mm: keep a guard page below a grow-down stack segment
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / staging / et131x / et1310_phy.c
blob6ecad619f77925bcc5c02dd89f6defcd7fcae6a4
1 /*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright * 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
9 *------------------------------------------------------------------------------
11 * et1310_phy.c - Routines for configuring and accessing the PHY
13 *------------------------------------------------------------------------------
15 * SOFTWARE LICENSE
17 * This software is provided subject to the following terms and conditions,
18 * which you should read carefully before using the software. Using this
19 * software indicates your acceptance of these terms and conditions. If you do
20 * not agree with these terms and conditions, do not use the software.
22 * Copyright * 2005 Agere Systems Inc.
23 * All rights reserved.
25 * Redistribution and use in source or binary forms, with or without
26 * modifications, are permitted provided that the following conditions are met:
28 * . Redistributions of source code must retain the above copyright notice, this
29 * list of conditions and the following Disclaimer as comments in the code as
30 * well as in the documentation and/or other materials provided with the
31 * distribution.
33 * . Redistributions in binary form must reproduce the above copyright notice,
34 * this list of conditions and the following Disclaimer in the documentation
35 * and/or other materials provided with the distribution.
37 * . Neither the name of Agere Systems Inc. nor the names of the contributors
38 * may be used to endorse or promote products derived from this software
39 * without specific prior written permission.
41 * Disclaimer
43 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
44 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
46 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
47 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
48 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
49 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
50 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
51 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
54 * DAMAGE.
58 #include "et131x_version.h"
59 #include "et131x_defs.h"
61 #include <linux/pci.h>
62 #include <linux/init.h>
63 #include <linux/module.h>
64 #include <linux/types.h>
65 #include <linux/kernel.h>
67 #include <linux/sched.h>
68 #include <linux/ptrace.h>
69 #include <linux/slab.h>
70 #include <linux/ctype.h>
71 #include <linux/string.h>
72 #include <linux/timer.h>
73 #include <linux/interrupt.h>
74 #include <linux/in.h>
75 #include <linux/delay.h>
76 #include <linux/io.h>
77 #include <linux/bitops.h>
78 #include <asm/system.h>
80 #include <linux/netdevice.h>
81 #include <linux/etherdevice.h>
82 #include <linux/skbuff.h>
83 #include <linux/if_arp.h>
84 #include <linux/ioport.h>
85 #include <linux/random.h>
87 #include "et1310_phy.h"
88 #include "et1310_pm.h"
89 #include "et1310_jagcore.h"
91 #include "et131x_adapter.h"
92 #include "et131x_netdev.h"
93 #include "et131x_initpci.h"
95 #include "et1310_address_map.h"
96 #include "et1310_tx.h"
97 #include "et1310_rx.h"
98 #include "et1310_mac.h"
100 /* Prototypes for functions with local scope */
101 static void et131x_xcvr_init(struct et131x_adapter *etdev);
104 * PhyMiRead - Read from the PHY through the MII Interface on the MAC
105 * @etdev: pointer to our private adapter structure
106 * @xcvrAddr: the address of the transciever
107 * @xcvrReg: the register to read
108 * @value: pointer to a 16-bit value in which the value will be stored
110 * Returns 0 on success, errno on failure (as defined in errno.h)
112 int PhyMiRead(struct et131x_adapter *etdev, u8 xcvrAddr,
113 u8 xcvrReg, u16 *value)
115 struct _MAC_t __iomem *mac = &etdev->regs->mac;
116 int status = 0;
117 u32 delay;
118 u32 miiAddr;
119 u32 miiCmd;
120 u32 miiIndicator;
122 /* Save a local copy of the registers we are dealing with so we can
123 * set them back
125 miiAddr = readl(&mac->mii_mgmt_addr);
126 miiCmd = readl(&mac->mii_mgmt_cmd);
128 /* Stop the current operation */
129 writel(0, &mac->mii_mgmt_cmd);
131 /* Set up the register we need to read from on the correct PHY */
132 writel(MII_ADDR(xcvrAddr, xcvrReg), &mac->mii_mgmt_addr);
134 /* Kick the read cycle off */
135 delay = 0;
137 writel(0x1, &mac->mii_mgmt_cmd);
139 do {
140 udelay(50);
141 delay++;
142 miiIndicator = readl(&mac->mii_mgmt_indicator);
143 } while ((miiIndicator & MGMT_WAIT) && delay < 50);
145 /* If we hit the max delay, we could not read the register */
146 if (delay == 50) {
147 dev_warn(&etdev->pdev->dev,
148 "xcvrReg 0x%08x could not be read\n", xcvrReg);
149 dev_warn(&etdev->pdev->dev, "status is 0x%08x\n",
150 miiIndicator);
152 status = -EIO;
155 /* If we hit here we were able to read the register and we need to
156 * return the value to the caller */
157 *value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
159 /* Stop the read operation */
160 writel(0, &mac->mii_mgmt_cmd);
162 /* set the registers we touched back to the state at which we entered
163 * this function
165 writel(miiAddr, &mac->mii_mgmt_addr);
166 writel(miiCmd, &mac->mii_mgmt_cmd);
168 return status;
172 * MiWrite - Write to a PHY register through the MII interface of the MAC
173 * @etdev: pointer to our private adapter structure
174 * @xcvrReg: the register to read
175 * @value: 16-bit value to write
177 * FIXME: one caller in netdev still
179 * Return 0 on success, errno on failure (as defined in errno.h)
181 int MiWrite(struct et131x_adapter *etdev, u8 xcvrReg, u16 value)
183 struct _MAC_t __iomem *mac = &etdev->regs->mac;
184 int status = 0;
185 u8 xcvrAddr = etdev->Stats.xcvr_addr;
186 u32 delay;
187 u32 miiAddr;
188 u32 miiCmd;
189 u32 miiIndicator;
191 /* Save a local copy of the registers we are dealing with so we can
192 * set them back
194 miiAddr = readl(&mac->mii_mgmt_addr);
195 miiCmd = readl(&mac->mii_mgmt_cmd);
197 /* Stop the current operation */
198 writel(0, &mac->mii_mgmt_cmd);
200 /* Set up the register we need to write to on the correct PHY */
201 writel(MII_ADDR(xcvrAddr, xcvrReg), &mac->mii_mgmt_addr);
203 /* Add the value to write to the registers to the mac */
204 writel(value, &mac->mii_mgmt_ctrl);
205 delay = 0;
207 do {
208 udelay(50);
209 delay++;
210 miiIndicator = readl(&mac->mii_mgmt_indicator);
211 } while ((miiIndicator & MGMT_BUSY) && delay < 100);
213 /* If we hit the max delay, we could not write the register */
214 if (delay == 100) {
215 u16 TempValue;
217 dev_warn(&etdev->pdev->dev,
218 "xcvrReg 0x%08x could not be written", xcvrReg);
219 dev_warn(&etdev->pdev->dev, "status is 0x%08x\n",
220 miiIndicator);
221 dev_warn(&etdev->pdev->dev, "command is 0x%08x\n",
222 readl(&mac->mii_mgmt_cmd));
224 MiRead(etdev, xcvrReg, &TempValue);
226 status = -EIO;
228 /* Stop the write operation */
229 writel(0, &mac->mii_mgmt_cmd);
231 /* set the registers we touched back to the state at which we entered
232 * this function
234 writel(miiAddr, &mac->mii_mgmt_addr);
235 writel(miiCmd, &mac->mii_mgmt_cmd);
237 return status;
241 * et131x_xcvr_find - Find the PHY ID
242 * @etdev: pointer to our private adapter structure
244 * Returns 0 on success, errno on failure (as defined in errno.h)
246 int et131x_xcvr_find(struct et131x_adapter *etdev)
248 u8 xcvr_addr;
249 MI_IDR1_t idr1;
250 MI_IDR2_t idr2;
251 u32 xcvr_id;
253 /* We need to get xcvr id and address we just get the first one */
254 for (xcvr_addr = 0; xcvr_addr < 32; xcvr_addr++) {
255 /* Read the ID from the PHY */
256 PhyMiRead(etdev, xcvr_addr,
257 (u8) offsetof(MI_REGS_t, idr1),
258 &idr1.value);
259 PhyMiRead(etdev, xcvr_addr,
260 (u8) offsetof(MI_REGS_t, idr2),
261 &idr2.value);
263 xcvr_id = (u32) ((idr1.value << 16) | idr2.value);
265 if (idr1.value != 0 && idr1.value != 0xffff) {
266 etdev->Stats.xcvr_id = xcvr_id;
267 etdev->Stats.xcvr_addr = xcvr_addr;
268 return 0;
271 return -ENODEV;
274 void ET1310_PhyReset(struct et131x_adapter *etdev)
276 MiWrite(etdev, PHY_CONTROL, 0x8000);
280 * ET1310_PhyPowerDown - PHY power control
281 * @etdev: device to control
282 * @down: true for off/false for back on
284 * one hundred, ten, one thousand megs
285 * How would you like to have your LAN accessed
286 * Can't you see that this code processed
287 * Phy power, phy power..
290 void ET1310_PhyPowerDown(struct et131x_adapter *etdev, bool down)
292 u16 data;
294 MiRead(etdev, PHY_CONTROL, &data);
295 data &= ~0x0800; /* Power UP */
296 if (down) /* Power DOWN */
297 data |= 0x0800;
298 MiWrite(etdev, PHY_CONTROL, data);
302 * ET130_PhyAutoNEg - autonegotiate control
303 * @etdev: device to control
304 * @enabe: autoneg on/off
306 * Set up the autonegotiation state according to whether we will be
307 * negotiating the state or forcing a speed.
310 static void ET1310_PhyAutoNeg(struct et131x_adapter *etdev, bool enable)
312 u16 data;
314 MiRead(etdev, PHY_CONTROL, &data);
315 data &= ~0x1000; /* Autonegotiation OFF */
316 if (enable)
317 data |= 0x1000; /* Autonegotiation ON */
318 MiWrite(etdev, PHY_CONTROL, data);
322 * ET130_PhyDuplexMode - duplex control
323 * @etdev: device to control
324 * @duplex: duplex on/off
326 * Set up the duplex state on the PHY
329 static void ET1310_PhyDuplexMode(struct et131x_adapter *etdev, u16 duplex)
331 u16 data;
333 MiRead(etdev, PHY_CONTROL, &data);
334 data &= ~0x100; /* Set Half Duplex */
335 if (duplex == TRUEPHY_DUPLEX_FULL)
336 data |= 0x100; /* Set Full Duplex */
337 MiWrite(etdev, PHY_CONTROL, data);
341 * ET130_PhySpeedSelect - speed control
342 * @etdev: device to control
343 * @duplex: duplex on/off
345 * Set the speed of our PHY.
348 static void ET1310_PhySpeedSelect(struct et131x_adapter *etdev, u16 speed)
350 u16 data;
351 static const u16 bits[3]={0x0000, 0x2000, 0x0040};
353 /* Read the PHY control register */
354 MiRead(etdev, PHY_CONTROL, &data);
355 /* Clear all Speed settings (Bits 6, 13) */
356 data &= ~0x2040;
357 /* Write back the new speed */
358 MiWrite(etdev, PHY_CONTROL, data | bits[speed]);
362 * ET1310_PhyLinkStatus - read link state
363 * @etdev: device to read
364 * @link_status: reported link state
365 * @autoneg: reported autonegotiation state (complete/incomplete/disabled)
366 * @linkspeed: returnedlink speed in use
367 * @duplex_mode: reported half/full duplex state
368 * @mdi_mdix: not yet working
369 * @masterslave: report whether we are master or slave
370 * @polarity: link polarity
372 * I can read your lan like a magazine
373 * I see if your up
374 * I know your link speed
375 * I see all the setting that you'd rather keep
378 static void ET1310_PhyLinkStatus(struct et131x_adapter *etdev,
379 u8 *link_status,
380 u32 *autoneg,
381 u32 *linkspeed,
382 u32 *duplex_mode,
383 u32 *mdi_mdix,
384 u32 *masterslave, u32 *polarity)
386 u16 mistatus = 0;
387 u16 is1000BaseT = 0;
388 u16 vmi_phystatus = 0;
389 u16 control = 0;
391 MiRead(etdev, PHY_STATUS, &mistatus);
392 MiRead(etdev, PHY_1000_STATUS, &is1000BaseT);
393 MiRead(etdev, PHY_PHY_STATUS, &vmi_phystatus);
394 MiRead(etdev, PHY_CONTROL, &control);
396 *link_status = (vmi_phystatus & 0x0040) ? 1 : 0;
397 *autoneg = (control & 0x1000) ? ((vmi_phystatus & 0x0020) ?
398 TRUEPHY_ANEG_COMPLETE :
399 TRUEPHY_ANEG_NOT_COMPLETE) :
400 TRUEPHY_ANEG_DISABLED;
401 *linkspeed = (vmi_phystatus & 0x0300) >> 8;
402 *duplex_mode = (vmi_phystatus & 0x0080) >> 7;
403 /* NOTE: Need to complete this */
404 *mdi_mdix = 0;
406 *masterslave = (is1000BaseT & 0x4000) ?
407 TRUEPHY_CFG_MASTER : TRUEPHY_CFG_SLAVE;
408 *polarity = (vmi_phystatus & 0x0400) ?
409 TRUEPHY_POLARITY_INVERTED : TRUEPHY_POLARITY_NORMAL;
412 static void ET1310_PhyAndOrReg(struct et131x_adapter *etdev,
413 u16 regnum, u16 andMask, u16 orMask)
415 u16 reg;
417 MiRead(etdev, regnum, &reg);
418 reg &= andMask;
419 reg |= orMask;
420 MiWrite(etdev, regnum, reg);
423 /* Still used from _mac for BIT_READ */
424 void ET1310_PhyAccessMiBit(struct et131x_adapter *etdev, u16 action,
425 u16 regnum, u16 bitnum, u8 *value)
427 u16 reg;
428 u16 mask = 0x0001 << bitnum;
430 /* Read the requested register */
431 MiRead(etdev, regnum, &reg);
433 switch (action) {
434 case TRUEPHY_BIT_READ:
435 *value = (reg & mask) >> bitnum;
436 break;
438 case TRUEPHY_BIT_SET:
439 MiWrite(etdev, regnum, reg | mask);
440 break;
442 case TRUEPHY_BIT_CLEAR:
443 MiWrite(etdev, regnum, reg & ~mask);
444 break;
446 default:
447 break;
451 void ET1310_PhyAdvertise1000BaseT(struct et131x_adapter *etdev,
452 u16 duplex)
454 u16 data;
456 /* Read the PHY 1000 Base-T Control Register */
457 MiRead(etdev, PHY_1000_CONTROL, &data);
459 /* Clear Bits 8,9 */
460 data &= ~0x0300;
462 switch (duplex) {
463 case TRUEPHY_ADV_DUPLEX_NONE:
464 /* Duplex already cleared, do nothing */
465 break;
467 case TRUEPHY_ADV_DUPLEX_FULL:
468 /* Set Bit 9 */
469 data |= 0x0200;
470 break;
472 case TRUEPHY_ADV_DUPLEX_HALF:
473 /* Set Bit 8 */
474 data |= 0x0100;
475 break;
477 case TRUEPHY_ADV_DUPLEX_BOTH:
478 default:
479 data |= 0x0300;
480 break;
483 /* Write back advertisement */
484 MiWrite(etdev, PHY_1000_CONTROL, data);
487 static void ET1310_PhyAdvertise100BaseT(struct et131x_adapter *etdev,
488 u16 duplex)
490 u16 data;
492 /* Read the Autonegotiation Register (10/100) */
493 MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &data);
495 /* Clear bits 7,8 */
496 data &= ~0x0180;
498 switch (duplex) {
499 case TRUEPHY_ADV_DUPLEX_NONE:
500 /* Duplex already cleared, do nothing */
501 break;
503 case TRUEPHY_ADV_DUPLEX_FULL:
504 /* Set Bit 8 */
505 data |= 0x0100;
506 break;
508 case TRUEPHY_ADV_DUPLEX_HALF:
509 /* Set Bit 7 */
510 data |= 0x0080;
511 break;
513 case TRUEPHY_ADV_DUPLEX_BOTH:
514 default:
515 /* Set Bits 7,8 */
516 data |= 0x0180;
517 break;
520 /* Write back advertisement */
521 MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, data);
524 static void ET1310_PhyAdvertise10BaseT(struct et131x_adapter *etdev,
525 u16 duplex)
527 u16 data;
529 /* Read the Autonegotiation Register (10/100) */
530 MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &data);
532 /* Clear bits 5,6 */
533 data &= ~0x0060;
535 switch (duplex) {
536 case TRUEPHY_ADV_DUPLEX_NONE:
537 /* Duplex already cleared, do nothing */
538 break;
540 case TRUEPHY_ADV_DUPLEX_FULL:
541 /* Set Bit 6 */
542 data |= 0x0040;
543 break;
545 case TRUEPHY_ADV_DUPLEX_HALF:
546 /* Set Bit 5 */
547 data |= 0x0020;
548 break;
550 case TRUEPHY_ADV_DUPLEX_BOTH:
551 default:
552 /* Set Bits 5,6 */
553 data |= 0x0060;
554 break;
557 /* Write back advertisement */
558 MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, data);
562 * et131x_setphy_normal - Set PHY for normal operation.
563 * @etdev: pointer to our private adapter structure
565 * Used by Power Management to force the PHY into 10 Base T half-duplex mode,
566 * when going to D3 in WOL mode. Also used during initialization to set the
567 * PHY for normal operation.
569 void et131x_setphy_normal(struct et131x_adapter *etdev)
571 /* Make sure the PHY is powered up */
572 ET1310_PhyPowerDown(etdev, 0);
573 et131x_xcvr_init(etdev);
578 * et131x_xcvr_init - Init the phy if we are setting it into force mode
579 * @etdev: pointer to our private adapter structure
582 static void et131x_xcvr_init(struct et131x_adapter *etdev)
584 MI_IMR_t imr;
585 MI_ISR_t isr;
586 MI_LCR2_t lcr2;
588 /* Zero out the adapter structure variable representing BMSR */
589 etdev->Bmsr.value = 0;
591 MiRead(etdev, (u8) offsetof(MI_REGS_t, isr), &isr.value);
592 MiRead(etdev, (u8) offsetof(MI_REGS_t, imr), &imr.value);
594 /* Set the link status interrupt only. Bad behavior when link status
595 * and auto neg are set, we run into a nested interrupt problem
597 imr.bits.int_en = 0x1;
598 imr.bits.link_status = 0x1;
599 imr.bits.autoneg_status = 0x1;
601 MiWrite(etdev, (u8) offsetof(MI_REGS_t, imr), imr.value);
603 /* Set the LED behavior such that LED 1 indicates speed (off =
604 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
605 * link and activity (on for link, blink off for activity).
607 * NOTE: Some customizations have been added here for specific
608 * vendors; The LED behavior is now determined by vendor data in the
609 * EEPROM. However, the above description is the default.
611 if ((etdev->eepromData[1] & 0x4) == 0) {
612 MiRead(etdev, (u8) offsetof(MI_REGS_t, lcr2),
613 &lcr2.value);
614 if ((etdev->eepromData[1] & 0x8) == 0)
615 lcr2.bits.led_tx_rx = 0x3;
616 else
617 lcr2.bits.led_tx_rx = 0x4;
618 lcr2.bits.led_link = 0xa;
619 MiWrite(etdev, (u8) offsetof(MI_REGS_t, lcr2),
620 lcr2.value);
623 /* Determine if we need to go into a force mode and set it */
624 if (etdev->AiForceSpeed == 0 && etdev->AiForceDpx == 0) {
625 if (etdev->RegistryFlowControl == TxOnly ||
626 etdev->RegistryFlowControl == Both)
627 ET1310_PhyAccessMiBit(etdev,
628 TRUEPHY_BIT_SET, 4, 11, NULL);
629 else
630 ET1310_PhyAccessMiBit(etdev,
631 TRUEPHY_BIT_CLEAR, 4, 11, NULL);
633 if (etdev->RegistryFlowControl == Both)
634 ET1310_PhyAccessMiBit(etdev,
635 TRUEPHY_BIT_SET, 4, 10, NULL);
636 else
637 ET1310_PhyAccessMiBit(etdev,
638 TRUEPHY_BIT_CLEAR, 4, 10, NULL);
640 /* Set the phy to autonegotiation */
641 ET1310_PhyAutoNeg(etdev, true);
643 /* NOTE - Do we need this? */
644 ET1310_PhyAccessMiBit(etdev, TRUEPHY_BIT_SET, 0, 9, NULL);
645 return;
648 ET1310_PhyAutoNeg(etdev, false);
650 /* Set to the correct force mode. */
651 if (etdev->AiForceDpx != 1) {
652 if (etdev->RegistryFlowControl == TxOnly ||
653 etdev->RegistryFlowControl == Both)
654 ET1310_PhyAccessMiBit(etdev,
655 TRUEPHY_BIT_SET, 4, 11, NULL);
656 else
657 ET1310_PhyAccessMiBit(etdev,
658 TRUEPHY_BIT_CLEAR, 4, 11, NULL);
660 if (etdev->RegistryFlowControl == Both)
661 ET1310_PhyAccessMiBit(etdev,
662 TRUEPHY_BIT_SET, 4, 10, NULL);
663 else
664 ET1310_PhyAccessMiBit(etdev,
665 TRUEPHY_BIT_CLEAR, 4, 10, NULL);
666 } else {
667 ET1310_PhyAccessMiBit(etdev, TRUEPHY_BIT_CLEAR, 4, 10, NULL);
668 ET1310_PhyAccessMiBit(etdev, TRUEPHY_BIT_CLEAR, 4, 11, NULL);
670 ET1310_PhyPowerDown(etdev, 1);
671 switch (etdev->AiForceSpeed) {
672 case 10:
673 /* First we need to turn off all other advertisement */
674 ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
675 ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
676 if (etdev->AiForceDpx == 1) {
677 /* Set our advertise values accordingly */
678 ET1310_PhyAdvertise10BaseT(etdev,
679 TRUEPHY_ADV_DUPLEX_HALF);
680 } else if (etdev->AiForceDpx == 2) {
681 /* Set our advertise values accordingly */
682 ET1310_PhyAdvertise10BaseT(etdev,
683 TRUEPHY_ADV_DUPLEX_FULL);
684 } else {
685 /* Disable autoneg */
686 ET1310_PhyAutoNeg(etdev, false);
687 /* Disable rest of the advertisements */
688 ET1310_PhyAdvertise10BaseT(etdev,
689 TRUEPHY_ADV_DUPLEX_NONE);
690 /* Force 10 Mbps */
691 ET1310_PhySpeedSelect(etdev, TRUEPHY_SPEED_10MBPS);
692 /* Force Full duplex */
693 ET1310_PhyDuplexMode(etdev, TRUEPHY_DUPLEX_FULL);
695 break;
696 case 100:
697 /* first we need to turn off all other advertisement */
698 ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
699 ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
700 if (etdev->AiForceDpx == 1) {
701 /* Set our advertise values accordingly */
702 ET1310_PhyAdvertise100BaseT(etdev,
703 TRUEPHY_ADV_DUPLEX_HALF);
704 /* Set speed */
705 ET1310_PhySpeedSelect(etdev, TRUEPHY_SPEED_100MBPS);
706 } else if (etdev->AiForceDpx == 2) {
707 /* Set our advertise values accordingly */
708 ET1310_PhyAdvertise100BaseT(etdev,
709 TRUEPHY_ADV_DUPLEX_FULL);
710 } else {
711 /* Disable autoneg */
712 ET1310_PhyAutoNeg(etdev, false);
713 /* Disable other advertisement */
714 ET1310_PhyAdvertise100BaseT(etdev,
715 TRUEPHY_ADV_DUPLEX_NONE);
716 /* Force 100 Mbps */
717 ET1310_PhySpeedSelect(etdev, TRUEPHY_SPEED_100MBPS);
718 /* Force Full duplex */
719 ET1310_PhyDuplexMode(etdev, TRUEPHY_DUPLEX_FULL);
721 break;
722 case 1000:
723 /* first we need to turn off all other advertisement */
724 ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
725 ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
726 /* set our advertise values accordingly */
727 ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_FULL);
728 break;
730 ET1310_PhyPowerDown(etdev, 0);
733 void et131x_Mii_check(struct et131x_adapter *etdev,
734 MI_BMSR_t bmsr, MI_BMSR_t bmsr_ints)
736 u8 link_status;
737 u32 autoneg_status;
738 u32 speed;
739 u32 duplex;
740 u32 mdi_mdix;
741 u32 masterslave;
742 u32 polarity;
743 unsigned long flags;
745 if (bmsr_ints.bits.link_status) {
746 if (bmsr.bits.link_status) {
747 etdev->PoMgmt.TransPhyComaModeOnBoot = 20;
749 /* Update our state variables and indicate the
750 * connected state
752 spin_lock_irqsave(&etdev->Lock, flags);
754 etdev->MediaState = NETIF_STATUS_MEDIA_CONNECT;
755 etdev->Flags &= ~fMP_ADAPTER_LINK_DETECTION;
757 spin_unlock_irqrestore(&etdev->Lock, flags);
759 netif_carrier_on(etdev->netdev);
760 } else {
761 dev_warn(&etdev->pdev->dev,
762 "Link down - cable problem ?\n");
764 if (etdev->linkspeed == TRUEPHY_SPEED_10MBPS) {
765 /* NOTE - Is there a way to query this without
766 * TruePHY?
767 * && TRU_QueryCoreType(etdev->hTruePhy, 0) == EMI_TRUEPHY_A13O) {
769 u16 Register18;
771 MiRead(etdev, 0x12, &Register18);
772 MiWrite(etdev, 0x12, Register18 | 0x4);
773 MiWrite(etdev, 0x10, Register18 | 0x8402);
774 MiWrite(etdev, 0x11, Register18 | 511);
775 MiWrite(etdev, 0x12, Register18);
778 /* For the first N seconds of life, we are in "link
779 * detection" When we are in this state, we should
780 * only report "connected". When the LinkDetection
781 * Timer expires, we can report disconnected (handled
782 * in the LinkDetectionDPC).
784 if (!(etdev->Flags & fMP_ADAPTER_LINK_DETECTION) ||
785 (etdev->MediaState == NETIF_STATUS_MEDIA_DISCONNECT)) {
786 spin_lock_irqsave(&etdev->Lock, flags);
787 etdev->MediaState =
788 NETIF_STATUS_MEDIA_DISCONNECT;
789 spin_unlock_irqrestore(&etdev->Lock,
790 flags);
792 netif_carrier_off(etdev->netdev);
795 etdev->linkspeed = 0;
796 etdev->duplex_mode = 0;
798 /* Free the packets being actively sent & stopped */
799 et131x_free_busy_send_packets(etdev);
801 /* Re-initialize the send structures */
802 et131x_init_send(etdev);
804 /* Reset the RFD list and re-start RU */
805 et131x_reset_recv(etdev);
808 * Bring the device back to the state it was during
809 * init prior to autonegotiation being complete. This
810 * way, when we get the auto-neg complete interrupt,
811 * we can complete init by calling ConfigMacREGS2.
813 et131x_soft_reset(etdev);
815 /* Setup ET1310 as per the documentation */
816 et131x_adapter_setup(etdev);
818 /* Setup the PHY into coma mode until the cable is
819 * plugged back in
821 if (etdev->RegistryPhyComa == 1)
822 EnablePhyComa(etdev);
826 if (bmsr_ints.bits.auto_neg_complete ||
827 (etdev->AiForceDpx == 3 && bmsr_ints.bits.link_status)) {
828 if (bmsr.bits.auto_neg_complete || etdev->AiForceDpx == 3) {
829 ET1310_PhyLinkStatus(etdev,
830 &link_status, &autoneg_status,
831 &speed, &duplex, &mdi_mdix,
832 &masterslave, &polarity);
834 etdev->linkspeed = speed;
835 etdev->duplex_mode = duplex;
837 etdev->PoMgmt.TransPhyComaModeOnBoot = 20;
839 if (etdev->linkspeed == TRUEPHY_SPEED_10MBPS) {
841 * NOTE - Is there a way to query this without
842 * TruePHY?
843 * && TRU_QueryCoreType(etdev->hTruePhy, 0)== EMI_TRUEPHY_A13O) {
845 u16 Register18;
847 MiRead(etdev, 0x12, &Register18);
848 MiWrite(etdev, 0x12, Register18 | 0x4);
849 MiWrite(etdev, 0x10, Register18 | 0x8402);
850 MiWrite(etdev, 0x11, Register18 | 511);
851 MiWrite(etdev, 0x12, Register18);
854 ConfigFlowControl(etdev);
856 if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS &&
857 etdev->RegistryJumboPacket > 2048)
858 ET1310_PhyAndOrReg(etdev, 0x16, 0xcfff,
859 0x2000);
861 SetRxDmaTimer(etdev);
862 ConfigMACRegs2(etdev);
868 * The routines which follow provide low-level access to the PHY, and are used
869 * primarily by the routines above (although there are a few places elsewhere
870 * in the driver where this level of access is required).
873 static const u16 ConfigPhy[25][2] = {
874 /* Reg Value Register */
875 /* Addr */
876 {0x880B, 0x0926}, /* AfeIfCreg4B1000Msbs */
877 {0x880C, 0x0926}, /* AfeIfCreg4B100Msbs */
878 {0x880D, 0x0926}, /* AfeIfCreg4B10Msbs */
880 {0x880E, 0xB4D3}, /* AfeIfCreg4B1000Lsbs */
881 {0x880F, 0xB4D3}, /* AfeIfCreg4B100Lsbs */
882 {0x8810, 0xB4D3}, /* AfeIfCreg4B10Lsbs */
884 {0x8805, 0xB03E}, /* AfeIfCreg3B1000Msbs */
885 {0x8806, 0xB03E}, /* AfeIfCreg3B100Msbs */
886 {0x8807, 0xFF00}, /* AfeIfCreg3B10Msbs */
888 {0x8808, 0xE090}, /* AfeIfCreg3B1000Lsbs */
889 {0x8809, 0xE110}, /* AfeIfCreg3B100Lsbs */
890 {0x880A, 0x0000}, /* AfeIfCreg3B10Lsbs */
892 {0x300D, 1}, /* DisableNorm */
894 {0x280C, 0x0180}, /* LinkHoldEnd */
896 {0x1C21, 0x0002}, /* AlphaM */
898 {0x3821, 6}, /* FfeLkgTx0 */
899 {0x381D, 1}, /* FfeLkg1g4 */
900 {0x381E, 1}, /* FfeLkg1g5 */
901 {0x381F, 1}, /* FfeLkg1g6 */
902 {0x3820, 1}, /* FfeLkg1g7 */
904 {0x8402, 0x01F0}, /* Btinact */
905 {0x800E, 20}, /* LftrainTime */
906 {0x800F, 24}, /* DvguardTime */
907 {0x8010, 46}, /* IdlguardTime */
909 {0, 0}
913 /* condensed version of the phy initialization routine */
914 void ET1310_PhyInit(struct et131x_adapter *etdev)
916 u16 data, index;
918 if (etdev == NULL)
919 return;
921 /* get the identity (again ?) */
922 MiRead(etdev, PHY_ID_1, &data);
923 MiRead(etdev, PHY_ID_2, &data);
925 /* what does this do/achieve ? */
926 MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
927 MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0006);
929 /* read modem register 0402, should I do something with the return
930 data ? */
931 MiWrite(etdev, PHY_INDEX_REG, 0x0402);
932 MiRead(etdev, PHY_DATA_REG, &data);
934 /* what does this do/achieve ? */
935 MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
937 /* get the identity (again ?) */
938 MiRead(etdev, PHY_ID_1, &data);
939 MiRead(etdev, PHY_ID_2, &data);
941 /* what does this achieve ? */
942 MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
943 MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0006);
945 /* read modem register 0402, should I do something with
946 the return data? */
947 MiWrite(etdev, PHY_INDEX_REG, 0x0402);
948 MiRead(etdev, PHY_DATA_REG, &data);
950 MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
952 /* what does this achieve (should return 0x1040) */
953 MiRead(etdev, PHY_CONTROL, &data);
954 MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
955 MiWrite(etdev, PHY_CONTROL, 0x1840);
957 MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0007);
959 /* here the writing of the array starts.... */
960 index = 0;
961 while (ConfigPhy[index][0] != 0x0000) {
962 /* write value */
963 MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[index][0]);
964 MiWrite(etdev, PHY_DATA_REG, ConfigPhy[index][1]);
966 /* read it back */
967 MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[index][0]);
968 MiRead(etdev, PHY_DATA_REG, &data);
970 /* do a check on the value read back ? */
971 index++;
973 /* here the writing of the array ends... */
975 MiRead(etdev, PHY_CONTROL, &data); /* 0x1840 */
976 MiRead(etdev, PHY_MPHY_CONTROL_REG, &data);/* should read 0007 */
977 MiWrite(etdev, PHY_CONTROL, 0x1040);
978 MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);