xen: balloon: use correct type for frame_list
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / ktime.h
blob06177ba10a1617461dbe6803efc22ba6dfb43304
1 /*
2 * include/linux/ktime.h
4 * ktime_t - nanosecond-resolution time format.
6 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
9 * data type definitions, declarations, prototypes and macros.
11 * Started by: Thomas Gleixner and Ingo Molnar
13 * Credits:
15 * Roman Zippel provided the ideas and primary code snippets of
16 * the ktime_t union and further simplifications of the original
17 * code.
19 * For licencing details see kernel-base/COPYING
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
28 * ktime_t:
30 * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
31 * internal representation of time values in scalar nanoseconds. The
32 * design plays out best on 64-bit CPUs, where most conversions are
33 * NOPs and most arithmetic ktime_t operations are plain arithmetic
34 * operations.
36 * On 32-bit CPUs an optimized representation of the timespec structure
37 * is used to avoid expensive conversions from and to timespecs. The
38 * endian-aware order of the tv struct members is chosen to allow
39 * mathematical operations on the tv64 member of the union too, which
40 * for certain operations produces better code.
42 * For architectures with efficient support for 64/32-bit conversions the
43 * plain scalar nanosecond based representation can be selected by the
44 * config switch CONFIG_KTIME_SCALAR.
46 union ktime {
47 s64 tv64;
48 #if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
49 struct {
50 # ifdef __BIG_ENDIAN
51 s32 sec, nsec;
52 # else
53 s32 nsec, sec;
54 # endif
55 } tv;
56 #endif
59 typedef union ktime ktime_t; /* Kill this */
62 * ktime_t definitions when using the 64-bit scalar representation:
65 #if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
67 /**
68 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
69 * @secs: seconds to set
70 * @nsecs: nanoseconds to set
72 * Return the ktime_t representation of the value
74 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
76 #if (BITS_PER_LONG == 64)
77 if (unlikely(secs >= KTIME_SEC_MAX))
78 return (ktime_t){ .tv64 = KTIME_MAX };
79 #endif
80 return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
83 /* Subtract two ktime_t variables. rem = lhs -rhs: */
84 #define ktime_sub(lhs, rhs) \
85 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
87 /* Add two ktime_t variables. res = lhs + rhs: */
88 #define ktime_add(lhs, rhs) \
89 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
92 * Add a ktime_t variable and a scalar nanosecond value.
93 * res = kt + nsval:
95 #define ktime_add_ns(kt, nsval) \
96 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
99 * Subtract a scalar nanosecod from a ktime_t variable
100 * res = kt - nsval:
102 #define ktime_sub_ns(kt, nsval) \
103 ({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
105 /* convert a timespec to ktime_t format: */
106 static inline ktime_t timespec_to_ktime(struct timespec ts)
108 return ktime_set(ts.tv_sec, ts.tv_nsec);
111 /* convert a timeval to ktime_t format: */
112 static inline ktime_t timeval_to_ktime(struct timeval tv)
114 return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
117 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
118 #define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
120 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
121 #define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
123 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
124 #define ktime_to_ns(kt) ((kt).tv64)
126 #else /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
129 * Helper macros/inlines to get the ktime_t math right in the timespec
130 * representation. The macros are sometimes ugly - their actual use is
131 * pretty okay-ish, given the circumstances. We do all this for
132 * performance reasons. The pure scalar nsec_t based code was nice and
133 * simple, but created too many 64-bit / 32-bit conversions and divisions.
135 * Be especially aware that negative values are represented in a way
136 * that the tv.sec field is negative and the tv.nsec field is greater
137 * or equal to zero but less than nanoseconds per second. This is the
138 * same representation which is used by timespecs.
140 * tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
143 /* Set a ktime_t variable to a value in sec/nsec representation: */
144 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
146 return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
150 * ktime_sub - subtract two ktime_t variables
151 * @lhs: minuend
152 * @rhs: subtrahend
154 * Returns the remainder of the subtraction
156 static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
158 ktime_t res;
160 res.tv64 = lhs.tv64 - rhs.tv64;
161 if (res.tv.nsec < 0)
162 res.tv.nsec += NSEC_PER_SEC;
164 return res;
168 * ktime_add - add two ktime_t variables
169 * @add1: addend1
170 * @add2: addend2
172 * Returns the sum of @add1 and @add2.
174 static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
176 ktime_t res;
178 res.tv64 = add1.tv64 + add2.tv64;
180 * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
181 * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
183 * it's equivalent to:
184 * tv.nsec -= NSEC_PER_SEC
185 * tv.sec ++;
187 if (res.tv.nsec >= NSEC_PER_SEC)
188 res.tv64 += (u32)-NSEC_PER_SEC;
190 return res;
194 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
195 * @kt: addend
196 * @nsec: the scalar nsec value to add
198 * Returns the sum of @kt and @nsec in ktime_t format
200 extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
203 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
204 * @kt: minuend
205 * @nsec: the scalar nsec value to subtract
207 * Returns the subtraction of @nsec from @kt in ktime_t format
209 extern ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec);
212 * timespec_to_ktime - convert a timespec to ktime_t format
213 * @ts: the timespec variable to convert
215 * Returns a ktime_t variable with the converted timespec value
217 static inline ktime_t timespec_to_ktime(const struct timespec ts)
219 return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
220 .nsec = (s32)ts.tv_nsec } };
224 * timeval_to_ktime - convert a timeval to ktime_t format
225 * @tv: the timeval variable to convert
227 * Returns a ktime_t variable with the converted timeval value
229 static inline ktime_t timeval_to_ktime(const struct timeval tv)
231 return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
232 .nsec = (s32)tv.tv_usec * 1000 } };
236 * ktime_to_timespec - convert a ktime_t variable to timespec format
237 * @kt: the ktime_t variable to convert
239 * Returns the timespec representation of the ktime value
241 static inline struct timespec ktime_to_timespec(const ktime_t kt)
243 return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
244 .tv_nsec = (long) kt.tv.nsec };
248 * ktime_to_timeval - convert a ktime_t variable to timeval format
249 * @kt: the ktime_t variable to convert
251 * Returns the timeval representation of the ktime value
253 static inline struct timeval ktime_to_timeval(const ktime_t kt)
255 return (struct timeval) {
256 .tv_sec = (time_t) kt.tv.sec,
257 .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
261 * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
262 * @kt: the ktime_t variable to convert
264 * Returns the scalar nanoseconds representation of @kt
266 static inline s64 ktime_to_ns(const ktime_t kt)
268 return (s64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
271 #endif /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
274 * ktime_equal - Compares two ktime_t variables to see if they are equal
275 * @cmp1: comparable1
276 * @cmp2: comparable2
278 * Compare two ktime_t variables, returns 1 if equal
280 static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
282 return cmp1.tv64 == cmp2.tv64;
285 static inline s64 ktime_to_us(const ktime_t kt)
287 struct timeval tv = ktime_to_timeval(kt);
288 return (s64) tv.tv_sec * USEC_PER_SEC + tv.tv_usec;
291 static inline s64 ktime_to_ms(const ktime_t kt)
293 struct timeval tv = ktime_to_timeval(kt);
294 return (s64) tv.tv_sec * MSEC_PER_SEC + tv.tv_usec / USEC_PER_MSEC;
297 static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
299 return ktime_to_us(ktime_sub(later, earlier));
302 static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
304 return ktime_add_ns(kt, usec * 1000);
307 static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
309 return ktime_sub_ns(kt, usec * 1000);
312 extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
315 * The resolution of the clocks. The resolution value is returned in
316 * the clock_getres() system call to give application programmers an
317 * idea of the (in)accuracy of timers. Timer values are rounded up to
318 * this resolution values.
320 #define LOW_RES_NSEC TICK_NSEC
321 #define KTIME_LOW_RES (ktime_t){ .tv64 = LOW_RES_NSEC }
323 /* Get the monotonic time in timespec format: */
324 extern void ktime_get_ts(struct timespec *ts);
326 /* Get the real (wall-) time in timespec format: */
327 #define ktime_get_real_ts(ts) getnstimeofday(ts)
329 static inline ktime_t ns_to_ktime(u64 ns)
331 static const ktime_t ktime_zero = { .tv64 = 0 };
332 return ktime_add_ns(ktime_zero, ns);
335 #endif