4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains functions related to writing back dirty pages at the
9 * 10Apr2002 akpm@zip.com.au
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/task_io_accounting_ops.h>
25 #include <linux/blkdev.h>
26 #include <linux/mpage.h>
27 #include <linux/rmap.h>
28 #include <linux/percpu.h>
29 #include <linux/notifier.h>
30 #include <linux/smp.h>
31 #include <linux/sysctl.h>
32 #include <linux/cpu.h>
33 #include <linux/syscalls.h>
34 #include <linux/buffer_head.h>
35 #include <linux/pagevec.h>
38 * The maximum number of pages to writeout in a single bdflush/kupdate
39 * operation. We do this so we don't hold I_LOCK against an inode for
40 * enormous amounts of time, which would block a userspace task which has
41 * been forced to throttle against that inode. Also, the code reevaluates
42 * the dirty each time it has written this many pages.
44 #define MAX_WRITEBACK_PAGES 1024
47 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
48 * will look to see if it needs to force writeback or throttling.
50 static long ratelimit_pages
= 32;
52 static int dirty_exceeded __cacheline_aligned_in_smp
; /* Dirty mem may be over limit */
55 * When balance_dirty_pages decides that the caller needs to perform some
56 * non-background writeback, this is how many pages it will attempt to write.
57 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
58 * large amounts of I/O are submitted.
60 static inline long sync_writeback_pages(void)
62 return ratelimit_pages
+ ratelimit_pages
/ 2;
65 /* The following parameters are exported via /proc/sys/vm */
68 * Start background writeback (via pdflush) at this percentage
70 int dirty_background_ratio
= 10;
73 * The generator of dirty data starts writeback at this percentage
75 int vm_dirty_ratio
= 40;
78 * The interval between `kupdate'-style writebacks, in jiffies
80 int dirty_writeback_interval
= 5 * HZ
;
83 * The longest number of jiffies for which data is allowed to remain dirty
85 int dirty_expire_interval
= 30 * HZ
;
88 * Flag that makes the machine dump writes/reads and block dirtyings.
93 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
94 * a full sync is triggered after this time elapses without any disk activity.
98 EXPORT_SYMBOL(laptop_mode
);
100 /* End of sysctl-exported parameters */
103 static void background_writeout(unsigned long _min_pages
);
106 * Work out the current dirty-memory clamping and background writeout
109 * The main aim here is to lower them aggressively if there is a lot of mapped
110 * memory around. To avoid stressing page reclaim with lots of unreclaimable
111 * pages. It is better to clamp down on writers than to start swapping, and
112 * performing lots of scanning.
114 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
116 * We don't permit the clamping level to fall below 5% - that is getting rather
119 * We make sure that the background writeout level is below the adjusted
123 get_dirty_limits(long *pbackground
, long *pdirty
,
124 struct address_space
*mapping
)
126 int background_ratio
; /* Percentages */
131 unsigned long available_memory
= vm_total_pages
;
132 struct task_struct
*tsk
;
134 #ifdef CONFIG_HIGHMEM
136 * We always exclude high memory from our count.
138 available_memory
-= totalhigh_pages
;
142 unmapped_ratio
= 100 - ((global_page_state(NR_FILE_MAPPED
) +
143 global_page_state(NR_ANON_PAGES
)) * 100) /
146 dirty_ratio
= vm_dirty_ratio
;
147 if (dirty_ratio
> unmapped_ratio
/ 2)
148 dirty_ratio
= unmapped_ratio
/ 2;
153 background_ratio
= dirty_background_ratio
;
154 if (background_ratio
>= dirty_ratio
)
155 background_ratio
= dirty_ratio
/ 2;
157 background
= (background_ratio
* available_memory
) / 100;
158 dirty
= (dirty_ratio
* available_memory
) / 100;
160 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
161 background
+= background
/ 4;
164 *pbackground
= background
;
169 * balance_dirty_pages() must be called by processes which are generating dirty
170 * data. It looks at the number of dirty pages in the machine and will force
171 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
172 * If we're over `background_thresh' then pdflush is woken to perform some
175 static void balance_dirty_pages(struct address_space
*mapping
)
178 long background_thresh
;
180 unsigned long pages_written
= 0;
181 unsigned long write_chunk
= sync_writeback_pages();
183 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
186 struct writeback_control wbc
= {
188 .sync_mode
= WB_SYNC_NONE
,
189 .older_than_this
= NULL
,
190 .nr_to_write
= write_chunk
,
194 get_dirty_limits(&background_thresh
, &dirty_thresh
, mapping
);
195 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
196 global_page_state(NR_UNSTABLE_NFS
);
197 if (nr_reclaimable
+ global_page_state(NR_WRITEBACK
) <=
204 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
205 * Unstable writes are a feature of certain networked
206 * filesystems (i.e. NFS) in which data may have been
207 * written to the server's write cache, but has not yet
208 * been flushed to permanent storage.
210 if (nr_reclaimable
) {
211 writeback_inodes(&wbc
);
212 get_dirty_limits(&background_thresh
,
213 &dirty_thresh
, mapping
);
214 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
215 global_page_state(NR_UNSTABLE_NFS
);
217 global_page_state(NR_WRITEBACK
)
220 pages_written
+= write_chunk
- wbc
.nr_to_write
;
221 if (pages_written
>= write_chunk
)
222 break; /* We've done our duty */
224 congestion_wait(WRITE
, HZ
/10);
227 if (nr_reclaimable
+ global_page_state(NR_WRITEBACK
)
228 <= dirty_thresh
&& dirty_exceeded
)
231 if (writeback_in_progress(bdi
))
232 return; /* pdflush is already working this queue */
235 * In laptop mode, we wait until hitting the higher threshold before
236 * starting background writeout, and then write out all the way down
237 * to the lower threshold. So slow writers cause minimal disk activity.
239 * In normal mode, we start background writeout at the lower
240 * background_thresh, to keep the amount of dirty memory low.
242 if ((laptop_mode
&& pages_written
) ||
243 (!laptop_mode
&& (nr_reclaimable
> background_thresh
)))
244 pdflush_operation(background_writeout
, 0);
247 void set_page_dirty_balance(struct page
*page
)
249 if (set_page_dirty(page
)) {
250 struct address_space
*mapping
= page_mapping(page
);
253 balance_dirty_pages_ratelimited(mapping
);
258 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
259 * @mapping: address_space which was dirtied
260 * @nr_pages_dirtied: number of pages which the caller has just dirtied
262 * Processes which are dirtying memory should call in here once for each page
263 * which was newly dirtied. The function will periodically check the system's
264 * dirty state and will initiate writeback if needed.
266 * On really big machines, get_writeback_state is expensive, so try to avoid
267 * calling it too often (ratelimiting). But once we're over the dirty memory
268 * limit we decrease the ratelimiting by a lot, to prevent individual processes
269 * from overshooting the limit by (ratelimit_pages) each.
271 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
272 unsigned long nr_pages_dirtied
)
274 static DEFINE_PER_CPU(unsigned long, ratelimits
) = 0;
275 unsigned long ratelimit
;
278 ratelimit
= ratelimit_pages
;
283 * Check the rate limiting. Also, we do not want to throttle real-time
284 * tasks in balance_dirty_pages(). Period.
287 p
= &__get_cpu_var(ratelimits
);
288 *p
+= nr_pages_dirtied
;
289 if (unlikely(*p
>= ratelimit
)) {
292 balance_dirty_pages(mapping
);
297 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
299 void throttle_vm_writeout(gfp_t gfp_mask
)
301 long background_thresh
;
304 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
)) {
306 * The caller might hold locks which can prevent IO completion
307 * or progress in the filesystem. So we cannot just sit here
308 * waiting for IO to complete.
310 congestion_wait(WRITE
, HZ
/10);
315 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
);
318 * Boost the allowable dirty threshold a bit for page
319 * allocators so they don't get DoS'ed by heavy writers
321 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
323 if (global_page_state(NR_UNSTABLE_NFS
) +
324 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
326 congestion_wait(WRITE
, HZ
/10);
331 * writeback at least _min_pages, and keep writing until the amount of dirty
332 * memory is less than the background threshold, or until we're all clean.
334 static void background_writeout(unsigned long _min_pages
)
336 long min_pages
= _min_pages
;
337 struct writeback_control wbc
= {
339 .sync_mode
= WB_SYNC_NONE
,
340 .older_than_this
= NULL
,
347 long background_thresh
;
350 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
);
351 if (global_page_state(NR_FILE_DIRTY
) +
352 global_page_state(NR_UNSTABLE_NFS
) < background_thresh
355 wbc
.encountered_congestion
= 0;
356 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
357 wbc
.pages_skipped
= 0;
358 writeback_inodes(&wbc
);
359 min_pages
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
360 if (wbc
.nr_to_write
> 0 || wbc
.pages_skipped
> 0) {
361 /* Wrote less than expected */
362 congestion_wait(WRITE
, HZ
/10);
363 if (!wbc
.encountered_congestion
)
370 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
371 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
372 * -1 if all pdflush threads were busy.
374 int wakeup_pdflush(long nr_pages
)
377 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
378 global_page_state(NR_UNSTABLE_NFS
);
379 return pdflush_operation(background_writeout
, nr_pages
);
382 static void wb_timer_fn(unsigned long unused
);
383 static void laptop_timer_fn(unsigned long unused
);
385 static DEFINE_TIMER(wb_timer
, wb_timer_fn
, 0, 0);
386 static DEFINE_TIMER(laptop_mode_wb_timer
, laptop_timer_fn
, 0, 0);
389 * Periodic writeback of "old" data.
391 * Define "old": the first time one of an inode's pages is dirtied, we mark the
392 * dirtying-time in the inode's address_space. So this periodic writeback code
393 * just walks the superblock inode list, writing back any inodes which are
394 * older than a specific point in time.
396 * Try to run once per dirty_writeback_interval. But if a writeback event
397 * takes longer than a dirty_writeback_interval interval, then leave a
400 * older_than_this takes precedence over nr_to_write. So we'll only write back
401 * all dirty pages if they are all attached to "old" mappings.
403 static void wb_kupdate(unsigned long arg
)
405 unsigned long oldest_jif
;
406 unsigned long start_jif
;
407 unsigned long next_jif
;
409 struct writeback_control wbc
= {
411 .sync_mode
= WB_SYNC_NONE
,
412 .older_than_this
= &oldest_jif
,
421 oldest_jif
= jiffies
- dirty_expire_interval
;
423 next_jif
= start_jif
+ dirty_writeback_interval
;
424 nr_to_write
= global_page_state(NR_FILE_DIRTY
) +
425 global_page_state(NR_UNSTABLE_NFS
) +
426 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
427 while (nr_to_write
> 0) {
428 wbc
.encountered_congestion
= 0;
429 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
430 writeback_inodes(&wbc
);
431 if (wbc
.nr_to_write
> 0) {
432 if (wbc
.encountered_congestion
)
433 congestion_wait(WRITE
, HZ
/10);
435 break; /* All the old data is written */
437 nr_to_write
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
439 if (time_before(next_jif
, jiffies
+ HZ
))
440 next_jif
= jiffies
+ HZ
;
441 if (dirty_writeback_interval
)
442 mod_timer(&wb_timer
, next_jif
);
446 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
448 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
449 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
451 proc_dointvec_userhz_jiffies(table
, write
, file
, buffer
, length
, ppos
);
452 if (dirty_writeback_interval
) {
454 jiffies
+ dirty_writeback_interval
);
456 del_timer(&wb_timer
);
461 static void wb_timer_fn(unsigned long unused
)
463 if (pdflush_operation(wb_kupdate
, 0) < 0)
464 mod_timer(&wb_timer
, jiffies
+ HZ
); /* delay 1 second */
467 static void laptop_flush(unsigned long unused
)
472 static void laptop_timer_fn(unsigned long unused
)
474 pdflush_operation(laptop_flush
, 0);
478 * We've spun up the disk and we're in laptop mode: schedule writeback
479 * of all dirty data a few seconds from now. If the flush is already scheduled
480 * then push it back - the user is still using the disk.
482 void laptop_io_completion(void)
484 mod_timer(&laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
488 * We're in laptop mode and we've just synced. The sync's writes will have
489 * caused another writeback to be scheduled by laptop_io_completion.
490 * Nothing needs to be written back anymore, so we unschedule the writeback.
492 void laptop_sync_completion(void)
494 del_timer(&laptop_mode_wb_timer
);
498 * If ratelimit_pages is too high then we can get into dirty-data overload
499 * if a large number of processes all perform writes at the same time.
500 * If it is too low then SMP machines will call the (expensive)
501 * get_writeback_state too often.
503 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
504 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
505 * thresholds before writeback cuts in.
507 * But the limit should not be set too high. Because it also controls the
508 * amount of memory which the balance_dirty_pages() caller has to write back.
509 * If this is too large then the caller will block on the IO queue all the
510 * time. So limit it to four megabytes - the balance_dirty_pages() caller
511 * will write six megabyte chunks, max.
514 void writeback_set_ratelimit(void)
516 ratelimit_pages
= vm_total_pages
/ (num_online_cpus() * 32);
517 if (ratelimit_pages
< 16)
518 ratelimit_pages
= 16;
519 if (ratelimit_pages
* PAGE_CACHE_SIZE
> 4096 * 1024)
520 ratelimit_pages
= (4096 * 1024) / PAGE_CACHE_SIZE
;
524 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
526 writeback_set_ratelimit();
530 static struct notifier_block __cpuinitdata ratelimit_nb
= {
531 .notifier_call
= ratelimit_handler
,
536 * Called early on to tune the page writeback dirty limits.
538 * We used to scale dirty pages according to how total memory
539 * related to pages that could be allocated for buffers (by
540 * comparing nr_free_buffer_pages() to vm_total_pages.
542 * However, that was when we used "dirty_ratio" to scale with
543 * all memory, and we don't do that any more. "dirty_ratio"
544 * is now applied to total non-HIGHPAGE memory (by subtracting
545 * totalhigh_pages from vm_total_pages), and as such we can't
546 * get into the old insane situation any more where we had
547 * large amounts of dirty pages compared to a small amount of
548 * non-HIGHMEM memory.
550 * But we might still want to scale the dirty_ratio by how
551 * much memory the box has..
553 void __init
page_writeback_init(void)
555 mod_timer(&wb_timer
, jiffies
+ dirty_writeback_interval
);
556 writeback_set_ratelimit();
557 register_cpu_notifier(&ratelimit_nb
);
561 * generic_writepages - walk the list of dirty pages of the given
562 * address space and writepage() all of them.
564 * @mapping: address space structure to write
565 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
567 * This is a library function, which implements the writepages()
568 * address_space_operation.
570 * If a page is already under I/O, generic_writepages() skips it, even
571 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
572 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
573 * and msync() need to guarantee that all the data which was dirty at the time
574 * the call was made get new I/O started against them. If wbc->sync_mode is
575 * WB_SYNC_ALL then we were called for data integrity and we must wait for
576 * existing IO to complete.
578 * Derived from mpage_writepages() - if you fix this you should check that
581 int generic_writepages(struct address_space
*mapping
,
582 struct writeback_control
*wbc
)
584 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
587 int (*writepage
)(struct page
*page
, struct writeback_control
*wbc
);
591 pgoff_t end
; /* Inclusive */
595 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
596 wbc
->encountered_congestion
= 1;
600 writepage
= mapping
->a_ops
->writepage
;
602 /* deal with chardevs and other special file */
606 pagevec_init(&pvec
, 0);
607 if (wbc
->range_cyclic
) {
608 index
= mapping
->writeback_index
; /* Start from prev offset */
611 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
612 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
613 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
618 while (!done
&& (index
<= end
) &&
619 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
621 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
625 for (i
= 0; i
< nr_pages
; i
++) {
626 struct page
*page
= pvec
.pages
[i
];
629 * At this point we hold neither mapping->tree_lock nor
630 * lock on the page itself: the page may be truncated or
631 * invalidated (changing page->mapping to NULL), or even
632 * swizzled back from swapper_space to tmpfs file
637 if (unlikely(page
->mapping
!= mapping
)) {
642 if (!wbc
->range_cyclic
&& page
->index
> end
) {
648 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
649 wait_on_page_writeback(page
);
651 if (PageWriteback(page
) ||
652 !clear_page_dirty_for_io(page
)) {
657 ret
= (*writepage
)(page
, wbc
);
660 set_bit(AS_ENOSPC
, &mapping
->flags
);
662 set_bit(AS_EIO
, &mapping
->flags
);
665 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
))
667 if (ret
|| (--(wbc
->nr_to_write
) <= 0))
669 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
670 wbc
->encountered_congestion
= 1;
674 pagevec_release(&pvec
);
677 if (!scanned
&& !done
) {
679 * We hit the last page and there is more work to be done: wrap
680 * back to the start of the file
686 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
687 mapping
->writeback_index
= index
;
691 EXPORT_SYMBOL(generic_writepages
);
693 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
697 if (wbc
->nr_to_write
<= 0)
699 wbc
->for_writepages
= 1;
700 if (mapping
->a_ops
->writepages
)
701 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
703 ret
= generic_writepages(mapping
, wbc
);
704 wbc
->for_writepages
= 0;
709 * write_one_page - write out a single page and optionally wait on I/O
711 * @page: the page to write
712 * @wait: if true, wait on writeout
714 * The page must be locked by the caller and will be unlocked upon return.
716 * write_one_page() returns a negative error code if I/O failed.
718 int write_one_page(struct page
*page
, int wait
)
720 struct address_space
*mapping
= page
->mapping
;
722 struct writeback_control wbc
= {
723 .sync_mode
= WB_SYNC_ALL
,
727 BUG_ON(!PageLocked(page
));
730 wait_on_page_writeback(page
);
732 if (clear_page_dirty_for_io(page
)) {
733 page_cache_get(page
);
734 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
735 if (ret
== 0 && wait
) {
736 wait_on_page_writeback(page
);
740 page_cache_release(page
);
746 EXPORT_SYMBOL(write_one_page
);
749 * For address_spaces which do not use buffers. Just tag the page as dirty in
752 * This is also used when a single buffer is being dirtied: we want to set the
753 * page dirty in that case, but not all the buffers. This is a "bottom-up"
754 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
756 * Most callers have locked the page, which pins the address_space in memory.
757 * But zap_pte_range() does not lock the page, however in that case the
758 * mapping is pinned by the vma's ->vm_file reference.
760 * We take care to handle the case where the page was truncated from the
761 * mapping by re-checking page_mapping() insode tree_lock.
763 int __set_page_dirty_nobuffers(struct page
*page
)
765 if (!TestSetPageDirty(page
)) {
766 struct address_space
*mapping
= page_mapping(page
);
767 struct address_space
*mapping2
;
772 write_lock_irq(&mapping
->tree_lock
);
773 mapping2
= page_mapping(page
);
774 if (mapping2
) { /* Race with truncate? */
775 BUG_ON(mapping2
!= mapping
);
776 if (mapping_cap_account_dirty(mapping
)) {
777 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
778 task_io_account_write(PAGE_CACHE_SIZE
);
780 radix_tree_tag_set(&mapping
->page_tree
,
781 page_index(page
), PAGECACHE_TAG_DIRTY
);
783 write_unlock_irq(&mapping
->tree_lock
);
785 /* !PageAnon && !swapper_space */
786 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
792 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
795 * When a writepage implementation decides that it doesn't want to write this
796 * page for some reason, it should redirty the locked page via
797 * redirty_page_for_writepage() and it should then unlock the page and return 0
799 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
801 wbc
->pages_skipped
++;
802 return __set_page_dirty_nobuffers(page
);
804 EXPORT_SYMBOL(redirty_page_for_writepage
);
807 * If the mapping doesn't provide a set_page_dirty a_op, then
808 * just fall through and assume that it wants buffer_heads.
810 int fastcall
set_page_dirty(struct page
*page
)
812 struct address_space
*mapping
= page_mapping(page
);
814 if (likely(mapping
)) {
815 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
818 spd
= __set_page_dirty_buffers
;
822 if (!PageDirty(page
)) {
823 if (!TestSetPageDirty(page
))
828 EXPORT_SYMBOL(set_page_dirty
);
831 * set_page_dirty() is racy if the caller has no reference against
832 * page->mapping->host, and if the page is unlocked. This is because another
833 * CPU could truncate the page off the mapping and then free the mapping.
835 * Usually, the page _is_ locked, or the caller is a user-space process which
836 * holds a reference on the inode by having an open file.
838 * In other cases, the page should be locked before running set_page_dirty().
840 int set_page_dirty_lock(struct page
*page
)
844 lock_page_nosync(page
);
845 ret
= set_page_dirty(page
);
849 EXPORT_SYMBOL(set_page_dirty_lock
);
852 * Clear a page's dirty flag, while caring for dirty memory accounting.
853 * Returns true if the page was previously dirty.
855 * This is for preparing to put the page under writeout. We leave the page
856 * tagged as dirty in the radix tree so that a concurrent write-for-sync
857 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
858 * implementation will run either set_page_writeback() or set_page_dirty(),
859 * at which stage we bring the page's dirty flag and radix-tree dirty tag
862 * This incoherency between the page's dirty flag and radix-tree tag is
863 * unfortunate, but it only exists while the page is locked.
865 int clear_page_dirty_for_io(struct page
*page
)
867 struct address_space
*mapping
= page_mapping(page
);
869 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
871 * Yes, Virginia, this is indeed insane.
873 * We use this sequence to make sure that
874 * (a) we account for dirty stats properly
875 * (b) we tell the low-level filesystem to
876 * mark the whole page dirty if it was
877 * dirty in a pagetable. Only to then
878 * (c) clean the page again and return 1 to
879 * cause the writeback.
881 * This way we avoid all nasty races with the
882 * dirty bit in multiple places and clearing
883 * them concurrently from different threads.
885 * Note! Normally the "set_page_dirty(page)"
886 * has no effect on the actual dirty bit - since
887 * that will already usually be set. But we
888 * need the side effects, and it can help us
891 * We basically use the page "master dirty bit"
892 * as a serialization point for all the different
893 * threads doing their things.
895 * FIXME! We still have a race here: if somebody
896 * adds the page back to the page tables in
897 * between the "page_mkclean()" and the "TestClearPageDirty()",
898 * we might have it mapped without the dirty bit set.
900 if (page_mkclean(page
))
901 set_page_dirty(page
);
902 if (TestClearPageDirty(page
)) {
903 dec_zone_page_state(page
, NR_FILE_DIRTY
);
908 return TestClearPageDirty(page
);
910 EXPORT_SYMBOL(clear_page_dirty_for_io
);
912 int test_clear_page_writeback(struct page
*page
)
914 struct address_space
*mapping
= page_mapping(page
);
920 write_lock_irqsave(&mapping
->tree_lock
, flags
);
921 ret
= TestClearPageWriteback(page
);
923 radix_tree_tag_clear(&mapping
->page_tree
,
925 PAGECACHE_TAG_WRITEBACK
);
926 write_unlock_irqrestore(&mapping
->tree_lock
, flags
);
928 ret
= TestClearPageWriteback(page
);
933 int test_set_page_writeback(struct page
*page
)
935 struct address_space
*mapping
= page_mapping(page
);
941 write_lock_irqsave(&mapping
->tree_lock
, flags
);
942 ret
= TestSetPageWriteback(page
);
944 radix_tree_tag_set(&mapping
->page_tree
,
946 PAGECACHE_TAG_WRITEBACK
);
947 if (!PageDirty(page
))
948 radix_tree_tag_clear(&mapping
->page_tree
,
950 PAGECACHE_TAG_DIRTY
);
951 write_unlock_irqrestore(&mapping
->tree_lock
, flags
);
953 ret
= TestSetPageWriteback(page
);
958 EXPORT_SYMBOL(test_set_page_writeback
);
961 * Return true if any of the pages in the mapping are marged with the
964 int mapping_tagged(struct address_space
*mapping
, int tag
)
969 read_lock_irqsave(&mapping
->tree_lock
, flags
);
970 ret
= radix_tree_tagged(&mapping
->page_tree
, tag
);
971 read_unlock_irqrestore(&mapping
->tree_lock
, flags
);
974 EXPORT_SYMBOL(mapping_tagged
);