ACPI: thinkpad-acpi: improve dock subdriver initialization
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / sata_mv.c
blob4054cdbb12cbf19e75c82275c4aa83ae6fc79bdc
1 /*
2 * sata_mv.c - Marvell SATA support
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/sched.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_cmnd.h>
36 #include <linux/libata.h>
37 #include <asm/io.h>
39 #define DRV_NAME "sata_mv"
40 #define DRV_VERSION "0.7"
42 enum {
43 /* BAR's are enumerated in terms of pci_resource_start() terms */
44 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
45 MV_IO_BAR = 2, /* offset 0x18: IO space */
46 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
48 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
49 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
51 MV_PCI_REG_BASE = 0,
52 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
53 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
54 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
55 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
56 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
57 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
59 MV_SATAHC0_REG_BASE = 0x20000,
60 MV_FLASH_CTL = 0x1046c,
61 MV_GPIO_PORT_CTL = 0x104f0,
62 MV_RESET_CFG = 0x180d8,
64 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
65 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
66 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
67 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
69 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
71 MV_MAX_Q_DEPTH = 32,
72 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
74 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
75 * CRPB needs alignment on a 256B boundary. Size == 256B
76 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
77 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
79 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
80 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
81 MV_MAX_SG_CT = 176,
82 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
83 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
85 MV_PORTS_PER_HC = 4,
86 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
87 MV_PORT_HC_SHIFT = 2,
88 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
89 MV_PORT_MASK = 3,
91 /* Host Flags */
92 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
93 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
94 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
95 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
96 ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING),
97 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
99 CRQB_FLAG_READ = (1 << 0),
100 CRQB_TAG_SHIFT = 1,
101 CRQB_CMD_ADDR_SHIFT = 8,
102 CRQB_CMD_CS = (0x2 << 11),
103 CRQB_CMD_LAST = (1 << 15),
105 CRPB_FLAG_STATUS_SHIFT = 8,
107 EPRD_FLAG_END_OF_TBL = (1 << 31),
109 /* PCI interface registers */
111 PCI_COMMAND_OFS = 0xc00,
113 PCI_MAIN_CMD_STS_OFS = 0xd30,
114 STOP_PCI_MASTER = (1 << 2),
115 PCI_MASTER_EMPTY = (1 << 3),
116 GLOB_SFT_RST = (1 << 4),
118 MV_PCI_MODE = 0xd00,
119 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
120 MV_PCI_DISC_TIMER = 0xd04,
121 MV_PCI_MSI_TRIGGER = 0xc38,
122 MV_PCI_SERR_MASK = 0xc28,
123 MV_PCI_XBAR_TMOUT = 0x1d04,
124 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
125 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
126 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
127 MV_PCI_ERR_COMMAND = 0x1d50,
129 PCI_IRQ_CAUSE_OFS = 0x1d58,
130 PCI_IRQ_MASK_OFS = 0x1d5c,
131 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
133 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
134 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
135 PORT0_ERR = (1 << 0), /* shift by port # */
136 PORT0_DONE = (1 << 1), /* shift by port # */
137 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
138 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
139 PCI_ERR = (1 << 18),
140 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
141 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
142 PORTS_0_3_COAL_DONE = (1 << 8),
143 PORTS_4_7_COAL_DONE = (1 << 17),
144 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
145 GPIO_INT = (1 << 22),
146 SELF_INT = (1 << 23),
147 TWSI_INT = (1 << 24),
148 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
149 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
150 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
151 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
152 HC_MAIN_RSVD),
153 HC_MAIN_MASKED_IRQS_5 = (PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
154 HC_MAIN_RSVD_5),
156 /* SATAHC registers */
157 HC_CFG_OFS = 0,
159 HC_IRQ_CAUSE_OFS = 0x14,
160 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
161 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
162 DEV_IRQ = (1 << 8), /* shift by port # */
164 /* Shadow block registers */
165 SHD_BLK_OFS = 0x100,
166 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
168 /* SATA registers */
169 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
170 SATA_ACTIVE_OFS = 0x350,
171 PHY_MODE3 = 0x310,
172 PHY_MODE4 = 0x314,
173 PHY_MODE2 = 0x330,
174 MV5_PHY_MODE = 0x74,
175 MV5_LT_MODE = 0x30,
176 MV5_PHY_CTL = 0x0C,
177 SATA_INTERFACE_CTL = 0x050,
179 MV_M2_PREAMP_MASK = 0x7e0,
181 /* Port registers */
182 EDMA_CFG_OFS = 0,
183 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
184 EDMA_CFG_NCQ = (1 << 5),
185 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
186 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
187 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
189 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
190 EDMA_ERR_IRQ_MASK_OFS = 0xc,
191 EDMA_ERR_D_PAR = (1 << 0),
192 EDMA_ERR_PRD_PAR = (1 << 1),
193 EDMA_ERR_DEV = (1 << 2),
194 EDMA_ERR_DEV_DCON = (1 << 3),
195 EDMA_ERR_DEV_CON = (1 << 4),
196 EDMA_ERR_SERR = (1 << 5),
197 EDMA_ERR_SELF_DIS = (1 << 7),
198 EDMA_ERR_BIST_ASYNC = (1 << 8),
199 EDMA_ERR_CRBQ_PAR = (1 << 9),
200 EDMA_ERR_CRPB_PAR = (1 << 10),
201 EDMA_ERR_INTRL_PAR = (1 << 11),
202 EDMA_ERR_IORDY = (1 << 12),
203 EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
204 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
205 EDMA_ERR_LNK_DATA_RX = (0xf << 17),
206 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
207 EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
208 EDMA_ERR_TRANS_PROTO = (1 << 31),
209 EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
210 EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
211 EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
212 EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
213 EDMA_ERR_LNK_DATA_RX |
214 EDMA_ERR_LNK_DATA_TX |
215 EDMA_ERR_TRANS_PROTO),
217 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
218 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
220 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
221 EDMA_REQ_Q_PTR_SHIFT = 5,
223 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
224 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
225 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
226 EDMA_RSP_Q_PTR_SHIFT = 3,
228 EDMA_CMD_OFS = 0x28,
229 EDMA_EN = (1 << 0),
230 EDMA_DS = (1 << 1),
231 ATA_RST = (1 << 2),
233 EDMA_IORDY_TMOUT = 0x34,
234 EDMA_ARB_CFG = 0x38,
236 /* Host private flags (hp_flags) */
237 MV_HP_FLAG_MSI = (1 << 0),
238 MV_HP_ERRATA_50XXB0 = (1 << 1),
239 MV_HP_ERRATA_50XXB2 = (1 << 2),
240 MV_HP_ERRATA_60X1B2 = (1 << 3),
241 MV_HP_ERRATA_60X1C0 = (1 << 4),
242 MV_HP_ERRATA_XX42A0 = (1 << 5),
243 MV_HP_50XX = (1 << 6),
244 MV_HP_GEN_IIE = (1 << 7),
246 /* Port private flags (pp_flags) */
247 MV_PP_FLAG_EDMA_EN = (1 << 0),
248 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
251 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
252 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
253 #define IS_GEN_I(hpriv) IS_50XX(hpriv)
254 #define IS_GEN_II(hpriv) IS_60XX(hpriv)
255 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
257 enum {
258 /* Our DMA boundary is determined by an ePRD being unable to handle
259 * anything larger than 64KB
261 MV_DMA_BOUNDARY = 0xffffU,
263 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
265 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
268 enum chip_type {
269 chip_504x,
270 chip_508x,
271 chip_5080,
272 chip_604x,
273 chip_608x,
274 chip_6042,
275 chip_7042,
278 /* Command ReQuest Block: 32B */
279 struct mv_crqb {
280 __le32 sg_addr;
281 __le32 sg_addr_hi;
282 __le16 ctrl_flags;
283 __le16 ata_cmd[11];
286 struct mv_crqb_iie {
287 __le32 addr;
288 __le32 addr_hi;
289 __le32 flags;
290 __le32 len;
291 __le32 ata_cmd[4];
294 /* Command ResPonse Block: 8B */
295 struct mv_crpb {
296 __le16 id;
297 __le16 flags;
298 __le32 tmstmp;
301 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
302 struct mv_sg {
303 __le32 addr;
304 __le32 flags_size;
305 __le32 addr_hi;
306 __le32 reserved;
309 struct mv_port_priv {
310 struct mv_crqb *crqb;
311 dma_addr_t crqb_dma;
312 struct mv_crpb *crpb;
313 dma_addr_t crpb_dma;
314 struct mv_sg *sg_tbl;
315 dma_addr_t sg_tbl_dma;
316 u32 pp_flags;
319 struct mv_port_signal {
320 u32 amps;
321 u32 pre;
324 struct mv_host_priv;
325 struct mv_hw_ops {
326 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
327 unsigned int port);
328 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
329 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
330 void __iomem *mmio);
331 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
332 unsigned int n_hc);
333 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
334 void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
337 struct mv_host_priv {
338 u32 hp_flags;
339 struct mv_port_signal signal[8];
340 const struct mv_hw_ops *ops;
343 static void mv_irq_clear(struct ata_port *ap);
344 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
345 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
346 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
347 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
348 static void mv_phy_reset(struct ata_port *ap);
349 static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
350 static void mv_host_stop(struct ata_host *host);
351 static int mv_port_start(struct ata_port *ap);
352 static void mv_port_stop(struct ata_port *ap);
353 static void mv_qc_prep(struct ata_queued_cmd *qc);
354 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
355 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
356 static irqreturn_t mv_interrupt(int irq, void *dev_instance);
357 static void mv_eng_timeout(struct ata_port *ap);
358 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
360 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
361 unsigned int port);
362 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
363 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
364 void __iomem *mmio);
365 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
366 unsigned int n_hc);
367 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
368 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
370 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
371 unsigned int port);
372 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
373 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
374 void __iomem *mmio);
375 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
376 unsigned int n_hc);
377 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
378 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
379 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
380 unsigned int port_no);
381 static void mv_stop_and_reset(struct ata_port *ap);
383 static struct scsi_host_template mv_sht = {
384 .module = THIS_MODULE,
385 .name = DRV_NAME,
386 .ioctl = ata_scsi_ioctl,
387 .queuecommand = ata_scsi_queuecmd,
388 .can_queue = MV_USE_Q_DEPTH,
389 .this_id = ATA_SHT_THIS_ID,
390 .sg_tablesize = MV_MAX_SG_CT / 2,
391 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
392 .emulated = ATA_SHT_EMULATED,
393 .use_clustering = ATA_SHT_USE_CLUSTERING,
394 .proc_name = DRV_NAME,
395 .dma_boundary = MV_DMA_BOUNDARY,
396 .slave_configure = ata_scsi_slave_config,
397 .slave_destroy = ata_scsi_slave_destroy,
398 .bios_param = ata_std_bios_param,
401 static const struct ata_port_operations mv5_ops = {
402 .port_disable = ata_port_disable,
404 .tf_load = ata_tf_load,
405 .tf_read = ata_tf_read,
406 .check_status = ata_check_status,
407 .exec_command = ata_exec_command,
408 .dev_select = ata_std_dev_select,
410 .phy_reset = mv_phy_reset,
412 .qc_prep = mv_qc_prep,
413 .qc_issue = mv_qc_issue,
414 .data_xfer = ata_mmio_data_xfer,
416 .eng_timeout = mv_eng_timeout,
418 .irq_handler = mv_interrupt,
419 .irq_clear = mv_irq_clear,
421 .scr_read = mv5_scr_read,
422 .scr_write = mv5_scr_write,
424 .port_start = mv_port_start,
425 .port_stop = mv_port_stop,
426 .host_stop = mv_host_stop,
429 static const struct ata_port_operations mv6_ops = {
430 .port_disable = ata_port_disable,
432 .tf_load = ata_tf_load,
433 .tf_read = ata_tf_read,
434 .check_status = ata_check_status,
435 .exec_command = ata_exec_command,
436 .dev_select = ata_std_dev_select,
438 .phy_reset = mv_phy_reset,
440 .qc_prep = mv_qc_prep,
441 .qc_issue = mv_qc_issue,
442 .data_xfer = ata_mmio_data_xfer,
444 .eng_timeout = mv_eng_timeout,
446 .irq_handler = mv_interrupt,
447 .irq_clear = mv_irq_clear,
449 .scr_read = mv_scr_read,
450 .scr_write = mv_scr_write,
452 .port_start = mv_port_start,
453 .port_stop = mv_port_stop,
454 .host_stop = mv_host_stop,
457 static const struct ata_port_operations mv_iie_ops = {
458 .port_disable = ata_port_disable,
460 .tf_load = ata_tf_load,
461 .tf_read = ata_tf_read,
462 .check_status = ata_check_status,
463 .exec_command = ata_exec_command,
464 .dev_select = ata_std_dev_select,
466 .phy_reset = mv_phy_reset,
468 .qc_prep = mv_qc_prep_iie,
469 .qc_issue = mv_qc_issue,
470 .data_xfer = ata_mmio_data_xfer,
472 .eng_timeout = mv_eng_timeout,
474 .irq_handler = mv_interrupt,
475 .irq_clear = mv_irq_clear,
477 .scr_read = mv_scr_read,
478 .scr_write = mv_scr_write,
480 .port_start = mv_port_start,
481 .port_stop = mv_port_stop,
482 .host_stop = mv_host_stop,
485 static const struct ata_port_info mv_port_info[] = {
486 { /* chip_504x */
487 .sht = &mv_sht,
488 .flags = MV_COMMON_FLAGS,
489 .pio_mask = 0x1f, /* pio0-4 */
490 .udma_mask = 0x7f, /* udma0-6 */
491 .port_ops = &mv5_ops,
493 { /* chip_508x */
494 .sht = &mv_sht,
495 .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
496 .pio_mask = 0x1f, /* pio0-4 */
497 .udma_mask = 0x7f, /* udma0-6 */
498 .port_ops = &mv5_ops,
500 { /* chip_5080 */
501 .sht = &mv_sht,
502 .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
503 .pio_mask = 0x1f, /* pio0-4 */
504 .udma_mask = 0x7f, /* udma0-6 */
505 .port_ops = &mv5_ops,
507 { /* chip_604x */
508 .sht = &mv_sht,
509 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
510 .pio_mask = 0x1f, /* pio0-4 */
511 .udma_mask = 0x7f, /* udma0-6 */
512 .port_ops = &mv6_ops,
514 { /* chip_608x */
515 .sht = &mv_sht,
516 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
517 MV_FLAG_DUAL_HC),
518 .pio_mask = 0x1f, /* pio0-4 */
519 .udma_mask = 0x7f, /* udma0-6 */
520 .port_ops = &mv6_ops,
522 { /* chip_6042 */
523 .sht = &mv_sht,
524 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
525 .pio_mask = 0x1f, /* pio0-4 */
526 .udma_mask = 0x7f, /* udma0-6 */
527 .port_ops = &mv_iie_ops,
529 { /* chip_7042 */
530 .sht = &mv_sht,
531 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
532 .pio_mask = 0x1f, /* pio0-4 */
533 .udma_mask = 0x7f, /* udma0-6 */
534 .port_ops = &mv_iie_ops,
538 static const struct pci_device_id mv_pci_tbl[] = {
539 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
540 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
541 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
542 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
544 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
545 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
546 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
547 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
548 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
550 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
552 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
554 { } /* terminate list */
557 static struct pci_driver mv_pci_driver = {
558 .name = DRV_NAME,
559 .id_table = mv_pci_tbl,
560 .probe = mv_init_one,
561 .remove = ata_pci_remove_one,
564 static const struct mv_hw_ops mv5xxx_ops = {
565 .phy_errata = mv5_phy_errata,
566 .enable_leds = mv5_enable_leds,
567 .read_preamp = mv5_read_preamp,
568 .reset_hc = mv5_reset_hc,
569 .reset_flash = mv5_reset_flash,
570 .reset_bus = mv5_reset_bus,
573 static const struct mv_hw_ops mv6xxx_ops = {
574 .phy_errata = mv6_phy_errata,
575 .enable_leds = mv6_enable_leds,
576 .read_preamp = mv6_read_preamp,
577 .reset_hc = mv6_reset_hc,
578 .reset_flash = mv6_reset_flash,
579 .reset_bus = mv_reset_pci_bus,
583 * module options
585 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
589 * Functions
592 static inline void writelfl(unsigned long data, void __iomem *addr)
594 writel(data, addr);
595 (void) readl(addr); /* flush to avoid PCI posted write */
598 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
600 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
603 static inline unsigned int mv_hc_from_port(unsigned int port)
605 return port >> MV_PORT_HC_SHIFT;
608 static inline unsigned int mv_hardport_from_port(unsigned int port)
610 return port & MV_PORT_MASK;
613 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
614 unsigned int port)
616 return mv_hc_base(base, mv_hc_from_port(port));
619 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
621 return mv_hc_base_from_port(base, port) +
622 MV_SATAHC_ARBTR_REG_SZ +
623 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
626 static inline void __iomem *mv_ap_base(struct ata_port *ap)
628 return mv_port_base(ap->host->mmio_base, ap->port_no);
631 static inline int mv_get_hc_count(unsigned long port_flags)
633 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
636 static void mv_irq_clear(struct ata_port *ap)
641 * mv_start_dma - Enable eDMA engine
642 * @base: port base address
643 * @pp: port private data
645 * Verify the local cache of the eDMA state is accurate with a
646 * WARN_ON.
648 * LOCKING:
649 * Inherited from caller.
651 static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
653 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
654 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
655 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
657 WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS)));
661 * mv_stop_dma - Disable eDMA engine
662 * @ap: ATA channel to manipulate
664 * Verify the local cache of the eDMA state is accurate with a
665 * WARN_ON.
667 * LOCKING:
668 * Inherited from caller.
670 static void mv_stop_dma(struct ata_port *ap)
672 void __iomem *port_mmio = mv_ap_base(ap);
673 struct mv_port_priv *pp = ap->private_data;
674 u32 reg;
675 int i;
677 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
678 /* Disable EDMA if active. The disable bit auto clears.
680 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
681 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
682 } else {
683 WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
686 /* now properly wait for the eDMA to stop */
687 for (i = 1000; i > 0; i--) {
688 reg = readl(port_mmio + EDMA_CMD_OFS);
689 if (!(EDMA_EN & reg)) {
690 break;
692 udelay(100);
695 if (EDMA_EN & reg) {
696 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
697 /* FIXME: Consider doing a reset here to recover */
701 #ifdef ATA_DEBUG
702 static void mv_dump_mem(void __iomem *start, unsigned bytes)
704 int b, w;
705 for (b = 0; b < bytes; ) {
706 DPRINTK("%p: ", start + b);
707 for (w = 0; b < bytes && w < 4; w++) {
708 printk("%08x ",readl(start + b));
709 b += sizeof(u32);
711 printk("\n");
714 #endif
716 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
718 #ifdef ATA_DEBUG
719 int b, w;
720 u32 dw;
721 for (b = 0; b < bytes; ) {
722 DPRINTK("%02x: ", b);
723 for (w = 0; b < bytes && w < 4; w++) {
724 (void) pci_read_config_dword(pdev,b,&dw);
725 printk("%08x ",dw);
726 b += sizeof(u32);
728 printk("\n");
730 #endif
732 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
733 struct pci_dev *pdev)
735 #ifdef ATA_DEBUG
736 void __iomem *hc_base = mv_hc_base(mmio_base,
737 port >> MV_PORT_HC_SHIFT);
738 void __iomem *port_base;
739 int start_port, num_ports, p, start_hc, num_hcs, hc;
741 if (0 > port) {
742 start_hc = start_port = 0;
743 num_ports = 8; /* shld be benign for 4 port devs */
744 num_hcs = 2;
745 } else {
746 start_hc = port >> MV_PORT_HC_SHIFT;
747 start_port = port;
748 num_ports = num_hcs = 1;
750 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
751 num_ports > 1 ? num_ports - 1 : start_port);
753 if (NULL != pdev) {
754 DPRINTK("PCI config space regs:\n");
755 mv_dump_pci_cfg(pdev, 0x68);
757 DPRINTK("PCI regs:\n");
758 mv_dump_mem(mmio_base+0xc00, 0x3c);
759 mv_dump_mem(mmio_base+0xd00, 0x34);
760 mv_dump_mem(mmio_base+0xf00, 0x4);
761 mv_dump_mem(mmio_base+0x1d00, 0x6c);
762 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
763 hc_base = mv_hc_base(mmio_base, hc);
764 DPRINTK("HC regs (HC %i):\n", hc);
765 mv_dump_mem(hc_base, 0x1c);
767 for (p = start_port; p < start_port + num_ports; p++) {
768 port_base = mv_port_base(mmio_base, p);
769 DPRINTK("EDMA regs (port %i):\n",p);
770 mv_dump_mem(port_base, 0x54);
771 DPRINTK("SATA regs (port %i):\n",p);
772 mv_dump_mem(port_base+0x300, 0x60);
774 #endif
777 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
779 unsigned int ofs;
781 switch (sc_reg_in) {
782 case SCR_STATUS:
783 case SCR_CONTROL:
784 case SCR_ERROR:
785 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
786 break;
787 case SCR_ACTIVE:
788 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
789 break;
790 default:
791 ofs = 0xffffffffU;
792 break;
794 return ofs;
797 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
799 unsigned int ofs = mv_scr_offset(sc_reg_in);
801 if (0xffffffffU != ofs) {
802 return readl(mv_ap_base(ap) + ofs);
803 } else {
804 return (u32) ofs;
808 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
810 unsigned int ofs = mv_scr_offset(sc_reg_in);
812 if (0xffffffffU != ofs) {
813 writelfl(val, mv_ap_base(ap) + ofs);
818 * mv_host_stop - Host specific cleanup/stop routine.
819 * @host: host data structure
821 * Disable ints, cleanup host memory, call general purpose
822 * host_stop.
824 * LOCKING:
825 * Inherited from caller.
827 static void mv_host_stop(struct ata_host *host)
829 struct mv_host_priv *hpriv = host->private_data;
830 struct pci_dev *pdev = to_pci_dev(host->dev);
832 if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
833 pci_disable_msi(pdev);
834 } else {
835 pci_intx(pdev, 0);
837 kfree(hpriv);
838 ata_host_stop(host);
841 static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
843 dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
846 static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio)
848 u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
850 /* set up non-NCQ EDMA configuration */
851 cfg &= ~(1 << 9); /* disable equeue */
853 if (IS_GEN_I(hpriv)) {
854 cfg &= ~0x1f; /* clear queue depth */
855 cfg |= (1 << 8); /* enab config burst size mask */
858 else if (IS_GEN_II(hpriv)) {
859 cfg &= ~0x1f; /* clear queue depth */
860 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
861 cfg &= ~(EDMA_CFG_NCQ | EDMA_CFG_NCQ_GO_ON_ERR); /* clear NCQ */
864 else if (IS_GEN_IIE(hpriv)) {
865 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
866 cfg |= (1 << 22); /* enab 4-entry host queue cache */
867 cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */
868 cfg |= (1 << 18); /* enab early completion */
869 cfg |= (1 << 17); /* enab cut-through (dis stor&forwrd) */
870 cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */
871 cfg &= ~(EDMA_CFG_NCQ | EDMA_CFG_NCQ_GO_ON_ERR); /* clear NCQ */
874 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
878 * mv_port_start - Port specific init/start routine.
879 * @ap: ATA channel to manipulate
881 * Allocate and point to DMA memory, init port private memory,
882 * zero indices.
884 * LOCKING:
885 * Inherited from caller.
887 static int mv_port_start(struct ata_port *ap)
889 struct device *dev = ap->host->dev;
890 struct mv_host_priv *hpriv = ap->host->private_data;
891 struct mv_port_priv *pp;
892 void __iomem *port_mmio = mv_ap_base(ap);
893 void *mem;
894 dma_addr_t mem_dma;
895 int rc = -ENOMEM;
897 pp = kmalloc(sizeof(*pp), GFP_KERNEL);
898 if (!pp)
899 goto err_out;
900 memset(pp, 0, sizeof(*pp));
902 mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
903 GFP_KERNEL);
904 if (!mem)
905 goto err_out_pp;
906 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
908 rc = ata_pad_alloc(ap, dev);
909 if (rc)
910 goto err_out_priv;
912 /* First item in chunk of DMA memory:
913 * 32-slot command request table (CRQB), 32 bytes each in size
915 pp->crqb = mem;
916 pp->crqb_dma = mem_dma;
917 mem += MV_CRQB_Q_SZ;
918 mem_dma += MV_CRQB_Q_SZ;
920 /* Second item:
921 * 32-slot command response table (CRPB), 8 bytes each in size
923 pp->crpb = mem;
924 pp->crpb_dma = mem_dma;
925 mem += MV_CRPB_Q_SZ;
926 mem_dma += MV_CRPB_Q_SZ;
928 /* Third item:
929 * Table of scatter-gather descriptors (ePRD), 16 bytes each
931 pp->sg_tbl = mem;
932 pp->sg_tbl_dma = mem_dma;
934 mv_edma_cfg(hpriv, port_mmio);
936 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
937 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
938 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
940 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
941 writelfl(pp->crqb_dma & 0xffffffff,
942 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
943 else
944 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
946 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
948 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
949 writelfl(pp->crpb_dma & 0xffffffff,
950 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
951 else
952 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
954 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
955 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
957 /* Don't turn on EDMA here...do it before DMA commands only. Else
958 * we'll be unable to send non-data, PIO, etc due to restricted access
959 * to shadow regs.
961 ap->private_data = pp;
962 return 0;
964 err_out_priv:
965 mv_priv_free(pp, dev);
966 err_out_pp:
967 kfree(pp);
968 err_out:
969 return rc;
973 * mv_port_stop - Port specific cleanup/stop routine.
974 * @ap: ATA channel to manipulate
976 * Stop DMA, cleanup port memory.
978 * LOCKING:
979 * This routine uses the host lock to protect the DMA stop.
981 static void mv_port_stop(struct ata_port *ap)
983 struct device *dev = ap->host->dev;
984 struct mv_port_priv *pp = ap->private_data;
985 unsigned long flags;
987 spin_lock_irqsave(&ap->host->lock, flags);
988 mv_stop_dma(ap);
989 spin_unlock_irqrestore(&ap->host->lock, flags);
991 ap->private_data = NULL;
992 ata_pad_free(ap, dev);
993 mv_priv_free(pp, dev);
994 kfree(pp);
998 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
999 * @qc: queued command whose SG list to source from
1001 * Populate the SG list and mark the last entry.
1003 * LOCKING:
1004 * Inherited from caller.
1006 static void mv_fill_sg(struct ata_queued_cmd *qc)
1008 struct mv_port_priv *pp = qc->ap->private_data;
1009 unsigned int i = 0;
1010 struct scatterlist *sg;
1012 ata_for_each_sg(sg, qc) {
1013 dma_addr_t addr;
1014 u32 sg_len, len, offset;
1016 addr = sg_dma_address(sg);
1017 sg_len = sg_dma_len(sg);
1019 while (sg_len) {
1020 offset = addr & MV_DMA_BOUNDARY;
1021 len = sg_len;
1022 if ((offset + sg_len) > 0x10000)
1023 len = 0x10000 - offset;
1025 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
1026 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
1027 pp->sg_tbl[i].flags_size = cpu_to_le32(len & 0xffff);
1029 sg_len -= len;
1030 addr += len;
1032 if (!sg_len && ata_sg_is_last(sg, qc))
1033 pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1035 i++;
1040 static inline unsigned mv_inc_q_index(unsigned index)
1042 return (index + 1) & MV_MAX_Q_DEPTH_MASK;
1045 static inline void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1047 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1048 (last ? CRQB_CMD_LAST : 0);
1049 *cmdw = cpu_to_le16(tmp);
1053 * mv_qc_prep - Host specific command preparation.
1054 * @qc: queued command to prepare
1056 * This routine simply redirects to the general purpose routine
1057 * if command is not DMA. Else, it handles prep of the CRQB
1058 * (command request block), does some sanity checking, and calls
1059 * the SG load routine.
1061 * LOCKING:
1062 * Inherited from caller.
1064 static void mv_qc_prep(struct ata_queued_cmd *qc)
1066 struct ata_port *ap = qc->ap;
1067 struct mv_port_priv *pp = ap->private_data;
1068 __le16 *cw;
1069 struct ata_taskfile *tf;
1070 u16 flags = 0;
1071 unsigned in_index;
1073 if (ATA_PROT_DMA != qc->tf.protocol)
1074 return;
1076 /* Fill in command request block
1078 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1079 flags |= CRQB_FLAG_READ;
1080 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1081 flags |= qc->tag << CRQB_TAG_SHIFT;
1083 /* get current queue index from hardware */
1084 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1085 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1087 pp->crqb[in_index].sg_addr =
1088 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1089 pp->crqb[in_index].sg_addr_hi =
1090 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1091 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1093 cw = &pp->crqb[in_index].ata_cmd[0];
1094 tf = &qc->tf;
1096 /* Sadly, the CRQB cannot accomodate all registers--there are
1097 * only 11 bytes...so we must pick and choose required
1098 * registers based on the command. So, we drop feature and
1099 * hob_feature for [RW] DMA commands, but they are needed for
1100 * NCQ. NCQ will drop hob_nsect.
1102 switch (tf->command) {
1103 case ATA_CMD_READ:
1104 case ATA_CMD_READ_EXT:
1105 case ATA_CMD_WRITE:
1106 case ATA_CMD_WRITE_EXT:
1107 case ATA_CMD_WRITE_FUA_EXT:
1108 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1109 break;
1110 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
1111 case ATA_CMD_FPDMA_READ:
1112 case ATA_CMD_FPDMA_WRITE:
1113 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1114 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1115 break;
1116 #endif /* FIXME: remove this line when NCQ added */
1117 default:
1118 /* The only other commands EDMA supports in non-queued and
1119 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1120 * of which are defined/used by Linux. If we get here, this
1121 * driver needs work.
1123 * FIXME: modify libata to give qc_prep a return value and
1124 * return error here.
1126 BUG_ON(tf->command);
1127 break;
1129 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1130 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1131 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1132 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1133 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1134 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1135 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1136 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1137 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1139 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1140 return;
1141 mv_fill_sg(qc);
1145 * mv_qc_prep_iie - Host specific command preparation.
1146 * @qc: queued command to prepare
1148 * This routine simply redirects to the general purpose routine
1149 * if command is not DMA. Else, it handles prep of the CRQB
1150 * (command request block), does some sanity checking, and calls
1151 * the SG load routine.
1153 * LOCKING:
1154 * Inherited from caller.
1156 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1158 struct ata_port *ap = qc->ap;
1159 struct mv_port_priv *pp = ap->private_data;
1160 struct mv_crqb_iie *crqb;
1161 struct ata_taskfile *tf;
1162 unsigned in_index;
1163 u32 flags = 0;
1165 if (ATA_PROT_DMA != qc->tf.protocol)
1166 return;
1168 /* Fill in Gen IIE command request block
1170 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1171 flags |= CRQB_FLAG_READ;
1173 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1174 flags |= qc->tag << CRQB_TAG_SHIFT;
1176 /* get current queue index from hardware */
1177 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1178 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1180 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1181 crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1182 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1183 crqb->flags = cpu_to_le32(flags);
1185 tf = &qc->tf;
1186 crqb->ata_cmd[0] = cpu_to_le32(
1187 (tf->command << 16) |
1188 (tf->feature << 24)
1190 crqb->ata_cmd[1] = cpu_to_le32(
1191 (tf->lbal << 0) |
1192 (tf->lbam << 8) |
1193 (tf->lbah << 16) |
1194 (tf->device << 24)
1196 crqb->ata_cmd[2] = cpu_to_le32(
1197 (tf->hob_lbal << 0) |
1198 (tf->hob_lbam << 8) |
1199 (tf->hob_lbah << 16) |
1200 (tf->hob_feature << 24)
1202 crqb->ata_cmd[3] = cpu_to_le32(
1203 (tf->nsect << 0) |
1204 (tf->hob_nsect << 8)
1207 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1208 return;
1209 mv_fill_sg(qc);
1213 * mv_qc_issue - Initiate a command to the host
1214 * @qc: queued command to start
1216 * This routine simply redirects to the general purpose routine
1217 * if command is not DMA. Else, it sanity checks our local
1218 * caches of the request producer/consumer indices then enables
1219 * DMA and bumps the request producer index.
1221 * LOCKING:
1222 * Inherited from caller.
1224 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1226 void __iomem *port_mmio = mv_ap_base(qc->ap);
1227 struct mv_port_priv *pp = qc->ap->private_data;
1228 unsigned in_index;
1229 u32 in_ptr;
1231 if (ATA_PROT_DMA != qc->tf.protocol) {
1232 /* We're about to send a non-EDMA capable command to the
1233 * port. Turn off EDMA so there won't be problems accessing
1234 * shadow block, etc registers.
1236 mv_stop_dma(qc->ap);
1237 return ata_qc_issue_prot(qc);
1240 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1241 in_index = (in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1243 /* until we do queuing, the queue should be empty at this point */
1244 WARN_ON(in_index != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1245 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1247 in_index = mv_inc_q_index(in_index); /* now incr producer index */
1249 mv_start_dma(port_mmio, pp);
1251 /* and write the request in pointer to kick the EDMA to life */
1252 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
1253 in_ptr |= in_index << EDMA_REQ_Q_PTR_SHIFT;
1254 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1256 return 0;
1260 * mv_get_crpb_status - get status from most recently completed cmd
1261 * @ap: ATA channel to manipulate
1263 * This routine is for use when the port is in DMA mode, when it
1264 * will be using the CRPB (command response block) method of
1265 * returning command completion information. We check indices
1266 * are good, grab status, and bump the response consumer index to
1267 * prove that we're up to date.
1269 * LOCKING:
1270 * Inherited from caller.
1272 static u8 mv_get_crpb_status(struct ata_port *ap)
1274 void __iomem *port_mmio = mv_ap_base(ap);
1275 struct mv_port_priv *pp = ap->private_data;
1276 unsigned out_index;
1277 u32 out_ptr;
1278 u8 ata_status;
1280 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1281 out_index = (out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1283 ata_status = le16_to_cpu(pp->crpb[out_index].flags)
1284 >> CRPB_FLAG_STATUS_SHIFT;
1286 /* increment our consumer index... */
1287 out_index = mv_inc_q_index(out_index);
1289 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1290 WARN_ON(out_index != ((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
1291 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1293 /* write out our inc'd consumer index so EDMA knows we're caught up */
1294 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
1295 out_ptr |= out_index << EDMA_RSP_Q_PTR_SHIFT;
1296 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1298 /* Return ATA status register for completed CRPB */
1299 return ata_status;
1303 * mv_err_intr - Handle error interrupts on the port
1304 * @ap: ATA channel to manipulate
1305 * @reset_allowed: bool: 0 == don't trigger from reset here
1307 * In most cases, just clear the interrupt and move on. However,
1308 * some cases require an eDMA reset, which is done right before
1309 * the COMRESET in mv_phy_reset(). The SERR case requires a
1310 * clear of pending errors in the SATA SERROR register. Finally,
1311 * if the port disabled DMA, update our cached copy to match.
1313 * LOCKING:
1314 * Inherited from caller.
1316 static void mv_err_intr(struct ata_port *ap, int reset_allowed)
1318 void __iomem *port_mmio = mv_ap_base(ap);
1319 u32 edma_err_cause, serr = 0;
1321 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1323 if (EDMA_ERR_SERR & edma_err_cause) {
1324 sata_scr_read(ap, SCR_ERROR, &serr);
1325 sata_scr_write_flush(ap, SCR_ERROR, serr);
1327 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
1328 struct mv_port_priv *pp = ap->private_data;
1329 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1331 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1332 "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1334 /* Clear EDMA now that SERR cleanup done */
1335 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1337 /* check for fatal here and recover if needed */
1338 if (reset_allowed && (EDMA_ERR_FATAL & edma_err_cause))
1339 mv_stop_and_reset(ap);
1343 * mv_host_intr - Handle all interrupts on the given host controller
1344 * @host: host specific structure
1345 * @relevant: port error bits relevant to this host controller
1346 * @hc: which host controller we're to look at
1348 * Read then write clear the HC interrupt status then walk each
1349 * port connected to the HC and see if it needs servicing. Port
1350 * success ints are reported in the HC interrupt status reg, the
1351 * port error ints are reported in the higher level main
1352 * interrupt status register and thus are passed in via the
1353 * 'relevant' argument.
1355 * LOCKING:
1356 * Inherited from caller.
1358 static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
1360 void __iomem *mmio = host->mmio_base;
1361 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1362 struct ata_queued_cmd *qc;
1363 u32 hc_irq_cause;
1364 int shift, port, port0, hard_port, handled;
1365 unsigned int err_mask;
1367 if (hc == 0) {
1368 port0 = 0;
1369 } else {
1370 port0 = MV_PORTS_PER_HC;
1373 /* we'll need the HC success int register in most cases */
1374 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1375 if (hc_irq_cause) {
1376 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1379 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1380 hc,relevant,hc_irq_cause);
1382 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1383 u8 ata_status = 0;
1384 struct ata_port *ap = host->ports[port];
1385 struct mv_port_priv *pp = ap->private_data;
1387 hard_port = mv_hardport_from_port(port); /* range 0..3 */
1388 handled = 0; /* ensure ata_status is set if handled++ */
1390 /* Note that DEV_IRQ might happen spuriously during EDMA,
1391 * and should be ignored in such cases.
1392 * The cause of this is still under investigation.
1394 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1395 /* EDMA: check for response queue interrupt */
1396 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
1397 ata_status = mv_get_crpb_status(ap);
1398 handled = 1;
1400 } else {
1401 /* PIO: check for device (drive) interrupt */
1402 if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1403 ata_status = readb((void __iomem *)
1404 ap->ioaddr.status_addr);
1405 handled = 1;
1406 /* ignore spurious intr if drive still BUSY */
1407 if (ata_status & ATA_BUSY) {
1408 ata_status = 0;
1409 handled = 0;
1414 if (ap && (ap->flags & ATA_FLAG_DISABLED))
1415 continue;
1417 err_mask = ac_err_mask(ata_status);
1419 shift = port << 1; /* (port * 2) */
1420 if (port >= MV_PORTS_PER_HC) {
1421 shift++; /* skip bit 8 in the HC Main IRQ reg */
1423 if ((PORT0_ERR << shift) & relevant) {
1424 mv_err_intr(ap, 1);
1425 err_mask |= AC_ERR_OTHER;
1426 handled = 1;
1429 if (handled) {
1430 qc = ata_qc_from_tag(ap, ap->active_tag);
1431 if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) {
1432 VPRINTK("port %u IRQ found for qc, "
1433 "ata_status 0x%x\n", port,ata_status);
1434 /* mark qc status appropriately */
1435 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) {
1436 qc->err_mask |= err_mask;
1437 ata_qc_complete(qc);
1442 VPRINTK("EXIT\n");
1446 * mv_interrupt -
1447 * @irq: unused
1448 * @dev_instance: private data; in this case the host structure
1449 * @regs: unused
1451 * Read the read only register to determine if any host
1452 * controllers have pending interrupts. If so, call lower level
1453 * routine to handle. Also check for PCI errors which are only
1454 * reported here.
1456 * LOCKING:
1457 * This routine holds the host lock while processing pending
1458 * interrupts.
1460 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
1462 struct ata_host *host = dev_instance;
1463 unsigned int hc, handled = 0, n_hcs;
1464 void __iomem *mmio = host->mmio_base;
1465 struct mv_host_priv *hpriv;
1466 u32 irq_stat;
1468 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1470 /* check the cases where we either have nothing pending or have read
1471 * a bogus register value which can indicate HW removal or PCI fault
1473 if (!irq_stat || (0xffffffffU == irq_stat)) {
1474 return IRQ_NONE;
1477 n_hcs = mv_get_hc_count(host->ports[0]->flags);
1478 spin_lock(&host->lock);
1480 for (hc = 0; hc < n_hcs; hc++) {
1481 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1482 if (relevant) {
1483 mv_host_intr(host, relevant, hc);
1484 handled++;
1488 hpriv = host->private_data;
1489 if (IS_60XX(hpriv)) {
1490 /* deal with the interrupt coalescing bits */
1491 if (irq_stat & (TRAN_LO_DONE | TRAN_HI_DONE | PORTS_0_7_COAL_DONE)) {
1492 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_LO);
1493 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_HI);
1494 writelfl(0, mmio + MV_IRQ_COAL_CAUSE);
1498 if (PCI_ERR & irq_stat) {
1499 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
1500 readl(mmio + PCI_IRQ_CAUSE_OFS));
1502 DPRINTK("All regs @ PCI error\n");
1503 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
1505 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1506 handled++;
1508 spin_unlock(&host->lock);
1510 return IRQ_RETVAL(handled);
1513 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
1515 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
1516 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
1518 return hc_mmio + ofs;
1521 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1523 unsigned int ofs;
1525 switch (sc_reg_in) {
1526 case SCR_STATUS:
1527 case SCR_ERROR:
1528 case SCR_CONTROL:
1529 ofs = sc_reg_in * sizeof(u32);
1530 break;
1531 default:
1532 ofs = 0xffffffffU;
1533 break;
1535 return ofs;
1538 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
1540 void __iomem *mmio = mv5_phy_base(ap->host->mmio_base, ap->port_no);
1541 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1543 if (ofs != 0xffffffffU)
1544 return readl(mmio + ofs);
1545 else
1546 return (u32) ofs;
1549 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1551 void __iomem *mmio = mv5_phy_base(ap->host->mmio_base, ap->port_no);
1552 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1554 if (ofs != 0xffffffffU)
1555 writelfl(val, mmio + ofs);
1558 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
1560 u8 rev_id;
1561 int early_5080;
1563 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1565 early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
1567 if (!early_5080) {
1568 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1569 tmp |= (1 << 0);
1570 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1573 mv_reset_pci_bus(pdev, mmio);
1576 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1578 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1581 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1582 void __iomem *mmio)
1584 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1585 u32 tmp;
1587 tmp = readl(phy_mmio + MV5_PHY_MODE);
1589 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1590 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1593 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1595 u32 tmp;
1597 writel(0, mmio + MV_GPIO_PORT_CTL);
1599 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1601 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1602 tmp |= ~(1 << 0);
1603 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1606 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1607 unsigned int port)
1609 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1610 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1611 u32 tmp;
1612 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1614 if (fix_apm_sq) {
1615 tmp = readl(phy_mmio + MV5_LT_MODE);
1616 tmp |= (1 << 19);
1617 writel(tmp, phy_mmio + MV5_LT_MODE);
1619 tmp = readl(phy_mmio + MV5_PHY_CTL);
1620 tmp &= ~0x3;
1621 tmp |= 0x1;
1622 writel(tmp, phy_mmio + MV5_PHY_CTL);
1625 tmp = readl(phy_mmio + MV5_PHY_MODE);
1626 tmp &= ~mask;
1627 tmp |= hpriv->signal[port].pre;
1628 tmp |= hpriv->signal[port].amps;
1629 writel(tmp, phy_mmio + MV5_PHY_MODE);
1633 #undef ZERO
1634 #define ZERO(reg) writel(0, port_mmio + (reg))
1635 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1636 unsigned int port)
1638 void __iomem *port_mmio = mv_port_base(mmio, port);
1640 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
1642 mv_channel_reset(hpriv, mmio, port);
1644 ZERO(0x028); /* command */
1645 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1646 ZERO(0x004); /* timer */
1647 ZERO(0x008); /* irq err cause */
1648 ZERO(0x00c); /* irq err mask */
1649 ZERO(0x010); /* rq bah */
1650 ZERO(0x014); /* rq inp */
1651 ZERO(0x018); /* rq outp */
1652 ZERO(0x01c); /* respq bah */
1653 ZERO(0x024); /* respq outp */
1654 ZERO(0x020); /* respq inp */
1655 ZERO(0x02c); /* test control */
1656 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1658 #undef ZERO
1660 #define ZERO(reg) writel(0, hc_mmio + (reg))
1661 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1662 unsigned int hc)
1664 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1665 u32 tmp;
1667 ZERO(0x00c);
1668 ZERO(0x010);
1669 ZERO(0x014);
1670 ZERO(0x018);
1672 tmp = readl(hc_mmio + 0x20);
1673 tmp &= 0x1c1c1c1c;
1674 tmp |= 0x03030303;
1675 writel(tmp, hc_mmio + 0x20);
1677 #undef ZERO
1679 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1680 unsigned int n_hc)
1682 unsigned int hc, port;
1684 for (hc = 0; hc < n_hc; hc++) {
1685 for (port = 0; port < MV_PORTS_PER_HC; port++)
1686 mv5_reset_hc_port(hpriv, mmio,
1687 (hc * MV_PORTS_PER_HC) + port);
1689 mv5_reset_one_hc(hpriv, mmio, hc);
1692 return 0;
1695 #undef ZERO
1696 #define ZERO(reg) writel(0, mmio + (reg))
1697 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
1699 u32 tmp;
1701 tmp = readl(mmio + MV_PCI_MODE);
1702 tmp &= 0xff00ffff;
1703 writel(tmp, mmio + MV_PCI_MODE);
1705 ZERO(MV_PCI_DISC_TIMER);
1706 ZERO(MV_PCI_MSI_TRIGGER);
1707 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1708 ZERO(HC_MAIN_IRQ_MASK_OFS);
1709 ZERO(MV_PCI_SERR_MASK);
1710 ZERO(PCI_IRQ_CAUSE_OFS);
1711 ZERO(PCI_IRQ_MASK_OFS);
1712 ZERO(MV_PCI_ERR_LOW_ADDRESS);
1713 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1714 ZERO(MV_PCI_ERR_ATTRIBUTE);
1715 ZERO(MV_PCI_ERR_COMMAND);
1717 #undef ZERO
1719 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1721 u32 tmp;
1723 mv5_reset_flash(hpriv, mmio);
1725 tmp = readl(mmio + MV_GPIO_PORT_CTL);
1726 tmp &= 0x3;
1727 tmp |= (1 << 5) | (1 << 6);
1728 writel(tmp, mmio + MV_GPIO_PORT_CTL);
1732 * mv6_reset_hc - Perform the 6xxx global soft reset
1733 * @mmio: base address of the HBA
1735 * This routine only applies to 6xxx parts.
1737 * LOCKING:
1738 * Inherited from caller.
1740 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1741 unsigned int n_hc)
1743 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
1744 int i, rc = 0;
1745 u32 t;
1747 /* Following procedure defined in PCI "main command and status
1748 * register" table.
1750 t = readl(reg);
1751 writel(t | STOP_PCI_MASTER, reg);
1753 for (i = 0; i < 1000; i++) {
1754 udelay(1);
1755 t = readl(reg);
1756 if (PCI_MASTER_EMPTY & t) {
1757 break;
1760 if (!(PCI_MASTER_EMPTY & t)) {
1761 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
1762 rc = 1;
1763 goto done;
1766 /* set reset */
1767 i = 5;
1768 do {
1769 writel(t | GLOB_SFT_RST, reg);
1770 t = readl(reg);
1771 udelay(1);
1772 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
1774 if (!(GLOB_SFT_RST & t)) {
1775 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
1776 rc = 1;
1777 goto done;
1780 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1781 i = 5;
1782 do {
1783 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
1784 t = readl(reg);
1785 udelay(1);
1786 } while ((GLOB_SFT_RST & t) && (i-- > 0));
1788 if (GLOB_SFT_RST & t) {
1789 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
1790 rc = 1;
1792 done:
1793 return rc;
1796 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
1797 void __iomem *mmio)
1799 void __iomem *port_mmio;
1800 u32 tmp;
1802 tmp = readl(mmio + MV_RESET_CFG);
1803 if ((tmp & (1 << 0)) == 0) {
1804 hpriv->signal[idx].amps = 0x7 << 8;
1805 hpriv->signal[idx].pre = 0x1 << 5;
1806 return;
1809 port_mmio = mv_port_base(mmio, idx);
1810 tmp = readl(port_mmio + PHY_MODE2);
1812 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
1813 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
1816 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1818 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
1821 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1822 unsigned int port)
1824 void __iomem *port_mmio = mv_port_base(mmio, port);
1826 u32 hp_flags = hpriv->hp_flags;
1827 int fix_phy_mode2 =
1828 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1829 int fix_phy_mode4 =
1830 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1831 u32 m2, tmp;
1833 if (fix_phy_mode2) {
1834 m2 = readl(port_mmio + PHY_MODE2);
1835 m2 &= ~(1 << 16);
1836 m2 |= (1 << 31);
1837 writel(m2, port_mmio + PHY_MODE2);
1839 udelay(200);
1841 m2 = readl(port_mmio + PHY_MODE2);
1842 m2 &= ~((1 << 16) | (1 << 31));
1843 writel(m2, port_mmio + PHY_MODE2);
1845 udelay(200);
1848 /* who knows what this magic does */
1849 tmp = readl(port_mmio + PHY_MODE3);
1850 tmp &= ~0x7F800000;
1851 tmp |= 0x2A800000;
1852 writel(tmp, port_mmio + PHY_MODE3);
1854 if (fix_phy_mode4) {
1855 u32 m4;
1857 m4 = readl(port_mmio + PHY_MODE4);
1859 if (hp_flags & MV_HP_ERRATA_60X1B2)
1860 tmp = readl(port_mmio + 0x310);
1862 m4 = (m4 & ~(1 << 1)) | (1 << 0);
1864 writel(m4, port_mmio + PHY_MODE4);
1866 if (hp_flags & MV_HP_ERRATA_60X1B2)
1867 writel(tmp, port_mmio + 0x310);
1870 /* Revert values of pre-emphasis and signal amps to the saved ones */
1871 m2 = readl(port_mmio + PHY_MODE2);
1873 m2 &= ~MV_M2_PREAMP_MASK;
1874 m2 |= hpriv->signal[port].amps;
1875 m2 |= hpriv->signal[port].pre;
1876 m2 &= ~(1 << 16);
1878 /* according to mvSata 3.6.1, some IIE values are fixed */
1879 if (IS_GEN_IIE(hpriv)) {
1880 m2 &= ~0xC30FF01F;
1881 m2 |= 0x0000900F;
1884 writel(m2, port_mmio + PHY_MODE2);
1887 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
1888 unsigned int port_no)
1890 void __iomem *port_mmio = mv_port_base(mmio, port_no);
1892 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1894 if (IS_60XX(hpriv)) {
1895 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
1896 ifctl |= (1 << 7); /* enable gen2i speed */
1897 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
1898 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
1901 udelay(25); /* allow reset propagation */
1903 /* Spec never mentions clearing the bit. Marvell's driver does
1904 * clear the bit, however.
1906 writelfl(0, port_mmio + EDMA_CMD_OFS);
1908 hpriv->ops->phy_errata(hpriv, mmio, port_no);
1910 if (IS_50XX(hpriv))
1911 mdelay(1);
1914 static void mv_stop_and_reset(struct ata_port *ap)
1916 struct mv_host_priv *hpriv = ap->host->private_data;
1917 void __iomem *mmio = ap->host->mmio_base;
1919 mv_stop_dma(ap);
1921 mv_channel_reset(hpriv, mmio, ap->port_no);
1923 __mv_phy_reset(ap, 0);
1926 static inline void __msleep(unsigned int msec, int can_sleep)
1928 if (can_sleep)
1929 msleep(msec);
1930 else
1931 mdelay(msec);
1935 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1936 * @ap: ATA channel to manipulate
1938 * Part of this is taken from __sata_phy_reset and modified to
1939 * not sleep since this routine gets called from interrupt level.
1941 * LOCKING:
1942 * Inherited from caller. This is coded to safe to call at
1943 * interrupt level, i.e. it does not sleep.
1945 static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
1947 struct mv_port_priv *pp = ap->private_data;
1948 struct mv_host_priv *hpriv = ap->host->private_data;
1949 void __iomem *port_mmio = mv_ap_base(ap);
1950 struct ata_taskfile tf;
1951 struct ata_device *dev = &ap->device[0];
1952 unsigned long timeout;
1953 int retry = 5;
1954 u32 sstatus;
1956 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
1958 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1959 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1960 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1962 /* Issue COMRESET via SControl */
1963 comreset_retry:
1964 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1965 __msleep(1, can_sleep);
1967 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1968 __msleep(20, can_sleep);
1970 timeout = jiffies + msecs_to_jiffies(200);
1971 do {
1972 sata_scr_read(ap, SCR_STATUS, &sstatus);
1973 if (((sstatus & 0x3) == 3) || ((sstatus & 0x3) == 0))
1974 break;
1976 __msleep(1, can_sleep);
1977 } while (time_before(jiffies, timeout));
1979 /* work around errata */
1980 if (IS_60XX(hpriv) &&
1981 (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
1982 (retry-- > 0))
1983 goto comreset_retry;
1985 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1986 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1987 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1989 if (ata_port_online(ap)) {
1990 ata_port_probe(ap);
1991 } else {
1992 sata_scr_read(ap, SCR_STATUS, &sstatus);
1993 ata_port_printk(ap, KERN_INFO,
1994 "no device found (phy stat %08x)\n", sstatus);
1995 ata_port_disable(ap);
1996 return;
1998 ap->cbl = ATA_CBL_SATA;
2000 /* even after SStatus reflects that device is ready,
2001 * it seems to take a while for link to be fully
2002 * established (and thus Status no longer 0x80/0x7F),
2003 * so we poll a bit for that, here.
2005 retry = 20;
2006 while (1) {
2007 u8 drv_stat = ata_check_status(ap);
2008 if ((drv_stat != 0x80) && (drv_stat != 0x7f))
2009 break;
2010 __msleep(500, can_sleep);
2011 if (retry-- <= 0)
2012 break;
2015 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
2016 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
2017 tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
2018 tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
2020 dev->class = ata_dev_classify(&tf);
2021 if (!ata_dev_enabled(dev)) {
2022 VPRINTK("Port disabled post-sig: No device present.\n");
2023 ata_port_disable(ap);
2026 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2028 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2030 VPRINTK("EXIT\n");
2033 static void mv_phy_reset(struct ata_port *ap)
2035 __mv_phy_reset(ap, 1);
2039 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
2040 * @ap: ATA channel to manipulate
2042 * Intent is to clear all pending error conditions, reset the
2043 * chip/bus, fail the command, and move on.
2045 * LOCKING:
2046 * This routine holds the host lock while failing the command.
2048 static void mv_eng_timeout(struct ata_port *ap)
2050 struct ata_queued_cmd *qc;
2051 unsigned long flags;
2053 ata_port_printk(ap, KERN_ERR, "Entering mv_eng_timeout\n");
2054 DPRINTK("All regs @ start of eng_timeout\n");
2055 mv_dump_all_regs(ap->host->mmio_base, ap->port_no,
2056 to_pci_dev(ap->host->dev));
2058 qc = ata_qc_from_tag(ap, ap->active_tag);
2059 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
2060 ap->host->mmio_base, ap, qc, qc->scsicmd, &qc->scsicmd->cmnd);
2062 spin_lock_irqsave(&ap->host->lock, flags);
2063 mv_err_intr(ap, 0);
2064 mv_stop_and_reset(ap);
2065 spin_unlock_irqrestore(&ap->host->lock, flags);
2067 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
2068 if (qc->flags & ATA_QCFLAG_ACTIVE) {
2069 qc->err_mask |= AC_ERR_TIMEOUT;
2070 ata_eh_qc_complete(qc);
2075 * mv_port_init - Perform some early initialization on a single port.
2076 * @port: libata data structure storing shadow register addresses
2077 * @port_mmio: base address of the port
2079 * Initialize shadow register mmio addresses, clear outstanding
2080 * interrupts on the port, and unmask interrupts for the future
2081 * start of the port.
2083 * LOCKING:
2084 * Inherited from caller.
2086 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2088 unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
2089 unsigned serr_ofs;
2091 /* PIO related setup
2093 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2094 port->error_addr =
2095 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2096 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2097 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2098 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2099 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2100 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2101 port->status_addr =
2102 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2103 /* special case: control/altstatus doesn't have ATA_REG_ address */
2104 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2106 /* unused: */
2107 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
2109 /* Clear any currently outstanding port interrupt conditions */
2110 serr_ofs = mv_scr_offset(SCR_ERROR);
2111 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2112 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2114 /* unmask all EDMA error interrupts */
2115 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2117 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2118 readl(port_mmio + EDMA_CFG_OFS),
2119 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2120 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2123 static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
2124 unsigned int board_idx)
2126 u8 rev_id;
2127 u32 hp_flags = hpriv->hp_flags;
2129 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2131 switch(board_idx) {
2132 case chip_5080:
2133 hpriv->ops = &mv5xxx_ops;
2134 hp_flags |= MV_HP_50XX;
2136 switch (rev_id) {
2137 case 0x1:
2138 hp_flags |= MV_HP_ERRATA_50XXB0;
2139 break;
2140 case 0x3:
2141 hp_flags |= MV_HP_ERRATA_50XXB2;
2142 break;
2143 default:
2144 dev_printk(KERN_WARNING, &pdev->dev,
2145 "Applying 50XXB2 workarounds to unknown rev\n");
2146 hp_flags |= MV_HP_ERRATA_50XXB2;
2147 break;
2149 break;
2151 case chip_504x:
2152 case chip_508x:
2153 hpriv->ops = &mv5xxx_ops;
2154 hp_flags |= MV_HP_50XX;
2156 switch (rev_id) {
2157 case 0x0:
2158 hp_flags |= MV_HP_ERRATA_50XXB0;
2159 break;
2160 case 0x3:
2161 hp_flags |= MV_HP_ERRATA_50XXB2;
2162 break;
2163 default:
2164 dev_printk(KERN_WARNING, &pdev->dev,
2165 "Applying B2 workarounds to unknown rev\n");
2166 hp_flags |= MV_HP_ERRATA_50XXB2;
2167 break;
2169 break;
2171 case chip_604x:
2172 case chip_608x:
2173 hpriv->ops = &mv6xxx_ops;
2175 switch (rev_id) {
2176 case 0x7:
2177 hp_flags |= MV_HP_ERRATA_60X1B2;
2178 break;
2179 case 0x9:
2180 hp_flags |= MV_HP_ERRATA_60X1C0;
2181 break;
2182 default:
2183 dev_printk(KERN_WARNING, &pdev->dev,
2184 "Applying B2 workarounds to unknown rev\n");
2185 hp_flags |= MV_HP_ERRATA_60X1B2;
2186 break;
2188 break;
2190 case chip_7042:
2191 case chip_6042:
2192 hpriv->ops = &mv6xxx_ops;
2194 hp_flags |= MV_HP_GEN_IIE;
2196 switch (rev_id) {
2197 case 0x0:
2198 hp_flags |= MV_HP_ERRATA_XX42A0;
2199 break;
2200 case 0x1:
2201 hp_flags |= MV_HP_ERRATA_60X1C0;
2202 break;
2203 default:
2204 dev_printk(KERN_WARNING, &pdev->dev,
2205 "Applying 60X1C0 workarounds to unknown rev\n");
2206 hp_flags |= MV_HP_ERRATA_60X1C0;
2207 break;
2209 break;
2211 default:
2212 printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
2213 return 1;
2216 hpriv->hp_flags = hp_flags;
2218 return 0;
2222 * mv_init_host - Perform some early initialization of the host.
2223 * @pdev: host PCI device
2224 * @probe_ent: early data struct representing the host
2226 * If possible, do an early global reset of the host. Then do
2227 * our port init and clear/unmask all/relevant host interrupts.
2229 * LOCKING:
2230 * Inherited from caller.
2232 static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
2233 unsigned int board_idx)
2235 int rc = 0, n_hc, port, hc;
2236 void __iomem *mmio = probe_ent->mmio_base;
2237 struct mv_host_priv *hpriv = probe_ent->private_data;
2239 /* global interrupt mask */
2240 writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
2242 rc = mv_chip_id(pdev, hpriv, board_idx);
2243 if (rc)
2244 goto done;
2246 n_hc = mv_get_hc_count(probe_ent->port_flags);
2247 probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
2249 for (port = 0; port < probe_ent->n_ports; port++)
2250 hpriv->ops->read_preamp(hpriv, port, mmio);
2252 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2253 if (rc)
2254 goto done;
2256 hpriv->ops->reset_flash(hpriv, mmio);
2257 hpriv->ops->reset_bus(pdev, mmio);
2258 hpriv->ops->enable_leds(hpriv, mmio);
2260 for (port = 0; port < probe_ent->n_ports; port++) {
2261 if (IS_60XX(hpriv)) {
2262 void __iomem *port_mmio = mv_port_base(mmio, port);
2264 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2265 ifctl |= (1 << 7); /* enable gen2i speed */
2266 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
2267 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2270 hpriv->ops->phy_errata(hpriv, mmio, port);
2273 for (port = 0; port < probe_ent->n_ports; port++) {
2274 void __iomem *port_mmio = mv_port_base(mmio, port);
2275 mv_port_init(&probe_ent->port[port], port_mmio);
2278 for (hc = 0; hc < n_hc; hc++) {
2279 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2281 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2282 "(before clear)=0x%08x\n", hc,
2283 readl(hc_mmio + HC_CFG_OFS),
2284 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2286 /* Clear any currently outstanding hc interrupt conditions */
2287 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2290 /* Clear any currently outstanding host interrupt conditions */
2291 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
2293 /* and unmask interrupt generation for host regs */
2294 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
2296 if (IS_50XX(hpriv))
2297 writelfl(~HC_MAIN_MASKED_IRQS_5, mmio + HC_MAIN_IRQ_MASK_OFS);
2298 else
2299 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2301 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2302 "PCI int cause/mask=0x%08x/0x%08x\n",
2303 readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
2304 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
2305 readl(mmio + PCI_IRQ_CAUSE_OFS),
2306 readl(mmio + PCI_IRQ_MASK_OFS));
2308 done:
2309 return rc;
2313 * mv_print_info - Dump key info to kernel log for perusal.
2314 * @probe_ent: early data struct representing the host
2316 * FIXME: complete this.
2318 * LOCKING:
2319 * Inherited from caller.
2321 static void mv_print_info(struct ata_probe_ent *probe_ent)
2323 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
2324 struct mv_host_priv *hpriv = probe_ent->private_data;
2325 u8 rev_id, scc;
2326 const char *scc_s;
2328 /* Use this to determine the HW stepping of the chip so we know
2329 * what errata to workaround
2331 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2333 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2334 if (scc == 0)
2335 scc_s = "SCSI";
2336 else if (scc == 0x01)
2337 scc_s = "RAID";
2338 else
2339 scc_s = "unknown";
2341 dev_printk(KERN_INFO, &pdev->dev,
2342 "%u slots %u ports %s mode IRQ via %s\n",
2343 (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
2344 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2348 * mv_init_one - handle a positive probe of a Marvell host
2349 * @pdev: PCI device found
2350 * @ent: PCI device ID entry for the matched host
2352 * LOCKING:
2353 * Inherited from caller.
2355 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2357 static int printed_version = 0;
2358 struct ata_probe_ent *probe_ent = NULL;
2359 struct mv_host_priv *hpriv;
2360 unsigned int board_idx = (unsigned int)ent->driver_data;
2361 void __iomem *mmio_base;
2362 int pci_dev_busy = 0, rc;
2364 if (!printed_version++)
2365 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2367 rc = pci_enable_device(pdev);
2368 if (rc) {
2369 return rc;
2371 pci_set_master(pdev);
2373 rc = pci_request_regions(pdev, DRV_NAME);
2374 if (rc) {
2375 pci_dev_busy = 1;
2376 goto err_out;
2379 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
2380 if (probe_ent == NULL) {
2381 rc = -ENOMEM;
2382 goto err_out_regions;
2385 memset(probe_ent, 0, sizeof(*probe_ent));
2386 probe_ent->dev = pci_dev_to_dev(pdev);
2387 INIT_LIST_HEAD(&probe_ent->node);
2389 mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
2390 if (mmio_base == NULL) {
2391 rc = -ENOMEM;
2392 goto err_out_free_ent;
2395 hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
2396 if (!hpriv) {
2397 rc = -ENOMEM;
2398 goto err_out_iounmap;
2400 memset(hpriv, 0, sizeof(*hpriv));
2402 probe_ent->sht = mv_port_info[board_idx].sht;
2403 probe_ent->port_flags = mv_port_info[board_idx].flags;
2404 probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
2405 probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
2406 probe_ent->port_ops = mv_port_info[board_idx].port_ops;
2408 probe_ent->irq = pdev->irq;
2409 probe_ent->irq_flags = IRQF_SHARED;
2410 probe_ent->mmio_base = mmio_base;
2411 probe_ent->private_data = hpriv;
2413 /* initialize adapter */
2414 rc = mv_init_host(pdev, probe_ent, board_idx);
2415 if (rc) {
2416 goto err_out_hpriv;
2419 /* Enable interrupts */
2420 if (msi && pci_enable_msi(pdev) == 0) {
2421 hpriv->hp_flags |= MV_HP_FLAG_MSI;
2422 } else {
2423 pci_intx(pdev, 1);
2426 mv_dump_pci_cfg(pdev, 0x68);
2427 mv_print_info(probe_ent);
2429 if (ata_device_add(probe_ent) == 0) {
2430 rc = -ENODEV; /* No devices discovered */
2431 goto err_out_dev_add;
2434 kfree(probe_ent);
2435 return 0;
2437 err_out_dev_add:
2438 if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
2439 pci_disable_msi(pdev);
2440 } else {
2441 pci_intx(pdev, 0);
2443 err_out_hpriv:
2444 kfree(hpriv);
2445 err_out_iounmap:
2446 pci_iounmap(pdev, mmio_base);
2447 err_out_free_ent:
2448 kfree(probe_ent);
2449 err_out_regions:
2450 pci_release_regions(pdev);
2451 err_out:
2452 if (!pci_dev_busy) {
2453 pci_disable_device(pdev);
2456 return rc;
2459 static int __init mv_init(void)
2461 return pci_register_driver(&mv_pci_driver);
2464 static void __exit mv_exit(void)
2466 pci_unregister_driver(&mv_pci_driver);
2469 MODULE_AUTHOR("Brett Russ");
2470 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2471 MODULE_LICENSE("GPL");
2472 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2473 MODULE_VERSION(DRV_VERSION);
2475 module_param(msi, int, 0444);
2476 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
2478 module_init(mv_init);
2479 module_exit(mv_exit);