2 * linux/drivers/mmc/au1xmmc.c - AU1XX0 MMC driver
4 * Copyright (c) 2005, Advanced Micro Devices, Inc.
6 * Developed with help from the 2.4.30 MMC AU1XXX controller including
7 * the following copyright notices:
8 * Copyright (c) 2003-2004 Embedded Edge, LLC.
9 * Portions Copyright (C) 2002 Embedix, Inc
10 * Copyright 2002 Hewlett-Packard Company
12 * 2.6 version of this driver inspired by:
13 * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
14 * All Rights Reserved.
15 * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
16 * All Rights Reserved.
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License version 2 as
21 * published by the Free Software Foundation.
24 /* Why is a timer used to detect insert events?
26 * From the AU1100 MMC application guide:
27 * If the Au1100-based design is intended to support both MultiMediaCards
28 * and 1- or 4-data bit SecureDigital cards, then the solution is to
29 * connect a weak (560KOhm) pull-up resistor to connector pin 1.
30 * In doing so, a MMC card never enters SPI-mode communications,
31 * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
32 * (the low to high transition will not occur).
34 * So we use the timer to check the status manually.
37 #include <linux/module.h>
38 #include <linux/init.h>
39 #include <linux/platform_device.h>
41 #include <linux/interrupt.h>
42 #include <linux/dma-mapping.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/protocol.h>
47 #include <asm/mach-au1x00/au1000.h>
48 #include <asm/mach-au1x00/au1xxx_dbdma.h>
49 #include <asm/mach-au1x00/au1100_mmc.h>
50 #include <asm/scatterlist.h>
55 #define DRIVER_NAME "au1xxx-mmc"
57 /* Set this to enable special debugging macros */
60 #define DBG(fmt, idx, args...) printk("au1xx(%d): DEBUG: " fmt, idx, ##args)
62 #define DBG(fmt, idx, args...)
67 u32 tx_devid
, rx_devid
;
71 } au1xmmc_card_table
[] = {
72 { SD0_BASE
, DSCR_CMD0_SDMS_TX0
, DSCR_CMD0_SDMS_RX0
,
73 BCSR_BOARD_SD0PWR
, BCSR_INT_SD0INSERT
, BCSR_STATUS_SD0WP
},
74 #ifndef CONFIG_MIPS_DB1200
75 { SD1_BASE
, DSCR_CMD0_SDMS_TX1
, DSCR_CMD0_SDMS_RX1
,
76 BCSR_BOARD_DS1PWR
, BCSR_INT_SD1INSERT
, BCSR_STATUS_SD1WP
}
80 #define AU1XMMC_CONTROLLER_COUNT \
81 (sizeof(au1xmmc_card_table) / sizeof(au1xmmc_card_table[0]))
83 /* This array stores pointers for the hosts (used by the IRQ handler) */
84 struct au1xmmc_host
*au1xmmc_hosts
[AU1XMMC_CONTROLLER_COUNT
];
88 module_param(dma
, bool, 0);
89 MODULE_PARM_DESC(dma
, "Use DMA engine for data transfers (0 = disabled)");
92 static inline void IRQ_ON(struct au1xmmc_host
*host
, u32 mask
)
94 u32 val
= au_readl(HOST_CONFIG(host
));
96 au_writel(val
, HOST_CONFIG(host
));
100 static inline void FLUSH_FIFO(struct au1xmmc_host
*host
)
102 u32 val
= au_readl(HOST_CONFIG2(host
));
104 au_writel(val
| SD_CONFIG2_FF
, HOST_CONFIG2(host
));
107 /* SEND_STOP will turn off clock control - this re-enables it */
108 val
&= ~SD_CONFIG2_DF
;
110 au_writel(val
, HOST_CONFIG2(host
));
114 static inline void IRQ_OFF(struct au1xmmc_host
*host
, u32 mask
)
116 u32 val
= au_readl(HOST_CONFIG(host
));
118 au_writel(val
, HOST_CONFIG(host
));
122 static inline void SEND_STOP(struct au1xmmc_host
*host
)
125 /* We know the value of CONFIG2, so avoid a read we don't need */
126 u32 mask
= SD_CONFIG2_EN
;
128 WARN_ON(host
->status
!= HOST_S_DATA
);
129 host
->status
= HOST_S_STOP
;
131 au_writel(mask
| SD_CONFIG2_DF
, HOST_CONFIG2(host
));
134 /* Send the stop commmand */
135 au_writel(STOP_CMD
, HOST_CMD(host
));
138 static void au1xmmc_set_power(struct au1xmmc_host
*host
, int state
)
141 u32 val
= au1xmmc_card_table
[host
->id
].bcsrpwr
;
144 if (state
) bcsr
->board
|= val
;
149 static inline int au1xmmc_card_inserted(struct au1xmmc_host
*host
)
151 return (bcsr
->sig_status
& au1xmmc_card_table
[host
->id
].bcsrstatus
)
155 static inline int au1xmmc_card_readonly(struct au1xmmc_host
*host
)
157 return (bcsr
->status
& au1xmmc_card_table
[host
->id
].wpstatus
)
161 static void au1xmmc_finish_request(struct au1xmmc_host
*host
)
164 struct mmc_request
*mrq
= host
->mrq
;
167 host
->flags
&= HOST_F_ACTIVE
;
173 host
->pio
.offset
= 0;
176 host
->status
= HOST_S_IDLE
;
178 bcsr
->disk_leds
|= (1 << 8);
180 mmc_request_done(host
->mmc
, mrq
);
183 static void au1xmmc_tasklet_finish(unsigned long param
)
185 struct au1xmmc_host
*host
= (struct au1xmmc_host
*) param
;
186 au1xmmc_finish_request(host
);
189 static int au1xmmc_send_command(struct au1xmmc_host
*host
, int wait
,
190 struct mmc_command
*cmd
)
193 u32 mmccmd
= (cmd
->opcode
<< SD_CMD_CI_SHIFT
);
195 switch (mmc_resp_type(cmd
)) {
197 mmccmd
|= SD_CMD_RT_1
;
200 mmccmd
|= SD_CMD_RT_1B
;
203 mmccmd
|= SD_CMD_RT_2
;
206 mmccmd
|= SD_CMD_RT_3
;
210 switch(cmd
->opcode
) {
211 case MMC_READ_SINGLE_BLOCK
:
212 case SD_APP_SEND_SCR
:
213 mmccmd
|= SD_CMD_CT_2
;
215 case MMC_READ_MULTIPLE_BLOCK
:
216 mmccmd
|= SD_CMD_CT_4
;
218 case MMC_WRITE_BLOCK
:
219 mmccmd
|= SD_CMD_CT_1
;
222 case MMC_WRITE_MULTIPLE_BLOCK
:
223 mmccmd
|= SD_CMD_CT_3
;
225 case MMC_STOP_TRANSMISSION
:
226 mmccmd
|= SD_CMD_CT_7
;
230 au_writel(cmd
->arg
, HOST_CMDARG(host
));
234 IRQ_OFF(host
, SD_CONFIG_CR
);
236 au_writel((mmccmd
| SD_CMD_GO
), HOST_CMD(host
));
239 /* Wait for the command to go on the line */
242 if (!(au_readl(HOST_CMD(host
)) & SD_CMD_GO
))
246 /* Wait for the command to come back */
249 u32 status
= au_readl(HOST_STATUS(host
));
251 while(!(status
& SD_STATUS_CR
))
252 status
= au_readl(HOST_STATUS(host
));
254 /* Clear the CR status */
255 au_writel(SD_STATUS_CR
, HOST_STATUS(host
));
257 IRQ_ON(host
, SD_CONFIG_CR
);
263 static void au1xmmc_data_complete(struct au1xmmc_host
*host
, u32 status
)
266 struct mmc_request
*mrq
= host
->mrq
;
267 struct mmc_data
*data
;
270 WARN_ON(host
->status
!= HOST_S_DATA
&& host
->status
!= HOST_S_STOP
);
272 if (host
->mrq
== NULL
)
275 data
= mrq
->cmd
->data
;
278 status
= au_readl(HOST_STATUS(host
));
280 /* The transaction is really over when the SD_STATUS_DB bit is clear */
282 while((host
->flags
& HOST_F_XMIT
) && (status
& SD_STATUS_DB
))
283 status
= au_readl(HOST_STATUS(host
));
285 data
->error
= MMC_ERR_NONE
;
286 dma_unmap_sg(mmc_dev(host
->mmc
), data
->sg
, data
->sg_len
, host
->dma
.dir
);
288 /* Process any errors */
290 crc
= (status
& (SD_STATUS_WC
| SD_STATUS_RC
));
291 if (host
->flags
& HOST_F_XMIT
)
292 crc
|= ((status
& 0x07) == 0x02) ? 0 : 1;
295 data
->error
= MMC_ERR_BADCRC
;
297 /* Clear the CRC bits */
298 au_writel(SD_STATUS_WC
| SD_STATUS_RC
, HOST_STATUS(host
));
300 data
->bytes_xfered
= 0;
302 if (data
->error
== MMC_ERR_NONE
) {
303 if (host
->flags
& HOST_F_DMA
) {
304 u32 chan
= DMA_CHANNEL(host
);
306 chan_tab_t
*c
= *((chan_tab_t
**) chan
);
307 au1x_dma_chan_t
*cp
= c
->chan_ptr
;
308 data
->bytes_xfered
= cp
->ddma_bytecnt
;
312 (data
->blocks
* data
->blksz
) -
316 au1xmmc_finish_request(host
);
319 static void au1xmmc_tasklet_data(unsigned long param
)
321 struct au1xmmc_host
*host
= (struct au1xmmc_host
*) param
;
323 u32 status
= au_readl(HOST_STATUS(host
));
324 au1xmmc_data_complete(host
, status
);
327 #define AU1XMMC_MAX_TRANSFER 8
329 static void au1xmmc_send_pio(struct au1xmmc_host
*host
)
332 struct mmc_data
*data
= 0;
333 int sg_len
, max
, count
= 0;
334 unsigned char *sg_ptr
;
336 struct scatterlist
*sg
;
338 data
= host
->mrq
->data
;
340 if (!(host
->flags
& HOST_F_XMIT
))
343 /* This is the pointer to the data buffer */
344 sg
= &data
->sg
[host
->pio
.index
];
345 sg_ptr
= page_address(sg
->page
) + sg
->offset
+ host
->pio
.offset
;
347 /* This is the space left inside the buffer */
348 sg_len
= data
->sg
[host
->pio
.index
].length
- host
->pio
.offset
;
350 /* Check to if we need less then the size of the sg_buffer */
352 max
= (sg_len
> host
->pio
.len
) ? host
->pio
.len
: sg_len
;
353 if (max
> AU1XMMC_MAX_TRANSFER
) max
= AU1XMMC_MAX_TRANSFER
;
355 for(count
= 0; count
< max
; count
++ ) {
358 status
= au_readl(HOST_STATUS(host
));
360 if (!(status
& SD_STATUS_TH
))
365 au_writel((unsigned long) val
, HOST_TXPORT(host
));
369 host
->pio
.len
-= count
;
370 host
->pio
.offset
+= count
;
372 if (count
== sg_len
) {
374 host
->pio
.offset
= 0;
377 if (host
->pio
.len
== 0) {
378 IRQ_OFF(host
, SD_CONFIG_TH
);
380 if (host
->flags
& HOST_F_STOP
)
383 tasklet_schedule(&host
->data_task
);
387 static void au1xmmc_receive_pio(struct au1xmmc_host
*host
)
390 struct mmc_data
*data
= 0;
391 int sg_len
= 0, max
= 0, count
= 0;
392 unsigned char *sg_ptr
= 0;
394 struct scatterlist
*sg
;
396 data
= host
->mrq
->data
;
398 if (!(host
->flags
& HOST_F_RECV
))
403 if (host
->pio
.index
< host
->dma
.len
) {
404 sg
= &data
->sg
[host
->pio
.index
];
405 sg_ptr
= page_address(sg
->page
) + sg
->offset
+ host
->pio
.offset
;
407 /* This is the space left inside the buffer */
408 sg_len
= sg_dma_len(&data
->sg
[host
->pio
.index
]) - host
->pio
.offset
;
410 /* Check to if we need less then the size of the sg_buffer */
411 if (sg_len
< max
) max
= sg_len
;
414 if (max
> AU1XMMC_MAX_TRANSFER
)
415 max
= AU1XMMC_MAX_TRANSFER
;
417 for(count
= 0; count
< max
; count
++ ) {
419 status
= au_readl(HOST_STATUS(host
));
421 if (!(status
& SD_STATUS_NE
))
424 if (status
& SD_STATUS_RC
) {
425 DBG("RX CRC Error [%d + %d].\n", host
->id
,
426 host
->pio
.len
, count
);
430 if (status
& SD_STATUS_RO
) {
431 DBG("RX Overrun [%d + %d]\n", host
->id
,
432 host
->pio
.len
, count
);
435 else if (status
& SD_STATUS_RU
) {
436 DBG("RX Underrun [%d + %d]\n", host
->id
,
437 host
->pio
.len
, count
);
441 val
= au_readl(HOST_RXPORT(host
));
444 *sg_ptr
++ = (unsigned char) (val
& 0xFF);
447 host
->pio
.len
-= count
;
448 host
->pio
.offset
+= count
;
450 if (sg_len
&& count
== sg_len
) {
452 host
->pio
.offset
= 0;
455 if (host
->pio
.len
== 0) {
456 //IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF);
457 IRQ_OFF(host
, SD_CONFIG_NE
);
459 if (host
->flags
& HOST_F_STOP
)
462 tasklet_schedule(&host
->data_task
);
466 /* static void au1xmmc_cmd_complete
467 This is called when a command has been completed - grab the response
468 and check for errors. Then start the data transfer if it is indicated.
471 static void au1xmmc_cmd_complete(struct au1xmmc_host
*host
, u32 status
)
474 struct mmc_request
*mrq
= host
->mrq
;
475 struct mmc_command
*cmd
;
482 cmd
->error
= MMC_ERR_NONE
;
484 if (cmd
->flags
& MMC_RSP_PRESENT
) {
485 if (cmd
->flags
& MMC_RSP_136
) {
489 r
[0] = au_readl(host
->iobase
+ SD_RESP3
);
490 r
[1] = au_readl(host
->iobase
+ SD_RESP2
);
491 r
[2] = au_readl(host
->iobase
+ SD_RESP1
);
492 r
[3] = au_readl(host
->iobase
+ SD_RESP0
);
494 /* The CRC is omitted from the response, so really
495 * we only got 120 bytes, but the engine expects
496 * 128 bits, so we have to shift things up
499 for(i
= 0; i
< 4; i
++) {
500 cmd
->resp
[i
] = (r
[i
] & 0x00FFFFFF) << 8;
502 cmd
->resp
[i
] |= (r
[i
+ 1] & 0xFF000000) >> 24;
505 /* Techincally, we should be getting all 48 bits of
506 * the response (SD_RESP1 + SD_RESP2), but because
507 * our response omits the CRC, our data ends up
508 * being shifted 8 bits to the right. In this case,
509 * that means that the OSR data starts at bit 31,
510 * so we can just read RESP0 and return that
512 cmd
->resp
[0] = au_readl(host
->iobase
+ SD_RESP0
);
516 /* Figure out errors */
518 if (status
& (SD_STATUS_SC
| SD_STATUS_WC
| SD_STATUS_RC
))
519 cmd
->error
= MMC_ERR_BADCRC
;
521 trans
= host
->flags
& (HOST_F_XMIT
| HOST_F_RECV
);
523 if (!trans
|| cmd
->error
!= MMC_ERR_NONE
) {
525 IRQ_OFF(host
, SD_CONFIG_TH
| SD_CONFIG_RA
|SD_CONFIG_RF
);
526 tasklet_schedule(&host
->finish_task
);
530 host
->status
= HOST_S_DATA
;
532 if (host
->flags
& HOST_F_DMA
) {
533 u32 channel
= DMA_CHANNEL(host
);
535 /* Start the DMA as soon as the buffer gets something in it */
537 if (host
->flags
& HOST_F_RECV
) {
538 u32 mask
= SD_STATUS_DB
| SD_STATUS_NE
;
540 while((status
& mask
) != mask
)
541 status
= au_readl(HOST_STATUS(host
));
544 au1xxx_dbdma_start(channel
);
548 static void au1xmmc_set_clock(struct au1xmmc_host
*host
, int rate
)
551 unsigned int pbus
= get_au1x00_speed();
552 unsigned int divisor
;
556 divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1
559 pbus
/= ((au_readl(SYS_POWERCTRL
) & 0x3) + 2);
562 divisor
= ((pbus
/ rate
) / 2) - 1;
564 config
= au_readl(HOST_CONFIG(host
));
566 config
&= ~(SD_CONFIG_DIV
);
567 config
|= (divisor
& SD_CONFIG_DIV
) | SD_CONFIG_DE
;
569 au_writel(config
, HOST_CONFIG(host
));
574 au1xmmc_prepare_data(struct au1xmmc_host
*host
, struct mmc_data
*data
)
577 int datalen
= data
->blocks
* data
->blksz
;
580 host
->flags
|= HOST_F_DMA
;
582 if (data
->flags
& MMC_DATA_READ
)
583 host
->flags
|= HOST_F_RECV
;
585 host
->flags
|= HOST_F_XMIT
;
588 host
->flags
|= HOST_F_STOP
;
590 host
->dma
.dir
= DMA_BIDIRECTIONAL
;
592 host
->dma
.len
= dma_map_sg(mmc_dev(host
->mmc
), data
->sg
,
593 data
->sg_len
, host
->dma
.dir
);
595 if (host
->dma
.len
== 0)
596 return MMC_ERR_TIMEOUT
;
598 au_writel(data
->blksz
- 1, HOST_BLKSIZE(host
));
600 if (host
->flags
& HOST_F_DMA
) {
602 u32 channel
= DMA_CHANNEL(host
);
604 au1xxx_dbdma_stop(channel
);
606 for(i
= 0; i
< host
->dma
.len
; i
++) {
607 u32 ret
= 0, flags
= DDMA_FLAGS_NOIE
;
608 struct scatterlist
*sg
= &data
->sg
[i
];
609 int sg_len
= sg
->length
;
611 int len
= (datalen
> sg_len
) ? sg_len
: datalen
;
613 if (i
== host
->dma
.len
- 1)
614 flags
= DDMA_FLAGS_IE
;
616 if (host
->flags
& HOST_F_XMIT
){
617 ret
= au1xxx_dbdma_put_source_flags(channel
,
618 (void *) (page_address(sg
->page
) +
623 ret
= au1xxx_dbdma_put_dest_flags(channel
,
624 (void *) (page_address(sg
->page
) +
637 host
->pio
.offset
= 0;
638 host
->pio
.len
= datalen
;
640 if (host
->flags
& HOST_F_XMIT
)
641 IRQ_ON(host
, SD_CONFIG_TH
);
643 IRQ_ON(host
, SD_CONFIG_NE
);
644 //IRQ_ON(host, SD_CONFIG_RA|SD_CONFIG_RF);
650 dma_unmap_sg(mmc_dev(host
->mmc
),data
->sg
,data
->sg_len
,host
->dma
.dir
);
651 return MMC_ERR_TIMEOUT
;
654 /* static void au1xmmc_request
655 This actually starts a command or data transaction
658 static void au1xmmc_request(struct mmc_host
* mmc
, struct mmc_request
* mrq
)
661 struct au1xmmc_host
*host
= mmc_priv(mmc
);
662 int ret
= MMC_ERR_NONE
;
664 WARN_ON(irqs_disabled());
665 WARN_ON(host
->status
!= HOST_S_IDLE
);
668 host
->status
= HOST_S_CMD
;
670 bcsr
->disk_leds
&= ~(1 << 8);
674 ret
= au1xmmc_prepare_data(host
, mrq
->data
);
677 if (ret
== MMC_ERR_NONE
)
678 ret
= au1xmmc_send_command(host
, 0, mrq
->cmd
);
680 if (ret
!= MMC_ERR_NONE
) {
681 mrq
->cmd
->error
= ret
;
682 au1xmmc_finish_request(host
);
686 static void au1xmmc_reset_controller(struct au1xmmc_host
*host
)
689 /* Apply the clock */
690 au_writel(SD_ENABLE_CE
, HOST_ENABLE(host
));
693 au_writel(SD_ENABLE_R
| SD_ENABLE_CE
, HOST_ENABLE(host
));
696 au_writel(~0, HOST_STATUS(host
));
699 au_writel(0, HOST_BLKSIZE(host
));
700 au_writel(0x001fffff, HOST_TIMEOUT(host
));
703 au_writel(SD_CONFIG2_EN
, HOST_CONFIG2(host
));
706 au_writel(SD_CONFIG2_EN
| SD_CONFIG2_FF
, HOST_CONFIG2(host
));
709 au_writel(SD_CONFIG2_EN
, HOST_CONFIG2(host
));
712 /* Configure interrupts */
713 au_writel(AU1XMMC_INTERRUPTS
, HOST_CONFIG(host
));
718 static void au1xmmc_set_ios(struct mmc_host
* mmc
, struct mmc_ios
* ios
)
720 struct au1xmmc_host
*host
= mmc_priv(mmc
);
722 if (ios
->power_mode
== MMC_POWER_OFF
)
723 au1xmmc_set_power(host
, 0);
724 else if (ios
->power_mode
== MMC_POWER_ON
) {
725 au1xmmc_set_power(host
, 1);
728 if (ios
->clock
&& ios
->clock
!= host
->clock
) {
729 au1xmmc_set_clock(host
, ios
->clock
);
730 host
->clock
= ios
->clock
;
734 static void au1xmmc_dma_callback(int irq
, void *dev_id
)
736 struct au1xmmc_host
*host
= (struct au1xmmc_host
*) dev_id
;
738 /* Avoid spurious interrupts */
743 if (host
->flags
& HOST_F_STOP
)
746 tasklet_schedule(&host
->data_task
);
749 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
750 #define STATUS_DATA_IN (SD_STATUS_NE)
751 #define STATUS_DATA_OUT (SD_STATUS_TH)
753 static irqreturn_t
au1xmmc_irq(int irq
, void *dev_id
)
759 disable_irq(AU1100_SD_IRQ
);
761 for(i
= 0; i
< AU1XMMC_CONTROLLER_COUNT
; i
++) {
762 struct au1xmmc_host
* host
= au1xmmc_hosts
[i
];
765 status
= au_readl(HOST_STATUS(host
));
767 if (host
->mrq
&& (status
& STATUS_TIMEOUT
)) {
768 if (status
& SD_STATUS_RAT
)
769 host
->mrq
->cmd
->error
= MMC_ERR_TIMEOUT
;
771 else if (status
& SD_STATUS_DT
)
772 host
->mrq
->data
->error
= MMC_ERR_TIMEOUT
;
774 /* In PIO mode, interrupts might still be enabled */
775 IRQ_OFF(host
, SD_CONFIG_NE
| SD_CONFIG_TH
);
777 //IRQ_OFF(host, SD_CONFIG_TH|SD_CONFIG_RA|SD_CONFIG_RF);
778 tasklet_schedule(&host
->finish_task
);
781 else if (status
& SD_STATUS_DD
) {
783 /* Sometimes we get a DD before a NE in PIO mode */
785 if (!(host
->flags
& HOST_F_DMA
) &&
786 (status
& SD_STATUS_NE
))
787 au1xmmc_receive_pio(host
);
789 au1xmmc_data_complete(host
, status
);
790 //tasklet_schedule(&host->data_task);
794 else if (status
& (SD_STATUS_CR
)) {
795 if (host
->status
== HOST_S_CMD
)
796 au1xmmc_cmd_complete(host
,status
);
798 else if (!(host
->flags
& HOST_F_DMA
)) {
799 if ((host
->flags
& HOST_F_XMIT
) &&
800 (status
& STATUS_DATA_OUT
))
801 au1xmmc_send_pio(host
);
802 else if ((host
->flags
& HOST_F_RECV
) &&
803 (status
& STATUS_DATA_IN
))
804 au1xmmc_receive_pio(host
);
806 else if (status
& 0x203FBC70) {
807 DBG("Unhandled status %8.8x\n", host
->id
, status
);
811 au_writel(status
, HOST_STATUS(host
));
817 enable_irq(AU1100_SD_IRQ
);
821 static void au1xmmc_poll_event(unsigned long arg
)
823 struct au1xmmc_host
*host
= (struct au1xmmc_host
*) arg
;
825 int card
= au1xmmc_card_inserted(host
);
826 int controller
= (host
->flags
& HOST_F_ACTIVE
) ? 1 : 0;
828 if (card
!= controller
) {
829 host
->flags
&= ~HOST_F_ACTIVE
;
830 if (card
) host
->flags
|= HOST_F_ACTIVE
;
831 mmc_detect_change(host
->mmc
, 0);
834 if (host
->mrq
!= NULL
) {
835 u32 status
= au_readl(HOST_STATUS(host
));
836 DBG("PENDING - %8.8x\n", host
->id
, status
);
839 mod_timer(&host
->timer
, jiffies
+ AU1XMMC_DETECT_TIMEOUT
);
842 static dbdev_tab_t au1xmmc_mem_dbdev
=
844 DSCR_CMD0_ALWAYS
, DEV_FLAGS_ANYUSE
, 0, 8, 0x00000000, 0, 0
847 static void au1xmmc_init_dma(struct au1xmmc_host
*host
)
852 int txid
= au1xmmc_card_table
[host
->id
].tx_devid
;
853 int rxid
= au1xmmc_card_table
[host
->id
].rx_devid
;
855 /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
856 of 8 bits. And since devices are shared, we need to create
857 our own to avoid freaking out other devices
860 int memid
= au1xxx_ddma_add_device(&au1xmmc_mem_dbdev
);
862 txchan
= au1xxx_dbdma_chan_alloc(memid
, txid
,
863 au1xmmc_dma_callback
, (void *) host
);
865 rxchan
= au1xxx_dbdma_chan_alloc(rxid
, memid
,
866 au1xmmc_dma_callback
, (void *) host
);
868 au1xxx_dbdma_set_devwidth(txchan
, 8);
869 au1xxx_dbdma_set_devwidth(rxchan
, 8);
871 au1xxx_dbdma_ring_alloc(txchan
, AU1XMMC_DESCRIPTOR_COUNT
);
872 au1xxx_dbdma_ring_alloc(rxchan
, AU1XMMC_DESCRIPTOR_COUNT
);
874 host
->tx_chan
= txchan
;
875 host
->rx_chan
= rxchan
;
878 struct const mmc_host_ops au1xmmc_ops
= {
879 .request
= au1xmmc_request
,
880 .set_ios
= au1xmmc_set_ios
,
883 static int __devinit
au1xmmc_probe(struct platform_device
*pdev
)
888 /* THe interrupt is shared among all controllers */
889 ret
= request_irq(AU1100_SD_IRQ
, au1xmmc_irq
, IRQF_DISABLED
, "MMC", 0);
892 printk(DRIVER_NAME
"ERROR: Couldn't get int %d: %d\n",
897 disable_irq(AU1100_SD_IRQ
);
899 for(i
= 0; i
< AU1XMMC_CONTROLLER_COUNT
; i
++) {
900 struct mmc_host
*mmc
= mmc_alloc_host(sizeof(struct au1xmmc_host
), &pdev
->dev
);
901 struct au1xmmc_host
*host
= 0;
904 printk(DRIVER_NAME
"ERROR: no mem for host %d\n", i
);
905 au1xmmc_hosts
[i
] = 0;
909 mmc
->ops
= &au1xmmc_ops
;
912 mmc
->f_max
= 24000000;
914 mmc
->max_seg_size
= AU1XMMC_DESCRIPTOR_SIZE
;
915 mmc
->max_phys_segs
= AU1XMMC_DESCRIPTOR_COUNT
;
917 mmc
->ocr_avail
= AU1XMMC_OCR
;
919 host
= mmc_priv(mmc
);
923 host
->iobase
= au1xmmc_card_table
[host
->id
].iobase
;
925 host
->power_mode
= MMC_POWER_OFF
;
927 host
->flags
= au1xmmc_card_inserted(host
) ? HOST_F_ACTIVE
: 0;
928 host
->status
= HOST_S_IDLE
;
930 init_timer(&host
->timer
);
932 host
->timer
.function
= au1xmmc_poll_event
;
933 host
->timer
.data
= (unsigned long) host
;
934 host
->timer
.expires
= jiffies
+ AU1XMMC_DETECT_TIMEOUT
;
936 tasklet_init(&host
->data_task
, au1xmmc_tasklet_data
,
937 (unsigned long) host
);
939 tasklet_init(&host
->finish_task
, au1xmmc_tasklet_finish
,
940 (unsigned long) host
);
942 spin_lock_init(&host
->lock
);
945 au1xmmc_init_dma(host
);
947 au1xmmc_reset_controller(host
);
950 au1xmmc_hosts
[i
] = host
;
952 add_timer(&host
->timer
);
954 printk(KERN_INFO DRIVER_NAME
": MMC Controller %d set up at %8.8X (mode=%s)\n",
955 host
->id
, host
->iobase
, dma
? "dma" : "pio");
958 enable_irq(AU1100_SD_IRQ
);
963 static int __devexit
au1xmmc_remove(struct platform_device
*pdev
)
968 disable_irq(AU1100_SD_IRQ
);
970 for(i
= 0; i
< AU1XMMC_CONTROLLER_COUNT
; i
++) {
971 struct au1xmmc_host
*host
= au1xmmc_hosts
[i
];
974 tasklet_kill(&host
->data_task
);
975 tasklet_kill(&host
->finish_task
);
977 del_timer_sync(&host
->timer
);
978 au1xmmc_set_power(host
, 0);
980 mmc_remove_host(host
->mmc
);
982 au1xxx_dbdma_chan_free(host
->tx_chan
);
983 au1xxx_dbdma_chan_free(host
->rx_chan
);
985 au_writel(0x0, HOST_ENABLE(host
));
989 free_irq(AU1100_SD_IRQ
, 0);
993 static struct platform_driver au1xmmc_driver
= {
994 .probe
= au1xmmc_probe
,
995 .remove
= au1xmmc_remove
,
1003 static int __init
au1xmmc_init(void)
1005 return platform_driver_register(&au1xmmc_driver
);
1008 static void __exit
au1xmmc_exit(void)
1010 platform_driver_unregister(&au1xmmc_driver
);
1013 module_init(au1xmmc_init
);
1014 module_exit(au1xmmc_exit
);
1017 MODULE_AUTHOR("Advanced Micro Devices, Inc");
1018 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
1019 MODULE_LICENSE("GPL");