF_EVENT_STATE_ACTIVE)
2081 return 0;
2083 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2087 * Callers need to ensure there can be no nesting of this function, otherwise
2088 * the seqlock logic goes bad. We can not serialize this because the arch
2089 * code calls this from NMI context.
2091 void perf_event_update_userpage(struct perf_event *event)
2093 struct perf_event_mmap_page *userpg;
2094 struct perf_mmap_data *data;
2096 rcu_read_lock();
2097 data = rcu_dereference(event->data);
2098 if (!data)
2099 goto unlock;
2101 userpg = data->user_page;
2104 * Disable preemption so as to not let the corresponding user-space
2105 * spin too long if we get preempted.
2107 preempt_disable();
2108 ++userpg->lock;
2109 barrier();
2110 userpg->index = perf_event_index(event);
2111 userpg->offset = atomic64_read(&event->count);
2112 if (event->state == PERF_EVENT_STATE_ACTIVE)
2113 userpg->offset -= atomic64_read(&event->hw.prev_count);
2115 userpg->time_enabled = event->total_time_enabled +
2116 atomic64_read(&event->child_total_time_enabled);
2118 userpg->time_running = event->total_time_running +
2119 atomic64_read(&event->child_total_time_running);
2121 barrier();
2122 ++userpg->lock;
2123 preempt_enable();
2124 unlock:
2125 rcu_read_unlock();
2128 static unsigned long perf_data_size(struct perf_mmap_data *data)
2130 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2133 #ifndef CONFIG_PERF_USE_VMALLOC
2136 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2139 static struct page *
2140 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2142 if (pgoff > data->nr_pages)
2143 return NULL;
2145 if (pgoff == 0)
2146 return virt_to_page(data->user_page);
2148 return virt_to_page(data->data_pages[pgoff - 1]);
2151 static struct perf_mmap_data *
2152 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2154 struct perf_mmap_data *data;
2155 unsigned long size;
2156 int i;
2158 WARN_ON(atomic_read(&event->mmap_count));
2160 size = sizeof(struct perf_mmap_data);
2161 size += nr_pages * sizeof(void *);
2163 data = kzalloc(size, GFP_KERNEL);
2164 if (!data)
2165 goto fail;
2167 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2168 if (!data->user_page)
2169 goto fail_user_page;
2171 for (i = 0; i < nr_pages; i++) {
2172 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2173 if (!data->data_pages[i])
2174 goto fail_data_pages;
2177 data->data_order = 0;
2178 data->nr_pages = nr_pages;
2180 return data;
2182 fail_data_pages:
2183 for (i--; i >= 0; i--)
2184 free_page((unsigned long)data->data_pages[i]);
2186 free_page((unsigned long)data->user_page);
2188 fail_user_page:
2189 kfree(data);
2191 fail:
2192 return NULL;
2195 static void perf_mmap_free_page(unsigned long addr)
2197 struct page *page = virt_to_page((void *)addr);
2199 page->mapping = NULL;
2200 __free_page(page);
2203 static void perf_mmap_data_free(struct perf_mmap_data *data)
2205 int i;
2207 perf_mmap_free_page((unsigned long)data->user_page);
2208 for (i = 0; i < data->nr_pages; i++)
2209 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2212 #else
2215 * Back perf_mmap() with vmalloc memory.
2217 * Required for architectures that have d-cache aliasing issues.
2220 static struct page *
2221 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2223 if (pgoff > (1UL << data->data_order))
2224 return NULL;
2226 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2229 static void perf_mmap_unmark_page(void *addr)
2231 struct page *page = vmalloc_to_page(addr);
2233 page->mapping = NULL;
2236 static void perf_mmap_data_free_work(struct work_struct *work)
2238 struct perf_mmap_data *data;
2239 void *base;
2240 int i, nr;
2242 data = container_of(work, struct perf_mmap_data, work);
2243 nr = 1 << data->data_order;
2245 base = data->user_page;
2246 for (i = 0; i < nr + 1; i++)
2247 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2249 vfree(base);
2252 static void perf_mmap_data_free(struct perf_mmap_data *data)
2254 schedule_work(&data->work);
2257 static struct perf_mmap_data *
2258 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2260 struct perf_mmap_data *data;
2261 unsigned long size;
2262 void *all_buf;
2264 WARN_ON(atomic_read(&event->mmap_count));
2266 size = sizeof(struct perf_mmap_data);
2267 size += sizeof(void *);
2269 data = kzalloc(size, GFP_KERNEL);
2270 if (!data)
2271 goto fail;
2273 INIT_WORK(&data->work, perf_mmap_data_free_work);
2275 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2276 if (!all_buf)
2277 goto fail_all_buf;
2279 data->user_page = all_buf;
2280 data->data_pages[0] = all_buf + PAGE_SIZE;
2281 data->data_order = ilog2(nr_pages);
2282 data->nr_pages = 1;
2284 return data;
2286 fail_all_buf:
2287 kfree(data);
2289 fail:
2290 return NULL;
2293 #endif
2295 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2297 struct perf_event *event = vma->vm_file->private_data;
2298 struct perf_mmap_data *data;
2299 int ret = VM_FAULT_SIGBUS;
2301 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2302 if (vmf->pgoff == 0)
2303 ret = 0;
2304 return ret;
2307 rcu_read_lock();
2308 data = rcu_dereference(event->data);
2309 if (!data)
2310 goto unlock;
2312 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2313 goto unlock;
2315 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2316 if (!vmf->page)
2317 goto unlock;
2319 get_page(vmf->page);
2320 vmf->page->mapping = vma->vm_file->f_mapping;
2321 vmf->page->index = vmf->pgoff;
2323 ret = 0;
2324 unlock:
2325 rcu_read_unlock();
2327 return ret;
2330 static void
2331 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2333 long max_size = perf_data_size(data);
2335 atomic_set(&data->lock, -1);
2337 if (event->attr.watermark) {
2338 data->watermark = min_t(long, max_size,
2339 event->attr.wakeup_watermark);
2342 if (!data->watermark)
2343 data->watermark = max_size / 2;
2346 rcu_assign_pointer(event->data, data);
2349 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2351 struct perf_mmap_data *data;
2353 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2354 perf_mmap_data_free(data);
2355 kfree(data);
2358 static void perf_mmap_data_release(struct perf_event *event)
2360 struct perf_mmap_data *data = event->data;
2362 WARN_ON(atomic_read(&event->mmap_count));
2364 rcu_assign_pointer(event->data, NULL);
2365 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2368 static void perf_mmap_open(struct vm_area_struct *vma)
2370 struct perf_event *event = vma->vm_file->private_data;
2372 atomic_inc(&event->mmap_count);
2375 static void perf_mmap_close(struct vm_area_struct *vma)
2377 struct perf_event *event = vma->vm_file->private_data;
2379 WARN_ON_ONCE(event->ctx->parent_ctx);
2380 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2381 unsigned long size = perf_data_size(event->data);
2382 struct user_struct *user = current_user();
2384 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2385 vma->vm_mm->locked_vm -= event->data->nr_locked;
2386 perf_mmap_data_release(event);
2387 mutex_unlock(&event->mmap_mutex);
2391 static const struct vm_operations_struct perf_mmap_vmops = {
2392 .open = perf_mmap_open,
2393 .close = perf_mmap_close,
2394 .fault = perf_mmap_fault,
2395 .page_mkwrite = perf_mmap_fault,
2398 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2400 struct perf_event *event = file->private_data;
2401 unsigned long user_locked, user_lock_limit;
2402 struct user_struct *user = current_user();
2403 unsigned long locked, lock_limit;
2404 struct perf_mmap_data *data;
2405 unsigned long vma_size;
2406 unsigned long nr_pages;
2407 long user_extra, extra;
2408 int ret = 0;
2410 if (!(vma->vm_flags & VM_SHARED))
2411 return -EINVAL;
2413 vma_size = vma->vm_end - vma->vm_start;
2414 nr_pages = (vma_size / PAGE_SIZE) - 1;
2417 * If we have data pages ensure they're a power-of-two number, so we
2418 * can do bitmasks instead of modulo.
2420 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2421 return -EINVAL;
2423 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2424 return -EINVAL;
2426 if (vma->vm_pgoff != 0)
2427 return -EINVAL;
2429 WARN_ON_ONCE(event->ctx->parent_ctx);
2430 mutex_lock(&event->mmap_mutex);
2431 if (event->output) {
2432 ret = -EINVAL;
2433 goto unlock;
2436 if (atomic_inc_not_zero(&event->mmap_count)) {
2437 if (nr_pages != event->data->nr_pages)
2438 ret = -EINVAL;
2439 goto unlock;
2442 user_extra = nr_pages + 1;
2443 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2446 * Increase the limit linearly with more CPUs:
2448 user_lock_limit *= num_online_cpus();
2450 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2452 extra = 0;
2453 if (user_locked > user_lock_limit)
2454 extra = user_locked - user_lock_limit;
2456 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2457 lock_limit >>= PAGE_SHIFT;
2458 locked = vma->vm_mm->locked_vm + extra;
2460 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2461 !capable(CAP_IPC_LOCK)) {
2462 ret = -EPERM;
2463 goto unlock;
2466 WARN_ON(event->data);
2468 data = perf_mmap_data_alloc(event, nr_pages);
2469 ret = -ENOMEM;
2470 if (!data)
2471 goto unlock;
2473 ret = 0;
2474 perf_mmap_data_init(event, data);
2476 atomic_set(&event->mmap_count, 1);
2477 atomic_long_add(user_extra, &user->locked_vm);
2478 vma->vm_mm->locked_vm += extra;
2479 event->data->nr_locked = extra;
2480 if (vma->vm_flags & VM_WRITE)
2481 event->data->writable = 1;
2483 unlock:
2484 mutex_unlock(&event->mmap_mutex);
2486 vma->vm_flags |= VM_RESERVED;
2487 vma->vm_ops = &perf_mmap_vmops;
2489 return ret;
2492 static int perf_fasync(int fd, struct file *filp, int on)
2494 struct inode *inode = filp->f_path.dentry->d_inode;
2495 struct perf_event *event = filp->private_data;
2496 int retval;
2498 mutex_lock(&inode->i_mutex);
2499 retval = fasync_helper(fd, filp, on, &event->fasync);
2500 mutex_unlock(&inode->i_mutex);
2502 if (retval < 0)
2503 return retval;
2505 return 0;
2508 static const struct file_operations perf_fops = {
2509 .release = perf_release,
2510 .read = perf_read,
2511 .poll = perf_poll,
2512 .unlocked_ioctl = perf_ioctl,
2513 .compat_ioctl = perf_ioctl,
2514 .mmap = perf_mmap,
2515 .fasync = perf_fasync,
2519 * Perf event wakeup
2521 * If there's data, ensure we set the poll() state and publish everything
2522 * to user-space before waking everybody up.
2525 void perf_event_wakeup(struct perf_event *event)
2527 wake_up_all(&event->waitq);
2529 if (event->pending_kill) {
2530 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2531 event->pending_kill = 0;
2536 * Pending wakeups
2538 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2540 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2541 * single linked list and use cmpxchg() to add entries lockless.
2544 static void perf_pending_event(struct perf_pending_entry *entry)
2546 struct perf_event *event = container_of(entry,
2547 struct perf_event, pending);
2549 if (event->pending_disable) {
2550 event->pending_disable = 0;
2551 __perf_event_disable(event);
2554 if (event->pending_wakeup) {
2555 event->pending_wakeup = 0;
2556 perf_event_wakeup(event);
2560 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2562 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2563 PENDING_TAIL,
2566 static void perf_pending_queue(struct perf_pending_entry *entry,
2567 void (*func)(struct perf_pending_entry *))
2569 struct perf_pending_entry **head;
2571 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2572 return;
2574 entry->func = func;
2576 head = &get_cpu_var(perf_pending_head);
2578 do {
2579 entry->next = *head;
2580 } while (cmpxchg(head, entry->next, entry) != entry->next);
2582 set_perf_event_pending();
2584 put_cpu_var(perf_pending_head);
2587 static int __perf_pending_run(void)
2589 struct perf_pending_entry *list;
2590 int nr = 0;
2592 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2593 while (list != PENDING_TAIL) {
2594 void (*func)(struct perf_pending_entry *);
2595 struct perf_pending_entry *entry = list;
2597 list = list->next;
2599 func = entry->func;
2600 entry->next = NULL;
2602 * Ensure we observe the unqueue before we issue the wakeup,
2603 * so that we won't be waiting forever.
2604 * -- see perf_not_pending().
2606 smp_wmb();
2608 func(entry);
2609 nr++;
2612 return nr;
2615 static inline int perf_not_pending(struct perf_event *event)
2618 * If we flush on whatever cpu we run, there is a chance we don't
2619 * need to wait.
2621 get_cpu();
2622 __perf_pending_run();
2623 put_cpu();
2626 * Ensure we see the proper queue state before going to sleep
2627 * so that we do not miss the wakeup. -- see perf_pending_handle()
2629 smp_rmb();
2630 return event->pending.next == NULL;
2633 static void perf_pending_sync(struct perf_event *event)
2635 wait_event(event->waitq, perf_not_pending(event));
2638 void perf_event_do_pending(void)
2640 __perf_pending_run();
2644 * Callchain support -- arch specific
2647 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2649 return NULL;
2653 * Output
2655 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2656 unsigned long offset, unsigned long head)
2658 unsigned long mask;
2660 if (!data->writable)
2661 return true;
2663 mask = perf_data_size(data) - 1;
2665 offset = (offset - tail) & mask;
2666 head = (head - tail) & mask;
2668 if ((int)(head - offset) < 0)
2669 return false;
2671 return true;
2674 static void perf_output_wakeup(struct perf_output_handle *handle)
2676 atomic_set(&handle->data->poll, POLL_IN);
2678 if (handle->nmi) {
2679 handle->event->pending_wakeup = 1;
2680 perf_pending_queue(&handle->event->pending,
2681 perf_pending_event);
2682 } else
2683 perf_event_wakeup(handle->event);
2687 * Curious locking construct.
2689 * We need to ensure a later event_id doesn't publish a head when a former
2690 * event_id isn't done writing. However since we need to deal with NMIs we
2691 * cannot fully serialize things.
2693 * What we do is serialize between CPUs so we only have to deal with NMI
2694 * nesting on a single CPU.
2696 * We only publish the head (and generate a wakeup) when the outer-most
2697 * event_id completes.
2699 static void perf_output_lock(struct perf_output_handle *handle)
2701 struct perf_mmap_data *data = handle->data;
2702 int cur, cpu = get_cpu();
2704 handle->locked = 0;
2706 for (;;) {
2707 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2708 if (cur == -1) {
2709 handle->locked = 1;
2710 break;
2712 if (cur == cpu)
2713 break;
2715 cpu_relax();
2719 static void perf_output_unlock(struct perf_output_handle *handle)
2721 struct perf_mmap_data *data = handle->data;
2722 unsigned long head;
2723 int cpu;
2725 data->done_head = data->head;
2727 if (!handle->locked)
2728 goto out;
2730 again:
2732 * The xchg implies a full barrier that ensures all writes are done
2733 * before we publish the new head, matched by a rmb() in userspace when
2734 * reading this position.
2736 while ((head = atomic_long_xchg(&data->done_head, 0)))
2737 data->user_page->data_head = head;
2740 * NMI can happen here, which means we can miss a done_head update.
2743 cpu = atomic_xchg(&data->lock, -1);
2744 WARN_ON_ONCE(cpu != smp_processor_id());
2747 * Therefore we have to validate we did not indeed do so.
2749 if (unlikely(atomic_long_read(&data->done_head))) {
2751 * Since we had it locked, we can lock it again.
2753 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2754 cpu_relax();
2756 goto again;
2759 if (atomic_xchg(&data->wakeup, 0))
2760 perf_output_wakeup(handle);
2761 out:
2762 put_cpu();
2765 void perf_output_copy(struct perf_output_handle *handle,
2766 const void *buf, unsigned int len)
2768 unsigned int pages_mask;
2769 unsigned long offset;
2770 unsigned int size;
2771 void **pages;
2773 offset = handle->offset;
2774 pages_mask = handle->data->nr_pages - 1;
2775 pages = handle->data->data_pages;
2777 do {
2778 unsigned long page_offset;
2779 unsigned long page_size;
2780 int nr;
2782 nr = (offset >> PAGE_SHIFT) & pages_mask;
2783 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2784 page_offset = offset & (page_size - 1);
2785 size = min_t(unsigned int, page_size - page_offset, len);
2787 memcpy(pages[nr] + page_offset, buf, size);
2789 len -= size;
2790 buf += size;
2791 offset += size;
2792 } while (len);
2794 handle->offset = offset;
2797 * Check we didn't copy past our reservation window, taking the
2798 * possible unsigned int wrap into account.
2800 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2803 int perf_output_begin(struct perf_output_handle *handle,
2804 struct perf_event *event, unsigned int size,
2805 int nmi, int sample)
2807 struct perf_event *output_event;
2808 struct perf_mmap_data *data;
2809 unsigned long tail, offset, head;
2810 int have_lost;
2811 struct {
2812 struct perf_event_header header;
2813 u64 id;
2814 u64 lost;
2815 } lost_event;
2817 rcu_read_lock();
2819 * For inherited events we send all the output towards the parent.
2821 if (event->parent)
2822 event = event->parent;
2824 output_event = rcu_dereference(event->output);
2825 if (output_event)
2826 event = output_event;
2828 data = rcu_dereference(event->data);
2829 if (!data)
2830 goto out;
2832 handle->data = data;
2833 handle->event = event;
2834 handle->nmi = nmi;
2835 handle->sample = sample;
2837 if (!data->nr_pages)
2838 goto fail;
2840 have_lost = atomic_read(&data->lost);
2841 if (have_lost)
2842 size += sizeof(lost_event);
2844 perf_output_lock(handle);
2846 do {
2848 * Userspace could choose to issue a mb() before updating the
2849 * tail pointer. So that all reads will be completed before the
2850 * write is issued.
2852 tail = ACCESS_ONCE(data->user_page->data_tail);
2853 smp_rmb();
2854 offset = head = atomic_long_read(&data->head);
2855 head += size;
2856 if (unlikely(!perf_output_space(data, tail, offset, head)))
2857 goto fail;
2858 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2860 handle->offset = offset;
2861 handle->head = head;
2863 if (head - tail > data->watermark)
2864 atomic_set(&data->wakeup, 1);
2866 if (have_lost) {
2867 lost_event.header.type = PERF_RECORD_LOST;
2868 lost_event.header.misc = 0;
2869 lost_event.header.size = sizeof(lost_event);
2870 lost_event.id = event->id;
2871 lost_event.lost = atomic_xchg(&data->lost, 0);
2873 perf_output_put(handle, lost_event);
2876 return 0;
2878 fail:
2879 atomic_inc(&data->lost);
2880 perf_output_unlock(handle);
2881 out:
2882 rcu_read_unlock();
2884 return -ENOSPC;
2887 void perf_output_end(struct perf_output_handle *handle)
2889 struct perf_event *event = handle->event;
2890 struct perf_mmap_data *data = handle->data;
2892 int wakeup_events = event->attr.wakeup_events;
2894 if (handle->sample && wakeup_events) {
2895 int events = atomic_inc_return(&data->events);
2896 if (events >= wakeup_events) {
2897 atomic_sub(wakeup_events, &data->events);
2898 atomic_set(&data->wakeup, 1);
2902 perf_output_unlock(handle);
2903 rcu_read_unlock();
2906 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2909 * only top level events have the pid namespace they were created in
2911 if (event->parent)
2912 event = event->parent;
2914 return task_tgid_nr_ns(p, event->ns);
2917 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2920 * only top level events have the pid namespace they were created in
2922 if (event->parent)
2923 event = event->parent;
2925 return task_pid_nr_ns(p, event->ns);
2928 static void perf_output_read_one(struct perf_output_handle *handle,
2929 struct perf_event *event)
2931 u64 read_format = event->attr.read_format;
2932 u64 values[4];
2933 int n = 0;
2935 values[n++] = atomic64_read(&event->count);
2936 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2937 values[n++] = event->total_time_enabled +
2938 atomic64_read(&event->child_total_time_enabled);
2940 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2941 values[n++] = event->total_time_running +
2942 atomic64_read(&event->child_total_time_running);
2944 if (read_format & PERF_FORMAT_ID)
2945 values[n++] = primary_event_id(event);
2947 perf_output_copy(handle, values, n * sizeof(u64));
2951 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2953 static void perf_output_read_group(struct perf_output_handle *handle,
2954 struct perf_event *event)
2956 struct perf_event *leader = event->group_leader, *sub;
2957 u64 read_format = event->attr.read_format;
2958 u64 values[5];
2959 int n = 0;
2961 values[n++] = 1 + leader->nr_siblings;
2963 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2964 values[n++] = leader->total_time_enabled;
2966 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2967 values[n++] = leader->total_time_running;
2969 if (leader != event)
2970 leader->pmu->read(leader);
2972 values[n++] = atomic64_read(&leader->count);
2973 if (read_format & PERF_FORMAT_ID)
2974 values[n++] = primary_event_id(leader);
2976 perf_output_copy(handle, values, n * sizeof(u64));
2978 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2979 n = 0;
2981 if (sub != event)
2982 sub->pmu->read(sub);
2984 values[n++] = atomic64_read(&sub->count);
2985 if (read_format & PERF_FORMAT_ID)
2986 values[n++] = primary_event_id(sub);
2988 perf_output_copy(handle, values, n * sizeof(u64));
2992 static void perf_output_read(struct perf_output_handle *handle,
2993 struct perf_event *event)
2995 if (event->attr.read_format & PERF_FORMAT_GROUP)
2996 perf_output_read_group(handle, event);
2997 else
2998 perf_output_read_one(handle, event);
3001 void perf_output_sample(struct perf_output_handle *handle,
3002 struct perf_event_header *header,
3003 struct perf_sample_data *data,
3004 struct perf_event *event)
3006 u64 sample_type = data->type;
3008 perf_output_put(handle, *header);
3010 if (sample_type & PERF_SAMPLE_IP)
3011 perf_output_put(handle, data->ip);
3013 if (sample_type & PERF_SAMPLE_TID)
3014 perf_output_put(handle, data->tid_entry);
3016 if (sample_type & PERF_SAMPLE_TIME)
3017 perf_output_put(handle, data->time);
3019 if (sample_type & PERF_SAMPLE_ADDR)
3020 perf_output_put(handle, data->addr);
3022 if (sample_type & PERF_SAMPLE_ID)
3023 perf_output_put(handle, data->id);
3025 if (sample_type & PERF_SAMPLE_STREAM_ID)
3026 perf_output_put(handle, data->stream_id);
3028 if (sample_type & PERF_SAMPLE_CPU)
3029 perf_output_put(handle, data->cpu_entry);
3031 if (sample_type & PERF_SAMPLE_PERIOD)
3032 perf_output_put(handle, data->period);
3034 if (sample_type & PERF_SAMPLE_READ)
3035 perf_output_read(handle, event);
3037 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3038 if (data->callchain) {
3039 int size = 1;
3041 if (data->callchain)
3042 size += data->callchain->nr;
3044 size *= sizeof(u64);
3046 perf_output_copy(handle, data->callchain, size);
3047 } else {
3048 u64 nr = 0;
3049 perf_output_put(handle, nr);
3053 if (sample_type & PERF_SAMPLE_RAW) {
3054 if (data->raw) {
3055 perf_output_put(handle, data->raw->size);
3056 perf_output_copy(handle, data->raw->data,
3057 data->raw->size);
3058 } else {
3059 struct {
3060 u32 size;
3061 u32 data;
3062 } raw = {
3063 .size = sizeof(u32),
3064 .data = 0,
3066 perf_output_put(handle, raw);
3071 void perf_prepare_sample(struct perf_event_header *header,
3072 struct perf_sample_data *data,
3073 struct perf_event *event,
3074 struct pt_regs *regs)
3076 u64 sample_type = event->attr.sample_type;
3078 data->type = sample_type;
3080 header->type = PERF_RECORD_SAMPLE;
3081 header->size = sizeof(*header);
3083 header->misc = 0;
3084 header->misc |= perf_misc_flags(regs);
3086 if (sample_type & PERF_SAMPLE_IP) {
3087 data->ip = perf_instruction_pointer(regs);
3089 header->size += sizeof(data->ip);
3092 if (sample_type & PERF_SAMPLE_TID) {
3093 /* namespace issues */
3094 data->tid_entry.pid = perf_event_pid(event, current);
3095 data->tid_entry.tid = perf_event_tid(event, current);
3097 header->size += sizeof(data->tid_entry);
3100 if (sample_type & PERF_SAMPLE_TIME) {
3101 data->time = perf_clock();
3103 header->size += sizeof(data->time);
3106 if (sample_type & PERF_SAMPLE_ADDR)
3107 header->size += sizeof(data->addr);
3109 if (sample_type & PERF_SAMPLE_ID) {
3110 data->id = primary_event_id(event);
3112 header->size += sizeof(data->id);
3115 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3116 data->stream_id = event->id;
3118 header->size += sizeof(data->stream_id);
3121 if (sample_type & PERF_SAMPLE_CPU) {
3122 data->cpu_entry.cpu = raw_smp_processor_id();
3123 data->cpu_entry.reserved = 0;
3125 header->size += sizeof(data->cpu_entry);
3128 if (sample_type & PERF_SAMPLE_PERIOD)
3129 header->size += sizeof(data->period);
3131 if (sample_type & PERF_SAMPLE_READ)
3132 header->size += perf_event_read_size(event);
3134 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3135 int size = 1;
3137 data->callchain = perf_callchain(regs);
3139 if (data->callchain)
3140 size += data->callchain->nr;
3142 header->size += size * sizeof(u64);
3145 if (sample_type & PERF_SAMPLE_RAW) {
3146 int size = sizeof(u32);
3148 if (data->raw)
3149 size += data->raw->size;
3150 else
3151 size += sizeof(u32);
3153 WARN_ON_ONCE(size & (sizeof(u64)-1));
3154 header->size += size;
3158 static void perf_event_output(struct perf_event *event, int nmi,
3159 struct perf_sample_data *data,
3160 struct pt_regs *regs)
3162 struct perf_output_handle handle;
3163 struct perf_event_header header;
3165 perf_prepare_sample(&header, data, event, regs);
3167 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3168 return;
3170 perf_output_sample(&handle, &header, data, event);
3172 perf_output_end(&handle);
3176 * read event_id
3179 struct perf_read_event {
3180 struct perf_event_header header;
3182 u32 pid;
3183 u32 tid;
3186 static void
3187 perf_event_read_event(struct perf_event *event,
3188 struct task_struct *task)
3190 struct perf_output_handle handle;
3191 struct perf_read_event read_event = {
3192 .header = {
3193 .type = PERF_RECORD_READ,
3194 .misc = 0,
3195 .size = sizeof(read_event) + perf_event_read_size(event),
3197 .pid = perf_event_pid(event, task),
3198 .tid = perf_event_tid(event, task),
3200 int ret;
3202 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3203 if (ret)
3204 return;
3206 perf_output_put(&handle, read_event);
3207 perf_output_read(&handle, event);
3209 perf_output_end(&handle);
3213 * task tracking -- fork/exit
3215 * enabled by: attr.comm | attr.mmap | attr.task
3218 struct perf_task_event {
3219 struct task_struct *task;
3220 struct perf_event_context *task_ctx;
3222 struct {
3223 struct perf_event_header header;
3225 u32 pid;
3226 u32 ppid;
3227 u32 tid;
3228 u32 ptid;
3229 u64 time;
3230 } event_id;
3233 static void perf_event_task_output(struct perf_event *event,
3234 struct perf_task_event *task_event)
3236 struct perf_output_handle handle;
3237 int size;
3238 struct task_struct *task = task_event->task;
3239 int ret;
3241 size = task_event->event_id.header.size;
3242 ret = perf_output_begin(&handle, event, size, 0, 0);
3244 if (ret)
3245 return;
3247 task_event->event_id.pid = perf_event_pid(event, task);
3248 task_event->event_id.ppid = perf_event_pid(event, current);
3250 task_event->event_id.tid = perf_event_tid(event, task);
3251 task_event->event_id.ptid = perf_event_tid(event, current);
3253 task_event->event_id.time = perf_clock();
3255 perf_output_put(&handle, task_event->event_id);
3257 perf_output_end(&handle);
3260 static int perf_event_task_match(struct perf_event *event)
3262 if (event->attr.comm || event->attr.mmap || event->attr.task)
3263 return 1;
3265 return 0;
3268 static void perf_event_task_ctx(struct perf_event_context *ctx,
3269 struct perf_task_event *task_event)
3271 struct perf_event *event;
3273 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3274 if (perf_event_task_match(event))
3275 perf_event_task_output(event, task_event);
3279 static void perf_event_task_event(struct perf_task_event *task_event)
3281 struct perf_cpu_context *cpuctx;
3282 struct perf_event_context *ctx = task_event->task_ctx;
3284 rcu_read_lock();
3285 cpuctx = &get_cpu_var(perf_cpu_context);
3286 perf_event_task_ctx(&cpuctx->ctx, task_event);
3287 put_cpu_var(perf_cpu_context);
3289 if (!ctx)
3290 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3291 if (ctx)
3292 perf_event_task_ctx(ctx, task_event);
3293 rcu_read_unlock();
3296 static void perf_event_task(struct task_struct *task,
3297 struct perf_event_context *task_ctx,
3298 int new)
3300 struct perf_task_event task_event;
3302 if (!atomic_read(&nr_comm_events) &&
3303 !atomic_read(&nr_mmap_events) &&
3304 !atomic_read(&nr_task_events))
3305 return;
3307 task_event = (struct perf_task_event){
3308 .task = task,
3309 .task_ctx = task_ctx,
3310 .event_id = {
3311 .header = {
3312 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3313 .misc = 0,
3314 .size = sizeof(task_event.event_id),
3316 /* .pid */
3317 /* .ppid */
3318 /* .tid */
3319 /* .ptid */
3323 perf_event_task_event(&task_event);
3326 void perf_event_fork(struct task_struct *task)
3328 perf_event_task(task, NULL, 1);
3332 * comm tracking
3335 struct perf_comm_event {
3336 struct task_struct *task;
3337 char *comm;
3338 int comm_size;
3340 struct {
3341 struct perf_event_header header;
3343 u32 pid;
3344 u32 tid;
3345 } event_id;
3348 static void perf_event_comm_output(struct perf_event *event,
3349 struct perf_comm_event *comm_event)
3351 struct perf_output_handle handle;
3352 int size = comm_event->event_id.header.size;
3353 int ret = perf_output_begin(&handle, event, size, 0, 0);
3355 if (ret)
3356 return;
3358 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3359 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3361 perf_output_put(&handle, comm_event->event_id);
3362 perf_output_copy(&handle, comm_event->comm,
3363 comm_event->comm_size);
3364 perf_output_end(&handle);
3367 static int perf_event_comm_match(struct perf_event *event)
3369 if (event->attr.comm)
3370 return 1;
3372 return 0;
3375 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3376 struct perf_comm_event *comm_event)
3378 struct perf_event *event;
3380 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3381 if (perf_event_comm_match(event))
3382 perf_event_comm_output(event, comm_event);
3386 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3388 struct perf_cpu_context *cpuctx;
3389 struct perf_event_context *ctx;
3390 unsigned int size;
3391 char comm[TASK_COMM_LEN];
3393 memset(comm, 0, sizeof(comm));
3394 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3395 size = ALIGN(strlen(comm)+1, sizeof(u64));
3397 comm_event->comm = comm;
3398 comm_event->comm_size = size;
3400 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3402 rcu_read_lock();
3403 cpuctx = &get_cpu_var(perf_cpu_context);
3404 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3405 put_cpu_var(perf_cpu_context);
3408 * doesn't really matter which of the child contexts the
3409 * events ends up in.
3411 ctx = rcu_dereference(current->perf_event_ctxp);
3412 if (ctx)
3413 perf_event_comm_ctx(ctx, comm_event);
3414 rcu_read_unlock();
3417 void perf_event_comm(struct task_struct *task)
3419 struct perf_comm_event comm_event;
3421 if (task->perf_event_ctxp)
3422 perf_event_enable_on_exec(task);
3424 if (!atomic_read(&nr_comm_events))
3425 return;
3427 comm_event = (struct perf_comm_event){
3428 .task = task,
3429 /* .comm */
3430 /* .comm_size */
3431 .event_id = {
3432 .header = {
3433 .type = PERF_RECORD_COMM,
3434 .misc = 0,
3435 /* .size */
3437 /* .pid */
3438 /* .tid */
3442 perf_event_comm_event(&comm_event);
3446 * mmap tracking
3449 struct perf_mmap_event {
3450 struct vm_area_struct *vma;
3452 const char *file_name;
3453 int file_size;
3455 struct {
3456 struct perf_event_header header;
3458 u32 pid;
3459 u32 tid;
3460 u64 start;
3461 u64 len;
3462 u64 pgoff;
3463 } event_id;
3466 static void perf_event_mmap_output(struct perf_event *event,
3467 struct perf_mmap_event *mmap_event)
3469 struct perf_output_handle handle;
3470 int size = mmap_event->event_id.header.size;
3471 int ret = perf_output_begin(&handle, event, size, 0, 0);
3473 if (ret)
3474 return;
3476 mmap_event->event_id.pid = perf_event_pid(event, current);
3477 mmap_event->event_id.tid = perf_event_tid(event, current);
3479 perf_output_put(&handle, mmap_event->event_id);
3480 perf_output_copy(&handle, mmap_event->file_name,
3481 mmap_event->file_size);
3482 perf_output_end(&handle);
3485 static int perf_event_mmap_match(struct perf_event *event,
3486 struct perf_mmap_event *mmap_event)
3488 if (event->attr.mmap)
3489 return 1;
3491 return 0;
3494 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3495 struct perf_mmap_event *mmap_event)
3497 struct perf_event *event;
3499 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3500 if (perf_event_mmap_match(event, mmap_event))
3501 perf_event_mmap_output(event, mmap_event);
3505 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3507 struct perf_cpu_context *cpuctx;
3508 struct perf_event_context *ctx;
3509 struct vm_area_struct *vma = mmap_event->vma;
3510 struct file *file = vma->vm_file;
3511 unsigned int size;
3512 char tmp[16];
3513 char *buf = NULL;
3514 const char *name;
3516 memset(tmp, 0, sizeof(tmp));
3518 if (file) {
3520 * d_path works from the end of the buffer backwards, so we
3521 * need to add enough zero bytes after the string to handle
3522 * the 64bit alignment we do later.
3524 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3525 if (!buf) {
3526 name = strncpy(tmp, "//enomem", sizeof(tmp));
3527 goto got_name;
3529 name = d_path(&file->f_path, buf, PATH_MAX);
3530 if (IS_ERR(name)) {
3531 name = strncpy(tmp, "//toolong", sizeof(tmp));
3532 goto got_name;
3534 } else {
3535 if (arch_vma_name(mmap_event->vma)) {
3536 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3537 sizeof(tmp));
3538 goto got_name;
3541 if (!vma->vm_mm) {
3542 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3543 goto got_name;
3546 name = strncpy(tmp, "//anon", sizeof(tmp));
3547 goto got_name;
3550 got_name:
3551 size = ALIGN(strlen(name)+1, sizeof(u64));
3553 mmap_event->file_name = name;
3554 mmap_event->file_size = size;
3556 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3558 rcu_read_lock();
3559 cpuctx = &get_cpu_var(perf_cpu_context);
3560 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3561 put_cpu_var(perf_cpu_context);
3564 * doesn't really matter which of the child contexts the
3565 * events ends up in.
3567 ctx = rcu_dereference(current->perf_event_ctxp);
3568 if (ctx)
3569 perf_event_mmap_ctx(ctx, mmap_event);
3570 rcu_read_unlock();
3572 kfree(buf);
3575 void __perf_event_mmap(struct vm_area_struct *vma)
3577 struct perf_mmap_event mmap_event;
3579 if (!atomic_read(&nr_mmap_events))
3580 return;
3582 mmap_event = (struct perf_mmap_event){
3583 .vma = vma,
3584 /* .file_name */
3585 /* .file_size */
3586 .event_id = {
3587 .header = {
3588 .type = PERF_RECORD_MMAP,
3589 .misc = 0,
3590 /* .size */
3592 /* .pid */
3593 /* .tid */
3594 .start = vma->vm_start,
3595 .len = vma->vm_end - vma->vm_start,
3596 .pgoff = vma->vm_pgoff,
3600 perf_event_mmap_event(&mmap_event);
3604 * IRQ throttle logging
3607 static void perf_log_throttle(struct perf_event *event, int enable)
3609 struct perf_output_handle handle;
3610 int ret;
3612 struct {
3613 struct perf_event_header header;
3614 u64 time;
3615 u64 id;
3616 u64 stream_id;
3617 } throttle_event = {
3618 .header = {
3619 .type = PERF_RECORD_THROTTLE,
3620 .misc = 0,
3621 .size = sizeof(throttle_event),
3623 .time = perf_clock(),
3624 .id = primary_event_id(event),
3625 .stream_id = event->id,
3628 if (enable)
3629 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3631 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3632 if (ret)
3633 return;
3635 perf_output_put(&handle, throttle_event);
3636 perf_output_end(&handle);
3640 * Generic event overflow handling, sampling.
3643 static int __perf_event_overflow(struct perf_event *event, int nmi,
3644 int throttle, struct perf_sample_data *data,
3645 struct pt_regs *regs)
3647 int events = atomic_read(&event->event_limit);
3648 struct hw_perf_event *hwc = &event->hw;
3649 int ret = 0;
3651 throttle = (throttle && event->pmu->unthrottle != NULL);
3653 if (!throttle) {
3654 hwc->interrupts++;
3655 } else {
3656 if (hwc->interrupts != MAX_INTERRUPTS) {
3657 hwc->interrupts++;
3658 if (HZ * hwc->interrupts >
3659 (u64)sysctl_perf_event_sample_rate) {
3660 hwc->interrupts = MAX_INTERRUPTS;
3661 perf_log_throttle(event, 0);
3662 ret = 1;
3664 } else {
3666 * Keep re-disabling events even though on the previous
3667 * pass we disabled it - just in case we raced with a
3668 * sched-in and the event got enabled again:
3670 ret = 1;
3674 if (event->attr.freq) {
3675 u64 now = perf_clock();
3676 s64 delta = now - hwc->freq_stamp;
3678 hwc->freq_stamp = now;
3680 if (delta > 0 && delta < TICK_NSEC)
3681 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3685 * XXX event_limit might not quite work as expected on inherited
3686 * events
3689 event->pending_kill = POLL_IN;
3690 if (events && atomic_dec_and_test(&event->event_limit)) {
3691 ret = 1;
3692 event->pending_kill = POLL_HUP;
3693 if (nmi) {
3694 event->pending_disable = 1;
3695 perf_pending_queue(&event->pending,
3696 perf_pending_event);
3697 } else
3698 perf_event_disable(event);
3701 if (event->overflow_handler)
3702 event->overflow_handler(event, nmi, data, regs);
3703 else
3704 perf_event_output(event, nmi, data, regs);
3706 return ret;
3709 int perf_event_overflow(struct perf_event *event, int nmi,
3710 struct perf_sample_data *data,
3711 struct pt_regs *regs)
3713 return __perf_event_overflow(event, nmi, 1, data, regs);
3717 * Generic software event infrastructure
3721 * We directly increment event->count and keep a second value in
3722 * event->hw.period_left to count intervals. This period event
3723 * is kept in the range [-sample_period, 0] so that we can use the
3724 * sign as trigger.
3727 static u64 perf_swevent_set_period(struct perf_event *event)
3729 struct hw_perf_event *hwc = &event->hw;
3730 u64 period = hwc->last_period;
3731 u64 nr, offset;
3732 s64 old, val;
3734 hwc->last_period = hwc->sample_period;
3736 again:
3737 old = val = atomic64_read(&hwc->period_left);
3738 if (val < 0)
3739 return 0;
3741 nr = div64_u64(period + val, period);
3742 offset = nr * period;
3743 val -= offset;
3744 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3745 goto again;
3747 return nr;
3750 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3751 int nmi, struct perf_sample_data *data,
3752 struct pt_regs *regs)
3754 struct hw_perf_event *hwc = &event->hw;
3755 int throttle = 0;
3757 data->period = event->hw.last_period;
3758 if (!overflow)
3759 overflow = perf_swevent_set_period(event);
3761 if (hwc->interrupts == MAX_INTERRUPTS)
3762 return;
3764 for (; overflow; overflow--) {
3765 if (__perf_event_overflow(event, nmi, throttle,
3766 data, regs)) {
3768 * We inhibit the overflow from happening when
3769 * hwc->interrupts == MAX_INTERRUPTS.
3771 break;
3773 throttle = 1;
3777 static void perf_swevent_unthrottle(struct perf_event *event)
3780 * Nothing to do, we already reset hwc->interrupts.
3784 static void perf_swevent_add(struct perf_event *event, u64 nr,
3785 int nmi, struct perf_sample_data *data,
3786 struct pt_regs *regs)
3788 struct hw_perf_event *hwc = &event->hw;
3790 atomic64_add(nr, &event->count);
3792 if (!regs)
3793 return;
3795 if (!hwc->sample_period)
3796 return;
3798 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3799 return perf_swevent_overflow(event, 1, nmi, data, regs);
3801 if (atomic64_add_negative(nr, &hwc->period_left))
3802 return;
3804 perf_swevent_overflow(event, 0, nmi, data, regs);
3807 static int perf_swevent_is_counting(struct perf_event *event)
3810 * The event is active, we're good!
3812 if (event->state == PERF_EVENT_STATE_ACTIVE)
3813 return 1;
3816 * The event is off/error, not counting.
3818 if (event->state != PERF_EVENT_STATE_INACTIVE)
3819 return 0;
3822 * The event is inactive, if the context is active
3823 * we're part of a group that didn't make it on the 'pmu',
3824 * not counting.
3826 if (event->ctx->is_active)
3827 return 0;
3830 * We're inactive and the context is too, this means the
3831 * task is scheduled out, we're counting events that happen
3832 * to us, like migration events.
3834 return 1;
3837 static int perf_tp_event_match(struct perf_event *event,
3838 struct perf_sample_data *data);
3840 static int perf_swevent_match(struct perf_event *event,
3841 enum perf_type_id type,
3842 u32 event_id,
3843 struct perf_sample_data *data,
3844 struct pt_regs *regs)
3846 if (!perf_swevent_is_counting(event))
3847 return 0;
3849 if (event->attr.type != type)
3850 return 0;
3851 if (event->attr.config != event_id)
3852 return 0;
3854 if (regs) {
3855 if (event->attr.exclude_user && user_mode(regs))
3856 return 0;
3858 if (event->attr.exclude_kernel && !user_mode(regs))
3859 return 0;
3862 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3863 !perf_tp_event_match(event, data))
3864 return 0;
3866 return 1;
3869 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3870 enum perf_type_id type,
3871 u32 event_id, u64 nr, int nmi,
3872 struct perf_sample_data *data,
3873 struct pt_regs *regs)
3875 struct perf_event *event;
3877 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3878 if (perf_swevent_match(event, type, event_id, data, regs))
3879 perf_swevent_add(event, nr, nmi, data, regs);
3884 * Must be called with preemption disabled
3886 int perf_swevent_get_recursion_context(int **recursion)
3888 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3890 if (in_nmi())
3891 *recursion = &cpuctx->recursion[3];
3892 else if (in_irq())
3893 *recursion = &cpuctx->recursion[2];
3894 else if (in_softirq())
3895 *recursion = &cpuctx->recursion[1];
3896 else
3897 *recursion = &cpuctx->recursion[0];
3899 if (**recursion)
3900 return -1;
3902 (**recursion)++;
3904 return 0;
3907 void perf_swevent_put_recursion_context(int *recursion)
3909 (*recursion)--;
3912 static void __do_perf_sw_event(enum perf_type_id type, u32 event_id,
3913 u64 nr, int nmi,
3914 struct perf_sample_data *data,
3915 struct pt_regs *regs)
3917 struct perf_event_context *ctx;
3918 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3920 rcu_read_lock();
3921 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3922 nr, nmi, data, regs);
3924 * doesn't really matter which of the child contexts the
3925 * events ends up in.
3927 ctx = rcu_dereference(current->perf_event_ctxp);
3928 if (ctx)
3929 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3930 rcu_read_unlock();
3933 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3934 u64 nr, int nmi,
3935 struct perf_sample_data *data,
3936 struct pt_regs *regs)
3938 int *recursion;
3940 preempt_disable();
3942 if (perf_swevent_get_recursion_context(&recursion))
3943 goto out;
3945 __do_perf_sw_event(type, event_id, nr, nmi, data, regs);
3947 perf_swevent_put_recursion_context(recursion);
3948 out:
3949 preempt_enable();
3952 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3953 struct pt_regs *regs, u64 addr)
3955 struct perf_sample_data data = {
3956 .addr = addr,
3959 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3960 &data, regs);
3963 static void perf_swevent_read(struct perf_event *event)
3967 static int perf_swevent_enable(struct perf_event *event)
3969 struct hw_perf_event *hwc = &event->hw;
3971 if (hwc->sample_period) {
3972 hwc->last_period = hwc->sample_period;
3973 perf_swevent_set_period(event);
3975 return 0;
3978 static void perf_swevent_disable(struct perf_event *event)
3982 static const struct pmu perf_ops_generic = {
3983 .enable = perf_swevent_enable,
3984 .disable = perf_swevent_disable,
3985 .read = perf_swevent_read,
3986 .unthrottle = perf_swevent_unthrottle,
3990 * hrtimer based swevent callback
3993 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3995 enum hrtimer_restart ret = HRTIMER_RESTART;
3996 struct perf_sample_data data;
3997 struct pt_regs *regs;
3998 struct perf_event *event;
3999 u64 period;
4001 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4002 event->pmu->read(event);
4004 data.addr = 0;
4005 regs = get_irq_regs();
4007 * In case we exclude kernel IPs or are somehow not in interrupt
4008 * context, provide the next best thing, the user IP.
4010 if ((event->attr.exclude_kernel || !regs) &&
4011 !event->attr.exclude_user)
4012 regs = task_pt_regs(current);
4014 if (regs) {
4015 if (!(event->attr.exclude_idle && current->pid == 0))
4016 if (perf_event_overflow(event, 0, &data, regs))
4017 ret = HRTIMER_NORESTART;
4020 period = max_t(u64, 10000, event->hw.sample_period);
4021 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4023 return ret;
4026 static void perf_swevent_start_hrtimer(struct perf_event *event)
4028 struct hw_perf_event *hwc = &event->hw;
4030 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4031 hwc->hrtimer.function = perf_swevent_hrtimer;
4032 if (hwc->sample_period) {
4033 u64 period;
4035 if (hwc->remaining) {
4036 if (hwc->remaining < 0)
4037 period = 10000;
4038 else
4039 period = hwc->remaining;
4040 hwc->remaining = 0;
4041 } else {
4042 period = max_t(u64, 10000, hwc->sample_period);
4044 __hrtimer_start_range_ns(&hwc->hrtimer,
4045 ns_to_ktime(period), 0,
4046 HRTIMER_MODE_REL, 0);
4050 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4052 struct hw_perf_event *hwc = &event->hw;
4054 if (hwc->sample_period) {
4055 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4056 hwc->remaining = ktime_to_ns(remaining);
4058 hrtimer_cancel(&hwc->hrtimer);
4063 * Software event: cpu wall time clock
4066 static void cpu_clock_perf_event_update(struct perf_event *event)
4068 int cpu = raw_smp_processor_id();
4069 s64 prev;
4070 u64 now;
4072 now = cpu_clock(cpu);
4073 prev = atomic64_read(&event->hw.prev_count);
4074 atomic64_set(&event->hw.prev_count, now);
4075 atomic64_add(now - prev, &event->count);
4078 static int cpu_clock_perf_event_enable(struct perf_event *event)
4080 struct hw_perf_event *hwc = &event->hw;
4081 int cpu = raw_smp_processor_id();
4083 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4084 perf_swevent_start_hrtimer(event);
4086 return 0;
4089 static void cpu_clock_perf_event_disable(struct perf_event *event)
4091 perf_swevent_cancel_hrtimer(event);
4092 cpu_clock_perf_event_update(event);
4095 static void cpu_clock_perf_event_read(struct perf_event *event)
4097 cpu_clock_perf_event_update(event);
4100 static const struct pmu perf_ops_cpu_clock = {
4101 .enable = cpu_clock_perf_event_enable,
4102 .disable = cpu_clock_perf_event_disable,
4103 .read = cpu_clock_perf_event_read,
4107 * Software event: task time clock
4110 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4112 u64 prev;
4113 s64 delta;
4115 prev = atomic64_xchg(&event->hw.prev_count, now);
4116 delta = now - prev;
4117 atomic64_add(delta, &event->count);
4120 static int task_clock_perf_event_enable(struct perf_event *event)
4122 struct hw_perf_event *hwc = &event->hw;
4123 u64 now;
4125 now = event->ctx->time;
4127 atomic64_set(&hwc->prev_count, now);
4129 perf_swevent_start_hrtimer(event);
4131 return 0;
4134 static void task_clock_perf_event_disable(struct perf_event *event)
4136 perf_swevent_cancel_hrtimer(event);
4137 task_clock_perf_event_update(event, event->ctx->time);
4141 static void task_clock_perf_event_read(struct perf_event *event)
4143 u64 time;
4145 if (!in_nmi()) {
4146 update_context_time(event->ctx);
4147 time = event->ctx->time;
4148 } else {
4149 u64 now = perf_clock();
4150 u64 delta = now - event->ctx->timestamp;
4151 time = event->ctx->time + delta;
4154 task_clock_perf_event_update(event, time);
4157 static const struct pmu perf_ops_task_clock = {
4158 .enable = task_clock_perf_event_enable,
4159 .disable = task_clock_perf_event_disable,
4160 .read = task_clock_perf_event_read,
4163 #ifdef CONFIG_EVENT_PROFILE
4165 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4166 int entry_size)
4168 struct perf_raw_record raw = {
4169 .size = entry_size,
4170 .data = record,
4173 struct perf_sample_data data = {
4174 .addr = addr,
4175 .raw = &raw,
4178 struct pt_regs *regs = get_irq_regs();
4180 if (!regs)
4181 regs = task_pt_regs(current);
4183 /* Trace events already protected against recursion */
4184 __do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4185 &data, regs);
4187 EXPORT_SYMBOL_GPL(perf_tp_event);
4189 static int perf_tp_event_match(struct perf_event *event,
4190 struct perf_sample_data *data)
4192 void *record = data->raw->data;
4194 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4195 return 1;
4196 return 0;
4199 static void tp_perf_event_destroy(struct perf_event *event)
4201 ftrace_profile_disable(event->attr.config);
4204 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4207 * Raw tracepoint data is a severe data leak, only allow root to
4208 * have these.
4210 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4211 perf_paranoid_tracepoint_raw() &&
4212 !capable(CAP_SYS_ADMIN))
4213 return ERR_PTR(-EPERM);
4215 if (ftrace_profile_enable(event->attr.config))
4216 return NULL;
4218 event->destroy = tp_perf_event_destroy;
4220 return &perf_ops_generic;
4223 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4225 char *filter_str;
4226 int ret;
4228 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4229 return -EINVAL;
4231 filter_str = strndup_user(arg, PAGE_SIZE);
4232 if (IS_ERR(filter_str))
4233 return PTR_ERR(filter_str);
4235 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4237 kfree(filter_str);
4238 return ret;
4241 static void perf_event_free_filter(struct perf_event *event)
4243 ftrace_profile_free_filter(event);
4246 #else
4248 static int perf_tp_event_match(struct perf_event *event,
4249 struct perf_sample_data *data)
4251 return 1;
4254 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4256 return NULL;
4259 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4261 return -ENOENT;
4264 static void perf_event_free_filter(struct perf_event *event)
4268 #endif /* CONFIG_EVENT_PROFILE */
4270 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4271 static void bp_perf_event_destroy(struct perf_event *event)
4273 release_bp_slot(event);
4276 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4278 int err;
4280 * The breakpoint is already filled if we haven't created the counter
4281 * through perf syscall
4282 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4284 if (!bp->callback)
4285 err = register_perf_hw_breakpoint(bp);
4286 else
4287 err = __register_perf_hw_breakpoint(bp);
4288 if (err)
4289 return ERR_PTR(err);
4291 bp->destroy = bp_perf_event_destroy;
4293 return &perf_ops_bp;
4296 void perf_bp_event(struct perf_event *bp, void *regs)
4298 /* TODO */
4300 #else
4301 static void bp_perf_event_destroy(struct perf_event *event)
4305 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4307 return NULL;
4310 void perf_bp_event(struct perf_event *bp, void *regs)
4313 #endif
4315 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4317 static void sw_perf_event_destroy(struct perf_event *event)
4319 u64 event_id = event->attr.config;
4321 WARN_ON(event->parent);
4323 atomic_dec(&perf_swevent_enabled[event_id]);
4326 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4328 const struct pmu *pmu = NULL;
4329 u64 event_id = event->attr.config;
4332 * Software events (currently) can't in general distinguish
4333 * between user, kernel and hypervisor events.
4334 * However, context switches and cpu migrations are considered
4335 * to be kernel events, and page faults are never hypervisor
4336 * events.
4338 switch (event_id) {
4339 case PERF_COUNT_SW_CPU_CLOCK:
4340 pmu = &perf_ops_cpu_clock;
4342 break;
4343 case PERF_COUNT_SW_TASK_CLOCK:
4345 * If the user instantiates this as a per-cpu event,
4346 * use the cpu_clock event instead.
4348 if (event->ctx->task)
4349 pmu = &perf_ops_task_clock;
4350 else
4351 pmu = &perf_ops_cpu_clock;
4353 break;
4354 case PERF_COUNT_SW_PAGE_FAULTS:
4355 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4356 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4357 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4358 case PERF_COUNT_SW_CPU_MIGRATIONS:
4359 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4360 case PERF_COUNT_SW_EMULATION_FAULTS:
4361 if (!event->parent) {
4362 atomic_inc(&perf_swevent_enabled[event_id]);
4363 event->destroy = sw_perf_event_destroy;
4365 pmu = &perf_ops_generic;
4366 break;
4369 return pmu;
4373 * Allocate and initialize a event structure
4375 static struct perf_event *
4376 perf_event_alloc(struct perf_event_attr *attr,
4377 int cpu,
4378 struct perf_event_context *ctx,
4379 struct perf_event *group_leader,
4380 struct perf_event *parent_event,
4381 perf_callback_t callback,
4382 gfp_t gfpflags)
4384 const struct pmu *pmu;
4385 struct perf_event *event;
4386 struct hw_perf_event *hwc;
4387 long err;
4389 event = kzalloc(sizeof(*event), gfpflags);
4390 if (!event)
4391 return ERR_PTR(-ENOMEM);
4394 * Single events are their own group leaders, with an
4395 * empty sibling list:
4397 if (!group_leader)
4398 group_leader = event;
4400 mutex_init(&event->child_mutex);
4401 INIT_LIST_HEAD(&event->child_list);
4403 INIT_LIST_HEAD(&event->group_entry);
4404 INIT_LIST_HEAD(&event->event_entry);
4405 INIT_LIST_HEAD(&event->sibling_list);
4406 init_waitqueue_head(&event->waitq);
4408 mutex_init(&event->mmap_mutex);
4410 event->cpu = cpu;
4411 event->attr = *attr;
4412 event->group_leader = group_leader;
4413 event->pmu = NULL;
4414 event->ctx = ctx;
4415 event->oncpu = -1;
4417 event->parent = parent_event;
4419 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4420 event->id = atomic64_inc_return(&perf_event_id);
4422 event->state = PERF_EVENT_STATE_INACTIVE;
4424 if (!callback && parent_event)
4425 callback = parent_event->callback;
4427 event->callback = callback;
4429 if (attr->disabled)
4430 event->state = PERF_EVENT_STATE_OFF;
4432 pmu = NULL;
4434 hwc = &event->hw;
4435 hwc->sample_period = attr->sample_period;
4436 if (attr->freq && attr->sample_freq)
4437 hwc->sample_period = 1;
4438 hwc->last_period = hwc->sample_period;
4440 atomic64_set(&hwc->period_left, hwc->sample_period);
4443 * we currently do not support PERF_FORMAT_GROUP on inherited events
4445 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4446 goto done;
4448 switch (attr->type) {
4449 case PERF_TYPE_RAW:
4450 case PERF_TYPE_HARDWARE:
4451 case PERF_TYPE_HW_CACHE:
4452 pmu = hw_perf_event_init(event);
4453 break;
4455 case PERF_TYPE_SOFTWARE:
4456 pmu = sw_perf_event_init(event);
4457 break;
4459 case PERF_TYPE_TRACEPOINT:
4460 pmu = tp_perf_event_init(event);
4461 break;
4463 case PERF_TYPE_BREAKPOINT:
4464 pmu = bp_perf_event_init(event);
4465 break;
4468 default:
4469 break;
4471 done:
4472 err = 0;
4473 if (!pmu)
4474 err = -EINVAL;
4475 else if (IS_ERR(pmu))
4476 err = PTR_ERR(pmu);
4478 if (err) {
4479 if (event->ns)
4480 put_pid_ns(event->ns);
4481 kfree(event);
4482 return ERR_PTR(err);
4485 event->pmu = pmu;
4487 if (!event->parent) {
4488 atomic_inc(&nr_events);
4489 if (event->attr.mmap)
4490 atomic_inc(&nr_mmap_events);
4491 if (event->attr.comm)
4492 atomic_inc(&nr_comm_events);
4493 if (event->attr.task)
4494 atomic_inc(&nr_task_events);
4497 return event;
4500 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4501 struct perf_event_attr *attr)
4503 u32 size;
4504 int ret;
4506 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4507 return -EFAULT;
4510 * zero the full structure, so that a short copy will be nice.
4512 memset(attr, 0, sizeof(*attr));
4514 ret = get_user(size, &uattr->size);
4515 if (ret)
4516 return ret;
4518 if (size > PAGE_SIZE) /* silly large */
4519 goto err_size;
4521 if (!size) /* abi compat */
4522 size = PERF_ATTR_SIZE_VER0;
4524 if (size < PERF_ATTR_SIZE_VER0)
4525 goto err_size;
4528 * If we're handed a bigger struct than we know of,
4529 * ensure all the unknown bits are 0 - i.e. new
4530 * user-space does not rely on any kernel feature
4531 * extensions we dont know about yet.
4533 if (size > sizeof(*attr)) {
4534 unsigned char __user *addr;
4535 unsigned char __user *end;
4536 unsigned char val;
4538 addr = (void __user *)uattr + sizeof(*attr);
4539 end = (void __user *)uattr + size;
4541 for (; addr < end; addr++) {
4542 ret = get_user(val, addr);
4543 if (ret)
4544 return ret;
4545 if (val)
4546 goto err_size;
4548 size = sizeof(*attr);
4551 ret = copy_from_user(attr, uattr, size);
4552 if (ret)
4553 return -EFAULT;
4556 * If the type exists, the corresponding creation will verify
4557 * the attr->config.
4559 if (attr->type >= PERF_TYPE_MAX)
4560 return -EINVAL;
4562 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4563 return -EINVAL;
4565 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4566 return -EINVAL;
4568 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4569 return -EINVAL;
4571 out:
4572 return ret;
4574 err_size:
4575 put_user(sizeof(*attr), &uattr->size);
4576 ret = -E2BIG;
4577 goto out;
4580 static int perf_event_set_output(struct perf_event *event, int output_fd)
4582 struct perf_event *output_event = NULL;
4583 struct file *output_file = NULL;
4584 struct perf_event *old_output;
4585 int fput_needed = 0;
4586 int ret = -EINVAL;
4588 if (!output_fd)
4589 goto set;
4591 output_file = fget_light(output_fd, &fput_needed);
4592 if (!output_file)
4593 return -EBADF;
4595 if (output_file->f_op != &perf_fops)
4596 goto out;
4598 output_event = output_file->private_data;
4600 /* Don't chain output fds */
4601 if (output_event->output)
4602 goto out;
4604 /* Don't set an output fd when we already have an output channel */
4605 if (event->data)
4606 goto out;
4608 atomic_long_inc(&output_file->f_count);
4610 set:
4611 mutex_lock(&event->mmap_mutex);
4612 old_output = event->output;
4613 rcu_assign_pointer(event->output, output_event);
4614 mutex_unlock(&event->mmap_mutex);
4616 if (old_output) {
4618 * we need to make sure no existing perf_output_*()
4619 * is still referencing this event.
4621 synchronize_rcu();
4622 fput(old_output->filp);
4625 ret = 0;
4626 out:
4627 fput_light(output_file, fput_needed);
4628 return ret;
4632 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4634 * @attr_uptr: event_id type attributes for monitoring/sampling
4635 * @pid: target pid
4636 * @cpu: target cpu
4637 * @group_fd: group leader event fd
4639 SYSCALL_DEFINE5(perf_event_open,
4640 struct perf_event_attr __user *, attr_uptr,
4641 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4643 struct perf_event *event, *group_leader;
4644 struct perf_event_attr attr;
4645 struct perf_event_context *ctx;
4646 struct file *event_file = NULL;
4647 struct file *group_file = NULL;
4648 int fput_needed = 0;
4649 int fput_needed2 = 0;
4650 int err;
4652 /* for future expandability... */
4653 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4654 return -EINVAL;
4656 err = perf_copy_attr(attr_uptr, &attr);
4657 if (err)
4658 return err;
4660 if (!attr.exclude_kernel) {
4661 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4662 return -EACCES;
4665 if (attr.freq) {
4666 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4667 return -EINVAL;
4671 * Get the target context (task or percpu):
4673 ctx = find_get_context(pid, cpu);
4674 if (IS_ERR(ctx))
4675 return PTR_ERR(ctx);
4678 * Look up the group leader (we will attach this event to it):
4680 group_leader = NULL;
4681 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4682 err = -EINVAL;
4683 group_file = fget_light(group_fd, &fput_needed);
4684 if (!group_file)
4685 goto err_put_context;
4686 if (group_file->f_op != &perf_fops)
4687 goto err_put_context;
4689 group_leader = group_file->private_data;
4691 * Do not allow a recursive hierarchy (this new sibling
4692 * becoming part of another group-sibling):
4694 if (group_leader->group_leader != group_leader)
4695 goto err_put_context;
4697 * Do not allow to attach to a group in a different
4698 * task or CPU context:
4700 if (group_leader->ctx != ctx)
4701 goto err_put_context;
4703 * Only a group leader can be exclusive or pinned
4705 if (attr.exclusive || attr.pinned)
4706 goto err_put_context;
4709 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4710 NULL, NULL, GFP_KERNEL);
4711 err = PTR_ERR(event);
4712 if (IS_ERR(event))
4713 goto err_put_context;
4715 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4716 if (err < 0)
4717 goto err_free_put_context;
4719 event_file = fget_light(err, &fput_needed2);
4720 if (!event_file)
4721 goto err_free_put_context;
4723 if (flags & PERF_FLAG_FD_OUTPUT) {
4724 err = perf_event_set_output(event, group_fd);
4725 if (err)
4726 goto err_fput_free_put_context;
4729 event->filp = event_file;
4730 WARN_ON_ONCE(ctx->parent_ctx);
4731 mutex_lock(&ctx->mutex);
4732 perf_install_in_context(ctx, event, cpu);
4733 ++ctx->generation;
4734 mutex_unlock(&ctx->mutex);
4736 event->owner = current;
4737 get_task_struct(current);
4738 mutex_lock(&current->perf_event_mutex);
4739 list_add_tail(&event->owner_entry, &current->perf_event_list);
4740 mutex_unlock(&current->perf_event_mutex);
4742 err_fput_free_put_context:
4743 fput_light(event_file, fput_needed2);
4745 err_free_put_context:
4746 if (err < 0)
4747 kfree(event);
4749 err_put_context:
4750 if (err < 0)
4751 put_ctx(ctx);
4753 fput_light(group_file, fput_needed);
4755 return err;
4759 * perf_event_create_kernel_counter
4761 * @attr: attributes of the counter to create
4762 * @cpu: cpu in which the counter is bound
4763 * @pid: task to profile
4765 struct perf_event *
4766 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4767 pid_t pid, perf_callback_t callback)
4769 struct perf_event *event;
4770 struct perf_event_context *ctx;
4771 int err;
4774 * Get the target context (task or percpu):
4777 ctx = find_get_context(pid, cpu);
4778 if (IS_ERR(ctx))
4779 return NULL;
4781 event = perf_event_alloc(attr, cpu, ctx, NULL,
4782 NULL, callback, GFP_KERNEL);
4783 err = PTR_ERR(event);
4784 if (IS_ERR(event))
4785 goto err_put_context;
4787 event->filp = NULL;
4788 WARN_ON_ONCE(ctx->parent_ctx);
4789 mutex_lock(&ctx->mutex);
4790 perf_install_in_context(ctx, event, cpu);
4791 ++ctx->generation;
4792 mutex_unlock(&ctx->mutex);
4794 event->owner = current;
4795 get_task_struct(current);
4796 mutex_lock(&current->perf_event_mutex);
4797 list_add_tail(&event->owner_entry, &current->perf_event_list);
4798 mutex_unlock(&current->perf_event_mutex);
4800 return event;
4802 err_put_context:
4803 if (err < 0)
4804 put_ctx(ctx);
4806 return NULL;
4808 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4811 * inherit a event from parent task to child task:
4813 static struct perf_event *
4814 inherit_event(struct perf_event *parent_event,
4815 struct task_struct *parent,
4816 struct perf_event_context *parent_ctx,
4817 struct task_struct *child,
4818 struct perf_event *group_leader,
4819 struct perf_event_context *child_ctx)
4821 struct perf_event *child_event;
4824 * Instead of creating recursive hierarchies of events,
4825 * we link inherited events back to the original parent,
4826 * which has a filp for sure, which we use as the reference
4827 * count:
4829 if (parent_event->parent)
4830 parent_event = parent_event->parent;
4832 child_event = perf_event_alloc(&parent_event->attr,
4833 parent_event->cpu, child_ctx,
4834 group_leader, parent_event,
4835 NULL, GFP_KERNEL);
4836 if (IS_ERR(child_event))
4837 return child_event;
4838 get_ctx(child_ctx);
4841 * Make the child state follow the state of the parent event,
4842 * not its attr.disabled bit. We hold the parent's mutex,
4843 * so we won't race with perf_event_{en, dis}able_family.
4845 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4846 child_event->state = PERF_EVENT_STATE_INACTIVE;
4847 else
4848 child_event->state = PERF_EVENT_STATE_OFF;
4850 if (parent_event->attr.freq)
4851 child_event->hw.sample_period = parent_event->hw.sample_period;
4853 child_event->overflow_handler = parent_event->overflow_handler;
4856 * Link it up in the child's context:
4858 add_event_to_ctx(child_event, child_ctx);
4861 * Get a reference to the parent filp - we will fput it
4862 * when the child event exits. This is safe to do because
4863 * we are in the parent and we know that the filp still
4864 * exists and has a nonzero count:
4866 atomic_long_inc(&parent_event->filp->f_count);
4869 * Link this into the parent event's child list
4871 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4872 mutex_lock(&parent_event->child_mutex);
4873 list_add_tail(&child_event->child_list, &parent_event->child_list);
4874 mutex_unlock(&parent_event->child_mutex);
4876 return child_event;
4879 static int inherit_group(struct perf_event *parent_event,
4880 struct task_struct *parent,
4881 struct perf_event_context *parent_ctx,
4882 struct task_struct *child,
4883 struct perf_event_context *child_ctx)
4885 struct perf_event *leader;
4886 struct perf_event *sub;
4887 struct perf_event *child_ctr;
4889 leader = inherit_event(parent_event, parent, parent_ctx,
4890 child, NULL, child_ctx);
4891 if (IS_ERR(leader))
4892 return PTR_ERR(leader);
4893 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4894 child_ctr = inherit_event(sub, parent, parent_ctx,
4895 child, leader, child_ctx);
4896 if (IS_ERR(child_ctr))
4897 return PTR_ERR(child_ctr);
4899 return 0;
4902 static void sync_child_event(struct perf_event *child_event,
4903 struct task_struct *child)
4905 struct perf_event *parent_event = child_event->parent;
4906 u64 child_val;
4908 if (child_event->attr.inherit_stat)
4909 perf_event_read_event(child_event, child);
4911 child_val = atomic64_read(&child_event->count);
4914 * Add back the child's count to the parent's count:
4916 atomic64_add(child_val, &parent_event->count);
4917 atomic64_add(child_event->total_time_enabled,
4918 &parent_event->child_total_time_enabled);
4919 atomic64_add(child_event->total_time_running,
4920 &parent_event->child_total_time_running);
4923 * Remove this event from the parent's list
4925 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4926 mutex_lock(&parent_event->child_mutex);
4927 list_del_init(&child_event->child_list);
4928 mutex_unlock(&parent_event->child_mutex);
4931 * Release the parent event, if this was the last
4932 * reference to it.
4934 fput(parent_event->filp);
4937 static void
4938 __perf_event_exit_task(struct perf_event *child_event,
4939 struct perf_event_context *child_ctx,
4940 struct task_struct *child)
4942 struct perf_event *parent_event;
4944 update_event_times(child_event);
4945 perf_event_remove_from_context(child_event);
4947 parent_event = child_event->parent;
4949 * It can happen that parent exits first, and has events
4950 * that are still around due to the child reference. These
4951 * events need to be zapped - but otherwise linger.
4953 if (parent_event) {
4954 sync_child_event(child_event, child);
4955 free_event(child_event);
4960 * When a child task exits, feed back event values to parent events.
4962 void perf_event_exit_task(struct task_struct *child)
4964 struct perf_event *child_event, *tmp;
4965 struct perf_event_context *child_ctx;
4966 unsigned long flags;
4968 if (likely(!child->perf_event_ctxp)) {
4969 perf_event_task(child, NULL, 0);
4970 return;
4973 local_irq_save(flags);
4975 * We can't reschedule here because interrupts are disabled,
4976 * and either child is current or it is a task that can't be
4977 * scheduled, so we are now safe from rescheduling changing
4978 * our context.
4980 child_ctx = child->perf_event_ctxp;
4981 __perf_event_task_sched_out(child_ctx);
4984 * Take the context lock here so that if find_get_context is
4985 * reading child->perf_event_ctxp, we wait until it has
4986 * incremented the context's refcount before we do put_ctx below.
4988 spin_lock(&child_ctx->lock);
4989 child->perf_event_ctxp = NULL;
4991 * If this context is a clone; unclone it so it can't get
4992 * swapped to another process while we're removing all
4993 * the events from it.
4995 unclone_ctx(child_ctx);
4996 spin_unlock_irqrestore(&child_ctx->lock, flags);
4999 * Report the task dead after unscheduling the events so that we
5000 * won't get any samples after PERF_RECORD_EXIT. We can however still
5001 * get a few PERF_RECORD_READ events.
5003 perf_event_task(child, child_ctx, 0);
5006 * We can recurse on the same lock type through:
5008 * __perf_event_exit_task()
5009 * sync_child_event()
5010 * fput(parent_event->filp)
5011 * perf_release()
5012 * mutex_lock(&ctx->mutex)
5014 * But since its the parent context it won't be the same instance.
5016 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5018 again:
5019 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5020 group_entry)
5021 __perf_event_exit_task(child_event, child_ctx, child);
5024 * If the last event was a group event, it will have appended all
5025 * its siblings to the list, but we obtained 'tmp' before that which
5026 * will still point to the list head terminating the iteration.
5028 if (!list_empty(&child_ctx->group_list))
5029 goto again;
5031 mutex_unlock(&child_ctx->mutex);
5033 put_ctx(child_ctx);
5037 * free an unexposed, unused context as created by inheritance by
5038 * init_task below, used by fork() in case of fail.
5040 void perf_event_free_task(struct task_struct *task)
5042 struct perf_event_context *ctx = task->perf_event_ctxp;
5043 struct perf_event *event, *tmp;
5045 if (!ctx)
5046 return;
5048 mutex_lock(&ctx->mutex);
5049 again:
5050 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5051 struct perf_event *parent = event->parent;
5053 if (WARN_ON_ONCE(!parent))
5054 continue;
5056 mutex_lock(&parent->child_mutex);
5057 list_del_init(&event->child_list);
5058 mutex_unlock(&parent->child_mutex);
5060 fput(parent->filp);
5062 list_del_event(event, ctx);
5063 free_event(event);
5066 if (!list_empty(&ctx->group_list))
5067 goto again;
5069 mutex_unlock(&ctx->mutex);
5071 put_ctx(ctx);
5075 * Initialize the perf_event context in task_struct
5077 int perf_event_init_task(struct task_struct *child)
5079 struct perf_event_context *child_ctx, *parent_ctx;
5080 struct perf_event_context *cloned_ctx;
5081 struct perf_event *event;
5082 struct task_struct *parent = current;
5083 int inherited_all = 1;
5084 int ret = 0;
5086 child->perf_event_ctxp = NULL;
5088 mutex_init(&child->perf_event_mutex);
5089 INIT_LIST_HEAD(&child->perf_event_list);
5091 if (likely(!parent->perf_event_ctxp))
5092 return 0;
5095 * This is executed from the parent task context, so inherit
5096 * events that have been marked for cloning.
5097 * First allocate and initialize a context for the child.
5100 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5101 if (!child_ctx)
5102 return -ENOMEM;
5104 __perf_event_init_context(child_ctx, child);
5105 child->perf_event_ctxp = child_ctx;
5106 get_task_struct(child);
5109 * If the parent's context is a clone, pin it so it won't get
5110 * swapped under us.
5112 parent_ctx = perf_pin_task_context(parent);
5115 * No need to check if parent_ctx != NULL here; since we saw
5116 * it non-NULL earlier, the only reason for it to become NULL
5117 * is if we exit, and since we're currently in the middle of
5118 * a fork we can't be exiting at the same time.
5122 * Lock the parent list. No need to lock the child - not PID
5123 * hashed yet and not running, so nobody can access it.
5125 mutex_lock(&parent_ctx->mutex);
5128 * We dont have to disable NMIs - we are only looking at
5129 * the list, not manipulating it:
5131 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5133 if (!event->attr.inherit) {
5134 inherited_all = 0;
5135 continue;
5138 ret = inherit_group(event, parent, parent_ctx,
5139 child, child_ctx);
5140 if (ret) {
5141 inherited_all = 0;
5142 break;
5146 if (inherited_all) {
5148 * Mark the child context as a clone of the parent
5149 * context, or of whatever the parent is a clone of.
5150 * Note that if the parent is a clone, it could get
5151 * uncloned at any point, but that doesn't matter
5152 * because the list of events and the generation
5153 * count can't have changed since we took the mutex.
5155 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5156 if (cloned_ctx) {
5157 child_ctx->parent_ctx = cloned_ctx;
5158 child_ctx->parent_gen = parent_ctx->parent_gen;
5159 } else {
5160 child_ctx->parent_ctx = parent_ctx;
5161 child_ctx->parent_gen = parent_ctx->generation;
5163 get_ctx(child_ctx->parent_ctx);
5166 mutex_unlock(&parent_ctx->mutex);
5168 perf_unpin_context(parent_ctx);
5170 return ret;
5173 static void __cpuinit perf_event_init_cpu(int cpu)
5175 struct perf_cpu_context *cpuctx;
5177 cpuctx = &per_cpu(perf_cpu_context, cpu);
5178 __perf_event_init_context(&cpuctx->ctx, NULL);
5180 spin_lock(&perf_resource_lock);
5181 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5182 spin_unlock(&perf_resource_lock);
5184 hw_perf_event_setup(cpu);
5187 #ifdef CONFIG_HOTPLUG_CPU
5188 static void __perf_event_exit_cpu(void *info)
5190 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5191 struct perf_event_context *ctx = &cpuctx->ctx;
5192 struct perf_event *event, *tmp;
5194 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5195 __perf_event_remove_from_context(event);
5197 static void perf_event_exit_cpu(int cpu)
5199 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5200 struct perf_event_context *ctx = &cpuctx->ctx;
5202 mutex_lock(&ctx->mutex);
5203 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5204 mutex_unlock(&ctx->mutex);
5206 #else
5207 static inline void perf_event_exit_cpu(int cpu) { }
5208 #endif
5210 static int __cpuinit
5211 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5213 unsigned int cpu = (long)hcpu;
5215 switch (action) {
5217 case CPU_UP_PREPARE:
5218 case CPU_UP_PREPARE_FROZEN:
5219 perf_event_init_cpu(cpu);
5220 break;
5222 case CPU_ONLINE:
5223 case CPU_ONLINE_FROZEN:
5224 hw_perf_event_setup_online(cpu);
5225 break;
5227 case CPU_DOWN_PREPARE:
5228 case CPU_DOWN_PREPARE_FROZEN:
5229 perf_event_exit_cpu(cpu);
5230 break;
5232 default:
5233 break;
5236 return NOTIFY_OK;
5240 * This has to have a higher priority than migration_notifier in sched.c.
5242 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5243 .notifier_call = perf_cpu_notify,
5244 .priority = 20,
5247 void __init perf_event_init(void)
5249 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5250 (void *)(long)smp_processor_id());
5251 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5252 (void *)(long)smp_processor_id());
5253 register_cpu_notifier(&perf_cpu_nb);
5256 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5258 return sprintf(buf, "%d\n", perf_reserved_percpu);
5261 static ssize_t
5262 perf_set_reserve_percpu(struct sysdev_class *class,
5263 const char *buf,
5264 size_t count)
5266 struct perf_cpu_context *cpuctx;
5267 unsigned long val;
5268 int err, cpu, mpt;
5270 err = strict_strtoul(buf, 10, &val);
5271 if (err)
5272 return err;
5273 if (val > perf_max_events)
5274 return -EINVAL;
5276 spin_lock(&perf_resource_lock);
5277 perf_reserved_percpu = val;
5278 for_each_online_cpu(cpu) {
5279 cpuctx = &per_cpu(perf_cpu_context, cpu);
5280 spin_lock_irq(&cpuctx->ctx.lock);
5281 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5282 perf_max_events - perf_reserved_percpu);
5283 cpuctx->max_pertask = mpt;
5284 spin_unlock_irq(&cpuctx->ctx.lock);
5286 spin_unlock(&perf_resource_lock);
5288 return count;
5291 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5293 return sprintf(buf, "%d\n", perf_overcommit);
5296 static ssize_t
5297 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5299 unsigned long val;
5300 int err;
5302 err = strict_strtoul(buf, 10, &val);
5303 if (err)
5304 return err;
5305 if (val > 1)
5306 return -EINVAL;
5308 spin_lock(&perf_resource_lock);
5309 perf_overcommit = val;
5310 spin_unlock(&perf_resource_lock);
5312 return count;
5315 static SYSDEV_CLASS_ATTR(
5316 reserve_percpu,
5317 0644,
5318 perf_show_reserve_percpu,
5319 perf_set_reserve_percpu
5322 static SYSDEV_CLASS_ATTR(
5323 overcommit,
5324 0644,
5325 perf_show_overcommit,
5326 perf_set_overcommit
5329 static struct attribute *perfclass_attrs[] = {
5330 &attr_reserve_percpu.attr,
5331 &attr_overcommit.attr,
5332 NULL
5335 static struct attribute_group perfclass_attr_group = {
5336 .attrs = perfclass_attrs,
5337 .name = "perf_events",
5340 static int __init perf_event_sysfs_init(void)
5342 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5343 &perfclass_attr_group);
5345 device_initcall(perf_event_sysfs_init);