4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include <linux/cleancache.h>
41 * FIXME: remove all knowledge of the buffer layer from the core VM
43 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * ->i_mmap_mutex (truncate_pagecache)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
68 * ->i_mmap_mutex (truncate->unmap_mapping_range)
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 * ->i_alloc_sem (various)
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * inode_wb_list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * inode_wb_list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 * Delete a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
118 void __delete_from_page_cache(struct page
*page
)
120 struct address_space
*mapping
= page
->mapping
;
123 * if we're uptodate, flush out into the cleancache, otherwise
124 * invalidate any existing cleancache entries. We can't leave
125 * stale data around in the cleancache once our page is gone
127 if (PageUptodate(page
) && PageMappedToDisk(page
))
128 cleancache_put_page(page
);
130 cleancache_flush_page(mapping
, page
);
132 radix_tree_delete(&mapping
->page_tree
, page
->index
);
133 page
->mapping
= NULL
;
135 __dec_zone_page_state(page
, NR_FILE_PAGES
);
136 if (PageSwapBacked(page
))
137 __dec_zone_page_state(page
, NR_SHMEM
);
138 BUG_ON(page_mapped(page
));
141 * Some filesystems seem to re-dirty the page even after
142 * the VM has canceled the dirty bit (eg ext3 journaling).
144 * Fix it up by doing a final dirty accounting check after
145 * having removed the page entirely.
147 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
148 dec_zone_page_state(page
, NR_FILE_DIRTY
);
149 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
154 * delete_from_page_cache - delete page from page cache
155 * @page: the page which the kernel is trying to remove from page cache
157 * This must be called only on pages that have been verified to be in the page
158 * cache and locked. It will never put the page into the free list, the caller
159 * has a reference on the page.
161 void delete_from_page_cache(struct page
*page
)
163 struct address_space
*mapping
= page
->mapping
;
164 void (*freepage
)(struct page
*);
166 BUG_ON(!PageLocked(page
));
168 freepage
= mapping
->a_ops
->freepage
;
169 spin_lock_irq(&mapping
->tree_lock
);
170 __delete_from_page_cache(page
);
171 spin_unlock_irq(&mapping
->tree_lock
);
172 mem_cgroup_uncharge_cache_page(page
);
176 page_cache_release(page
);
178 EXPORT_SYMBOL(delete_from_page_cache
);
180 static int sleep_on_page(void *word
)
186 static int sleep_on_page_killable(void *word
)
189 return fatal_signal_pending(current
) ? -EINTR
: 0;
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
207 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
208 loff_t end
, int sync_mode
)
211 struct writeback_control wbc
= {
212 .sync_mode
= sync_mode
,
213 .nr_to_write
= LONG_MAX
,
214 .range_start
= start
,
218 if (!mapping_cap_writeback_dirty(mapping
))
221 ret
= do_writepages(mapping
, &wbc
);
225 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
228 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
231 int filemap_fdatawrite(struct address_space
*mapping
)
233 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
235 EXPORT_SYMBOL(filemap_fdatawrite
);
237 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
240 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
242 EXPORT_SYMBOL(filemap_fdatawrite_range
);
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
251 int filemap_flush(struct address_space
*mapping
)
253 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
255 EXPORT_SYMBOL(filemap_flush
);
258 * filemap_fdatawait_range - wait for writeback to complete
259 * @mapping: address space structure to wait for
260 * @start_byte: offset in bytes where the range starts
261 * @end_byte: offset in bytes where the range ends (inclusive)
263 * Walk the list of under-writeback pages of the given address space
264 * in the given range and wait for all of them.
266 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
269 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
270 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
275 if (end_byte
< start_byte
)
278 pagevec_init(&pvec
, 0);
279 while ((index
<= end
) &&
280 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
281 PAGECACHE_TAG_WRITEBACK
,
282 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
285 for (i
= 0; i
< nr_pages
; i
++) {
286 struct page
*page
= pvec
.pages
[i
];
288 /* until radix tree lookup accepts end_index */
289 if (page
->index
> end
)
292 wait_on_page_writeback(page
);
293 if (TestClearPageError(page
))
296 pagevec_release(&pvec
);
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
303 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
308 EXPORT_SYMBOL(filemap_fdatawait_range
);
311 * filemap_fdatawait - wait for all under-writeback pages to complete
312 * @mapping: address space structure to wait for
314 * Walk the list of under-writeback pages of the given address space
315 * and wait for all of them.
317 int filemap_fdatawait(struct address_space
*mapping
)
319 loff_t i_size
= i_size_read(mapping
->host
);
324 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
326 EXPORT_SYMBOL(filemap_fdatawait
);
328 int filemap_write_and_wait(struct address_space
*mapping
)
332 if (mapping
->nrpages
) {
333 err
= filemap_fdatawrite(mapping
);
335 * Even if the above returned error, the pages may be
336 * written partially (e.g. -ENOSPC), so we wait for it.
337 * But the -EIO is special case, it may indicate the worst
338 * thing (e.g. bug) happened, so we avoid waiting for it.
341 int err2
= filemap_fdatawait(mapping
);
348 EXPORT_SYMBOL(filemap_write_and_wait
);
351 * filemap_write_and_wait_range - write out & wait on a file range
352 * @mapping: the address_space for the pages
353 * @lstart: offset in bytes where the range starts
354 * @lend: offset in bytes where the range ends (inclusive)
356 * Write out and wait upon file offsets lstart->lend, inclusive.
358 * Note that `lend' is inclusive (describes the last byte to be written) so
359 * that this function can be used to write to the very end-of-file (end = -1).
361 int filemap_write_and_wait_range(struct address_space
*mapping
,
362 loff_t lstart
, loff_t lend
)
366 if (mapping
->nrpages
) {
367 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
369 /* See comment of filemap_write_and_wait() */
371 int err2
= filemap_fdatawait_range(mapping
,
379 EXPORT_SYMBOL(filemap_write_and_wait_range
);
382 * replace_page_cache_page - replace a pagecache page with a new one
383 * @old: page to be replaced
384 * @new: page to replace with
385 * @gfp_mask: allocation mode
387 * This function replaces a page in the pagecache with a new one. On
388 * success it acquires the pagecache reference for the new page and
389 * drops it for the old page. Both the old and new pages must be
390 * locked. This function does not add the new page to the LRU, the
391 * caller must do that.
393 * The remove + add is atomic. The only way this function can fail is
394 * memory allocation failure.
396 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
399 struct mem_cgroup
*memcg
= NULL
;
401 VM_BUG_ON(!PageLocked(old
));
402 VM_BUG_ON(!PageLocked(new));
403 VM_BUG_ON(new->mapping
);
406 * This is not page migration, but prepare_migration and
407 * end_migration does enough work for charge replacement.
409 * In the longer term we probably want a specialized function
410 * for moving the charge from old to new in a more efficient
413 error
= mem_cgroup_prepare_migration(old
, new, &memcg
, gfp_mask
);
417 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
419 struct address_space
*mapping
= old
->mapping
;
420 void (*freepage
)(struct page
*);
422 pgoff_t offset
= old
->index
;
423 freepage
= mapping
->a_ops
->freepage
;
426 new->mapping
= mapping
;
429 spin_lock_irq(&mapping
->tree_lock
);
430 __delete_from_page_cache(old
);
431 error
= radix_tree_insert(&mapping
->page_tree
, offset
, new);
434 __inc_zone_page_state(new, NR_FILE_PAGES
);
435 if (PageSwapBacked(new))
436 __inc_zone_page_state(new, NR_SHMEM
);
437 spin_unlock_irq(&mapping
->tree_lock
);
438 radix_tree_preload_end();
441 page_cache_release(old
);
442 mem_cgroup_end_migration(memcg
, old
, new, true);
444 mem_cgroup_end_migration(memcg
, old
, new, false);
449 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
452 * add_to_page_cache_locked - add a locked page to the pagecache
454 * @mapping: the page's address_space
455 * @offset: page index
456 * @gfp_mask: page allocation mode
458 * This function is used to add a page to the pagecache. It must be locked.
459 * This function does not add the page to the LRU. The caller must do that.
461 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
462 pgoff_t offset
, gfp_t gfp_mask
)
466 VM_BUG_ON(!PageLocked(page
));
468 error
= mem_cgroup_cache_charge(page
, current
->mm
,
469 gfp_mask
& GFP_RECLAIM_MASK
);
473 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
475 page_cache_get(page
);
476 page
->mapping
= mapping
;
477 page
->index
= offset
;
479 spin_lock_irq(&mapping
->tree_lock
);
480 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
481 if (likely(!error
)) {
483 __inc_zone_page_state(page
, NR_FILE_PAGES
);
484 if (PageSwapBacked(page
))
485 __inc_zone_page_state(page
, NR_SHMEM
);
486 spin_unlock_irq(&mapping
->tree_lock
);
488 page
->mapping
= NULL
;
489 spin_unlock_irq(&mapping
->tree_lock
);
490 mem_cgroup_uncharge_cache_page(page
);
491 page_cache_release(page
);
493 radix_tree_preload_end();
495 mem_cgroup_uncharge_cache_page(page
);
499 EXPORT_SYMBOL(add_to_page_cache_locked
);
501 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
502 pgoff_t offset
, gfp_t gfp_mask
)
507 * Splice_read and readahead add shmem/tmpfs pages into the page cache
508 * before shmem_readpage has a chance to mark them as SwapBacked: they
509 * need to go on the anon lru below, and mem_cgroup_cache_charge
510 * (called in add_to_page_cache) needs to know where they're going too.
512 if (mapping_cap_swap_backed(mapping
))
513 SetPageSwapBacked(page
);
515 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
517 if (page_is_file_cache(page
))
518 lru_cache_add_file(page
);
520 lru_cache_add_anon(page
);
524 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
527 struct page
*__page_cache_alloc(gfp_t gfp
)
532 if (cpuset_do_page_mem_spread()) {
534 n
= cpuset_mem_spread_node();
535 page
= alloc_pages_exact_node(n
, gfp
, 0);
539 return alloc_pages(gfp
, 0);
541 EXPORT_SYMBOL(__page_cache_alloc
);
545 * In order to wait for pages to become available there must be
546 * waitqueues associated with pages. By using a hash table of
547 * waitqueues where the bucket discipline is to maintain all
548 * waiters on the same queue and wake all when any of the pages
549 * become available, and for the woken contexts to check to be
550 * sure the appropriate page became available, this saves space
551 * at a cost of "thundering herd" phenomena during rare hash
554 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
556 const struct zone
*zone
= page_zone(page
);
558 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
561 static inline void wake_up_page(struct page
*page
, int bit
)
563 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
566 void wait_on_page_bit(struct page
*page
, int bit_nr
)
568 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
570 if (test_bit(bit_nr
, &page
->flags
))
571 __wait_on_bit(page_waitqueue(page
), &wait
, sleep_on_page
,
572 TASK_UNINTERRUPTIBLE
);
574 EXPORT_SYMBOL(wait_on_page_bit
);
576 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
578 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
580 if (!test_bit(bit_nr
, &page
->flags
))
583 return __wait_on_bit(page_waitqueue(page
), &wait
,
584 sleep_on_page_killable
, TASK_KILLABLE
);
588 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
589 * @page: Page defining the wait queue of interest
590 * @waiter: Waiter to add to the queue
592 * Add an arbitrary @waiter to the wait queue for the nominated @page.
594 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
596 wait_queue_head_t
*q
= page_waitqueue(page
);
599 spin_lock_irqsave(&q
->lock
, flags
);
600 __add_wait_queue(q
, waiter
);
601 spin_unlock_irqrestore(&q
->lock
, flags
);
603 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
606 * unlock_page - unlock a locked page
609 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
610 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
611 * mechananism between PageLocked pages and PageWriteback pages is shared.
612 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
614 * The mb is necessary to enforce ordering between the clear_bit and the read
615 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
617 void unlock_page(struct page
*page
)
619 VM_BUG_ON(!PageLocked(page
));
620 clear_bit_unlock(PG_locked
, &page
->flags
);
621 smp_mb__after_clear_bit();
622 wake_up_page(page
, PG_locked
);
624 EXPORT_SYMBOL(unlock_page
);
627 * end_page_writeback - end writeback against a page
630 void end_page_writeback(struct page
*page
)
632 if (TestClearPageReclaim(page
))
633 rotate_reclaimable_page(page
);
635 if (!test_clear_page_writeback(page
))
638 smp_mb__after_clear_bit();
639 wake_up_page(page
, PG_writeback
);
641 EXPORT_SYMBOL(end_page_writeback
);
644 * __lock_page - get a lock on the page, assuming we need to sleep to get it
645 * @page: the page to lock
647 void __lock_page(struct page
*page
)
649 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
651 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sleep_on_page
,
652 TASK_UNINTERRUPTIBLE
);
654 EXPORT_SYMBOL(__lock_page
);
656 int __lock_page_killable(struct page
*page
)
658 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
660 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
661 sleep_on_page_killable
, TASK_KILLABLE
);
663 EXPORT_SYMBOL_GPL(__lock_page_killable
);
665 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
668 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
670 * CAUTION! In this case, mmap_sem is not released
671 * even though return 0.
673 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
676 up_read(&mm
->mmap_sem
);
677 if (flags
& FAULT_FLAG_KILLABLE
)
678 wait_on_page_locked_killable(page
);
680 wait_on_page_locked(page
);
683 if (flags
& FAULT_FLAG_KILLABLE
) {
686 ret
= __lock_page_killable(page
);
688 up_read(&mm
->mmap_sem
);
698 * find_get_page - find and get a page reference
699 * @mapping: the address_space to search
700 * @offset: the page index
702 * Is there a pagecache struct page at the given (mapping, offset) tuple?
703 * If yes, increment its refcount and return it; if no, return NULL.
705 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
713 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
715 page
= radix_tree_deref_slot(pagep
);
718 if (radix_tree_deref_retry(page
))
721 if (!page_cache_get_speculative(page
))
725 * Has the page moved?
726 * This is part of the lockless pagecache protocol. See
727 * include/linux/pagemap.h for details.
729 if (unlikely(page
!= *pagep
)) {
730 page_cache_release(page
);
739 EXPORT_SYMBOL(find_get_page
);
742 * find_lock_page - locate, pin and lock a pagecache page
743 * @mapping: the address_space to search
744 * @offset: the page index
746 * Locates the desired pagecache page, locks it, increments its reference
747 * count and returns its address.
749 * Returns zero if the page was not present. find_lock_page() may sleep.
751 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
756 page
= find_get_page(mapping
, offset
);
759 /* Has the page been truncated? */
760 if (unlikely(page
->mapping
!= mapping
)) {
762 page_cache_release(page
);
765 VM_BUG_ON(page
->index
!= offset
);
769 EXPORT_SYMBOL(find_lock_page
);
772 * find_or_create_page - locate or add a pagecache page
773 * @mapping: the page's address_space
774 * @index: the page's index into the mapping
775 * @gfp_mask: page allocation mode
777 * Locates a page in the pagecache. If the page is not present, a new page
778 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
779 * LRU list. The returned page is locked and has its reference count
782 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
785 * find_or_create_page() returns the desired page's address, or zero on
788 struct page
*find_or_create_page(struct address_space
*mapping
,
789 pgoff_t index
, gfp_t gfp_mask
)
794 page
= find_lock_page(mapping
, index
);
796 page
= __page_cache_alloc(gfp_mask
);
800 * We want a regular kernel memory (not highmem or DMA etc)
801 * allocation for the radix tree nodes, but we need to honour
802 * the context-specific requirements the caller has asked for.
803 * GFP_RECLAIM_MASK collects those requirements.
805 err
= add_to_page_cache_lru(page
, mapping
, index
,
806 (gfp_mask
& GFP_RECLAIM_MASK
));
808 page_cache_release(page
);
816 EXPORT_SYMBOL(find_or_create_page
);
819 * find_get_pages - gang pagecache lookup
820 * @mapping: The address_space to search
821 * @start: The starting page index
822 * @nr_pages: The maximum number of pages
823 * @pages: Where the resulting pages are placed
825 * find_get_pages() will search for and return a group of up to
826 * @nr_pages pages in the mapping. The pages are placed at @pages.
827 * find_get_pages() takes a reference against the returned pages.
829 * The search returns a group of mapping-contiguous pages with ascending
830 * indexes. There may be holes in the indices due to not-present pages.
832 * find_get_pages() returns the number of pages which were found.
834 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
835 unsigned int nr_pages
, struct page
**pages
)
839 unsigned int nr_found
;
843 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
844 (void ***)pages
, start
, nr_pages
);
846 for (i
= 0; i
< nr_found
; i
++) {
849 page
= radix_tree_deref_slot((void **)pages
[i
]);
854 * This can only trigger when the entry at index 0 moves out
855 * of or back to the root: none yet gotten, safe to restart.
857 if (radix_tree_deref_retry(page
)) {
862 if (!page_cache_get_speculative(page
))
865 /* Has the page moved? */
866 if (unlikely(page
!= *((void **)pages
[i
]))) {
867 page_cache_release(page
);
876 * If all entries were removed before we could secure them,
877 * try again, because callers stop trying once 0 is returned.
879 if (unlikely(!ret
&& nr_found
))
886 * find_get_pages_contig - gang contiguous pagecache lookup
887 * @mapping: The address_space to search
888 * @index: The starting page index
889 * @nr_pages: The maximum number of pages
890 * @pages: Where the resulting pages are placed
892 * find_get_pages_contig() works exactly like find_get_pages(), except
893 * that the returned number of pages are guaranteed to be contiguous.
895 * find_get_pages_contig() returns the number of pages which were found.
897 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
898 unsigned int nr_pages
, struct page
**pages
)
902 unsigned int nr_found
;
906 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
907 (void ***)pages
, index
, nr_pages
);
909 for (i
= 0; i
< nr_found
; i
++) {
912 page
= radix_tree_deref_slot((void **)pages
[i
]);
917 * This can only trigger when the entry at index 0 moves out
918 * of or back to the root: none yet gotten, safe to restart.
920 if (radix_tree_deref_retry(page
))
923 if (!page_cache_get_speculative(page
))
926 /* Has the page moved? */
927 if (unlikely(page
!= *((void **)pages
[i
]))) {
928 page_cache_release(page
);
933 * must check mapping and index after taking the ref.
934 * otherwise we can get both false positives and false
935 * negatives, which is just confusing to the caller.
937 if (page
->mapping
== NULL
|| page
->index
!= index
) {
938 page_cache_release(page
);
949 EXPORT_SYMBOL(find_get_pages_contig
);
952 * find_get_pages_tag - find and return pages that match @tag
953 * @mapping: the address_space to search
954 * @index: the starting page index
955 * @tag: the tag index
956 * @nr_pages: the maximum number of pages
957 * @pages: where the resulting pages are placed
959 * Like find_get_pages, except we only return pages which are tagged with
960 * @tag. We update @index to index the next page for the traversal.
962 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
963 int tag
, unsigned int nr_pages
, struct page
**pages
)
967 unsigned int nr_found
;
971 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
972 (void ***)pages
, *index
, nr_pages
, tag
);
974 for (i
= 0; i
< nr_found
; i
++) {
977 page
= radix_tree_deref_slot((void **)pages
[i
]);
982 * This can only trigger when the entry at index 0 moves out
983 * of or back to the root: none yet gotten, safe to restart.
985 if (radix_tree_deref_retry(page
))
988 if (!page_cache_get_speculative(page
))
991 /* Has the page moved? */
992 if (unlikely(page
!= *((void **)pages
[i
]))) {
993 page_cache_release(page
);
1002 * If all entries were removed before we could secure them,
1003 * try again, because callers stop trying once 0 is returned.
1005 if (unlikely(!ret
&& nr_found
))
1010 *index
= pages
[ret
- 1]->index
+ 1;
1014 EXPORT_SYMBOL(find_get_pages_tag
);
1017 * grab_cache_page_nowait - returns locked page at given index in given cache
1018 * @mapping: target address_space
1019 * @index: the page index
1021 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1022 * This is intended for speculative data generators, where the data can
1023 * be regenerated if the page couldn't be grabbed. This routine should
1024 * be safe to call while holding the lock for another page.
1026 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1027 * and deadlock against the caller's locked page.
1030 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
1032 struct page
*page
= find_get_page(mapping
, index
);
1035 if (trylock_page(page
))
1037 page_cache_release(page
);
1040 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
1041 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
1042 page_cache_release(page
);
1047 EXPORT_SYMBOL(grab_cache_page_nowait
);
1050 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1051 * a _large_ part of the i/o request. Imagine the worst scenario:
1053 * ---R__________________________________________B__________
1054 * ^ reading here ^ bad block(assume 4k)
1056 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1057 * => failing the whole request => read(R) => read(R+1) =>
1058 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1059 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1060 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1062 * It is going insane. Fix it by quickly scaling down the readahead size.
1064 static void shrink_readahead_size_eio(struct file
*filp
,
1065 struct file_ra_state
*ra
)
1071 * do_generic_file_read - generic file read routine
1072 * @filp: the file to read
1073 * @ppos: current file position
1074 * @desc: read_descriptor
1075 * @actor: read method
1077 * This is a generic file read routine, and uses the
1078 * mapping->a_ops->readpage() function for the actual low-level stuff.
1080 * This is really ugly. But the goto's actually try to clarify some
1081 * of the logic when it comes to error handling etc.
1083 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1084 read_descriptor_t
*desc
, read_actor_t actor
)
1086 struct address_space
*mapping
= filp
->f_mapping
;
1087 struct inode
*inode
= mapping
->host
;
1088 struct file_ra_state
*ra
= &filp
->f_ra
;
1092 unsigned long offset
; /* offset into pagecache page */
1093 unsigned int prev_offset
;
1096 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1097 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1098 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1099 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1100 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1106 unsigned long nr
, ret
;
1110 page
= find_get_page(mapping
, index
);
1112 page_cache_sync_readahead(mapping
,
1114 index
, last_index
- index
);
1115 page
= find_get_page(mapping
, index
);
1116 if (unlikely(page
== NULL
))
1117 goto no_cached_page
;
1119 if (PageReadahead(page
)) {
1120 page_cache_async_readahead(mapping
,
1122 index
, last_index
- index
);
1124 if (!PageUptodate(page
)) {
1125 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1126 !mapping
->a_ops
->is_partially_uptodate
)
1127 goto page_not_up_to_date
;
1128 if (!trylock_page(page
))
1129 goto page_not_up_to_date
;
1130 /* Did it get truncated before we got the lock? */
1132 goto page_not_up_to_date_locked
;
1133 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1135 goto page_not_up_to_date_locked
;
1140 * i_size must be checked after we know the page is Uptodate.
1142 * Checking i_size after the check allows us to calculate
1143 * the correct value for "nr", which means the zero-filled
1144 * part of the page is not copied back to userspace (unless
1145 * another truncate extends the file - this is desired though).
1148 isize
= i_size_read(inode
);
1149 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1150 if (unlikely(!isize
|| index
> end_index
)) {
1151 page_cache_release(page
);
1155 /* nr is the maximum number of bytes to copy from this page */
1156 nr
= PAGE_CACHE_SIZE
;
1157 if (index
== end_index
) {
1158 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1160 page_cache_release(page
);
1166 /* If users can be writing to this page using arbitrary
1167 * virtual addresses, take care about potential aliasing
1168 * before reading the page on the kernel side.
1170 if (mapping_writably_mapped(mapping
))
1171 flush_dcache_page(page
);
1174 * When a sequential read accesses a page several times,
1175 * only mark it as accessed the first time.
1177 if (prev_index
!= index
|| offset
!= prev_offset
)
1178 mark_page_accessed(page
);
1182 * Ok, we have the page, and it's up-to-date, so
1183 * now we can copy it to user space...
1185 * The actor routine returns how many bytes were actually used..
1186 * NOTE! This may not be the same as how much of a user buffer
1187 * we filled up (we may be padding etc), so we can only update
1188 * "pos" here (the actor routine has to update the user buffer
1189 * pointers and the remaining count).
1191 ret
= actor(desc
, page
, offset
, nr
);
1193 index
+= offset
>> PAGE_CACHE_SHIFT
;
1194 offset
&= ~PAGE_CACHE_MASK
;
1195 prev_offset
= offset
;
1197 page_cache_release(page
);
1198 if (ret
== nr
&& desc
->count
)
1202 page_not_up_to_date
:
1203 /* Get exclusive access to the page ... */
1204 error
= lock_page_killable(page
);
1205 if (unlikely(error
))
1206 goto readpage_error
;
1208 page_not_up_to_date_locked
:
1209 /* Did it get truncated before we got the lock? */
1210 if (!page
->mapping
) {
1212 page_cache_release(page
);
1216 /* Did somebody else fill it already? */
1217 if (PageUptodate(page
)) {
1224 * A previous I/O error may have been due to temporary
1225 * failures, eg. multipath errors.
1226 * PG_error will be set again if readpage fails.
1228 ClearPageError(page
);
1229 /* Start the actual read. The read will unlock the page. */
1230 error
= mapping
->a_ops
->readpage(filp
, page
);
1232 if (unlikely(error
)) {
1233 if (error
== AOP_TRUNCATED_PAGE
) {
1234 page_cache_release(page
);
1237 goto readpage_error
;
1240 if (!PageUptodate(page
)) {
1241 error
= lock_page_killable(page
);
1242 if (unlikely(error
))
1243 goto readpage_error
;
1244 if (!PageUptodate(page
)) {
1245 if (page
->mapping
== NULL
) {
1247 * invalidate_mapping_pages got it
1250 page_cache_release(page
);
1254 shrink_readahead_size_eio(filp
, ra
);
1256 goto readpage_error
;
1264 /* UHHUH! A synchronous read error occurred. Report it */
1265 desc
->error
= error
;
1266 page_cache_release(page
);
1271 * Ok, it wasn't cached, so we need to create a new
1274 page
= page_cache_alloc_cold(mapping
);
1276 desc
->error
= -ENOMEM
;
1279 error
= add_to_page_cache_lru(page
, mapping
,
1282 page_cache_release(page
);
1283 if (error
== -EEXIST
)
1285 desc
->error
= error
;
1292 ra
->prev_pos
= prev_index
;
1293 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1294 ra
->prev_pos
|= prev_offset
;
1296 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1297 file_accessed(filp
);
1300 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1301 unsigned long offset
, unsigned long size
)
1304 unsigned long left
, count
= desc
->count
;
1310 * Faults on the destination of a read are common, so do it before
1313 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1314 kaddr
= kmap_atomic(page
, KM_USER0
);
1315 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1316 kaddr
+ offset
, size
);
1317 kunmap_atomic(kaddr
, KM_USER0
);
1322 /* Do it the slow way */
1324 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1329 desc
->error
= -EFAULT
;
1332 desc
->count
= count
- size
;
1333 desc
->written
+= size
;
1334 desc
->arg
.buf
+= size
;
1339 * Performs necessary checks before doing a write
1340 * @iov: io vector request
1341 * @nr_segs: number of segments in the iovec
1342 * @count: number of bytes to write
1343 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1345 * Adjust number of segments and amount of bytes to write (nr_segs should be
1346 * properly initialized first). Returns appropriate error code that caller
1347 * should return or zero in case that write should be allowed.
1349 int generic_segment_checks(const struct iovec
*iov
,
1350 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1354 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1355 const struct iovec
*iv
= &iov
[seg
];
1358 * If any segment has a negative length, or the cumulative
1359 * length ever wraps negative then return -EINVAL.
1362 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1364 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1369 cnt
-= iv
->iov_len
; /* This segment is no good */
1375 EXPORT_SYMBOL(generic_segment_checks
);
1378 * generic_file_aio_read - generic filesystem read routine
1379 * @iocb: kernel I/O control block
1380 * @iov: io vector request
1381 * @nr_segs: number of segments in the iovec
1382 * @pos: current file position
1384 * This is the "read()" routine for all filesystems
1385 * that can use the page cache directly.
1388 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1389 unsigned long nr_segs
, loff_t pos
)
1391 struct file
*filp
= iocb
->ki_filp
;
1393 unsigned long seg
= 0;
1395 loff_t
*ppos
= &iocb
->ki_pos
;
1396 struct blk_plug plug
;
1399 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1403 blk_start_plug(&plug
);
1405 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1406 if (filp
->f_flags
& O_DIRECT
) {
1408 struct address_space
*mapping
;
1409 struct inode
*inode
;
1411 mapping
= filp
->f_mapping
;
1412 inode
= mapping
->host
;
1414 goto out
; /* skip atime */
1415 size
= i_size_read(inode
);
1417 retval
= filemap_write_and_wait_range(mapping
, pos
,
1418 pos
+ iov_length(iov
, nr_segs
) - 1);
1420 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1424 *ppos
= pos
+ retval
;
1429 * Btrfs can have a short DIO read if we encounter
1430 * compressed extents, so if there was an error, or if
1431 * we've already read everything we wanted to, or if
1432 * there was a short read because we hit EOF, go ahead
1433 * and return. Otherwise fallthrough to buffered io for
1434 * the rest of the read.
1436 if (retval
< 0 || !count
|| *ppos
>= size
) {
1437 file_accessed(filp
);
1444 for (seg
= 0; seg
< nr_segs
; seg
++) {
1445 read_descriptor_t desc
;
1449 * If we did a short DIO read we need to skip the section of the
1450 * iov that we've already read data into.
1453 if (count
> iov
[seg
].iov_len
) {
1454 count
-= iov
[seg
].iov_len
;
1462 desc
.arg
.buf
= iov
[seg
].iov_base
+ offset
;
1463 desc
.count
= iov
[seg
].iov_len
- offset
;
1464 if (desc
.count
== 0)
1467 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1468 retval
+= desc
.written
;
1470 retval
= retval
?: desc
.error
;
1477 blk_finish_plug(&plug
);
1480 EXPORT_SYMBOL(generic_file_aio_read
);
1483 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1484 pgoff_t index
, unsigned long nr
)
1486 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1489 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1493 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1501 if (file
->f_mode
& FMODE_READ
) {
1502 struct address_space
*mapping
= file
->f_mapping
;
1503 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1504 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1505 unsigned long len
= end
- start
+ 1;
1506 ret
= do_readahead(mapping
, file
, start
, len
);
1512 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1513 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1515 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1517 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1522 * page_cache_read - adds requested page to the page cache if not already there
1523 * @file: file to read
1524 * @offset: page index
1526 * This adds the requested page to the page cache if it isn't already there,
1527 * and schedules an I/O to read in its contents from disk.
1529 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1531 struct address_space
*mapping
= file
->f_mapping
;
1536 page
= page_cache_alloc_cold(mapping
);
1540 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1542 ret
= mapping
->a_ops
->readpage(file
, page
);
1543 else if (ret
== -EEXIST
)
1544 ret
= 0; /* losing race to add is OK */
1546 page_cache_release(page
);
1548 } while (ret
== AOP_TRUNCATED_PAGE
);
1553 #define MMAP_LOTSAMISS (100)
1556 * Synchronous readahead happens when we don't even find
1557 * a page in the page cache at all.
1559 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1560 struct file_ra_state
*ra
,
1564 unsigned long ra_pages
;
1565 struct address_space
*mapping
= file
->f_mapping
;
1567 /* If we don't want any read-ahead, don't bother */
1568 if (VM_RandomReadHint(vma
))
1573 if (VM_SequentialReadHint(vma
)) {
1574 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1579 /* Avoid banging the cache line if not needed */
1580 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
1584 * Do we miss much more than hit in this file? If so,
1585 * stop bothering with read-ahead. It will only hurt.
1587 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1593 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1594 ra
->start
= max_t(long, 0, offset
- ra_pages
/ 2);
1595 ra
->size
= ra_pages
;
1596 ra
->async_size
= ra_pages
/ 4;
1597 ra_submit(ra
, mapping
, file
);
1601 * Asynchronous readahead happens when we find the page and PG_readahead,
1602 * so we want to possibly extend the readahead further..
1604 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1605 struct file_ra_state
*ra
,
1610 struct address_space
*mapping
= file
->f_mapping
;
1612 /* If we don't want any read-ahead, don't bother */
1613 if (VM_RandomReadHint(vma
))
1615 if (ra
->mmap_miss
> 0)
1617 if (PageReadahead(page
))
1618 page_cache_async_readahead(mapping
, ra
, file
,
1619 page
, offset
, ra
->ra_pages
);
1623 * filemap_fault - read in file data for page fault handling
1624 * @vma: vma in which the fault was taken
1625 * @vmf: struct vm_fault containing details of the fault
1627 * filemap_fault() is invoked via the vma operations vector for a
1628 * mapped memory region to read in file data during a page fault.
1630 * The goto's are kind of ugly, but this streamlines the normal case of having
1631 * it in the page cache, and handles the special cases reasonably without
1632 * having a lot of duplicated code.
1634 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1637 struct file
*file
= vma
->vm_file
;
1638 struct address_space
*mapping
= file
->f_mapping
;
1639 struct file_ra_state
*ra
= &file
->f_ra
;
1640 struct inode
*inode
= mapping
->host
;
1641 pgoff_t offset
= vmf
->pgoff
;
1646 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1648 return VM_FAULT_SIGBUS
;
1651 * Do we have something in the page cache already?
1653 page
= find_get_page(mapping
, offset
);
1656 * We found the page, so try async readahead before
1657 * waiting for the lock.
1659 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1661 /* No page in the page cache at all */
1662 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1663 count_vm_event(PGMAJFAULT
);
1664 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1665 ret
= VM_FAULT_MAJOR
;
1667 page
= find_get_page(mapping
, offset
);
1669 goto no_cached_page
;
1672 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1673 page_cache_release(page
);
1674 return ret
| VM_FAULT_RETRY
;
1677 /* Did it get truncated? */
1678 if (unlikely(page
->mapping
!= mapping
)) {
1683 VM_BUG_ON(page
->index
!= offset
);
1686 * We have a locked page in the page cache, now we need to check
1687 * that it's up-to-date. If not, it is going to be due to an error.
1689 if (unlikely(!PageUptodate(page
)))
1690 goto page_not_uptodate
;
1693 * Found the page and have a reference on it.
1694 * We must recheck i_size under page lock.
1696 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1697 if (unlikely(offset
>= size
)) {
1699 page_cache_release(page
);
1700 return VM_FAULT_SIGBUS
;
1704 return ret
| VM_FAULT_LOCKED
;
1708 * We're only likely to ever get here if MADV_RANDOM is in
1711 error
= page_cache_read(file
, offset
);
1714 * The page we want has now been added to the page cache.
1715 * In the unlikely event that someone removed it in the
1716 * meantime, we'll just come back here and read it again.
1722 * An error return from page_cache_read can result if the
1723 * system is low on memory, or a problem occurs while trying
1726 if (error
== -ENOMEM
)
1727 return VM_FAULT_OOM
;
1728 return VM_FAULT_SIGBUS
;
1732 * Umm, take care of errors if the page isn't up-to-date.
1733 * Try to re-read it _once_. We do this synchronously,
1734 * because there really aren't any performance issues here
1735 * and we need to check for errors.
1737 ClearPageError(page
);
1738 error
= mapping
->a_ops
->readpage(file
, page
);
1740 wait_on_page_locked(page
);
1741 if (!PageUptodate(page
))
1744 page_cache_release(page
);
1746 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1749 /* Things didn't work out. Return zero to tell the mm layer so. */
1750 shrink_readahead_size_eio(file
, ra
);
1751 return VM_FAULT_SIGBUS
;
1753 EXPORT_SYMBOL(filemap_fault
);
1755 const struct vm_operations_struct generic_file_vm_ops
= {
1756 .fault
= filemap_fault
,
1759 /* This is used for a general mmap of a disk file */
1761 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1763 struct address_space
*mapping
= file
->f_mapping
;
1765 if (!mapping
->a_ops
->readpage
)
1767 file_accessed(file
);
1768 vma
->vm_ops
= &generic_file_vm_ops
;
1769 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1774 * This is for filesystems which do not implement ->writepage.
1776 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1778 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1780 return generic_file_mmap(file
, vma
);
1783 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1787 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1791 #endif /* CONFIG_MMU */
1793 EXPORT_SYMBOL(generic_file_mmap
);
1794 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1796 static struct page
*__read_cache_page(struct address_space
*mapping
,
1798 int (*filler
)(void *,struct page
*),
1805 page
= find_get_page(mapping
, index
);
1807 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
1809 return ERR_PTR(-ENOMEM
);
1810 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1811 if (unlikely(err
)) {
1812 page_cache_release(page
);
1815 /* Presumably ENOMEM for radix tree node */
1816 return ERR_PTR(err
);
1818 err
= filler(data
, page
);
1820 page_cache_release(page
);
1821 page
= ERR_PTR(err
);
1827 static struct page
*do_read_cache_page(struct address_space
*mapping
,
1829 int (*filler
)(void *,struct page
*),
1838 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
1841 if (PageUptodate(page
))
1845 if (!page
->mapping
) {
1847 page_cache_release(page
);
1850 if (PageUptodate(page
)) {
1854 err
= filler(data
, page
);
1856 page_cache_release(page
);
1857 return ERR_PTR(err
);
1860 mark_page_accessed(page
);
1865 * read_cache_page_async - read into page cache, fill it if needed
1866 * @mapping: the page's address_space
1867 * @index: the page index
1868 * @filler: function to perform the read
1869 * @data: destination for read data
1871 * Same as read_cache_page, but don't wait for page to become unlocked
1872 * after submitting it to the filler.
1874 * Read into the page cache. If a page already exists, and PageUptodate() is
1875 * not set, try to fill the page but don't wait for it to become unlocked.
1877 * If the page does not get brought uptodate, return -EIO.
1879 struct page
*read_cache_page_async(struct address_space
*mapping
,
1881 int (*filler
)(void *,struct page
*),
1884 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
1886 EXPORT_SYMBOL(read_cache_page_async
);
1888 static struct page
*wait_on_page_read(struct page
*page
)
1890 if (!IS_ERR(page
)) {
1891 wait_on_page_locked(page
);
1892 if (!PageUptodate(page
)) {
1893 page_cache_release(page
);
1894 page
= ERR_PTR(-EIO
);
1901 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1902 * @mapping: the page's address_space
1903 * @index: the page index
1904 * @gfp: the page allocator flags to use if allocating
1906 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1907 * any new page allocations done using the specified allocation flags. Note
1908 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1909 * expect to do this atomically or anything like that - but you can pass in
1910 * other page requirements.
1912 * If the page does not get brought uptodate, return -EIO.
1914 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
1918 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
1920 return wait_on_page_read(do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
));
1922 EXPORT_SYMBOL(read_cache_page_gfp
);
1925 * read_cache_page - read into page cache, fill it if needed
1926 * @mapping: the page's address_space
1927 * @index: the page index
1928 * @filler: function to perform the read
1929 * @data: destination for read data
1931 * Read into the page cache. If a page already exists, and PageUptodate() is
1932 * not set, try to fill the page then wait for it to become unlocked.
1934 * If the page does not get brought uptodate, return -EIO.
1936 struct page
*read_cache_page(struct address_space
*mapping
,
1938 int (*filler
)(void *,struct page
*),
1941 return wait_on_page_read(read_cache_page_async(mapping
, index
, filler
, data
));
1943 EXPORT_SYMBOL(read_cache_page
);
1946 * The logic we want is
1948 * if suid or (sgid and xgrp)
1951 int should_remove_suid(struct dentry
*dentry
)
1953 mode_t mode
= dentry
->d_inode
->i_mode
;
1956 /* suid always must be killed */
1957 if (unlikely(mode
& S_ISUID
))
1958 kill
= ATTR_KILL_SUID
;
1961 * sgid without any exec bits is just a mandatory locking mark; leave
1962 * it alone. If some exec bits are set, it's a real sgid; kill it.
1964 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1965 kill
|= ATTR_KILL_SGID
;
1967 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1972 EXPORT_SYMBOL(should_remove_suid
);
1974 static int __remove_suid(struct dentry
*dentry
, int kill
)
1976 struct iattr newattrs
;
1978 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1979 return notify_change(dentry
, &newattrs
);
1982 int file_remove_suid(struct file
*file
)
1984 struct dentry
*dentry
= file
->f_path
.dentry
;
1985 int killsuid
= should_remove_suid(dentry
);
1986 int killpriv
= security_inode_need_killpriv(dentry
);
1992 error
= security_inode_killpriv(dentry
);
1993 if (!error
&& killsuid
)
1994 error
= __remove_suid(dentry
, killsuid
);
1998 EXPORT_SYMBOL(file_remove_suid
);
2000 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
2001 const struct iovec
*iov
, size_t base
, size_t bytes
)
2003 size_t copied
= 0, left
= 0;
2006 char __user
*buf
= iov
->iov_base
+ base
;
2007 int copy
= min(bytes
, iov
->iov_len
- base
);
2010 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
2019 return copied
- left
;
2023 * Copy as much as we can into the page and return the number of bytes which
2024 * were successfully copied. If a fault is encountered then return the number of
2025 * bytes which were copied.
2027 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
2028 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
2033 BUG_ON(!in_atomic());
2034 kaddr
= kmap_atomic(page
, KM_USER0
);
2035 if (likely(i
->nr_segs
== 1)) {
2037 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2038 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
2039 copied
= bytes
- left
;
2041 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2042 i
->iov
, i
->iov_offset
, bytes
);
2044 kunmap_atomic(kaddr
, KM_USER0
);
2048 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
2051 * This has the same sideeffects and return value as
2052 * iov_iter_copy_from_user_atomic().
2053 * The difference is that it attempts to resolve faults.
2054 * Page must not be locked.
2056 size_t iov_iter_copy_from_user(struct page
*page
,
2057 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
2063 if (likely(i
->nr_segs
== 1)) {
2065 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2066 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
2067 copied
= bytes
- left
;
2069 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2070 i
->iov
, i
->iov_offset
, bytes
);
2075 EXPORT_SYMBOL(iov_iter_copy_from_user
);
2077 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
2079 BUG_ON(i
->count
< bytes
);
2081 if (likely(i
->nr_segs
== 1)) {
2082 i
->iov_offset
+= bytes
;
2085 const struct iovec
*iov
= i
->iov
;
2086 size_t base
= i
->iov_offset
;
2089 * The !iov->iov_len check ensures we skip over unlikely
2090 * zero-length segments (without overruning the iovec).
2092 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
2095 copy
= min(bytes
, iov
->iov_len
- base
);
2096 BUG_ON(!i
->count
|| i
->count
< copy
);
2100 if (iov
->iov_len
== base
) {
2106 i
->iov_offset
= base
;
2109 EXPORT_SYMBOL(iov_iter_advance
);
2112 * Fault in the first iovec of the given iov_iter, to a maximum length
2113 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2114 * accessed (ie. because it is an invalid address).
2116 * writev-intensive code may want this to prefault several iovecs -- that
2117 * would be possible (callers must not rely on the fact that _only_ the
2118 * first iovec will be faulted with the current implementation).
2120 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
2122 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2123 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
2124 return fault_in_pages_readable(buf
, bytes
);
2126 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
2129 * Return the count of just the current iov_iter segment.
2131 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
2133 const struct iovec
*iov
= i
->iov
;
2134 if (i
->nr_segs
== 1)
2137 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
2139 EXPORT_SYMBOL(iov_iter_single_seg_count
);
2142 * Performs necessary checks before doing a write
2144 * Can adjust writing position or amount of bytes to write.
2145 * Returns appropriate error code that caller should return or
2146 * zero in case that write should be allowed.
2148 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2150 struct inode
*inode
= file
->f_mapping
->host
;
2151 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2153 if (unlikely(*pos
< 0))
2157 /* FIXME: this is for backwards compatibility with 2.4 */
2158 if (file
->f_flags
& O_APPEND
)
2159 *pos
= i_size_read(inode
);
2161 if (limit
!= RLIM_INFINITY
) {
2162 if (*pos
>= limit
) {
2163 send_sig(SIGXFSZ
, current
, 0);
2166 if (*count
> limit
- (typeof(limit
))*pos
) {
2167 *count
= limit
- (typeof(limit
))*pos
;
2175 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2176 !(file
->f_flags
& O_LARGEFILE
))) {
2177 if (*pos
>= MAX_NON_LFS
) {
2180 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2181 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2186 * Are we about to exceed the fs block limit ?
2188 * If we have written data it becomes a short write. If we have
2189 * exceeded without writing data we send a signal and return EFBIG.
2190 * Linus frestrict idea will clean these up nicely..
2192 if (likely(!isblk
)) {
2193 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2194 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2197 /* zero-length writes at ->s_maxbytes are OK */
2200 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2201 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2205 if (bdev_read_only(I_BDEV(inode
)))
2207 isize
= i_size_read(inode
);
2208 if (*pos
>= isize
) {
2209 if (*count
|| *pos
> isize
)
2213 if (*pos
+ *count
> isize
)
2214 *count
= isize
- *pos
;
2221 EXPORT_SYMBOL(generic_write_checks
);
2223 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2224 loff_t pos
, unsigned len
, unsigned flags
,
2225 struct page
**pagep
, void **fsdata
)
2227 const struct address_space_operations
*aops
= mapping
->a_ops
;
2229 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2232 EXPORT_SYMBOL(pagecache_write_begin
);
2234 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2235 loff_t pos
, unsigned len
, unsigned copied
,
2236 struct page
*page
, void *fsdata
)
2238 const struct address_space_operations
*aops
= mapping
->a_ops
;
2240 mark_page_accessed(page
);
2241 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2243 EXPORT_SYMBOL(pagecache_write_end
);
2246 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2247 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2248 size_t count
, size_t ocount
)
2250 struct file
*file
= iocb
->ki_filp
;
2251 struct address_space
*mapping
= file
->f_mapping
;
2252 struct inode
*inode
= mapping
->host
;
2257 if (count
!= ocount
)
2258 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2260 write_len
= iov_length(iov
, *nr_segs
);
2261 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2263 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2268 * After a write we want buffered reads to be sure to go to disk to get
2269 * the new data. We invalidate clean cached page from the region we're
2270 * about to write. We do this *before* the write so that we can return
2271 * without clobbering -EIOCBQUEUED from ->direct_IO().
2273 if (mapping
->nrpages
) {
2274 written
= invalidate_inode_pages2_range(mapping
,
2275 pos
>> PAGE_CACHE_SHIFT
, end
);
2277 * If a page can not be invalidated, return 0 to fall back
2278 * to buffered write.
2281 if (written
== -EBUSY
)
2287 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2290 * Finally, try again to invalidate clean pages which might have been
2291 * cached by non-direct readahead, or faulted in by get_user_pages()
2292 * if the source of the write was an mmap'ed region of the file
2293 * we're writing. Either one is a pretty crazy thing to do,
2294 * so we don't support it 100%. If this invalidation
2295 * fails, tough, the write still worked...
2297 if (mapping
->nrpages
) {
2298 invalidate_inode_pages2_range(mapping
,
2299 pos
>> PAGE_CACHE_SHIFT
, end
);
2304 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2305 i_size_write(inode
, pos
);
2306 mark_inode_dirty(inode
);
2313 EXPORT_SYMBOL(generic_file_direct_write
);
2316 * Find or create a page at the given pagecache position. Return the locked
2317 * page. This function is specifically for buffered writes.
2319 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2320 pgoff_t index
, unsigned flags
)
2324 gfp_t gfp_notmask
= 0;
2325 if (flags
& AOP_FLAG_NOFS
)
2326 gfp_notmask
= __GFP_FS
;
2328 page
= find_lock_page(mapping
, index
);
2332 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~gfp_notmask
);
2335 status
= add_to_page_cache_lru(page
, mapping
, index
,
2336 GFP_KERNEL
& ~gfp_notmask
);
2337 if (unlikely(status
)) {
2338 page_cache_release(page
);
2339 if (status
== -EEXIST
)
2345 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2347 static ssize_t
generic_perform_write(struct file
*file
,
2348 struct iov_iter
*i
, loff_t pos
)
2350 struct address_space
*mapping
= file
->f_mapping
;
2351 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2353 ssize_t written
= 0;
2354 unsigned int flags
= 0;
2357 * Copies from kernel address space cannot fail (NFSD is a big user).
2359 if (segment_eq(get_fs(), KERNEL_DS
))
2360 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2364 unsigned long offset
; /* Offset into pagecache page */
2365 unsigned long bytes
; /* Bytes to write to page */
2366 size_t copied
; /* Bytes copied from user */
2369 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2370 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2376 * Bring in the user page that we will copy from _first_.
2377 * Otherwise there's a nasty deadlock on copying from the
2378 * same page as we're writing to, without it being marked
2381 * Not only is this an optimisation, but it is also required
2382 * to check that the address is actually valid, when atomic
2383 * usercopies are used, below.
2385 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2390 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2392 if (unlikely(status
))
2395 if (mapping_writably_mapped(mapping
))
2396 flush_dcache_page(page
);
2398 pagefault_disable();
2399 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2401 flush_dcache_page(page
);
2403 mark_page_accessed(page
);
2404 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2406 if (unlikely(status
< 0))
2412 iov_iter_advance(i
, copied
);
2413 if (unlikely(copied
== 0)) {
2415 * If we were unable to copy any data at all, we must
2416 * fall back to a single segment length write.
2418 * If we didn't fallback here, we could livelock
2419 * because not all segments in the iov can be copied at
2420 * once without a pagefault.
2422 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2423 iov_iter_single_seg_count(i
));
2429 balance_dirty_pages_ratelimited(mapping
);
2431 } while (iov_iter_count(i
));
2433 return written
? written
: status
;
2437 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2438 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2439 size_t count
, ssize_t written
)
2441 struct file
*file
= iocb
->ki_filp
;
2445 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2446 status
= generic_perform_write(file
, &i
, pos
);
2448 if (likely(status
>= 0)) {
2450 *ppos
= pos
+ status
;
2453 return written
? written
: status
;
2455 EXPORT_SYMBOL(generic_file_buffered_write
);
2458 * __generic_file_aio_write - write data to a file
2459 * @iocb: IO state structure (file, offset, etc.)
2460 * @iov: vector with data to write
2461 * @nr_segs: number of segments in the vector
2462 * @ppos: position where to write
2464 * This function does all the work needed for actually writing data to a
2465 * file. It does all basic checks, removes SUID from the file, updates
2466 * modification times and calls proper subroutines depending on whether we
2467 * do direct IO or a standard buffered write.
2469 * It expects i_mutex to be grabbed unless we work on a block device or similar
2470 * object which does not need locking at all.
2472 * This function does *not* take care of syncing data in case of O_SYNC write.
2473 * A caller has to handle it. This is mainly due to the fact that we want to
2474 * avoid syncing under i_mutex.
2476 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2477 unsigned long nr_segs
, loff_t
*ppos
)
2479 struct file
*file
= iocb
->ki_filp
;
2480 struct address_space
* mapping
= file
->f_mapping
;
2481 size_t ocount
; /* original count */
2482 size_t count
; /* after file limit checks */
2483 struct inode
*inode
= mapping
->host
;
2489 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2496 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2498 /* We can write back this queue in page reclaim */
2499 current
->backing_dev_info
= mapping
->backing_dev_info
;
2502 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2509 err
= file_remove_suid(file
);
2513 file_update_time(file
);
2515 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2516 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2518 ssize_t written_buffered
;
2520 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2521 ppos
, count
, ocount
);
2522 if (written
< 0 || written
== count
)
2525 * direct-io write to a hole: fall through to buffered I/O
2526 * for completing the rest of the request.
2530 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2531 nr_segs
, pos
, ppos
, count
,
2534 * If generic_file_buffered_write() retuned a synchronous error
2535 * then we want to return the number of bytes which were
2536 * direct-written, or the error code if that was zero. Note
2537 * that this differs from normal direct-io semantics, which
2538 * will return -EFOO even if some bytes were written.
2540 if (written_buffered
< 0) {
2541 err
= written_buffered
;
2546 * We need to ensure that the page cache pages are written to
2547 * disk and invalidated to preserve the expected O_DIRECT
2550 endbyte
= pos
+ written_buffered
- written
- 1;
2551 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2553 written
= written_buffered
;
2554 invalidate_mapping_pages(mapping
,
2555 pos
>> PAGE_CACHE_SHIFT
,
2556 endbyte
>> PAGE_CACHE_SHIFT
);
2559 * We don't know how much we wrote, so just return
2560 * the number of bytes which were direct-written
2564 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2565 pos
, ppos
, count
, written
);
2568 current
->backing_dev_info
= NULL
;
2569 return written
? written
: err
;
2571 EXPORT_SYMBOL(__generic_file_aio_write
);
2574 * generic_file_aio_write - write data to a file
2575 * @iocb: IO state structure
2576 * @iov: vector with data to write
2577 * @nr_segs: number of segments in the vector
2578 * @pos: position in file where to write
2580 * This is a wrapper around __generic_file_aio_write() to be used by most
2581 * filesystems. It takes care of syncing the file in case of O_SYNC file
2582 * and acquires i_mutex as needed.
2584 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2585 unsigned long nr_segs
, loff_t pos
)
2587 struct file
*file
= iocb
->ki_filp
;
2588 struct inode
*inode
= file
->f_mapping
->host
;
2589 struct blk_plug plug
;
2592 BUG_ON(iocb
->ki_pos
!= pos
);
2594 mutex_lock(&inode
->i_mutex
);
2595 blk_start_plug(&plug
);
2596 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2597 mutex_unlock(&inode
->i_mutex
);
2599 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2602 err
= generic_write_sync(file
, pos
, ret
);
2603 if (err
< 0 && ret
> 0)
2606 blk_finish_plug(&plug
);
2609 EXPORT_SYMBOL(generic_file_aio_write
);
2612 * try_to_release_page() - release old fs-specific metadata on a page
2614 * @page: the page which the kernel is trying to free
2615 * @gfp_mask: memory allocation flags (and I/O mode)
2617 * The address_space is to try to release any data against the page
2618 * (presumably at page->private). If the release was successful, return `1'.
2619 * Otherwise return zero.
2621 * This may also be called if PG_fscache is set on a page, indicating that the
2622 * page is known to the local caching routines.
2624 * The @gfp_mask argument specifies whether I/O may be performed to release
2625 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2628 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2630 struct address_space
* const mapping
= page
->mapping
;
2632 BUG_ON(!PageLocked(page
));
2633 if (PageWriteback(page
))
2636 if (mapping
&& mapping
->a_ops
->releasepage
)
2637 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2638 return try_to_free_buffers(page
);
2641 EXPORT_SYMBOL(try_to_release_page
);