1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
47 #include "refcounttree.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
52 struct buffer_head
*bh_result
, int create
)
56 struct ocfs2_dinode
*fe
= NULL
;
57 struct buffer_head
*bh
= NULL
;
58 struct buffer_head
*buffer_cache_bh
= NULL
;
59 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
63 (unsigned long long)iblock
, bh_result
, create
);
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
67 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
68 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock
);
73 status
= ocfs2_read_inode_block(inode
, &bh
);
78 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
80 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
81 le32_to_cpu(fe
->i_clusters
))) {
82 mlog(ML_ERROR
, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock
);
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
90 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
92 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
93 if (!buffer_cache_bh
) {
94 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh
)
103 && ocfs2_inode_is_new(inode
)) {
104 kaddr
= kmap_atomic(bh_result
->b_page
, KM_USER0
);
106 mlog(ML_ERROR
, "couldn't kmap!\n");
109 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
110 buffer_cache_bh
->b_data
,
112 kunmap_atomic(kaddr
, KM_USER0
);
113 set_buffer_uptodate(bh_result
);
115 brelse(buffer_cache_bh
);
118 map_bh(bh_result
, inode
->i_sb
,
119 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
130 int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
131 struct buffer_head
*bh_result
, int create
)
134 unsigned int ext_flags
;
135 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
136 u64 p_blkno
, count
, past_eof
;
137 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
140 (unsigned long long)iblock
, bh_result
, create
);
142 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
143 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
144 inode
, inode
->i_ino
);
146 if (S_ISLNK(inode
->i_mode
)) {
147 /* this always does I/O for some reason. */
148 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
152 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
155 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
157 (unsigned long long)p_blkno
);
161 if (max_blocks
< count
)
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows block_prepare_write() to zero.
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
175 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
176 clear_buffer_dirty(bh_result
);
177 clear_buffer_uptodate(bh_result
);
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
183 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
185 bh_result
->b_size
= count
<< inode
->i_blkbits
;
187 if (!ocfs2_sparse_alloc(osb
)) {
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock
,
193 (unsigned long long)p_blkno
,
194 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
195 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
200 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
201 mlog(0, "Inode %lu, past_eof = %llu\n", inode
->i_ino
,
202 (unsigned long long)past_eof
);
204 if (create
&& (iblock
>= past_eof
))
205 set_buffer_new(bh_result
);
216 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
217 struct buffer_head
*di_bh
)
221 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
223 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
224 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag",
225 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
229 size
= i_size_read(inode
);
231 if (size
> PAGE_CACHE_SIZE
||
232 size
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
)) {
233 ocfs2_error(inode
->i_sb
,
234 "Inode %llu has with inline data has bad size: %Lu",
235 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
236 (unsigned long long)size
);
240 kaddr
= kmap_atomic(page
, KM_USER0
);
242 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
243 /* Clear the remaining part of the page */
244 memset(kaddr
+ size
, 0, PAGE_CACHE_SIZE
- size
);
245 flush_dcache_page(page
);
246 kunmap_atomic(kaddr
, KM_USER0
);
248 SetPageUptodate(page
);
253 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
256 struct buffer_head
*di_bh
= NULL
;
258 BUG_ON(!PageLocked(page
));
259 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
261 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
267 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
275 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
277 struct inode
*inode
= page
->mapping
->host
;
278 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
279 loff_t start
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
282 mlog_entry("(0x%p, %lu)\n", file
, (page
? page
->index
: 0));
284 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, page
);
286 if (ret
== AOP_TRUNCATED_PAGE
)
292 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
293 ret
= AOP_TRUNCATED_PAGE
;
294 goto out_inode_unlock
;
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 * and notice that the page they just read isn't needed.
305 * XXX sys_readahead() seems to get that wrong?
307 if (start
>= i_size_read(inode
)) {
308 zero_user(page
, 0, PAGE_SIZE
);
309 SetPageUptodate(page
);
314 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
315 ret
= ocfs2_readpage_inline(inode
, page
);
317 ret
= block_read_full_page(page
, ocfs2_get_block
);
321 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
323 ocfs2_inode_unlock(inode
, 0);
332 * This is used only for read-ahead. Failures or difficult to handle
333 * situations are safe to ignore.
335 * Right now, we don't bother with BH_Boundary - in-inode extent lists
336 * are quite large (243 extents on 4k blocks), so most inodes don't
337 * grow out to a tree. If need be, detecting boundary extents could
338 * trivially be added in a future version of ocfs2_get_block().
340 static int ocfs2_readpages(struct file
*filp
, struct address_space
*mapping
,
341 struct list_head
*pages
, unsigned nr_pages
)
344 struct inode
*inode
= mapping
->host
;
345 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
350 * Use the nonblocking flag for the dlm code to avoid page
351 * lock inversion, but don't bother with retrying.
353 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
357 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
358 ocfs2_inode_unlock(inode
, 0);
363 * Don't bother with inline-data. There isn't anything
364 * to read-ahead in that case anyway...
366 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
370 * Check whether a remote node truncated this file - we just
371 * drop out in that case as it's not worth handling here.
373 last
= list_entry(pages
->prev
, struct page
, lru
);
374 start
= (loff_t
)last
->index
<< PAGE_CACHE_SHIFT
;
375 if (start
>= i_size_read(inode
))
378 err
= mpage_readpages(mapping
, pages
, nr_pages
, ocfs2_get_block
);
381 up_read(&oi
->ip_alloc_sem
);
382 ocfs2_inode_unlock(inode
, 0);
387 /* Note: Because we don't support holes, our allocation has
388 * already happened (allocation writes zeros to the file data)
389 * so we don't have to worry about ordered writes in
392 * ->writepage is called during the process of invalidating the page cache
393 * during blocked lock processing. It can't block on any cluster locks
394 * to during block mapping. It's relying on the fact that the block
395 * mapping can't have disappeared under the dirty pages that it is
396 * being asked to write back.
398 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
402 mlog_entry("(0x%p)\n", page
);
404 ret
= block_write_full_page(page
, ocfs2_get_block
, wbc
);
412 * This is called from ocfs2_write_zero_page() which has handled it's
413 * own cluster locking and has ensured allocation exists for those
414 * blocks to be written.
416 int ocfs2_prepare_write_nolock(struct inode
*inode
, struct page
*page
,
417 unsigned from
, unsigned to
)
421 ret
= block_prepare_write(page
, from
, to
, ocfs2_get_block
);
426 /* Taken from ext3. We don't necessarily need the full blown
427 * functionality yet, but IMHO it's better to cut and paste the whole
428 * thing so we can avoid introducing our own bugs (and easily pick up
429 * their fixes when they happen) --Mark */
430 int walk_page_buffers( handle_t
*handle
,
431 struct buffer_head
*head
,
435 int (*fn
)( handle_t
*handle
,
436 struct buffer_head
*bh
))
438 struct buffer_head
*bh
;
439 unsigned block_start
, block_end
;
440 unsigned blocksize
= head
->b_size
;
442 struct buffer_head
*next
;
444 for ( bh
= head
, block_start
= 0;
445 ret
== 0 && (bh
!= head
|| !block_start
);
446 block_start
= block_end
, bh
= next
)
448 next
= bh
->b_this_page
;
449 block_end
= block_start
+ blocksize
;
450 if (block_end
<= from
|| block_start
>= to
) {
451 if (partial
&& !buffer_uptodate(bh
))
455 err
= (*fn
)(handle
, bh
);
462 handle_t
*ocfs2_start_walk_page_trans(struct inode
*inode
,
467 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
471 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
472 if (IS_ERR(handle
)) {
478 if (ocfs2_should_order_data(inode
)) {
479 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
486 ocfs2_commit_trans(osb
, handle
);
487 handle
= ERR_PTR(ret
);
492 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
497 struct inode
*inode
= mapping
->host
;
499 mlog_entry("(block = %llu)\n", (unsigned long long)block
);
501 /* We don't need to lock journal system files, since they aren't
502 * accessed concurrently from multiple nodes.
504 if (!INODE_JOURNAL(inode
)) {
505 err
= ocfs2_inode_lock(inode
, NULL
, 0);
511 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
514 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
515 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
518 if (!INODE_JOURNAL(inode
)) {
519 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
520 ocfs2_inode_unlock(inode
, 0);
524 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
525 (unsigned long long)block
);
531 status
= err
? 0 : p_blkno
;
533 mlog_exit((int)status
);
539 * TODO: Make this into a generic get_blocks function.
541 * From do_direct_io in direct-io.c:
542 * "So what we do is to permit the ->get_blocks function to populate
543 * bh.b_size with the size of IO which is permitted at this offset and
546 * This function is called directly from get_more_blocks in direct-io.c.
548 * called like this: dio->get_blocks(dio->inode, fs_startblk,
549 * fs_count, map_bh, dio->rw == WRITE);
551 * Note that we never bother to allocate blocks here, and thus ignore the
554 static int ocfs2_direct_IO_get_blocks(struct inode
*inode
, sector_t iblock
,
555 struct buffer_head
*bh_result
, int create
)
558 u64 p_blkno
, inode_blocks
, contig_blocks
;
559 unsigned int ext_flags
;
560 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
561 unsigned long max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
563 /* This function won't even be called if the request isn't all
564 * nicely aligned and of the right size, so there's no need
565 * for us to check any of that. */
567 inode_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
569 /* This figures out the size of the next contiguous block, and
570 * our logical offset */
571 ret
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
,
572 &contig_blocks
, &ext_flags
);
574 mlog(ML_ERROR
, "get_blocks() failed iblock=%llu\n",
575 (unsigned long long)iblock
);
580 /* We should already CoW the refcounted extent in case of create. */
581 BUG_ON(create
&& (ext_flags
& OCFS2_EXT_REFCOUNTED
));
584 * get_more_blocks() expects us to describe a hole by clearing
585 * the mapped bit on bh_result().
587 * Consider an unwritten extent as a hole.
589 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
590 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
592 clear_buffer_mapped(bh_result
);
594 /* make sure we don't map more than max_blocks blocks here as
595 that's all the kernel will handle at this point. */
596 if (max_blocks
< contig_blocks
)
597 contig_blocks
= max_blocks
;
598 bh_result
->b_size
= contig_blocks
<< blocksize_bits
;
604 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
605 * particularly interested in the aio/dio case. Like the core uses
606 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
607 * truncation on another.
609 static void ocfs2_dio_end_io(struct kiocb
*iocb
,
614 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
617 /* this io's submitter should not have unlocked this before we could */
618 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
620 ocfs2_iocb_clear_rw_locked(iocb
);
622 level
= ocfs2_iocb_rw_locked_level(iocb
);
624 up_read(&inode
->i_alloc_sem
);
625 ocfs2_rw_unlock(inode
, level
);
629 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
630 * from ext3. PageChecked() bits have been removed as OCFS2 does not
631 * do journalled data.
633 static void ocfs2_invalidatepage(struct page
*page
, unsigned long offset
)
635 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
637 jbd2_journal_invalidatepage(journal
, page
, offset
);
640 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
642 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
644 if (!page_has_buffers(page
))
646 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
649 static ssize_t
ocfs2_direct_IO(int rw
,
651 const struct iovec
*iov
,
653 unsigned long nr_segs
)
655 struct file
*file
= iocb
->ki_filp
;
656 struct inode
*inode
= file
->f_path
.dentry
->d_inode
->i_mapping
->host
;
662 * Fallback to buffered I/O if we see an inode without
665 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
668 /* Fallback to buffered I/O if we are appending. */
669 if (i_size_read(inode
) <= offset
)
672 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
673 inode
->i_sb
->s_bdev
, iov
, offset
,
675 ocfs2_direct_IO_get_blocks
,
682 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
687 unsigned int cluster_start
= 0, cluster_end
= PAGE_CACHE_SIZE
;
689 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
)) {
692 cpp
= 1 << (PAGE_CACHE_SHIFT
- osb
->s_clustersize_bits
);
694 cluster_start
= cpos
% cpp
;
695 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
697 cluster_end
= cluster_start
+ osb
->s_clustersize
;
700 BUG_ON(cluster_start
> PAGE_SIZE
);
701 BUG_ON(cluster_end
> PAGE_SIZE
);
704 *start
= cluster_start
;
710 * 'from' and 'to' are the region in the page to avoid zeroing.
712 * If pagesize > clustersize, this function will avoid zeroing outside
713 * of the cluster boundary.
715 * from == to == 0 is code for "zero the entire cluster region"
717 static void ocfs2_clear_page_regions(struct page
*page
,
718 struct ocfs2_super
*osb
, u32 cpos
,
719 unsigned from
, unsigned to
)
722 unsigned int cluster_start
, cluster_end
;
724 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
726 kaddr
= kmap_atomic(page
, KM_USER0
);
729 if (from
> cluster_start
)
730 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
731 if (to
< cluster_end
)
732 memset(kaddr
+ to
, 0, cluster_end
- to
);
734 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
737 kunmap_atomic(kaddr
, KM_USER0
);
741 * Nonsparse file systems fully allocate before we get to the write
742 * code. This prevents ocfs2_write() from tagging the write as an
743 * allocating one, which means ocfs2_map_page_blocks() might try to
744 * read-in the blocks at the tail of our file. Avoid reading them by
745 * testing i_size against each block offset.
747 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
748 unsigned int block_start
)
750 u64 offset
= page_offset(page
) + block_start
;
752 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
755 if (i_size_read(inode
) > offset
)
762 * Some of this taken from block_prepare_write(). We already have our
763 * mapping by now though, and the entire write will be allocating or
764 * it won't, so not much need to use BH_New.
766 * This will also skip zeroing, which is handled externally.
768 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
769 struct inode
*inode
, unsigned int from
,
770 unsigned int to
, int new)
773 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
774 unsigned int block_end
, block_start
;
775 unsigned int bsize
= 1 << inode
->i_blkbits
;
777 if (!page_has_buffers(page
))
778 create_empty_buffers(page
, bsize
, 0);
780 head
= page_buffers(page
);
781 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
782 bh
= bh
->b_this_page
, block_start
+= bsize
) {
783 block_end
= block_start
+ bsize
;
785 clear_buffer_new(bh
);
788 * Ignore blocks outside of our i/o range -
789 * they may belong to unallocated clusters.
791 if (block_start
>= to
|| block_end
<= from
) {
792 if (PageUptodate(page
))
793 set_buffer_uptodate(bh
);
798 * For an allocating write with cluster size >= page
799 * size, we always write the entire page.
804 if (!buffer_mapped(bh
)) {
805 map_bh(bh
, inode
->i_sb
, *p_blkno
);
806 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
809 if (PageUptodate(page
)) {
810 if (!buffer_uptodate(bh
))
811 set_buffer_uptodate(bh
);
812 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
814 ocfs2_should_read_blk(inode
, page
, block_start
) &&
815 (block_start
< from
|| block_end
> to
)) {
816 ll_rw_block(READ
, 1, &bh
);
820 *p_blkno
= *p_blkno
+ 1;
824 * If we issued read requests - let them complete.
826 while(wait_bh
> wait
) {
827 wait_on_buffer(*--wait_bh
);
828 if (!buffer_uptodate(*wait_bh
))
832 if (ret
== 0 || !new)
836 * If we get -EIO above, zero out any newly allocated blocks
837 * to avoid exposing stale data.
842 block_end
= block_start
+ bsize
;
843 if (block_end
<= from
)
845 if (block_start
>= to
)
848 zero_user(page
, block_start
, bh
->b_size
);
849 set_buffer_uptodate(bh
);
850 mark_buffer_dirty(bh
);
853 block_start
= block_end
;
854 bh
= bh
->b_this_page
;
855 } while (bh
!= head
);
860 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
861 #define OCFS2_MAX_CTXT_PAGES 1
863 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
866 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
869 * Describe the state of a single cluster to be written to.
871 struct ocfs2_write_cluster_desc
{
875 * Give this a unique field because c_phys eventually gets
879 unsigned c_unwritten
;
880 unsigned c_needs_zero
;
883 struct ocfs2_write_ctxt
{
884 /* Logical cluster position / len of write */
888 /* First cluster allocated in a nonsparse extend */
889 u32 w_first_new_cpos
;
891 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
894 * This is true if page_size > cluster_size.
896 * It triggers a set of special cases during write which might
897 * have to deal with allocating writes to partial pages.
899 unsigned int w_large_pages
;
902 * Pages involved in this write.
904 * w_target_page is the page being written to by the user.
906 * w_pages is an array of pages which always contains
907 * w_target_page, and in the case of an allocating write with
908 * page_size < cluster size, it will contain zero'd and mapped
909 * pages adjacent to w_target_page which need to be written
910 * out in so that future reads from that region will get
913 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
914 unsigned int w_num_pages
;
915 struct page
*w_target_page
;
918 * ocfs2_write_end() uses this to know what the real range to
919 * write in the target should be.
921 unsigned int w_target_from
;
922 unsigned int w_target_to
;
925 * We could use journal_current_handle() but this is cleaner,
930 struct buffer_head
*w_di_bh
;
932 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
935 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
939 for(i
= 0; i
< num_pages
; i
++) {
941 unlock_page(pages
[i
]);
942 mark_page_accessed(pages
[i
]);
943 page_cache_release(pages
[i
]);
948 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt
*wc
)
950 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
956 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
957 struct ocfs2_super
*osb
, loff_t pos
,
958 unsigned len
, struct buffer_head
*di_bh
)
961 struct ocfs2_write_ctxt
*wc
;
963 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
967 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
968 wc
->w_first_new_cpos
= UINT_MAX
;
969 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
970 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
974 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
))
975 wc
->w_large_pages
= 1;
977 wc
->w_large_pages
= 0;
979 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
987 * If a page has any new buffers, zero them out here, and mark them uptodate
988 * and dirty so they'll be written out (in order to prevent uninitialised
989 * block data from leaking). And clear the new bit.
991 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
993 unsigned int block_start
, block_end
;
994 struct buffer_head
*head
, *bh
;
996 BUG_ON(!PageLocked(page
));
997 if (!page_has_buffers(page
))
1000 bh
= head
= page_buffers(page
);
1003 block_end
= block_start
+ bh
->b_size
;
1005 if (buffer_new(bh
)) {
1006 if (block_end
> from
&& block_start
< to
) {
1007 if (!PageUptodate(page
)) {
1008 unsigned start
, end
;
1010 start
= max(from
, block_start
);
1011 end
= min(to
, block_end
);
1013 zero_user_segment(page
, start
, end
);
1014 set_buffer_uptodate(bh
);
1017 clear_buffer_new(bh
);
1018 mark_buffer_dirty(bh
);
1022 block_start
= block_end
;
1023 bh
= bh
->b_this_page
;
1024 } while (bh
!= head
);
1028 * Only called when we have a failure during allocating write to write
1029 * zero's to the newly allocated region.
1031 static void ocfs2_write_failure(struct inode
*inode
,
1032 struct ocfs2_write_ctxt
*wc
,
1033 loff_t user_pos
, unsigned user_len
)
1036 unsigned from
= user_pos
& (PAGE_CACHE_SIZE
- 1),
1037 to
= user_pos
+ user_len
;
1038 struct page
*tmppage
;
1040 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
1042 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1043 tmppage
= wc
->w_pages
[i
];
1045 if (page_has_buffers(tmppage
)) {
1046 if (ocfs2_should_order_data(inode
))
1047 ocfs2_jbd2_file_inode(wc
->w_handle
, inode
);
1049 block_commit_write(tmppage
, from
, to
);
1054 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
1055 struct ocfs2_write_ctxt
*wc
,
1056 struct page
*page
, u32 cpos
,
1057 loff_t user_pos
, unsigned user_len
,
1061 unsigned int map_from
= 0, map_to
= 0;
1062 unsigned int cluster_start
, cluster_end
;
1063 unsigned int user_data_from
= 0, user_data_to
= 0;
1065 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
1066 &cluster_start
, &cluster_end
);
1068 if (page
== wc
->w_target_page
) {
1069 map_from
= user_pos
& (PAGE_CACHE_SIZE
- 1);
1070 map_to
= map_from
+ user_len
;
1073 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1074 cluster_start
, cluster_end
,
1077 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1078 map_from
, map_to
, new);
1084 user_data_from
= map_from
;
1085 user_data_to
= map_to
;
1087 map_from
= cluster_start
;
1088 map_to
= cluster_end
;
1092 * If we haven't allocated the new page yet, we
1093 * shouldn't be writing it out without copying user
1094 * data. This is likely a math error from the caller.
1098 map_from
= cluster_start
;
1099 map_to
= cluster_end
;
1101 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1102 cluster_start
, cluster_end
, new);
1110 * Parts of newly allocated pages need to be zero'd.
1112 * Above, we have also rewritten 'to' and 'from' - as far as
1113 * the rest of the function is concerned, the entire cluster
1114 * range inside of a page needs to be written.
1116 * We can skip this if the page is up to date - it's already
1117 * been zero'd from being read in as a hole.
1119 if (new && !PageUptodate(page
))
1120 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1121 cpos
, user_data_from
, user_data_to
);
1123 flush_dcache_page(page
);
1130 * This function will only grab one clusters worth of pages.
1132 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1133 struct ocfs2_write_ctxt
*wc
,
1134 u32 cpos
, loff_t user_pos
, int new,
1135 struct page
*mmap_page
)
1138 unsigned long start
, target_index
, index
;
1139 struct inode
*inode
= mapping
->host
;
1141 target_index
= user_pos
>> PAGE_CACHE_SHIFT
;
1144 * Figure out how many pages we'll be manipulating here. For
1145 * non allocating write, we just change the one
1146 * page. Otherwise, we'll need a whole clusters worth.
1149 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1150 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1152 wc
->w_num_pages
= 1;
1153 start
= target_index
;
1156 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1159 if (index
== target_index
&& mmap_page
) {
1161 * ocfs2_pagemkwrite() is a little different
1162 * and wants us to directly use the page
1165 lock_page(mmap_page
);
1167 if (mmap_page
->mapping
!= mapping
) {
1168 unlock_page(mmap_page
);
1170 * Sanity check - the locking in
1171 * ocfs2_pagemkwrite() should ensure
1172 * that this code doesn't trigger.
1179 page_cache_get(mmap_page
);
1180 wc
->w_pages
[i
] = mmap_page
;
1182 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1184 if (!wc
->w_pages
[i
]) {
1191 if (index
== target_index
)
1192 wc
->w_target_page
= wc
->w_pages
[i
];
1199 * Prepare a single cluster for write one cluster into the file.
1201 static int ocfs2_write_cluster(struct address_space
*mapping
,
1202 u32 phys
, unsigned int unwritten
,
1203 unsigned int should_zero
,
1204 struct ocfs2_alloc_context
*data_ac
,
1205 struct ocfs2_alloc_context
*meta_ac
,
1206 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1207 loff_t user_pos
, unsigned user_len
)
1210 u64 v_blkno
, p_blkno
;
1211 struct inode
*inode
= mapping
->host
;
1212 struct ocfs2_extent_tree et
;
1214 new = phys
== 0 ? 1 : 0;
1219 * This is safe to call with the page locks - it won't take
1220 * any additional semaphores or cluster locks.
1223 ret
= ocfs2_add_inode_data(OCFS2_SB(inode
->i_sb
), inode
,
1224 &tmp_pos
, 1, 0, wc
->w_di_bh
,
1225 wc
->w_handle
, data_ac
,
1228 * This shouldn't happen because we must have already
1229 * calculated the correct meta data allocation required. The
1230 * internal tree allocation code should know how to increase
1231 * transaction credits itself.
1233 * If need be, we could handle -EAGAIN for a
1234 * RESTART_TRANS here.
1236 mlog_bug_on_msg(ret
== -EAGAIN
,
1237 "Inode %llu: EAGAIN return during allocation.\n",
1238 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1243 } else if (unwritten
) {
1244 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1246 ret
= ocfs2_mark_extent_written(inode
, &et
,
1247 wc
->w_handle
, cpos
, 1, phys
,
1248 meta_ac
, &wc
->w_dealloc
);
1256 v_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, cpos
);
1258 v_blkno
= user_pos
>> inode
->i_sb
->s_blocksize_bits
;
1261 * The only reason this should fail is due to an inability to
1262 * find the extent added.
1264 ret
= ocfs2_extent_map_get_blocks(inode
, v_blkno
, &p_blkno
, NULL
,
1267 ocfs2_error(inode
->i_sb
, "Corrupting extend for inode %llu, "
1268 "at logical block %llu",
1269 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1270 (unsigned long long)v_blkno
);
1274 BUG_ON(p_blkno
== 0);
1276 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1279 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1280 wc
->w_pages
[i
], cpos
,
1291 * We only have cleanup to do in case of allocating write.
1294 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1301 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1302 struct ocfs2_alloc_context
*data_ac
,
1303 struct ocfs2_alloc_context
*meta_ac
,
1304 struct ocfs2_write_ctxt
*wc
,
1305 loff_t pos
, unsigned len
)
1309 unsigned int local_len
= len
;
1310 struct ocfs2_write_cluster_desc
*desc
;
1311 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1313 for (i
= 0; i
< wc
->w_clen
; i
++) {
1314 desc
= &wc
->w_desc
[i
];
1317 * We have to make sure that the total write passed in
1318 * doesn't extend past a single cluster.
1321 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1322 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1323 local_len
= osb
->s_clustersize
- cluster_off
;
1325 ret
= ocfs2_write_cluster(mapping
, desc
->c_phys
,
1329 wc
, desc
->c_cpos
, pos
, local_len
);
1345 * ocfs2_write_end() wants to know which parts of the target page it
1346 * should complete the write on. It's easiest to compute them ahead of
1347 * time when a more complete view of the write is available.
1349 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1350 struct ocfs2_write_ctxt
*wc
,
1351 loff_t pos
, unsigned len
, int alloc
)
1353 struct ocfs2_write_cluster_desc
*desc
;
1355 wc
->w_target_from
= pos
& (PAGE_CACHE_SIZE
- 1);
1356 wc
->w_target_to
= wc
->w_target_from
+ len
;
1362 * Allocating write - we may have different boundaries based
1363 * on page size and cluster size.
1365 * NOTE: We can no longer compute one value from the other as
1366 * the actual write length and user provided length may be
1370 if (wc
->w_large_pages
) {
1372 * We only care about the 1st and last cluster within
1373 * our range and whether they should be zero'd or not. Either
1374 * value may be extended out to the start/end of a
1375 * newly allocated cluster.
1377 desc
= &wc
->w_desc
[0];
1378 if (desc
->c_needs_zero
)
1379 ocfs2_figure_cluster_boundaries(osb
,
1384 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1385 if (desc
->c_needs_zero
)
1386 ocfs2_figure_cluster_boundaries(osb
,
1391 wc
->w_target_from
= 0;
1392 wc
->w_target_to
= PAGE_CACHE_SIZE
;
1397 * Populate each single-cluster write descriptor in the write context
1398 * with information about the i/o to be done.
1400 * Returns the number of clusters that will have to be allocated, as
1401 * well as a worst case estimate of the number of extent records that
1402 * would have to be created during a write to an unwritten region.
1404 static int ocfs2_populate_write_desc(struct inode
*inode
,
1405 struct ocfs2_write_ctxt
*wc
,
1406 unsigned int *clusters_to_alloc
,
1407 unsigned int *extents_to_split
)
1410 struct ocfs2_write_cluster_desc
*desc
;
1411 unsigned int num_clusters
= 0;
1412 unsigned int ext_flags
= 0;
1416 *clusters_to_alloc
= 0;
1417 *extents_to_split
= 0;
1419 for (i
= 0; i
< wc
->w_clen
; i
++) {
1420 desc
= &wc
->w_desc
[i
];
1421 desc
->c_cpos
= wc
->w_cpos
+ i
;
1423 if (num_clusters
== 0) {
1425 * Need to look up the next extent record.
1427 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1428 &num_clusters
, &ext_flags
);
1434 /* We should already CoW the refcountd extent. */
1435 BUG_ON(ext_flags
& OCFS2_EXT_REFCOUNTED
);
1438 * Assume worst case - that we're writing in
1439 * the middle of the extent.
1441 * We can assume that the write proceeds from
1442 * left to right, in which case the extent
1443 * insert code is smart enough to coalesce the
1444 * next splits into the previous records created.
1446 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1447 *extents_to_split
= *extents_to_split
+ 2;
1450 * Only increment phys if it doesn't describe
1457 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1458 * file that got extended. w_first_new_cpos tells us
1459 * where the newly allocated clusters are so we can
1462 if (desc
->c_cpos
>= wc
->w_first_new_cpos
) {
1464 desc
->c_needs_zero
= 1;
1467 desc
->c_phys
= phys
;
1470 desc
->c_needs_zero
= 1;
1471 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1474 if (ext_flags
& OCFS2_EXT_UNWRITTEN
) {
1475 desc
->c_unwritten
= 1;
1476 desc
->c_needs_zero
= 1;
1487 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1488 struct inode
*inode
,
1489 struct ocfs2_write_ctxt
*wc
)
1492 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1495 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1497 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1504 * If we don't set w_num_pages then this page won't get unlocked
1505 * and freed on cleanup of the write context.
1507 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1508 wc
->w_num_pages
= 1;
1510 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1511 if (IS_ERR(handle
)) {
1512 ret
= PTR_ERR(handle
);
1517 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1518 OCFS2_JOURNAL_ACCESS_WRITE
);
1520 ocfs2_commit_trans(osb
, handle
);
1526 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1527 ocfs2_set_inode_data_inline(inode
, di
);
1529 if (!PageUptodate(page
)) {
1530 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1532 ocfs2_commit_trans(osb
, handle
);
1538 wc
->w_handle
= handle
;
1543 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1545 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1547 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1552 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1553 struct inode
*inode
, loff_t pos
,
1554 unsigned len
, struct page
*mmap_page
,
1555 struct ocfs2_write_ctxt
*wc
)
1557 int ret
, written
= 0;
1558 loff_t end
= pos
+ len
;
1559 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1560 struct ocfs2_dinode
*di
= NULL
;
1562 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1563 (unsigned long long)oi
->ip_blkno
, len
, (unsigned long long)pos
,
1564 oi
->ip_dyn_features
);
1567 * Handle inodes which already have inline data 1st.
1569 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1570 if (mmap_page
== NULL
&&
1571 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1572 goto do_inline_write
;
1575 * The write won't fit - we have to give this inode an
1576 * inline extent list now.
1578 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1585 * Check whether the inode can accept inline data.
1587 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1591 * Check whether the write can fit.
1593 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1595 end
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
))
1599 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1606 * This signals to the caller that the data can be written
1611 return written
? written
: ret
;
1615 * This function only does anything for file systems which can't
1616 * handle sparse files.
1618 * What we want to do here is fill in any hole between the current end
1619 * of allocation and the end of our write. That way the rest of the
1620 * write path can treat it as an non-allocating write, which has no
1621 * special case code for sparse/nonsparse files.
1623 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
, loff_t pos
,
1625 struct ocfs2_write_ctxt
*wc
)
1628 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1629 loff_t newsize
= pos
+ len
;
1631 if (ocfs2_sparse_alloc(osb
))
1634 if (newsize
<= i_size_read(inode
))
1637 ret
= ocfs2_extend_no_holes(inode
, newsize
, pos
);
1641 wc
->w_first_new_cpos
=
1642 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
));
1647 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1648 loff_t pos
, unsigned len
, unsigned flags
,
1649 struct page
**pagep
, void **fsdata
,
1650 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1652 int ret
, cluster_of_pages
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1653 unsigned int clusters_to_alloc
, extents_to_split
;
1654 struct ocfs2_write_ctxt
*wc
;
1655 struct inode
*inode
= mapping
->host
;
1656 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1657 struct ocfs2_dinode
*di
;
1658 struct ocfs2_alloc_context
*data_ac
= NULL
;
1659 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1661 struct ocfs2_extent_tree et
;
1663 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, di_bh
);
1669 if (ocfs2_supports_inline_data(osb
)) {
1670 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1682 ret
= ocfs2_expand_nonsparse_inode(inode
, pos
, len
, wc
);
1688 ret
= ocfs2_check_range_for_refcount(inode
, pos
, len
);
1692 } else if (ret
== 1) {
1693 ret
= ocfs2_refcount_cow(inode
, di_bh
,
1694 wc
->w_cpos
, wc
->w_clen
, UINT_MAX
);
1701 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1708 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1711 * We set w_target_from, w_target_to here so that
1712 * ocfs2_write_end() knows which range in the target page to
1713 * write out. An allocation requires that we write the entire
1716 if (clusters_to_alloc
|| extents_to_split
) {
1718 * XXX: We are stretching the limits of
1719 * ocfs2_lock_allocators(). It greatly over-estimates
1720 * the work to be done.
1722 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1723 " clusters_to_add = %u, extents_to_split = %u\n",
1724 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1725 (long long)i_size_read(inode
), le32_to_cpu(di
->i_clusters
),
1726 clusters_to_alloc
, extents_to_split
);
1728 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1730 ret
= ocfs2_lock_allocators(inode
, &et
,
1731 clusters_to_alloc
, extents_to_split
,
1732 &data_ac
, &meta_ac
);
1738 credits
= ocfs2_calc_extend_credits(inode
->i_sb
,
1745 * We have to zero sparse allocated clusters, unwritten extent clusters,
1746 * and non-sparse clusters we just extended. For non-sparse writes,
1747 * we know zeros will only be needed in the first and/or last cluster.
1749 if (clusters_to_alloc
|| extents_to_split
||
1750 (wc
->w_clen
&& (wc
->w_desc
[0].c_needs_zero
||
1751 wc
->w_desc
[wc
->w_clen
- 1].c_needs_zero
)))
1752 cluster_of_pages
= 1;
1754 cluster_of_pages
= 0;
1756 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
, cluster_of_pages
);
1758 handle
= ocfs2_start_trans(osb
, credits
);
1759 if (IS_ERR(handle
)) {
1760 ret
= PTR_ERR(handle
);
1765 wc
->w_handle
= handle
;
1767 if (clusters_to_alloc
&& vfs_dq_alloc_space_nodirty(inode
,
1768 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
))) {
1773 * We don't want this to fail in ocfs2_write_end(), so do it
1776 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1777 OCFS2_JOURNAL_ACCESS_WRITE
);
1784 * Fill our page array first. That way we've grabbed enough so
1785 * that we can zero and flush if we error after adding the
1788 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
,
1789 cluster_of_pages
, mmap_page
);
1795 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1803 ocfs2_free_alloc_context(data_ac
);
1805 ocfs2_free_alloc_context(meta_ac
);
1808 *pagep
= wc
->w_target_page
;
1812 if (clusters_to_alloc
)
1813 vfs_dq_free_space(inode
,
1814 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1816 ocfs2_commit_trans(osb
, handle
);
1819 ocfs2_free_write_ctxt(wc
);
1822 ocfs2_free_alloc_context(data_ac
);
1824 ocfs2_free_alloc_context(meta_ac
);
1828 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1829 loff_t pos
, unsigned len
, unsigned flags
,
1830 struct page
**pagep
, void **fsdata
)
1833 struct buffer_head
*di_bh
= NULL
;
1834 struct inode
*inode
= mapping
->host
;
1836 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1843 * Take alloc sem here to prevent concurrent lookups. That way
1844 * the mapping, zeroing and tree manipulation within
1845 * ocfs2_write() will be safe against ->readpage(). This
1846 * should also serve to lock out allocation from a shared
1849 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1851 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, flags
, pagep
,
1852 fsdata
, di_bh
, NULL
);
1863 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1866 ocfs2_inode_unlock(inode
, 1);
1871 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1872 unsigned len
, unsigned *copied
,
1873 struct ocfs2_dinode
*di
,
1874 struct ocfs2_write_ctxt
*wc
)
1878 if (unlikely(*copied
< len
)) {
1879 if (!PageUptodate(wc
->w_target_page
)) {
1885 kaddr
= kmap_atomic(wc
->w_target_page
, KM_USER0
);
1886 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1887 kunmap_atomic(kaddr
, KM_USER0
);
1889 mlog(0, "Data written to inode at offset %llu. "
1890 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1891 (unsigned long long)pos
, *copied
,
1892 le16_to_cpu(di
->id2
.i_data
.id_count
),
1893 le16_to_cpu(di
->i_dyn_features
));
1896 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1897 loff_t pos
, unsigned len
, unsigned copied
,
1898 struct page
*page
, void *fsdata
)
1901 unsigned from
, to
, start
= pos
& (PAGE_CACHE_SIZE
- 1);
1902 struct inode
*inode
= mapping
->host
;
1903 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1904 struct ocfs2_write_ctxt
*wc
= fsdata
;
1905 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1906 handle_t
*handle
= wc
->w_handle
;
1907 struct page
*tmppage
;
1909 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1910 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1911 goto out_write_size
;
1914 if (unlikely(copied
< len
)) {
1915 if (!PageUptodate(wc
->w_target_page
))
1918 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1921 flush_dcache_page(wc
->w_target_page
);
1923 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1924 tmppage
= wc
->w_pages
[i
];
1926 if (tmppage
== wc
->w_target_page
) {
1927 from
= wc
->w_target_from
;
1928 to
= wc
->w_target_to
;
1930 BUG_ON(from
> PAGE_CACHE_SIZE
||
1931 to
> PAGE_CACHE_SIZE
||
1935 * Pages adjacent to the target (if any) imply
1936 * a hole-filling write in which case we want
1937 * to flush their entire range.
1940 to
= PAGE_CACHE_SIZE
;
1943 if (page_has_buffers(tmppage
)) {
1944 if (ocfs2_should_order_data(inode
))
1945 ocfs2_jbd2_file_inode(wc
->w_handle
, inode
);
1946 block_commit_write(tmppage
, from
, to
);
1952 if (pos
> inode
->i_size
) {
1953 i_size_write(inode
, pos
);
1954 mark_inode_dirty(inode
);
1956 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
1957 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
1958 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1959 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
1960 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
1961 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
1963 ocfs2_commit_trans(osb
, handle
);
1965 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
1967 ocfs2_free_write_ctxt(wc
);
1972 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
1973 loff_t pos
, unsigned len
, unsigned copied
,
1974 struct page
*page
, void *fsdata
)
1977 struct inode
*inode
= mapping
->host
;
1979 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, page
, fsdata
);
1981 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1982 ocfs2_inode_unlock(inode
, 1);
1987 const struct address_space_operations ocfs2_aops
= {
1988 .readpage
= ocfs2_readpage
,
1989 .readpages
= ocfs2_readpages
,
1990 .writepage
= ocfs2_writepage
,
1991 .write_begin
= ocfs2_write_begin
,
1992 .write_end
= ocfs2_write_end
,
1994 .sync_page
= block_sync_page
,
1995 .direct_IO
= ocfs2_direct_IO
,
1996 .invalidatepage
= ocfs2_invalidatepage
,
1997 .releasepage
= ocfs2_releasepage
,
1998 .migratepage
= buffer_migrate_page
,
1999 .is_partially_uptodate
= block_is_partially_uptodate
,
2000 .error_remove_page
= generic_error_remove_page
,