2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
7 * High-resolution kernel timers
9 * In contrast to the low-resolution timeout API implemented in
10 * kernel/timer.c, hrtimers provide finer resolution and accuracy
11 * depending on system configuration and capabilities.
13 * These timers are currently used for:
17 * - precise in-kernel timing
19 * Started by: Thomas Gleixner and Ingo Molnar
22 * based on kernel/timer.c
24 * For licencing details see kernel-base/COPYING
27 #include <linux/cpu.h>
28 #include <linux/module.h>
29 #include <linux/percpu.h>
30 #include <linux/hrtimer.h>
31 #include <linux/notifier.h>
32 #include <linux/syscalls.h>
33 #include <linux/interrupt.h>
35 #include <asm/uaccess.h>
38 * ktime_get - get the monotonic time in ktime_t format
40 * returns the time in ktime_t format
42 static ktime_t
ktime_get(void)
48 return timespec_to_ktime(now
);
52 * ktime_get_real - get the real (wall-) time in ktime_t format
54 * returns the time in ktime_t format
56 static ktime_t
ktime_get_real(void)
62 return timespec_to_ktime(now
);
65 EXPORT_SYMBOL_GPL(ktime_get_real
);
71 #define MAX_HRTIMER_BASES 2
73 static DEFINE_PER_CPU(struct hrtimer_base
, hrtimer_bases
[MAX_HRTIMER_BASES
]) =
76 .index
= CLOCK_REALTIME
,
77 .get_time
= &ktime_get_real
,
78 .resolution
= KTIME_REALTIME_RES
,
81 .index
= CLOCK_MONOTONIC
,
82 .get_time
= &ktime_get
,
83 .resolution
= KTIME_MONOTONIC_RES
,
88 * ktime_get_ts - get the monotonic clock in timespec format
90 * @ts: pointer to timespec variable
92 * The function calculates the monotonic clock from the realtime
93 * clock and the wall_to_monotonic offset and stores the result
94 * in normalized timespec format in the variable pointed to by ts.
96 void ktime_get_ts(struct timespec
*ts
)
98 struct timespec tomono
;
102 seq
= read_seqbegin(&xtime_lock
);
104 tomono
= wall_to_monotonic
;
106 } while (read_seqretry(&xtime_lock
, seq
));
108 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
,
109 ts
->tv_nsec
+ tomono
.tv_nsec
);
111 EXPORT_SYMBOL_GPL(ktime_get_ts
);
114 * Functions and macros which are different for UP/SMP systems are kept in a
119 #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0)
122 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
123 * means that all timers which are tied to this base via timer->base are
124 * locked, and the base itself is locked too.
126 * So __run_timers/migrate_timers can safely modify all timers which could
127 * be found on the lists/queues.
129 * When the timer's base is locked, and the timer removed from list, it is
130 * possible to set timer->base = NULL and drop the lock: the timer remains
133 static struct hrtimer_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
134 unsigned long *flags
)
136 struct hrtimer_base
*base
;
140 if (likely(base
!= NULL
)) {
141 spin_lock_irqsave(&base
->lock
, *flags
);
142 if (likely(base
== timer
->base
))
144 /* The timer has migrated to another CPU: */
145 spin_unlock_irqrestore(&base
->lock
, *flags
);
152 * Switch the timer base to the current CPU when possible.
154 static inline struct hrtimer_base
*
155 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_base
*base
)
157 struct hrtimer_base
*new_base
;
159 new_base
= &__get_cpu_var(hrtimer_bases
[base
->index
]);
161 if (base
!= new_base
) {
163 * We are trying to schedule the timer on the local CPU.
164 * However we can't change timer's base while it is running,
165 * so we keep it on the same CPU. No hassle vs. reprogramming
166 * the event source in the high resolution case. The softirq
167 * code will take care of this when the timer function has
168 * completed. There is no conflict as we hold the lock until
169 * the timer is enqueued.
171 if (unlikely(base
->curr_timer
== timer
))
174 /* See the comment in lock_timer_base() */
176 spin_unlock(&base
->lock
);
177 spin_lock(&new_base
->lock
);
178 timer
->base
= new_base
;
183 #else /* CONFIG_SMP */
185 #define set_curr_timer(b, t) do { } while (0)
187 static inline struct hrtimer_base
*
188 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
190 struct hrtimer_base
*base
= timer
->base
;
192 spin_lock_irqsave(&base
->lock
, *flags
);
197 #define switch_hrtimer_base(t, b) (b)
199 #endif /* !CONFIG_SMP */
202 * Functions for the union type storage format of ktime_t which are
203 * too large for inlining:
205 #if BITS_PER_LONG < 64
206 # ifndef CONFIG_KTIME_SCALAR
208 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
211 * @nsec: the scalar nsec value to add
213 * Returns the sum of kt and nsec in ktime_t format
215 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
219 if (likely(nsec
< NSEC_PER_SEC
)) {
222 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
224 tmp
= ktime_set((long)nsec
, rem
);
227 return ktime_add(kt
, tmp
);
230 #else /* CONFIG_KTIME_SCALAR */
232 # endif /* !CONFIG_KTIME_SCALAR */
235 * Divide a ktime value by a nanosecond value
237 static unsigned long ktime_divns(const ktime_t kt
, nsec_t div
)
242 dclc
= dns
= ktime_to_ns(kt
);
244 /* Make sure the divisor is less than 2^32: */
250 do_div(dclc
, (unsigned long) div
);
252 return (unsigned long) dclc
;
255 #else /* BITS_PER_LONG < 64 */
256 # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
257 #endif /* BITS_PER_LONG >= 64 */
260 * Counterpart to lock_timer_base above:
263 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
265 spin_unlock_irqrestore(&timer
->base
->lock
, *flags
);
269 * hrtimer_forward - forward the timer expiry
271 * @timer: hrtimer to forward
272 * @interval: the interval to forward
274 * Forward the timer expiry so it will expire in the future.
275 * Returns the number of overruns.
278 hrtimer_forward(struct hrtimer
*timer
, ktime_t interval
)
280 unsigned long orun
= 1;
283 now
= timer
->base
->get_time();
285 delta
= ktime_sub(now
, timer
->expires
);
290 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
291 interval
.tv64
= timer
->base
->resolution
.tv64
;
293 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
294 nsec_t incr
= ktime_to_ns(interval
);
296 orun
= ktime_divns(delta
, incr
);
297 timer
->expires
= ktime_add_ns(timer
->expires
, incr
* orun
);
298 if (timer
->expires
.tv64
> now
.tv64
)
301 * This (and the ktime_add() below) is the
302 * correction for exact:
306 timer
->expires
= ktime_add(timer
->expires
, interval
);
312 * enqueue_hrtimer - internal function to (re)start a timer
314 * The timer is inserted in expiry order. Insertion into the
315 * red black tree is O(log(n)). Must hold the base lock.
317 static void enqueue_hrtimer(struct hrtimer
*timer
, struct hrtimer_base
*base
)
319 struct rb_node
**link
= &base
->active
.rb_node
;
320 struct rb_node
*parent
= NULL
;
321 struct hrtimer
*entry
;
324 * Find the right place in the rbtree:
328 entry
= rb_entry(parent
, struct hrtimer
, node
);
330 * We dont care about collisions. Nodes with
331 * the same expiry time stay together.
333 if (timer
->expires
.tv64
< entry
->expires
.tv64
)
334 link
= &(*link
)->rb_left
;
336 link
= &(*link
)->rb_right
;
340 * Insert the timer to the rbtree and check whether it
341 * replaces the first pending timer
343 rb_link_node(&timer
->node
, parent
, link
);
344 rb_insert_color(&timer
->node
, &base
->active
);
346 timer
->state
= HRTIMER_PENDING
;
348 if (!base
->first
|| timer
->expires
.tv64
<
349 rb_entry(base
->first
, struct hrtimer
, node
)->expires
.tv64
)
350 base
->first
= &timer
->node
;
354 * __remove_hrtimer - internal function to remove a timer
356 * Caller must hold the base lock.
358 static void __remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_base
*base
)
361 * Remove the timer from the rbtree and replace the
362 * first entry pointer if necessary.
364 if (base
->first
== &timer
->node
)
365 base
->first
= rb_next(&timer
->node
);
366 rb_erase(&timer
->node
, &base
->active
);
370 * remove hrtimer, called with base lock held
373 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_base
*base
)
375 if (hrtimer_active(timer
)) {
376 __remove_hrtimer(timer
, base
);
377 timer
->state
= HRTIMER_INACTIVE
;
384 * hrtimer_start - (re)start an relative timer on the current CPU
386 * @timer: the timer to be added
388 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
392 * 1 when the timer was active
395 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
397 struct hrtimer_base
*base
, *new_base
;
401 base
= lock_hrtimer_base(timer
, &flags
);
403 /* Remove an active timer from the queue: */
404 ret
= remove_hrtimer(timer
, base
);
406 /* Switch the timer base, if necessary: */
407 new_base
= switch_hrtimer_base(timer
, base
);
409 if (mode
== HRTIMER_REL
)
410 tim
= ktime_add(tim
, new_base
->get_time());
411 timer
->expires
= tim
;
413 enqueue_hrtimer(timer
, new_base
);
415 unlock_hrtimer_base(timer
, &flags
);
421 * hrtimer_try_to_cancel - try to deactivate a timer
423 * @timer: hrtimer to stop
426 * 0 when the timer was not active
427 * 1 when the timer was active
428 * -1 when the timer is currently excuting the callback function and
431 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
433 struct hrtimer_base
*base
;
437 base
= lock_hrtimer_base(timer
, &flags
);
439 if (base
->curr_timer
!= timer
)
440 ret
= remove_hrtimer(timer
, base
);
442 unlock_hrtimer_base(timer
, &flags
);
449 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
451 * @timer: the timer to be cancelled
454 * 0 when the timer was not active
455 * 1 when the timer was active
457 int hrtimer_cancel(struct hrtimer
*timer
)
460 int ret
= hrtimer_try_to_cancel(timer
);
468 * hrtimer_get_remaining - get remaining time for the timer
470 * @timer: the timer to read
472 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
474 struct hrtimer_base
*base
;
478 base
= lock_hrtimer_base(timer
, &flags
);
479 rem
= ktime_sub(timer
->expires
, timer
->base
->get_time());
480 unlock_hrtimer_base(timer
, &flags
);
486 * hrtimer_rebase - rebase an initialized hrtimer to a different base
488 * @timer: the timer to be rebased
489 * @clock_id: the clock to be used
491 void hrtimer_rebase(struct hrtimer
*timer
, const clockid_t clock_id
)
493 struct hrtimer_base
*bases
;
495 bases
= per_cpu(hrtimer_bases
, raw_smp_processor_id());
496 timer
->base
= &bases
[clock_id
];
500 * hrtimer_init - initialize a timer to the given clock
502 * @timer: the timer to be initialized
503 * @clock_id: the clock to be used
505 void hrtimer_init(struct hrtimer
*timer
, const clockid_t clock_id
)
507 memset(timer
, 0, sizeof(struct hrtimer
));
508 hrtimer_rebase(timer
, clock_id
);
512 * hrtimer_get_res - get the timer resolution for a clock
514 * @which_clock: which clock to query
515 * @tp: pointer to timespec variable to store the resolution
517 * Store the resolution of the clock selected by which_clock in the
518 * variable pointed to by tp.
520 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
522 struct hrtimer_base
*bases
;
524 bases
= per_cpu(hrtimer_bases
, raw_smp_processor_id());
525 *tp
= ktime_to_timespec(bases
[which_clock
].resolution
);
531 * Expire the per base hrtimer-queue:
533 static inline void run_hrtimer_queue(struct hrtimer_base
*base
)
535 ktime_t now
= base
->get_time();
536 struct rb_node
*node
;
538 spin_lock_irq(&base
->lock
);
540 while ((node
= base
->first
)) {
541 struct hrtimer
*timer
;
546 timer
= rb_entry(node
, struct hrtimer
, node
);
547 if (now
.tv64
<= timer
->expires
.tv64
)
550 fn
= timer
->function
;
552 set_curr_timer(base
, timer
);
553 __remove_hrtimer(timer
, base
);
554 spin_unlock_irq(&base
->lock
);
557 * fn == NULL is special case for the simplest timer
558 * variant - wake up process and do not restart:
561 wake_up_process(data
);
562 restart
= HRTIMER_NORESTART
;
566 spin_lock_irq(&base
->lock
);
568 if (restart
== HRTIMER_RESTART
)
569 enqueue_hrtimer(timer
, base
);
571 timer
->state
= HRTIMER_EXPIRED
;
573 set_curr_timer(base
, NULL
);
574 spin_unlock_irq(&base
->lock
);
578 * Called from timer softirq every jiffy, expire hrtimers:
580 void hrtimer_run_queues(void)
582 struct hrtimer_base
*base
= __get_cpu_var(hrtimer_bases
);
585 for (i
= 0; i
< MAX_HRTIMER_BASES
; i
++)
586 run_hrtimer_queue(&base
[i
]);
590 * Sleep related functions:
594 * schedule_hrtimer - sleep until timeout
596 * @timer: hrtimer variable initialized with the correct clock base
597 * @mode: timeout value is abs/rel
599 * Make the current task sleep until @timeout is
602 * You can set the task state as follows -
604 * %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to
605 * pass before the routine returns. The routine will return 0
607 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
608 * delivered to the current task. In this case the remaining time
611 * The current task state is guaranteed to be TASK_RUNNING when this
614 static ktime_t __sched
615 schedule_hrtimer(struct hrtimer
*timer
, const enum hrtimer_mode mode
)
617 /* fn stays NULL, meaning single-shot wakeup: */
618 timer
->data
= current
;
620 hrtimer_start(timer
, timer
->expires
, mode
);
623 hrtimer_cancel(timer
);
625 /* Return the remaining time: */
626 if (timer
->state
!= HRTIMER_EXPIRED
)
627 return ktime_sub(timer
->expires
, timer
->base
->get_time());
629 return (ktime_t
) {.tv64
= 0 };
632 static inline ktime_t __sched
633 schedule_hrtimer_interruptible(struct hrtimer
*timer
,
634 const enum hrtimer_mode mode
)
636 set_current_state(TASK_INTERRUPTIBLE
);
638 return schedule_hrtimer(timer
, mode
);
642 nanosleep_restart(struct restart_block
*restart
, clockid_t clockid
)
644 struct timespec __user
*rmtp
, tu
;
645 void *rfn_save
= restart
->fn
;
646 struct hrtimer timer
;
649 restart
->fn
= do_no_restart_syscall
;
651 hrtimer_init(&timer
, clockid
);
653 timer
.expires
.tv64
= ((u64
)restart
->arg1
<< 32) | (u64
) restart
->arg0
;
655 rem
= schedule_hrtimer_interruptible(&timer
, HRTIMER_ABS
);
660 rmtp
= (struct timespec __user
*) restart
->arg2
;
661 tu
= ktime_to_timespec(rem
);
662 if (rmtp
&& copy_to_user(rmtp
, &tu
, sizeof(tu
)))
665 restart
->fn
= rfn_save
;
667 /* The other values in restart are already filled in */
668 return -ERESTART_RESTARTBLOCK
;
671 static long __sched
nanosleep_restart_mono(struct restart_block
*restart
)
673 return nanosleep_restart(restart
, CLOCK_MONOTONIC
);
676 static long __sched
nanosleep_restart_real(struct restart_block
*restart
)
678 return nanosleep_restart(restart
, CLOCK_REALTIME
);
681 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
682 const enum hrtimer_mode mode
, const clockid_t clockid
)
684 struct restart_block
*restart
;
685 struct hrtimer timer
;
689 hrtimer_init(&timer
, clockid
);
691 timer
.expires
= timespec_to_ktime(*rqtp
);
693 rem
= schedule_hrtimer_interruptible(&timer
, mode
);
697 /* Absolute timers do not update the rmtp value: */
698 if (mode
== HRTIMER_ABS
)
699 return -ERESTARTNOHAND
;
701 tu
= ktime_to_timespec(rem
);
703 if (rmtp
&& copy_to_user(rmtp
, &tu
, sizeof(tu
)))
706 restart
= ¤t_thread_info()->restart_block
;
707 restart
->fn
= (clockid
== CLOCK_MONOTONIC
) ?
708 nanosleep_restart_mono
: nanosleep_restart_real
;
709 restart
->arg0
= timer
.expires
.tv64
& 0xFFFFFFFF;
710 restart
->arg1
= timer
.expires
.tv64
>> 32;
711 restart
->arg2
= (unsigned long) rmtp
;
713 return -ERESTART_RESTARTBLOCK
;
717 sys_nanosleep(struct timespec __user
*rqtp
, struct timespec __user
*rmtp
)
721 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
724 if (!timespec_valid(&tu
))
727 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_REL
, CLOCK_MONOTONIC
);
731 * Functions related to boot-time initialization:
733 static void __devinit
init_hrtimers_cpu(int cpu
)
735 struct hrtimer_base
*base
= per_cpu(hrtimer_bases
, cpu
);
738 for (i
= 0; i
< MAX_HRTIMER_BASES
; i
++) {
739 spin_lock_init(&base
->lock
);
744 #ifdef CONFIG_HOTPLUG_CPU
746 static void migrate_hrtimer_list(struct hrtimer_base
*old_base
,
747 struct hrtimer_base
*new_base
)
749 struct hrtimer
*timer
;
750 struct rb_node
*node
;
752 while ((node
= rb_first(&old_base
->active
))) {
753 timer
= rb_entry(node
, struct hrtimer
, node
);
754 __remove_hrtimer(timer
, old_base
);
755 timer
->base
= new_base
;
756 enqueue_hrtimer(timer
, new_base
);
760 static void migrate_hrtimers(int cpu
)
762 struct hrtimer_base
*old_base
, *new_base
;
765 BUG_ON(cpu_online(cpu
));
766 old_base
= per_cpu(hrtimer_bases
, cpu
);
767 new_base
= get_cpu_var(hrtimer_bases
);
771 for (i
= 0; i
< MAX_HRTIMER_BASES
; i
++) {
773 spin_lock(&new_base
->lock
);
774 spin_lock(&old_base
->lock
);
776 BUG_ON(old_base
->curr_timer
);
778 migrate_hrtimer_list(old_base
, new_base
);
780 spin_unlock(&old_base
->lock
);
781 spin_unlock(&new_base
->lock
);
787 put_cpu_var(hrtimer_bases
);
789 #endif /* CONFIG_HOTPLUG_CPU */
791 static int __devinit
hrtimer_cpu_notify(struct notifier_block
*self
,
792 unsigned long action
, void *hcpu
)
794 long cpu
= (long)hcpu
;
799 init_hrtimers_cpu(cpu
);
802 #ifdef CONFIG_HOTPLUG_CPU
804 migrate_hrtimers(cpu
);
815 static struct notifier_block __devinitdata hrtimers_nb
= {
816 .notifier_call
= hrtimer_cpu_notify
,
819 void __init
hrtimers_init(void)
821 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
822 (void *)(long)smp_processor_id());
823 register_cpu_notifier(&hrtimers_nb
);