KVM: VMX: Change cs reset state to be a data segment
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / core / hcd.c
blob7a4ccf57609a38d718f28bdd3a41846f9c1a780a
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
42 #include <linux/usb.h>
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
49 /*-------------------------------------------------------------------------*/
52 * USB Host Controller Driver framework
54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55 * HCD-specific behaviors/bugs.
57 * This does error checks, tracks devices and urbs, and delegates to a
58 * "hc_driver" only for code (and data) that really needs to know about
59 * hardware differences. That includes root hub registers, i/o queues,
60 * and so on ... but as little else as possible.
62 * Shared code includes most of the "root hub" code (these are emulated,
63 * though each HC's hardware works differently) and PCI glue, plus request
64 * tracking overhead. The HCD code should only block on spinlocks or on
65 * hardware handshaking; blocking on software events (such as other kernel
66 * threads releasing resources, or completing actions) is all generic.
68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70 * only by the hub driver ... and that neither should be seen or used by
71 * usb client device drivers.
73 * Contributors of ideas or unattributed patches include: David Brownell,
74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76 * HISTORY:
77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
78 * associated cleanup. "usb_hcd" still != "usb_bus".
79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
82 /*-------------------------------------------------------------------------*/
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS 64
94 struct usb_busmap {
95 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
97 static struct usb_busmap busmap;
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115 static inline int is_root_hub(struct usb_device *udev)
117 return (udev->parent == NULL);
120 /*-------------------------------------------------------------------------*/
123 * Sharable chunks of root hub code.
126 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
129 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
131 /* usb 2.0 root hub device descriptor */
132 static const u8 usb2_rh_dev_descriptor [18] = {
133 0x12, /* __u8 bLength; */
134 0x01, /* __u8 bDescriptorType; Device */
135 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
140 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
143 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
152 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
154 /* usb 1.1 root hub device descriptor */
155 static const u8 usb11_rh_dev_descriptor [18] = {
156 0x12, /* __u8 bLength; */
157 0x01, /* __u8 bDescriptorType; Device */
158 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
160 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
161 0x00, /* __u8 bDeviceSubClass; */
162 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
163 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
165 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
166 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
167 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
169 0x03, /* __u8 iManufacturer; */
170 0x02, /* __u8 iProduct; */
171 0x01, /* __u8 iSerialNumber; */
172 0x01 /* __u8 bNumConfigurations; */
176 /*-------------------------------------------------------------------------*/
178 /* Configuration descriptors for our root hubs */
180 static const u8 fs_rh_config_descriptor [] = {
182 /* one configuration */
183 0x09, /* __u8 bLength; */
184 0x02, /* __u8 bDescriptorType; Configuration */
185 0x19, 0x00, /* __le16 wTotalLength; */
186 0x01, /* __u8 bNumInterfaces; (1) */
187 0x01, /* __u8 bConfigurationValue; */
188 0x00, /* __u8 iConfiguration; */
189 0xc0, /* __u8 bmAttributes;
190 Bit 7: must be set,
191 6: Self-powered,
192 5: Remote wakeup,
193 4..0: resvd */
194 0x00, /* __u8 MaxPower; */
196 /* USB 1.1:
197 * USB 2.0, single TT organization (mandatory):
198 * one interface, protocol 0
200 * USB 2.0, multiple TT organization (optional):
201 * two interfaces, protocols 1 (like single TT)
202 * and 2 (multiple TT mode) ... config is
203 * sometimes settable
204 * NOT IMPLEMENTED
207 /* one interface */
208 0x09, /* __u8 if_bLength; */
209 0x04, /* __u8 if_bDescriptorType; Interface */
210 0x00, /* __u8 if_bInterfaceNumber; */
211 0x00, /* __u8 if_bAlternateSetting; */
212 0x01, /* __u8 if_bNumEndpoints; */
213 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
214 0x00, /* __u8 if_bInterfaceSubClass; */
215 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
216 0x00, /* __u8 if_iInterface; */
218 /* one endpoint (status change endpoint) */
219 0x07, /* __u8 ep_bLength; */
220 0x05, /* __u8 ep_bDescriptorType; Endpoint */
221 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
222 0x03, /* __u8 ep_bmAttributes; Interrupt */
223 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
224 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
227 static const u8 hs_rh_config_descriptor [] = {
229 /* one configuration */
230 0x09, /* __u8 bLength; */
231 0x02, /* __u8 bDescriptorType; Configuration */
232 0x19, 0x00, /* __le16 wTotalLength; */
233 0x01, /* __u8 bNumInterfaces; (1) */
234 0x01, /* __u8 bConfigurationValue; */
235 0x00, /* __u8 iConfiguration; */
236 0xc0, /* __u8 bmAttributes;
237 Bit 7: must be set,
238 6: Self-powered,
239 5: Remote wakeup,
240 4..0: resvd */
241 0x00, /* __u8 MaxPower; */
243 /* USB 1.1:
244 * USB 2.0, single TT organization (mandatory):
245 * one interface, protocol 0
247 * USB 2.0, multiple TT organization (optional):
248 * two interfaces, protocols 1 (like single TT)
249 * and 2 (multiple TT mode) ... config is
250 * sometimes settable
251 * NOT IMPLEMENTED
254 /* one interface */
255 0x09, /* __u8 if_bLength; */
256 0x04, /* __u8 if_bDescriptorType; Interface */
257 0x00, /* __u8 if_bInterfaceNumber; */
258 0x00, /* __u8 if_bAlternateSetting; */
259 0x01, /* __u8 if_bNumEndpoints; */
260 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
261 0x00, /* __u8 if_bInterfaceSubClass; */
262 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
263 0x00, /* __u8 if_iInterface; */
265 /* one endpoint (status change endpoint) */
266 0x07, /* __u8 ep_bLength; */
267 0x05, /* __u8 ep_bDescriptorType; Endpoint */
268 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
269 0x03, /* __u8 ep_bmAttributes; Interrupt */
270 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
271 * see hub.c:hub_configure() for details. */
272 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
273 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
276 /*-------------------------------------------------------------------------*/
279 * helper routine for returning string descriptors in UTF-16LE
280 * input can actually be ISO-8859-1; ASCII is its 7-bit subset
282 static int ascii2utf (char *s, u8 *utf, int utfmax)
284 int retval;
286 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
287 *utf++ = *s++;
288 *utf++ = 0;
290 if (utfmax > 0) {
291 *utf = *s;
292 ++retval;
294 return retval;
298 * rh_string - provides manufacturer, product and serial strings for root hub
299 * @id: the string ID number (1: serial number, 2: product, 3: vendor)
300 * @hcd: the host controller for this root hub
301 * @data: return packet in UTF-16 LE
302 * @len: length of the return packet
304 * Produces either a manufacturer, product or serial number string for the
305 * virtual root hub device.
307 static int rh_string (
308 int id,
309 struct usb_hcd *hcd,
310 u8 *data,
311 int len
313 char buf [100];
315 // language ids
316 if (id == 0) {
317 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */
318 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */
319 len = min (len, 4);
320 memcpy (data, buf, len);
321 return len;
323 // serial number
324 } else if (id == 1) {
325 strlcpy (buf, hcd->self.bus_name, sizeof buf);
327 // product description
328 } else if (id == 2) {
329 strlcpy (buf, hcd->product_desc, sizeof buf);
331 // id 3 == vendor description
332 } else if (id == 3) {
333 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
334 init_utsname()->release, hcd->driver->description);
336 // unsupported IDs --> "protocol stall"
337 } else
338 return -EPIPE;
340 switch (len) { /* All cases fall through */
341 default:
342 len = 2 + ascii2utf (buf, data + 2, len - 2);
343 case 2:
344 data [1] = 3; /* type == string */
345 case 1:
346 data [0] = 2 * (strlen (buf) + 1);
347 case 0:
348 ; /* Compiler wants a statement here */
350 return len;
354 /* Root hub control transfers execute synchronously */
355 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
357 struct usb_ctrlrequest *cmd;
358 u16 typeReq, wValue, wIndex, wLength;
359 u8 *ubuf = urb->transfer_buffer;
360 u8 tbuf [sizeof (struct usb_hub_descriptor)]
361 __attribute__((aligned(4)));
362 const u8 *bufp = tbuf;
363 int len = 0;
364 int status;
365 int n;
366 u8 patch_wakeup = 0;
367 u8 patch_protocol = 0;
369 might_sleep();
371 spin_lock_irq(&hcd_root_hub_lock);
372 status = usb_hcd_link_urb_to_ep(hcd, urb);
373 spin_unlock_irq(&hcd_root_hub_lock);
374 if (status)
375 return status;
376 urb->hcpriv = hcd; /* Indicate it's queued */
378 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
379 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
380 wValue = le16_to_cpu (cmd->wValue);
381 wIndex = le16_to_cpu (cmd->wIndex);
382 wLength = le16_to_cpu (cmd->wLength);
384 if (wLength > urb->transfer_buffer_length)
385 goto error;
387 urb->actual_length = 0;
388 switch (typeReq) {
390 /* DEVICE REQUESTS */
392 /* The root hub's remote wakeup enable bit is implemented using
393 * driver model wakeup flags. If this system supports wakeup
394 * through USB, userspace may change the default "allow wakeup"
395 * policy through sysfs or these calls.
397 * Most root hubs support wakeup from downstream devices, for
398 * runtime power management (disabling USB clocks and reducing
399 * VBUS power usage). However, not all of them do so; silicon,
400 * board, and BIOS bugs here are not uncommon, so these can't
401 * be treated quite like external hubs.
403 * Likewise, not all root hubs will pass wakeup events upstream,
404 * to wake up the whole system. So don't assume root hub and
405 * controller capabilities are identical.
408 case DeviceRequest | USB_REQ_GET_STATUS:
409 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
410 << USB_DEVICE_REMOTE_WAKEUP)
411 | (1 << USB_DEVICE_SELF_POWERED);
412 tbuf [1] = 0;
413 len = 2;
414 break;
415 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
416 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
417 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
418 else
419 goto error;
420 break;
421 case DeviceOutRequest | USB_REQ_SET_FEATURE:
422 if (device_can_wakeup(&hcd->self.root_hub->dev)
423 && wValue == USB_DEVICE_REMOTE_WAKEUP)
424 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
425 else
426 goto error;
427 break;
428 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
429 tbuf [0] = 1;
430 len = 1;
431 /* FALLTHROUGH */
432 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
433 break;
434 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
435 switch (wValue & 0xff00) {
436 case USB_DT_DEVICE << 8:
437 if (hcd->driver->flags & HCD_USB2)
438 bufp = usb2_rh_dev_descriptor;
439 else if (hcd->driver->flags & HCD_USB11)
440 bufp = usb11_rh_dev_descriptor;
441 else
442 goto error;
443 len = 18;
444 if (hcd->has_tt)
445 patch_protocol = 1;
446 break;
447 case USB_DT_CONFIG << 8:
448 if (hcd->driver->flags & HCD_USB2) {
449 bufp = hs_rh_config_descriptor;
450 len = sizeof hs_rh_config_descriptor;
451 } else {
452 bufp = fs_rh_config_descriptor;
453 len = sizeof fs_rh_config_descriptor;
455 if (device_can_wakeup(&hcd->self.root_hub->dev))
456 patch_wakeup = 1;
457 break;
458 case USB_DT_STRING << 8:
459 n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
460 if (n < 0)
461 goto error;
462 urb->actual_length = n;
463 break;
464 default:
465 goto error;
467 break;
468 case DeviceRequest | USB_REQ_GET_INTERFACE:
469 tbuf [0] = 0;
470 len = 1;
471 /* FALLTHROUGH */
472 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
473 break;
474 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
475 // wValue == urb->dev->devaddr
476 dev_dbg (hcd->self.controller, "root hub device address %d\n",
477 wValue);
478 break;
480 /* INTERFACE REQUESTS (no defined feature/status flags) */
482 /* ENDPOINT REQUESTS */
484 case EndpointRequest | USB_REQ_GET_STATUS:
485 // ENDPOINT_HALT flag
486 tbuf [0] = 0;
487 tbuf [1] = 0;
488 len = 2;
489 /* FALLTHROUGH */
490 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
491 case EndpointOutRequest | USB_REQ_SET_FEATURE:
492 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
493 break;
495 /* CLASS REQUESTS (and errors) */
497 default:
498 /* non-generic request */
499 switch (typeReq) {
500 case GetHubStatus:
501 case GetPortStatus:
502 len = 4;
503 break;
504 case GetHubDescriptor:
505 len = sizeof (struct usb_hub_descriptor);
506 break;
508 status = hcd->driver->hub_control (hcd,
509 typeReq, wValue, wIndex,
510 tbuf, wLength);
511 break;
512 error:
513 /* "protocol stall" on error */
514 status = -EPIPE;
517 if (status) {
518 len = 0;
519 if (status != -EPIPE) {
520 dev_dbg (hcd->self.controller,
521 "CTRL: TypeReq=0x%x val=0x%x "
522 "idx=0x%x len=%d ==> %d\n",
523 typeReq, wValue, wIndex,
524 wLength, status);
527 if (len) {
528 if (urb->transfer_buffer_length < len)
529 len = urb->transfer_buffer_length;
530 urb->actual_length = len;
531 // always USB_DIR_IN, toward host
532 memcpy (ubuf, bufp, len);
534 /* report whether RH hardware supports remote wakeup */
535 if (patch_wakeup &&
536 len > offsetof (struct usb_config_descriptor,
537 bmAttributes))
538 ((struct usb_config_descriptor *)ubuf)->bmAttributes
539 |= USB_CONFIG_ATT_WAKEUP;
541 /* report whether RH hardware has an integrated TT */
542 if (patch_protocol &&
543 len > offsetof(struct usb_device_descriptor,
544 bDeviceProtocol))
545 ((struct usb_device_descriptor *) ubuf)->
546 bDeviceProtocol = 1;
549 /* any errors get returned through the urb completion */
550 spin_lock_irq(&hcd_root_hub_lock);
551 usb_hcd_unlink_urb_from_ep(hcd, urb);
553 /* This peculiar use of spinlocks echoes what real HC drivers do.
554 * Avoiding calls to local_irq_disable/enable makes the code
555 * RT-friendly.
557 spin_unlock(&hcd_root_hub_lock);
558 usb_hcd_giveback_urb(hcd, urb, status);
559 spin_lock(&hcd_root_hub_lock);
561 spin_unlock_irq(&hcd_root_hub_lock);
562 return 0;
565 /*-------------------------------------------------------------------------*/
568 * Root Hub interrupt transfers are polled using a timer if the
569 * driver requests it; otherwise the driver is responsible for
570 * calling usb_hcd_poll_rh_status() when an event occurs.
572 * Completions are called in_interrupt(), but they may or may not
573 * be in_irq().
575 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
577 struct urb *urb;
578 int length;
579 unsigned long flags;
580 char buffer[4]; /* Any root hubs with > 31 ports? */
582 if (unlikely(!hcd->rh_registered))
583 return;
584 if (!hcd->uses_new_polling && !hcd->status_urb)
585 return;
587 length = hcd->driver->hub_status_data(hcd, buffer);
588 if (length > 0) {
590 /* try to complete the status urb */
591 spin_lock_irqsave(&hcd_root_hub_lock, flags);
592 urb = hcd->status_urb;
593 if (urb) {
594 hcd->poll_pending = 0;
595 hcd->status_urb = NULL;
596 urb->actual_length = length;
597 memcpy(urb->transfer_buffer, buffer, length);
599 usb_hcd_unlink_urb_from_ep(hcd, urb);
600 spin_unlock(&hcd_root_hub_lock);
601 usb_hcd_giveback_urb(hcd, urb, 0);
602 spin_lock(&hcd_root_hub_lock);
603 } else {
604 length = 0;
605 hcd->poll_pending = 1;
607 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
610 /* The USB 2.0 spec says 256 ms. This is close enough and won't
611 * exceed that limit if HZ is 100. The math is more clunky than
612 * maybe expected, this is to make sure that all timers for USB devices
613 * fire at the same time to give the CPU a break inbetween */
614 if (hcd->uses_new_polling ? hcd->poll_rh :
615 (length == 0 && hcd->status_urb != NULL))
616 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
618 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
620 /* timer callback */
621 static void rh_timer_func (unsigned long _hcd)
623 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
626 /*-------------------------------------------------------------------------*/
628 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
630 int retval;
631 unsigned long flags;
632 int len = 1 + (urb->dev->maxchild / 8);
634 spin_lock_irqsave (&hcd_root_hub_lock, flags);
635 if (hcd->status_urb || urb->transfer_buffer_length < len) {
636 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
637 retval = -EINVAL;
638 goto done;
641 retval = usb_hcd_link_urb_to_ep(hcd, urb);
642 if (retval)
643 goto done;
645 hcd->status_urb = urb;
646 urb->hcpriv = hcd; /* indicate it's queued */
647 if (!hcd->uses_new_polling)
648 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
650 /* If a status change has already occurred, report it ASAP */
651 else if (hcd->poll_pending)
652 mod_timer(&hcd->rh_timer, jiffies);
653 retval = 0;
654 done:
655 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
656 return retval;
659 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
661 if (usb_endpoint_xfer_int(&urb->ep->desc))
662 return rh_queue_status (hcd, urb);
663 if (usb_endpoint_xfer_control(&urb->ep->desc))
664 return rh_call_control (hcd, urb);
665 return -EINVAL;
668 /*-------------------------------------------------------------------------*/
670 /* Unlinks of root-hub control URBs are legal, but they don't do anything
671 * since these URBs always execute synchronously.
673 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
675 unsigned long flags;
676 int rc;
678 spin_lock_irqsave(&hcd_root_hub_lock, flags);
679 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
680 if (rc)
681 goto done;
683 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
684 ; /* Do nothing */
686 } else { /* Status URB */
687 if (!hcd->uses_new_polling)
688 del_timer (&hcd->rh_timer);
689 if (urb == hcd->status_urb) {
690 hcd->status_urb = NULL;
691 usb_hcd_unlink_urb_from_ep(hcd, urb);
693 spin_unlock(&hcd_root_hub_lock);
694 usb_hcd_giveback_urb(hcd, urb, status);
695 spin_lock(&hcd_root_hub_lock);
698 done:
699 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
700 return rc;
706 * Show & store the current value of authorized_default
708 static ssize_t usb_host_authorized_default_show(struct device *dev,
709 struct device_attribute *attr,
710 char *buf)
712 struct usb_device *rh_usb_dev = to_usb_device(dev);
713 struct usb_bus *usb_bus = rh_usb_dev->bus;
714 struct usb_hcd *usb_hcd;
716 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
717 return -ENODEV;
718 usb_hcd = bus_to_hcd(usb_bus);
719 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
722 static ssize_t usb_host_authorized_default_store(struct device *dev,
723 struct device_attribute *attr,
724 const char *buf, size_t size)
726 ssize_t result;
727 unsigned val;
728 struct usb_device *rh_usb_dev = to_usb_device(dev);
729 struct usb_bus *usb_bus = rh_usb_dev->bus;
730 struct usb_hcd *usb_hcd;
732 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
733 return -ENODEV;
734 usb_hcd = bus_to_hcd(usb_bus);
735 result = sscanf(buf, "%u\n", &val);
736 if (result == 1) {
737 usb_hcd->authorized_default = val? 1 : 0;
738 result = size;
740 else
741 result = -EINVAL;
742 return result;
745 static DEVICE_ATTR(authorized_default, 0644,
746 usb_host_authorized_default_show,
747 usb_host_authorized_default_store);
750 /* Group all the USB bus attributes */
751 static struct attribute *usb_bus_attrs[] = {
752 &dev_attr_authorized_default.attr,
753 NULL,
756 static struct attribute_group usb_bus_attr_group = {
757 .name = NULL, /* we want them in the same directory */
758 .attrs = usb_bus_attrs,
763 /*-------------------------------------------------------------------------*/
765 static struct class *usb_host_class;
767 int usb_host_init(void)
769 int retval = 0;
771 usb_host_class = class_create(THIS_MODULE, "usb_host");
772 if (IS_ERR(usb_host_class))
773 retval = PTR_ERR(usb_host_class);
774 return retval;
777 void usb_host_cleanup(void)
779 class_destroy(usb_host_class);
783 * usb_bus_init - shared initialization code
784 * @bus: the bus structure being initialized
786 * This code is used to initialize a usb_bus structure, memory for which is
787 * separately managed.
789 static void usb_bus_init (struct usb_bus *bus)
791 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
793 bus->devnum_next = 1;
795 bus->root_hub = NULL;
796 bus->busnum = -1;
797 bus->bandwidth_allocated = 0;
798 bus->bandwidth_int_reqs = 0;
799 bus->bandwidth_isoc_reqs = 0;
801 INIT_LIST_HEAD (&bus->bus_list);
804 /*-------------------------------------------------------------------------*/
807 * usb_register_bus - registers the USB host controller with the usb core
808 * @bus: pointer to the bus to register
809 * Context: !in_interrupt()
811 * Assigns a bus number, and links the controller into usbcore data
812 * structures so that it can be seen by scanning the bus list.
814 static int usb_register_bus(struct usb_bus *bus)
816 int result = -E2BIG;
817 int busnum;
819 mutex_lock(&usb_bus_list_lock);
820 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
821 if (busnum >= USB_MAXBUS) {
822 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
823 goto error_find_busnum;
825 set_bit (busnum, busmap.busmap);
826 bus->busnum = busnum;
828 bus->dev = device_create_drvdata(usb_host_class, bus->controller,
829 MKDEV(0, 0), bus,
830 "usb_host%d", busnum);
831 result = PTR_ERR(bus->dev);
832 if (IS_ERR(bus->dev))
833 goto error_create_class_dev;
835 /* Add it to the local list of buses */
836 list_add (&bus->bus_list, &usb_bus_list);
837 mutex_unlock(&usb_bus_list_lock);
839 usb_notify_add_bus(bus);
841 dev_info (bus->controller, "new USB bus registered, assigned bus "
842 "number %d\n", bus->busnum);
843 return 0;
845 error_create_class_dev:
846 clear_bit(busnum, busmap.busmap);
847 error_find_busnum:
848 mutex_unlock(&usb_bus_list_lock);
849 return result;
853 * usb_deregister_bus - deregisters the USB host controller
854 * @bus: pointer to the bus to deregister
855 * Context: !in_interrupt()
857 * Recycles the bus number, and unlinks the controller from usbcore data
858 * structures so that it won't be seen by scanning the bus list.
860 static void usb_deregister_bus (struct usb_bus *bus)
862 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
865 * NOTE: make sure that all the devices are removed by the
866 * controller code, as well as having it call this when cleaning
867 * itself up
869 mutex_lock(&usb_bus_list_lock);
870 list_del (&bus->bus_list);
871 mutex_unlock(&usb_bus_list_lock);
873 usb_notify_remove_bus(bus);
875 clear_bit (bus->busnum, busmap.busmap);
877 device_unregister(bus->dev);
881 * register_root_hub - called by usb_add_hcd() to register a root hub
882 * @hcd: host controller for this root hub
884 * This function registers the root hub with the USB subsystem. It sets up
885 * the device properly in the device tree and then calls usb_new_device()
886 * to register the usb device. It also assigns the root hub's USB address
887 * (always 1).
889 static int register_root_hub(struct usb_hcd *hcd)
891 struct device *parent_dev = hcd->self.controller;
892 struct usb_device *usb_dev = hcd->self.root_hub;
893 const int devnum = 1;
894 int retval;
896 usb_dev->devnum = devnum;
897 usb_dev->bus->devnum_next = devnum + 1;
898 memset (&usb_dev->bus->devmap.devicemap, 0,
899 sizeof usb_dev->bus->devmap.devicemap);
900 set_bit (devnum, usb_dev->bus->devmap.devicemap);
901 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
903 mutex_lock(&usb_bus_list_lock);
905 usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
906 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
907 if (retval != sizeof usb_dev->descriptor) {
908 mutex_unlock(&usb_bus_list_lock);
909 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
910 dev_name(&usb_dev->dev), retval);
911 return (retval < 0) ? retval : -EMSGSIZE;
914 retval = usb_new_device (usb_dev);
915 if (retval) {
916 dev_err (parent_dev, "can't register root hub for %s, %d\n",
917 dev_name(&usb_dev->dev), retval);
919 mutex_unlock(&usb_bus_list_lock);
921 if (retval == 0) {
922 spin_lock_irq (&hcd_root_hub_lock);
923 hcd->rh_registered = 1;
924 spin_unlock_irq (&hcd_root_hub_lock);
926 /* Did the HC die before the root hub was registered? */
927 if (hcd->state == HC_STATE_HALT)
928 usb_hc_died (hcd); /* This time clean up */
931 return retval;
935 /*-------------------------------------------------------------------------*/
938 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
939 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
940 * @is_input: true iff the transaction sends data to the host
941 * @isoc: true for isochronous transactions, false for interrupt ones
942 * @bytecount: how many bytes in the transaction.
944 * Returns approximate bus time in nanoseconds for a periodic transaction.
945 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
946 * scheduled in software, this function is only used for such scheduling.
948 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
950 unsigned long tmp;
952 switch (speed) {
953 case USB_SPEED_LOW: /* INTR only */
954 if (is_input) {
955 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
956 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
957 } else {
958 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
959 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
961 case USB_SPEED_FULL: /* ISOC or INTR */
962 if (isoc) {
963 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
964 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
965 } else {
966 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
967 return (9107L + BW_HOST_DELAY + tmp);
969 case USB_SPEED_HIGH: /* ISOC or INTR */
970 // FIXME adjust for input vs output
971 if (isoc)
972 tmp = HS_NSECS_ISO (bytecount);
973 else
974 tmp = HS_NSECS (bytecount);
975 return tmp;
976 default:
977 pr_debug ("%s: bogus device speed!\n", usbcore_name);
978 return -1;
981 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
984 /*-------------------------------------------------------------------------*/
987 * Generic HC operations.
990 /*-------------------------------------------------------------------------*/
993 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
994 * @hcd: host controller to which @urb was submitted
995 * @urb: URB being submitted
997 * Host controller drivers should call this routine in their enqueue()
998 * method. The HCD's private spinlock must be held and interrupts must
999 * be disabled. The actions carried out here are required for URB
1000 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1002 * Returns 0 for no error, otherwise a negative error code (in which case
1003 * the enqueue() method must fail). If no error occurs but enqueue() fails
1004 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1005 * the private spinlock and returning.
1007 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1009 int rc = 0;
1011 spin_lock(&hcd_urb_list_lock);
1013 /* Check that the URB isn't being killed */
1014 if (unlikely(urb->reject)) {
1015 rc = -EPERM;
1016 goto done;
1019 if (unlikely(!urb->ep->enabled)) {
1020 rc = -ENOENT;
1021 goto done;
1024 if (unlikely(!urb->dev->can_submit)) {
1025 rc = -EHOSTUNREACH;
1026 goto done;
1030 * Check the host controller's state and add the URB to the
1031 * endpoint's queue.
1033 switch (hcd->state) {
1034 case HC_STATE_RUNNING:
1035 case HC_STATE_RESUMING:
1036 urb->unlinked = 0;
1037 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1038 break;
1039 default:
1040 rc = -ESHUTDOWN;
1041 goto done;
1043 done:
1044 spin_unlock(&hcd_urb_list_lock);
1045 return rc;
1047 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1050 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1051 * @hcd: host controller to which @urb was submitted
1052 * @urb: URB being checked for unlinkability
1053 * @status: error code to store in @urb if the unlink succeeds
1055 * Host controller drivers should call this routine in their dequeue()
1056 * method. The HCD's private spinlock must be held and interrupts must
1057 * be disabled. The actions carried out here are required for making
1058 * sure than an unlink is valid.
1060 * Returns 0 for no error, otherwise a negative error code (in which case
1061 * the dequeue() method must fail). The possible error codes are:
1063 * -EIDRM: @urb was not submitted or has already completed.
1064 * The completion function may not have been called yet.
1066 * -EBUSY: @urb has already been unlinked.
1068 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1069 int status)
1071 struct list_head *tmp;
1073 /* insist the urb is still queued */
1074 list_for_each(tmp, &urb->ep->urb_list) {
1075 if (tmp == &urb->urb_list)
1076 break;
1078 if (tmp != &urb->urb_list)
1079 return -EIDRM;
1081 /* Any status except -EINPROGRESS means something already started to
1082 * unlink this URB from the hardware. So there's no more work to do.
1084 if (urb->unlinked)
1085 return -EBUSY;
1086 urb->unlinked = status;
1088 /* IRQ setup can easily be broken so that USB controllers
1089 * never get completion IRQs ... maybe even the ones we need to
1090 * finish unlinking the initial failed usb_set_address()
1091 * or device descriptor fetch.
1093 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1094 !is_root_hub(urb->dev)) {
1095 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1096 "Controller is probably using the wrong IRQ.\n");
1097 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1100 return 0;
1102 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1105 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1106 * @hcd: host controller to which @urb was submitted
1107 * @urb: URB being unlinked
1109 * Host controller drivers should call this routine before calling
1110 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1111 * interrupts must be disabled. The actions carried out here are required
1112 * for URB completion.
1114 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1116 /* clear all state linking urb to this dev (and hcd) */
1117 spin_lock(&hcd_urb_list_lock);
1118 list_del_init(&urb->urb_list);
1119 spin_unlock(&hcd_urb_list_lock);
1121 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1124 * Some usb host controllers can only perform dma using a small SRAM area.
1125 * The usb core itself is however optimized for host controllers that can dma
1126 * using regular system memory - like pci devices doing bus mastering.
1128 * To support host controllers with limited dma capabilites we provide dma
1129 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1130 * For this to work properly the host controller code must first use the
1131 * function dma_declare_coherent_memory() to point out which memory area
1132 * that should be used for dma allocations.
1134 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1135 * dma using dma_alloc_coherent() which in turn allocates from the memory
1136 * area pointed out with dma_declare_coherent_memory().
1138 * So, to summarize...
1140 * - We need "local" memory, canonical example being
1141 * a small SRAM on a discrete controller being the
1142 * only memory that the controller can read ...
1143 * (a) "normal" kernel memory is no good, and
1144 * (b) there's not enough to share
1146 * - The only *portable* hook for such stuff in the
1147 * DMA framework is dma_declare_coherent_memory()
1149 * - So we use that, even though the primary requirement
1150 * is that the memory be "local" (hence addressible
1151 * by that device), not "coherent".
1155 static int hcd_alloc_coherent(struct usb_bus *bus,
1156 gfp_t mem_flags, dma_addr_t *dma_handle,
1157 void **vaddr_handle, size_t size,
1158 enum dma_data_direction dir)
1160 unsigned char *vaddr;
1162 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1163 mem_flags, dma_handle);
1164 if (!vaddr)
1165 return -ENOMEM;
1168 * Store the virtual address of the buffer at the end
1169 * of the allocated dma buffer. The size of the buffer
1170 * may be uneven so use unaligned functions instead
1171 * of just rounding up. It makes sense to optimize for
1172 * memory footprint over access speed since the amount
1173 * of memory available for dma may be limited.
1175 put_unaligned((unsigned long)*vaddr_handle,
1176 (unsigned long *)(vaddr + size));
1178 if (dir == DMA_TO_DEVICE)
1179 memcpy(vaddr, *vaddr_handle, size);
1181 *vaddr_handle = vaddr;
1182 return 0;
1185 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1186 void **vaddr_handle, size_t size,
1187 enum dma_data_direction dir)
1189 unsigned char *vaddr = *vaddr_handle;
1191 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1193 if (dir == DMA_FROM_DEVICE)
1194 memcpy(vaddr, *vaddr_handle, size);
1196 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1198 *vaddr_handle = vaddr;
1199 *dma_handle = 0;
1202 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1203 gfp_t mem_flags)
1205 enum dma_data_direction dir;
1206 int ret = 0;
1208 /* Map the URB's buffers for DMA access.
1209 * Lower level HCD code should use *_dma exclusively,
1210 * unless it uses pio or talks to another transport.
1212 if (is_root_hub(urb->dev))
1213 return 0;
1215 if (usb_endpoint_xfer_control(&urb->ep->desc)
1216 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1217 if (hcd->self.uses_dma)
1218 urb->setup_dma = dma_map_single(
1219 hcd->self.controller,
1220 urb->setup_packet,
1221 sizeof(struct usb_ctrlrequest),
1222 DMA_TO_DEVICE);
1223 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1224 ret = hcd_alloc_coherent(
1225 urb->dev->bus, mem_flags,
1226 &urb->setup_dma,
1227 (void **)&urb->setup_packet,
1228 sizeof(struct usb_ctrlrequest),
1229 DMA_TO_DEVICE);
1232 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1233 if (ret == 0 && urb->transfer_buffer_length != 0
1234 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1235 if (hcd->self.uses_dma)
1236 urb->transfer_dma = dma_map_single (
1237 hcd->self.controller,
1238 urb->transfer_buffer,
1239 urb->transfer_buffer_length,
1240 dir);
1241 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1242 ret = hcd_alloc_coherent(
1243 urb->dev->bus, mem_flags,
1244 &urb->transfer_dma,
1245 &urb->transfer_buffer,
1246 urb->transfer_buffer_length,
1247 dir);
1249 if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1250 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1251 hcd_free_coherent(urb->dev->bus,
1252 &urb->setup_dma,
1253 (void **)&urb->setup_packet,
1254 sizeof(struct usb_ctrlrequest),
1255 DMA_TO_DEVICE);
1258 return ret;
1261 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1263 enum dma_data_direction dir;
1265 if (is_root_hub(urb->dev))
1266 return;
1268 if (usb_endpoint_xfer_control(&urb->ep->desc)
1269 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1270 if (hcd->self.uses_dma)
1271 dma_unmap_single(hcd->self.controller, urb->setup_dma,
1272 sizeof(struct usb_ctrlrequest),
1273 DMA_TO_DEVICE);
1274 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1275 hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1276 (void **)&urb->setup_packet,
1277 sizeof(struct usb_ctrlrequest),
1278 DMA_TO_DEVICE);
1281 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1282 if (urb->transfer_buffer_length != 0
1283 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1284 if (hcd->self.uses_dma)
1285 dma_unmap_single(hcd->self.controller,
1286 urb->transfer_dma,
1287 urb->transfer_buffer_length,
1288 dir);
1289 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1290 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1291 &urb->transfer_buffer,
1292 urb->transfer_buffer_length,
1293 dir);
1297 /*-------------------------------------------------------------------------*/
1299 /* may be called in any context with a valid urb->dev usecount
1300 * caller surrenders "ownership" of urb
1301 * expects usb_submit_urb() to have sanity checked and conditioned all
1302 * inputs in the urb
1304 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1306 int status;
1307 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1309 /* increment urb's reference count as part of giving it to the HCD
1310 * (which will control it). HCD guarantees that it either returns
1311 * an error or calls giveback(), but not both.
1313 usb_get_urb(urb);
1314 atomic_inc(&urb->use_count);
1315 atomic_inc(&urb->dev->urbnum);
1316 usbmon_urb_submit(&hcd->self, urb);
1318 /* NOTE requirements on root-hub callers (usbfs and the hub
1319 * driver, for now): URBs' urb->transfer_buffer must be
1320 * valid and usb_buffer_{sync,unmap}() not be needed, since
1321 * they could clobber root hub response data. Also, control
1322 * URBs must be submitted in process context with interrupts
1323 * enabled.
1325 status = map_urb_for_dma(hcd, urb, mem_flags);
1326 if (unlikely(status)) {
1327 usbmon_urb_submit_error(&hcd->self, urb, status);
1328 goto error;
1331 if (is_root_hub(urb->dev))
1332 status = rh_urb_enqueue(hcd, urb);
1333 else
1334 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1336 if (unlikely(status)) {
1337 usbmon_urb_submit_error(&hcd->self, urb, status);
1338 unmap_urb_for_dma(hcd, urb);
1339 error:
1340 urb->hcpriv = NULL;
1341 INIT_LIST_HEAD(&urb->urb_list);
1342 atomic_dec(&urb->use_count);
1343 atomic_dec(&urb->dev->urbnum);
1344 if (urb->reject)
1345 wake_up(&usb_kill_urb_queue);
1346 usb_put_urb(urb);
1348 return status;
1351 /*-------------------------------------------------------------------------*/
1353 /* this makes the hcd giveback() the urb more quickly, by kicking it
1354 * off hardware queues (which may take a while) and returning it as
1355 * soon as practical. we've already set up the urb's return status,
1356 * but we can't know if the callback completed already.
1358 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1360 int value;
1362 if (is_root_hub(urb->dev))
1363 value = usb_rh_urb_dequeue(hcd, urb, status);
1364 else {
1366 /* The only reason an HCD might fail this call is if
1367 * it has not yet fully queued the urb to begin with.
1368 * Such failures should be harmless. */
1369 value = hcd->driver->urb_dequeue(hcd, urb, status);
1371 return value;
1375 * called in any context
1377 * caller guarantees urb won't be recycled till both unlink()
1378 * and the urb's completion function return
1380 int usb_hcd_unlink_urb (struct urb *urb, int status)
1382 struct usb_hcd *hcd;
1383 int retval = -EIDRM;
1384 unsigned long flags;
1386 /* Prevent the device and bus from going away while
1387 * the unlink is carried out. If they are already gone
1388 * then urb->use_count must be 0, since disconnected
1389 * devices can't have any active URBs.
1391 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1392 if (atomic_read(&urb->use_count) > 0) {
1393 retval = 0;
1394 usb_get_dev(urb->dev);
1396 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1397 if (retval == 0) {
1398 hcd = bus_to_hcd(urb->dev->bus);
1399 retval = unlink1(hcd, urb, status);
1400 usb_put_dev(urb->dev);
1403 if (retval == 0)
1404 retval = -EINPROGRESS;
1405 else if (retval != -EIDRM && retval != -EBUSY)
1406 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1407 urb, retval);
1408 return retval;
1411 /*-------------------------------------------------------------------------*/
1414 * usb_hcd_giveback_urb - return URB from HCD to device driver
1415 * @hcd: host controller returning the URB
1416 * @urb: urb being returned to the USB device driver.
1417 * @status: completion status code for the URB.
1418 * Context: in_interrupt()
1420 * This hands the URB from HCD to its USB device driver, using its
1421 * completion function. The HCD has freed all per-urb resources
1422 * (and is done using urb->hcpriv). It also released all HCD locks;
1423 * the device driver won't cause problems if it frees, modifies,
1424 * or resubmits this URB.
1426 * If @urb was unlinked, the value of @status will be overridden by
1427 * @urb->unlinked. Erroneous short transfers are detected in case
1428 * the HCD hasn't checked for them.
1430 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1432 urb->hcpriv = NULL;
1433 if (unlikely(urb->unlinked))
1434 status = urb->unlinked;
1435 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1436 urb->actual_length < urb->transfer_buffer_length &&
1437 !status))
1438 status = -EREMOTEIO;
1440 unmap_urb_for_dma(hcd, urb);
1441 usbmon_urb_complete(&hcd->self, urb, status);
1442 usb_unanchor_urb(urb);
1444 /* pass ownership to the completion handler */
1445 urb->status = status;
1446 urb->complete (urb);
1447 atomic_dec (&urb->use_count);
1448 if (unlikely (urb->reject))
1449 wake_up (&usb_kill_urb_queue);
1450 usb_put_urb (urb);
1452 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1454 /*-------------------------------------------------------------------------*/
1456 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1457 * queue to drain completely. The caller must first insure that no more
1458 * URBs can be submitted for this endpoint.
1460 void usb_hcd_flush_endpoint(struct usb_device *udev,
1461 struct usb_host_endpoint *ep)
1463 struct usb_hcd *hcd;
1464 struct urb *urb;
1466 if (!ep)
1467 return;
1468 might_sleep();
1469 hcd = bus_to_hcd(udev->bus);
1471 /* No more submits can occur */
1472 spin_lock_irq(&hcd_urb_list_lock);
1473 rescan:
1474 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1475 int is_in;
1477 if (urb->unlinked)
1478 continue;
1479 usb_get_urb (urb);
1480 is_in = usb_urb_dir_in(urb);
1481 spin_unlock(&hcd_urb_list_lock);
1483 /* kick hcd */
1484 unlink1(hcd, urb, -ESHUTDOWN);
1485 dev_dbg (hcd->self.controller,
1486 "shutdown urb %p ep%d%s%s\n",
1487 urb, usb_endpoint_num(&ep->desc),
1488 is_in ? "in" : "out",
1489 ({ char *s;
1491 switch (usb_endpoint_type(&ep->desc)) {
1492 case USB_ENDPOINT_XFER_CONTROL:
1493 s = ""; break;
1494 case USB_ENDPOINT_XFER_BULK:
1495 s = "-bulk"; break;
1496 case USB_ENDPOINT_XFER_INT:
1497 s = "-intr"; break;
1498 default:
1499 s = "-iso"; break;
1502 }));
1503 usb_put_urb (urb);
1505 /* list contents may have changed */
1506 spin_lock(&hcd_urb_list_lock);
1507 goto rescan;
1509 spin_unlock_irq(&hcd_urb_list_lock);
1511 /* Wait until the endpoint queue is completely empty */
1512 while (!list_empty (&ep->urb_list)) {
1513 spin_lock_irq(&hcd_urb_list_lock);
1515 /* The list may have changed while we acquired the spinlock */
1516 urb = NULL;
1517 if (!list_empty (&ep->urb_list)) {
1518 urb = list_entry (ep->urb_list.prev, struct urb,
1519 urb_list);
1520 usb_get_urb (urb);
1522 spin_unlock_irq(&hcd_urb_list_lock);
1524 if (urb) {
1525 usb_kill_urb (urb);
1526 usb_put_urb (urb);
1531 /* Disables the endpoint: synchronizes with the hcd to make sure all
1532 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1533 * have been called previously. Use for set_configuration, set_interface,
1534 * driver removal, physical disconnect.
1536 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1537 * type, maxpacket size, toggle, halt status, and scheduling.
1539 void usb_hcd_disable_endpoint(struct usb_device *udev,
1540 struct usb_host_endpoint *ep)
1542 struct usb_hcd *hcd;
1544 might_sleep();
1545 hcd = bus_to_hcd(udev->bus);
1546 if (hcd->driver->endpoint_disable)
1547 hcd->driver->endpoint_disable(hcd, ep);
1550 /* Protect against drivers that try to unlink URBs after the device
1551 * is gone, by waiting until all unlinks for @udev are finished.
1552 * Since we don't currently track URBs by device, simply wait until
1553 * nothing is running in the locked region of usb_hcd_unlink_urb().
1555 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1557 spin_lock_irq(&hcd_urb_unlink_lock);
1558 spin_unlock_irq(&hcd_urb_unlink_lock);
1561 /*-------------------------------------------------------------------------*/
1563 /* called in any context */
1564 int usb_hcd_get_frame_number (struct usb_device *udev)
1566 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1568 if (!HC_IS_RUNNING (hcd->state))
1569 return -ESHUTDOWN;
1570 return hcd->driver->get_frame_number (hcd);
1573 /*-------------------------------------------------------------------------*/
1575 #ifdef CONFIG_PM
1577 int hcd_bus_suspend(struct usb_device *rhdev)
1579 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1580 int status;
1581 int old_state = hcd->state;
1583 dev_dbg(&rhdev->dev, "bus %s%s\n",
1584 rhdev->auto_pm ? "auto-" : "", "suspend");
1585 if (!hcd->driver->bus_suspend) {
1586 status = -ENOENT;
1587 } else {
1588 hcd->state = HC_STATE_QUIESCING;
1589 status = hcd->driver->bus_suspend(hcd);
1591 if (status == 0) {
1592 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1593 hcd->state = HC_STATE_SUSPENDED;
1594 } else {
1595 hcd->state = old_state;
1596 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1597 "suspend", status);
1599 return status;
1602 int hcd_bus_resume(struct usb_device *rhdev)
1604 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1605 int status;
1606 int old_state = hcd->state;
1608 dev_dbg(&rhdev->dev, "usb %s%s\n",
1609 rhdev->auto_pm ? "auto-" : "", "resume");
1610 if (!hcd->driver->bus_resume)
1611 return -ENOENT;
1612 if (hcd->state == HC_STATE_RUNNING)
1613 return 0;
1615 hcd->state = HC_STATE_RESUMING;
1616 status = hcd->driver->bus_resume(hcd);
1617 if (status == 0) {
1618 /* TRSMRCY = 10 msec */
1619 msleep(10);
1620 usb_set_device_state(rhdev, rhdev->actconfig
1621 ? USB_STATE_CONFIGURED
1622 : USB_STATE_ADDRESS);
1623 hcd->state = HC_STATE_RUNNING;
1624 } else {
1625 hcd->state = old_state;
1626 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1627 "resume", status);
1628 if (status != -ESHUTDOWN)
1629 usb_hc_died(hcd);
1631 return status;
1634 /* Workqueue routine for root-hub remote wakeup */
1635 static void hcd_resume_work(struct work_struct *work)
1637 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1638 struct usb_device *udev = hcd->self.root_hub;
1640 usb_lock_device(udev);
1641 usb_mark_last_busy(udev);
1642 usb_external_resume_device(udev);
1643 usb_unlock_device(udev);
1647 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1648 * @hcd: host controller for this root hub
1650 * The USB host controller calls this function when its root hub is
1651 * suspended (with the remote wakeup feature enabled) and a remote
1652 * wakeup request is received. The routine submits a workqueue request
1653 * to resume the root hub (that is, manage its downstream ports again).
1655 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1657 unsigned long flags;
1659 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1660 if (hcd->rh_registered)
1661 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1662 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1664 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1666 #endif
1668 /*-------------------------------------------------------------------------*/
1670 #ifdef CONFIG_USB_OTG
1673 * usb_bus_start_enum - start immediate enumeration (for OTG)
1674 * @bus: the bus (must use hcd framework)
1675 * @port_num: 1-based number of port; usually bus->otg_port
1676 * Context: in_interrupt()
1678 * Starts enumeration, with an immediate reset followed later by
1679 * khubd identifying and possibly configuring the device.
1680 * This is needed by OTG controller drivers, where it helps meet
1681 * HNP protocol timing requirements for starting a port reset.
1683 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1685 struct usb_hcd *hcd;
1686 int status = -EOPNOTSUPP;
1688 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1689 * boards with root hubs hooked up to internal devices (instead of
1690 * just the OTG port) may need more attention to resetting...
1692 hcd = container_of (bus, struct usb_hcd, self);
1693 if (port_num && hcd->driver->start_port_reset)
1694 status = hcd->driver->start_port_reset(hcd, port_num);
1696 /* run khubd shortly after (first) root port reset finishes;
1697 * it may issue others, until at least 50 msecs have passed.
1699 if (status == 0)
1700 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1701 return status;
1703 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1705 #endif
1707 /*-------------------------------------------------------------------------*/
1710 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1711 * @irq: the IRQ being raised
1712 * @__hcd: pointer to the HCD whose IRQ is being signaled
1714 * If the controller isn't HALTed, calls the driver's irq handler.
1715 * Checks whether the controller is now dead.
1717 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1719 struct usb_hcd *hcd = __hcd;
1720 unsigned long flags;
1721 irqreturn_t rc;
1723 /* IRQF_DISABLED doesn't work correctly with shared IRQs
1724 * when the first handler doesn't use it. So let's just
1725 * assume it's never used.
1727 local_irq_save(flags);
1729 if (unlikely(hcd->state == HC_STATE_HALT ||
1730 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1731 rc = IRQ_NONE;
1732 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1733 rc = IRQ_NONE;
1734 } else {
1735 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1737 if (unlikely(hcd->state == HC_STATE_HALT))
1738 usb_hc_died(hcd);
1739 rc = IRQ_HANDLED;
1742 local_irq_restore(flags);
1743 return rc;
1746 /*-------------------------------------------------------------------------*/
1749 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1750 * @hcd: pointer to the HCD representing the controller
1752 * This is called by bus glue to report a USB host controller that died
1753 * while operations may still have been pending. It's called automatically
1754 * by the PCI glue, so only glue for non-PCI busses should need to call it.
1756 void usb_hc_died (struct usb_hcd *hcd)
1758 unsigned long flags;
1760 dev_err (hcd->self.controller, "HC died; cleaning up\n");
1762 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1763 if (hcd->rh_registered) {
1764 hcd->poll_rh = 0;
1766 /* make khubd clean up old urbs and devices */
1767 usb_set_device_state (hcd->self.root_hub,
1768 USB_STATE_NOTATTACHED);
1769 usb_kick_khubd (hcd->self.root_hub);
1771 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1773 EXPORT_SYMBOL_GPL (usb_hc_died);
1775 /*-------------------------------------------------------------------------*/
1778 * usb_create_hcd - create and initialize an HCD structure
1779 * @driver: HC driver that will use this hcd
1780 * @dev: device for this HC, stored in hcd->self.controller
1781 * @bus_name: value to store in hcd->self.bus_name
1782 * Context: !in_interrupt()
1784 * Allocate a struct usb_hcd, with extra space at the end for the
1785 * HC driver's private data. Initialize the generic members of the
1786 * hcd structure.
1788 * If memory is unavailable, returns NULL.
1790 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1791 struct device *dev, const char *bus_name)
1793 struct usb_hcd *hcd;
1795 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1796 if (!hcd) {
1797 dev_dbg (dev, "hcd alloc failed\n");
1798 return NULL;
1800 dev_set_drvdata(dev, hcd);
1801 kref_init(&hcd->kref);
1803 usb_bus_init(&hcd->self);
1804 hcd->self.controller = dev;
1805 hcd->self.bus_name = bus_name;
1806 hcd->self.uses_dma = (dev->dma_mask != NULL);
1808 init_timer(&hcd->rh_timer);
1809 hcd->rh_timer.function = rh_timer_func;
1810 hcd->rh_timer.data = (unsigned long) hcd;
1811 #ifdef CONFIG_PM
1812 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1813 #endif
1815 hcd->driver = driver;
1816 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1817 "USB Host Controller";
1818 return hcd;
1820 EXPORT_SYMBOL_GPL(usb_create_hcd);
1822 static void hcd_release (struct kref *kref)
1824 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1826 kfree(hcd);
1829 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1831 if (hcd)
1832 kref_get (&hcd->kref);
1833 return hcd;
1835 EXPORT_SYMBOL_GPL(usb_get_hcd);
1837 void usb_put_hcd (struct usb_hcd *hcd)
1839 if (hcd)
1840 kref_put (&hcd->kref, hcd_release);
1842 EXPORT_SYMBOL_GPL(usb_put_hcd);
1845 * usb_add_hcd - finish generic HCD structure initialization and register
1846 * @hcd: the usb_hcd structure to initialize
1847 * @irqnum: Interrupt line to allocate
1848 * @irqflags: Interrupt type flags
1850 * Finish the remaining parts of generic HCD initialization: allocate the
1851 * buffers of consistent memory, register the bus, request the IRQ line,
1852 * and call the driver's reset() and start() routines.
1854 int usb_add_hcd(struct usb_hcd *hcd,
1855 unsigned int irqnum, unsigned long irqflags)
1857 int retval;
1858 struct usb_device *rhdev;
1860 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1862 hcd->authorized_default = hcd->wireless? 0 : 1;
1863 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1865 /* HC is in reset state, but accessible. Now do the one-time init,
1866 * bottom up so that hcds can customize the root hubs before khubd
1867 * starts talking to them. (Note, bus id is assigned early too.)
1869 if ((retval = hcd_buffer_create(hcd)) != 0) {
1870 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1871 return retval;
1874 if ((retval = usb_register_bus(&hcd->self)) < 0)
1875 goto err_register_bus;
1877 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1878 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1879 retval = -ENOMEM;
1880 goto err_allocate_root_hub;
1882 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1883 USB_SPEED_FULL;
1884 hcd->self.root_hub = rhdev;
1886 /* wakeup flag init defaults to "everything works" for root hubs,
1887 * but drivers can override it in reset() if needed, along with
1888 * recording the overall controller's system wakeup capability.
1890 device_init_wakeup(&rhdev->dev, 1);
1892 /* "reset" is misnamed; its role is now one-time init. the controller
1893 * should already have been reset (and boot firmware kicked off etc).
1895 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1896 dev_err(hcd->self.controller, "can't setup\n");
1897 goto err_hcd_driver_setup;
1900 /* NOTE: root hub and controller capabilities may not be the same */
1901 if (device_can_wakeup(hcd->self.controller)
1902 && device_can_wakeup(&hcd->self.root_hub->dev))
1903 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1905 /* enable irqs just before we start the controller */
1906 if (hcd->driver->irq) {
1908 /* IRQF_DISABLED doesn't work as advertised when used together
1909 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1910 * interrupts we can remove it here.
1912 if (irqflags & IRQF_SHARED)
1913 irqflags &= ~IRQF_DISABLED;
1915 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1916 hcd->driver->description, hcd->self.busnum);
1917 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1918 hcd->irq_descr, hcd)) != 0) {
1919 dev_err(hcd->self.controller,
1920 "request interrupt %d failed\n", irqnum);
1921 goto err_request_irq;
1923 hcd->irq = irqnum;
1924 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1925 (hcd->driver->flags & HCD_MEMORY) ?
1926 "io mem" : "io base",
1927 (unsigned long long)hcd->rsrc_start);
1928 } else {
1929 hcd->irq = -1;
1930 if (hcd->rsrc_start)
1931 dev_info(hcd->self.controller, "%s 0x%08llx\n",
1932 (hcd->driver->flags & HCD_MEMORY) ?
1933 "io mem" : "io base",
1934 (unsigned long long)hcd->rsrc_start);
1937 if ((retval = hcd->driver->start(hcd)) < 0) {
1938 dev_err(hcd->self.controller, "startup error %d\n", retval);
1939 goto err_hcd_driver_start;
1942 /* starting here, usbcore will pay attention to this root hub */
1943 rhdev->bus_mA = min(500u, hcd->power_budget);
1944 if ((retval = register_root_hub(hcd)) != 0)
1945 goto err_register_root_hub;
1947 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1948 if (retval < 0) {
1949 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1950 retval);
1951 goto error_create_attr_group;
1953 if (hcd->uses_new_polling && hcd->poll_rh)
1954 usb_hcd_poll_rh_status(hcd);
1955 return retval;
1957 error_create_attr_group:
1958 mutex_lock(&usb_bus_list_lock);
1959 usb_disconnect(&hcd->self.root_hub);
1960 mutex_unlock(&usb_bus_list_lock);
1961 err_register_root_hub:
1962 hcd->driver->stop(hcd);
1963 err_hcd_driver_start:
1964 if (hcd->irq >= 0)
1965 free_irq(irqnum, hcd);
1966 err_request_irq:
1967 err_hcd_driver_setup:
1968 hcd->self.root_hub = NULL;
1969 usb_put_dev(rhdev);
1970 err_allocate_root_hub:
1971 usb_deregister_bus(&hcd->self);
1972 err_register_bus:
1973 hcd_buffer_destroy(hcd);
1974 return retval;
1976 EXPORT_SYMBOL_GPL(usb_add_hcd);
1979 * usb_remove_hcd - shutdown processing for generic HCDs
1980 * @hcd: the usb_hcd structure to remove
1981 * Context: !in_interrupt()
1983 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1984 * invoking the HCD's stop() method.
1986 void usb_remove_hcd(struct usb_hcd *hcd)
1988 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1990 if (HC_IS_RUNNING (hcd->state))
1991 hcd->state = HC_STATE_QUIESCING;
1993 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1994 spin_lock_irq (&hcd_root_hub_lock);
1995 hcd->rh_registered = 0;
1996 spin_unlock_irq (&hcd_root_hub_lock);
1998 #ifdef CONFIG_PM
1999 cancel_work_sync(&hcd->wakeup_work);
2000 #endif
2002 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
2003 mutex_lock(&usb_bus_list_lock);
2004 usb_disconnect(&hcd->self.root_hub);
2005 mutex_unlock(&usb_bus_list_lock);
2007 hcd->driver->stop(hcd);
2008 hcd->state = HC_STATE_HALT;
2010 hcd->poll_rh = 0;
2011 del_timer_sync(&hcd->rh_timer);
2013 if (hcd->irq >= 0)
2014 free_irq(hcd->irq, hcd);
2015 usb_deregister_bus(&hcd->self);
2016 hcd_buffer_destroy(hcd);
2018 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2020 void
2021 usb_hcd_platform_shutdown(struct platform_device* dev)
2023 struct usb_hcd *hcd = platform_get_drvdata(dev);
2025 if (hcd->driver->shutdown)
2026 hcd->driver->shutdown(hcd);
2028 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2030 /*-------------------------------------------------------------------------*/
2032 #if defined(CONFIG_USB_MON)
2034 struct usb_mon_operations *mon_ops;
2037 * The registration is unlocked.
2038 * We do it this way because we do not want to lock in hot paths.
2040 * Notice that the code is minimally error-proof. Because usbmon needs
2041 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2044 int usb_mon_register (struct usb_mon_operations *ops)
2047 if (mon_ops)
2048 return -EBUSY;
2050 mon_ops = ops;
2051 mb();
2052 return 0;
2054 EXPORT_SYMBOL_GPL (usb_mon_register);
2056 void usb_mon_deregister (void)
2059 if (mon_ops == NULL) {
2060 printk(KERN_ERR "USB: monitor was not registered\n");
2061 return;
2063 mon_ops = NULL;
2064 mb();
2066 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2068 #endif /* CONFIG_USB_MON */