[SCSI] hpsa: Inform controller we are using 32-bit tags.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / hpsa.c
bloba778cb1fd8bcea76cea505d407c00a9a8b8eda20
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80 "Use 'simple mode' rather than 'performant mode'");
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3250},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3251},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3252},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3253},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3254},
97 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
98 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
99 {0,}
102 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
104 /* board_id = Subsystem Device ID & Vendor ID
105 * product = Marketing Name for the board
106 * access = Address of the struct of function pointers
108 static struct board_type products[] = {
109 {0x3241103C, "Smart Array P212", &SA5_access},
110 {0x3243103C, "Smart Array P410", &SA5_access},
111 {0x3245103C, "Smart Array P410i", &SA5_access},
112 {0x3247103C, "Smart Array P411", &SA5_access},
113 {0x3249103C, "Smart Array P812", &SA5_access},
114 {0x324a103C, "Smart Array P712m", &SA5_access},
115 {0x324b103C, "Smart Array P711m", &SA5_access},
116 {0x3250103C, "Smart Array", &SA5_access},
117 {0x3250113C, "Smart Array", &SA5_access},
118 {0x3250123C, "Smart Array", &SA5_access},
119 {0x3250133C, "Smart Array", &SA5_access},
120 {0x3250143C, "Smart Array", &SA5_access},
121 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
124 static int number_of_controllers;
126 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
127 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
128 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
129 static void start_io(struct ctlr_info *h);
131 #ifdef CONFIG_COMPAT
132 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 #endif
135 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
136 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
137 static struct CommandList *cmd_alloc(struct ctlr_info *h);
138 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
139 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
140 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
141 int cmd_type);
143 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
144 static void hpsa_scan_start(struct Scsi_Host *);
145 static int hpsa_scan_finished(struct Scsi_Host *sh,
146 unsigned long elapsed_time);
147 static int hpsa_change_queue_depth(struct scsi_device *sdev,
148 int qdepth, int reason);
150 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
151 static int hpsa_slave_alloc(struct scsi_device *sdev);
152 static void hpsa_slave_destroy(struct scsi_device *sdev);
154 static ssize_t raid_level_show(struct device *dev,
155 struct device_attribute *attr, char *buf);
156 static ssize_t lunid_show(struct device *dev,
157 struct device_attribute *attr, char *buf);
158 static ssize_t unique_id_show(struct device *dev,
159 struct device_attribute *attr, char *buf);
160 static ssize_t host_show_firmware_revision(struct device *dev,
161 struct device_attribute *attr, char *buf);
162 static ssize_t host_show_commands_outstanding(struct device *dev,
163 struct device_attribute *attr, char *buf);
164 static ssize_t host_show_transport_mode(struct device *dev,
165 struct device_attribute *attr, char *buf);
166 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
167 static ssize_t host_store_rescan(struct device *dev,
168 struct device_attribute *attr, const char *buf, size_t count);
169 static int check_for_unit_attention(struct ctlr_info *h,
170 struct CommandList *c);
171 static void check_ioctl_unit_attention(struct ctlr_info *h,
172 struct CommandList *c);
173 /* performant mode helper functions */
174 static void calc_bucket_map(int *bucket, int num_buckets,
175 int nsgs, int *bucket_map);
176 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
177 static inline u32 next_command(struct ctlr_info *h);
178 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
179 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
180 u64 *cfg_offset);
181 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
182 unsigned long *memory_bar);
183 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
184 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
185 void __iomem *vaddr, int wait_for_ready);
186 #define BOARD_NOT_READY 0
187 #define BOARD_READY 1
189 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
190 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
191 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
192 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
193 static DEVICE_ATTR(firmware_revision, S_IRUGO,
194 host_show_firmware_revision, NULL);
195 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
196 host_show_commands_outstanding, NULL);
197 static DEVICE_ATTR(transport_mode, S_IRUGO,
198 host_show_transport_mode, NULL);
200 static struct device_attribute *hpsa_sdev_attrs[] = {
201 &dev_attr_raid_level,
202 &dev_attr_lunid,
203 &dev_attr_unique_id,
204 NULL,
207 static struct device_attribute *hpsa_shost_attrs[] = {
208 &dev_attr_rescan,
209 &dev_attr_firmware_revision,
210 &dev_attr_commands_outstanding,
211 &dev_attr_transport_mode,
212 NULL,
215 static struct scsi_host_template hpsa_driver_template = {
216 .module = THIS_MODULE,
217 .name = "hpsa",
218 .proc_name = "hpsa",
219 .queuecommand = hpsa_scsi_queue_command,
220 .scan_start = hpsa_scan_start,
221 .scan_finished = hpsa_scan_finished,
222 .change_queue_depth = hpsa_change_queue_depth,
223 .this_id = -1,
224 .use_clustering = ENABLE_CLUSTERING,
225 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
226 .ioctl = hpsa_ioctl,
227 .slave_alloc = hpsa_slave_alloc,
228 .slave_destroy = hpsa_slave_destroy,
229 #ifdef CONFIG_COMPAT
230 .compat_ioctl = hpsa_compat_ioctl,
231 #endif
232 .sdev_attrs = hpsa_sdev_attrs,
233 .shost_attrs = hpsa_shost_attrs,
236 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
238 unsigned long *priv = shost_priv(sdev->host);
239 return (struct ctlr_info *) *priv;
242 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
244 unsigned long *priv = shost_priv(sh);
245 return (struct ctlr_info *) *priv;
248 static int check_for_unit_attention(struct ctlr_info *h,
249 struct CommandList *c)
251 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
252 return 0;
254 switch (c->err_info->SenseInfo[12]) {
255 case STATE_CHANGED:
256 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
257 "detected, command retried\n", h->ctlr);
258 break;
259 case LUN_FAILED:
260 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
261 "detected, action required\n", h->ctlr);
262 break;
263 case REPORT_LUNS_CHANGED:
264 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
265 "changed, action required\n", h->ctlr);
267 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
269 break;
270 case POWER_OR_RESET:
271 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
272 "or device reset detected\n", h->ctlr);
273 break;
274 case UNIT_ATTENTION_CLEARED:
275 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
276 "cleared by another initiator\n", h->ctlr);
277 break;
278 default:
279 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
280 "unit attention detected\n", h->ctlr);
281 break;
283 return 1;
286 static ssize_t host_store_rescan(struct device *dev,
287 struct device_attribute *attr,
288 const char *buf, size_t count)
290 struct ctlr_info *h;
291 struct Scsi_Host *shost = class_to_shost(dev);
292 h = shost_to_hba(shost);
293 hpsa_scan_start(h->scsi_host);
294 return count;
297 static ssize_t host_show_firmware_revision(struct device *dev,
298 struct device_attribute *attr, char *buf)
300 struct ctlr_info *h;
301 struct Scsi_Host *shost = class_to_shost(dev);
302 unsigned char *fwrev;
304 h = shost_to_hba(shost);
305 if (!h->hba_inquiry_data)
306 return 0;
307 fwrev = &h->hba_inquiry_data[32];
308 return snprintf(buf, 20, "%c%c%c%c\n",
309 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
312 static ssize_t host_show_commands_outstanding(struct device *dev,
313 struct device_attribute *attr, char *buf)
315 struct Scsi_Host *shost = class_to_shost(dev);
316 struct ctlr_info *h = shost_to_hba(shost);
318 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
321 static ssize_t host_show_transport_mode(struct device *dev,
322 struct device_attribute *attr, char *buf)
324 struct ctlr_info *h;
325 struct Scsi_Host *shost = class_to_shost(dev);
327 h = shost_to_hba(shost);
328 return snprintf(buf, 20, "%s\n",
329 h->transMethod & CFGTBL_Trans_Performant ?
330 "performant" : "simple");
333 /* Enqueuing and dequeuing functions for cmdlists. */
334 static inline void addQ(struct list_head *list, struct CommandList *c)
336 list_add_tail(&c->list, list);
339 static inline u32 next_command(struct ctlr_info *h)
341 u32 a;
343 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
344 return h->access.command_completed(h);
346 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
347 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
348 (h->reply_pool_head)++;
349 h->commands_outstanding--;
350 } else {
351 a = FIFO_EMPTY;
353 /* Check for wraparound */
354 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
355 h->reply_pool_head = h->reply_pool;
356 h->reply_pool_wraparound ^= 1;
358 return a;
361 /* set_performant_mode: Modify the tag for cciss performant
362 * set bit 0 for pull model, bits 3-1 for block fetch
363 * register number
365 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
367 if (likely(h->transMethod & CFGTBL_Trans_Performant))
368 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
371 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
372 struct CommandList *c)
374 unsigned long flags;
376 set_performant_mode(h, c);
377 spin_lock_irqsave(&h->lock, flags);
378 addQ(&h->reqQ, c);
379 h->Qdepth++;
380 start_io(h);
381 spin_unlock_irqrestore(&h->lock, flags);
384 static inline void removeQ(struct CommandList *c)
386 if (WARN_ON(list_empty(&c->list)))
387 return;
388 list_del_init(&c->list);
391 static inline int is_hba_lunid(unsigned char scsi3addr[])
393 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
396 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
398 return (scsi3addr[3] & 0xC0) == 0x40;
401 static inline int is_scsi_rev_5(struct ctlr_info *h)
403 if (!h->hba_inquiry_data)
404 return 0;
405 if ((h->hba_inquiry_data[2] & 0x07) == 5)
406 return 1;
407 return 0;
410 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
411 "UNKNOWN"
413 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
415 static ssize_t raid_level_show(struct device *dev,
416 struct device_attribute *attr, char *buf)
418 ssize_t l = 0;
419 unsigned char rlevel;
420 struct ctlr_info *h;
421 struct scsi_device *sdev;
422 struct hpsa_scsi_dev_t *hdev;
423 unsigned long flags;
425 sdev = to_scsi_device(dev);
426 h = sdev_to_hba(sdev);
427 spin_lock_irqsave(&h->lock, flags);
428 hdev = sdev->hostdata;
429 if (!hdev) {
430 spin_unlock_irqrestore(&h->lock, flags);
431 return -ENODEV;
434 /* Is this even a logical drive? */
435 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
436 spin_unlock_irqrestore(&h->lock, flags);
437 l = snprintf(buf, PAGE_SIZE, "N/A\n");
438 return l;
441 rlevel = hdev->raid_level;
442 spin_unlock_irqrestore(&h->lock, flags);
443 if (rlevel > RAID_UNKNOWN)
444 rlevel = RAID_UNKNOWN;
445 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
446 return l;
449 static ssize_t lunid_show(struct device *dev,
450 struct device_attribute *attr, char *buf)
452 struct ctlr_info *h;
453 struct scsi_device *sdev;
454 struct hpsa_scsi_dev_t *hdev;
455 unsigned long flags;
456 unsigned char lunid[8];
458 sdev = to_scsi_device(dev);
459 h = sdev_to_hba(sdev);
460 spin_lock_irqsave(&h->lock, flags);
461 hdev = sdev->hostdata;
462 if (!hdev) {
463 spin_unlock_irqrestore(&h->lock, flags);
464 return -ENODEV;
466 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
467 spin_unlock_irqrestore(&h->lock, flags);
468 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
469 lunid[0], lunid[1], lunid[2], lunid[3],
470 lunid[4], lunid[5], lunid[6], lunid[7]);
473 static ssize_t unique_id_show(struct device *dev,
474 struct device_attribute *attr, char *buf)
476 struct ctlr_info *h;
477 struct scsi_device *sdev;
478 struct hpsa_scsi_dev_t *hdev;
479 unsigned long flags;
480 unsigned char sn[16];
482 sdev = to_scsi_device(dev);
483 h = sdev_to_hba(sdev);
484 spin_lock_irqsave(&h->lock, flags);
485 hdev = sdev->hostdata;
486 if (!hdev) {
487 spin_unlock_irqrestore(&h->lock, flags);
488 return -ENODEV;
490 memcpy(sn, hdev->device_id, sizeof(sn));
491 spin_unlock_irqrestore(&h->lock, flags);
492 return snprintf(buf, 16 * 2 + 2,
493 "%02X%02X%02X%02X%02X%02X%02X%02X"
494 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
495 sn[0], sn[1], sn[2], sn[3],
496 sn[4], sn[5], sn[6], sn[7],
497 sn[8], sn[9], sn[10], sn[11],
498 sn[12], sn[13], sn[14], sn[15]);
501 static int hpsa_find_target_lun(struct ctlr_info *h,
502 unsigned char scsi3addr[], int bus, int *target, int *lun)
504 /* finds an unused bus, target, lun for a new physical device
505 * assumes h->devlock is held
507 int i, found = 0;
508 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
510 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
512 for (i = 0; i < h->ndevices; i++) {
513 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
514 set_bit(h->dev[i]->target, lun_taken);
517 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
518 if (!test_bit(i, lun_taken)) {
519 /* *bus = 1; */
520 *target = i;
521 *lun = 0;
522 found = 1;
523 break;
526 return !found;
529 /* Add an entry into h->dev[] array. */
530 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
531 struct hpsa_scsi_dev_t *device,
532 struct hpsa_scsi_dev_t *added[], int *nadded)
534 /* assumes h->devlock is held */
535 int n = h->ndevices;
536 int i;
537 unsigned char addr1[8], addr2[8];
538 struct hpsa_scsi_dev_t *sd;
540 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
541 dev_err(&h->pdev->dev, "too many devices, some will be "
542 "inaccessible.\n");
543 return -1;
546 /* physical devices do not have lun or target assigned until now. */
547 if (device->lun != -1)
548 /* Logical device, lun is already assigned. */
549 goto lun_assigned;
551 /* If this device a non-zero lun of a multi-lun device
552 * byte 4 of the 8-byte LUN addr will contain the logical
553 * unit no, zero otherise.
555 if (device->scsi3addr[4] == 0) {
556 /* This is not a non-zero lun of a multi-lun device */
557 if (hpsa_find_target_lun(h, device->scsi3addr,
558 device->bus, &device->target, &device->lun) != 0)
559 return -1;
560 goto lun_assigned;
563 /* This is a non-zero lun of a multi-lun device.
564 * Search through our list and find the device which
565 * has the same 8 byte LUN address, excepting byte 4.
566 * Assign the same bus and target for this new LUN.
567 * Use the logical unit number from the firmware.
569 memcpy(addr1, device->scsi3addr, 8);
570 addr1[4] = 0;
571 for (i = 0; i < n; i++) {
572 sd = h->dev[i];
573 memcpy(addr2, sd->scsi3addr, 8);
574 addr2[4] = 0;
575 /* differ only in byte 4? */
576 if (memcmp(addr1, addr2, 8) == 0) {
577 device->bus = sd->bus;
578 device->target = sd->target;
579 device->lun = device->scsi3addr[4];
580 break;
583 if (device->lun == -1) {
584 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
585 " suspect firmware bug or unsupported hardware "
586 "configuration.\n");
587 return -1;
590 lun_assigned:
592 h->dev[n] = device;
593 h->ndevices++;
594 added[*nadded] = device;
595 (*nadded)++;
597 /* initially, (before registering with scsi layer) we don't
598 * know our hostno and we don't want to print anything first
599 * time anyway (the scsi layer's inquiries will show that info)
601 /* if (hostno != -1) */
602 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
603 scsi_device_type(device->devtype), hostno,
604 device->bus, device->target, device->lun);
605 return 0;
608 /* Replace an entry from h->dev[] array. */
609 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
610 int entry, struct hpsa_scsi_dev_t *new_entry,
611 struct hpsa_scsi_dev_t *added[], int *nadded,
612 struct hpsa_scsi_dev_t *removed[], int *nremoved)
614 /* assumes h->devlock is held */
615 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
616 removed[*nremoved] = h->dev[entry];
617 (*nremoved)++;
618 h->dev[entry] = new_entry;
619 added[*nadded] = new_entry;
620 (*nadded)++;
621 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
622 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
623 new_entry->target, new_entry->lun);
626 /* Remove an entry from h->dev[] array. */
627 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
628 struct hpsa_scsi_dev_t *removed[], int *nremoved)
630 /* assumes h->devlock is held */
631 int i;
632 struct hpsa_scsi_dev_t *sd;
634 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
636 sd = h->dev[entry];
637 removed[*nremoved] = h->dev[entry];
638 (*nremoved)++;
640 for (i = entry; i < h->ndevices-1; i++)
641 h->dev[i] = h->dev[i+1];
642 h->ndevices--;
643 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
644 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
645 sd->lun);
648 #define SCSI3ADDR_EQ(a, b) ( \
649 (a)[7] == (b)[7] && \
650 (a)[6] == (b)[6] && \
651 (a)[5] == (b)[5] && \
652 (a)[4] == (b)[4] && \
653 (a)[3] == (b)[3] && \
654 (a)[2] == (b)[2] && \
655 (a)[1] == (b)[1] && \
656 (a)[0] == (b)[0])
658 static void fixup_botched_add(struct ctlr_info *h,
659 struct hpsa_scsi_dev_t *added)
661 /* called when scsi_add_device fails in order to re-adjust
662 * h->dev[] to match the mid layer's view.
664 unsigned long flags;
665 int i, j;
667 spin_lock_irqsave(&h->lock, flags);
668 for (i = 0; i < h->ndevices; i++) {
669 if (h->dev[i] == added) {
670 for (j = i; j < h->ndevices-1; j++)
671 h->dev[j] = h->dev[j+1];
672 h->ndevices--;
673 break;
676 spin_unlock_irqrestore(&h->lock, flags);
677 kfree(added);
680 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
681 struct hpsa_scsi_dev_t *dev2)
683 /* we compare everything except lun and target as these
684 * are not yet assigned. Compare parts likely
685 * to differ first
687 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
688 sizeof(dev1->scsi3addr)) != 0)
689 return 0;
690 if (memcmp(dev1->device_id, dev2->device_id,
691 sizeof(dev1->device_id)) != 0)
692 return 0;
693 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
694 return 0;
695 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
696 return 0;
697 if (dev1->devtype != dev2->devtype)
698 return 0;
699 if (dev1->bus != dev2->bus)
700 return 0;
701 return 1;
704 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
705 * and return needle location in *index. If scsi3addr matches, but not
706 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
707 * location in *index. If needle not found, return DEVICE_NOT_FOUND.
709 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
710 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
711 int *index)
713 int i;
714 #define DEVICE_NOT_FOUND 0
715 #define DEVICE_CHANGED 1
716 #define DEVICE_SAME 2
717 for (i = 0; i < haystack_size; i++) {
718 if (haystack[i] == NULL) /* previously removed. */
719 continue;
720 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
721 *index = i;
722 if (device_is_the_same(needle, haystack[i]))
723 return DEVICE_SAME;
724 else
725 return DEVICE_CHANGED;
728 *index = -1;
729 return DEVICE_NOT_FOUND;
732 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
733 struct hpsa_scsi_dev_t *sd[], int nsds)
735 /* sd contains scsi3 addresses and devtypes, and inquiry
736 * data. This function takes what's in sd to be the current
737 * reality and updates h->dev[] to reflect that reality.
739 int i, entry, device_change, changes = 0;
740 struct hpsa_scsi_dev_t *csd;
741 unsigned long flags;
742 struct hpsa_scsi_dev_t **added, **removed;
743 int nadded, nremoved;
744 struct Scsi_Host *sh = NULL;
746 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
747 GFP_KERNEL);
748 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
749 GFP_KERNEL);
751 if (!added || !removed) {
752 dev_warn(&h->pdev->dev, "out of memory in "
753 "adjust_hpsa_scsi_table\n");
754 goto free_and_out;
757 spin_lock_irqsave(&h->devlock, flags);
759 /* find any devices in h->dev[] that are not in
760 * sd[] and remove them from h->dev[], and for any
761 * devices which have changed, remove the old device
762 * info and add the new device info.
764 i = 0;
765 nremoved = 0;
766 nadded = 0;
767 while (i < h->ndevices) {
768 csd = h->dev[i];
769 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
770 if (device_change == DEVICE_NOT_FOUND) {
771 changes++;
772 hpsa_scsi_remove_entry(h, hostno, i,
773 removed, &nremoved);
774 continue; /* remove ^^^, hence i not incremented */
775 } else if (device_change == DEVICE_CHANGED) {
776 changes++;
777 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
778 added, &nadded, removed, &nremoved);
779 /* Set it to NULL to prevent it from being freed
780 * at the bottom of hpsa_update_scsi_devices()
782 sd[entry] = NULL;
784 i++;
787 /* Now, make sure every device listed in sd[] is also
788 * listed in h->dev[], adding them if they aren't found
791 for (i = 0; i < nsds; i++) {
792 if (!sd[i]) /* if already added above. */
793 continue;
794 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
795 h->ndevices, &entry);
796 if (device_change == DEVICE_NOT_FOUND) {
797 changes++;
798 if (hpsa_scsi_add_entry(h, hostno, sd[i],
799 added, &nadded) != 0)
800 break;
801 sd[i] = NULL; /* prevent from being freed later. */
802 } else if (device_change == DEVICE_CHANGED) {
803 /* should never happen... */
804 changes++;
805 dev_warn(&h->pdev->dev,
806 "device unexpectedly changed.\n");
807 /* but if it does happen, we just ignore that device */
810 spin_unlock_irqrestore(&h->devlock, flags);
812 /* Don't notify scsi mid layer of any changes the first time through
813 * (or if there are no changes) scsi_scan_host will do it later the
814 * first time through.
816 if (hostno == -1 || !changes)
817 goto free_and_out;
819 sh = h->scsi_host;
820 /* Notify scsi mid layer of any removed devices */
821 for (i = 0; i < nremoved; i++) {
822 struct scsi_device *sdev =
823 scsi_device_lookup(sh, removed[i]->bus,
824 removed[i]->target, removed[i]->lun);
825 if (sdev != NULL) {
826 scsi_remove_device(sdev);
827 scsi_device_put(sdev);
828 } else {
829 /* We don't expect to get here.
830 * future cmds to this device will get selection
831 * timeout as if the device was gone.
833 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
834 " for removal.", hostno, removed[i]->bus,
835 removed[i]->target, removed[i]->lun);
837 kfree(removed[i]);
838 removed[i] = NULL;
841 /* Notify scsi mid layer of any added devices */
842 for (i = 0; i < nadded; i++) {
843 if (scsi_add_device(sh, added[i]->bus,
844 added[i]->target, added[i]->lun) == 0)
845 continue;
846 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
847 "device not added.\n", hostno, added[i]->bus,
848 added[i]->target, added[i]->lun);
849 /* now we have to remove it from h->dev,
850 * since it didn't get added to scsi mid layer
852 fixup_botched_add(h, added[i]);
855 free_and_out:
856 kfree(added);
857 kfree(removed);
861 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
862 * Assume's h->devlock is held.
864 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
865 int bus, int target, int lun)
867 int i;
868 struct hpsa_scsi_dev_t *sd;
870 for (i = 0; i < h->ndevices; i++) {
871 sd = h->dev[i];
872 if (sd->bus == bus && sd->target == target && sd->lun == lun)
873 return sd;
875 return NULL;
878 /* link sdev->hostdata to our per-device structure. */
879 static int hpsa_slave_alloc(struct scsi_device *sdev)
881 struct hpsa_scsi_dev_t *sd;
882 unsigned long flags;
883 struct ctlr_info *h;
885 h = sdev_to_hba(sdev);
886 spin_lock_irqsave(&h->devlock, flags);
887 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
888 sdev_id(sdev), sdev->lun);
889 if (sd != NULL)
890 sdev->hostdata = sd;
891 spin_unlock_irqrestore(&h->devlock, flags);
892 return 0;
895 static void hpsa_slave_destroy(struct scsi_device *sdev)
897 /* nothing to do. */
900 static void hpsa_scsi_setup(struct ctlr_info *h)
902 h->ndevices = 0;
903 h->scsi_host = NULL;
904 spin_lock_init(&h->devlock);
907 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
909 int i;
911 if (!h->cmd_sg_list)
912 return;
913 for (i = 0; i < h->nr_cmds; i++) {
914 kfree(h->cmd_sg_list[i]);
915 h->cmd_sg_list[i] = NULL;
917 kfree(h->cmd_sg_list);
918 h->cmd_sg_list = NULL;
921 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
923 int i;
925 if (h->chainsize <= 0)
926 return 0;
928 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
929 GFP_KERNEL);
930 if (!h->cmd_sg_list)
931 return -ENOMEM;
932 for (i = 0; i < h->nr_cmds; i++) {
933 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
934 h->chainsize, GFP_KERNEL);
935 if (!h->cmd_sg_list[i])
936 goto clean;
938 return 0;
940 clean:
941 hpsa_free_sg_chain_blocks(h);
942 return -ENOMEM;
945 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
946 struct CommandList *c)
948 struct SGDescriptor *chain_sg, *chain_block;
949 u64 temp64;
951 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
952 chain_block = h->cmd_sg_list[c->cmdindex];
953 chain_sg->Ext = HPSA_SG_CHAIN;
954 chain_sg->Len = sizeof(*chain_sg) *
955 (c->Header.SGTotal - h->max_cmd_sg_entries);
956 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
957 PCI_DMA_TODEVICE);
958 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
959 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
962 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
963 struct CommandList *c)
965 struct SGDescriptor *chain_sg;
966 union u64bit temp64;
968 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
969 return;
971 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
972 temp64.val32.lower = chain_sg->Addr.lower;
973 temp64.val32.upper = chain_sg->Addr.upper;
974 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
977 static void complete_scsi_command(struct CommandList *cp,
978 int timeout, u32 tag)
980 struct scsi_cmnd *cmd;
981 struct ctlr_info *h;
982 struct ErrorInfo *ei;
984 unsigned char sense_key;
985 unsigned char asc; /* additional sense code */
986 unsigned char ascq; /* additional sense code qualifier */
988 ei = cp->err_info;
989 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
990 h = cp->h;
992 scsi_dma_unmap(cmd); /* undo the DMA mappings */
993 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
994 hpsa_unmap_sg_chain_block(h, cp);
996 cmd->result = (DID_OK << 16); /* host byte */
997 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
998 cmd->result |= ei->ScsiStatus;
1000 /* copy the sense data whether we need to or not. */
1001 memcpy(cmd->sense_buffer, ei->SenseInfo,
1002 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1003 SCSI_SENSE_BUFFERSIZE :
1004 ei->SenseLen);
1005 scsi_set_resid(cmd, ei->ResidualCnt);
1007 if (ei->CommandStatus == 0) {
1008 cmd->scsi_done(cmd);
1009 cmd_free(h, cp);
1010 return;
1013 /* an error has occurred */
1014 switch (ei->CommandStatus) {
1016 case CMD_TARGET_STATUS:
1017 if (ei->ScsiStatus) {
1018 /* Get sense key */
1019 sense_key = 0xf & ei->SenseInfo[2];
1020 /* Get additional sense code */
1021 asc = ei->SenseInfo[12];
1022 /* Get addition sense code qualifier */
1023 ascq = ei->SenseInfo[13];
1026 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1027 if (check_for_unit_attention(h, cp)) {
1028 cmd->result = DID_SOFT_ERROR << 16;
1029 break;
1031 if (sense_key == ILLEGAL_REQUEST) {
1033 * SCSI REPORT_LUNS is commonly unsupported on
1034 * Smart Array. Suppress noisy complaint.
1036 if (cp->Request.CDB[0] == REPORT_LUNS)
1037 break;
1039 /* If ASC/ASCQ indicate Logical Unit
1040 * Not Supported condition,
1042 if ((asc == 0x25) && (ascq == 0x0)) {
1043 dev_warn(&h->pdev->dev, "cp %p "
1044 "has check condition\n", cp);
1045 break;
1049 if (sense_key == NOT_READY) {
1050 /* If Sense is Not Ready, Logical Unit
1051 * Not ready, Manual Intervention
1052 * required
1054 if ((asc == 0x04) && (ascq == 0x03)) {
1055 dev_warn(&h->pdev->dev, "cp %p "
1056 "has check condition: unit "
1057 "not ready, manual "
1058 "intervention required\n", cp);
1059 break;
1062 if (sense_key == ABORTED_COMMAND) {
1063 /* Aborted command is retryable */
1064 dev_warn(&h->pdev->dev, "cp %p "
1065 "has check condition: aborted command: "
1066 "ASC: 0x%x, ASCQ: 0x%x\n",
1067 cp, asc, ascq);
1068 cmd->result = DID_SOFT_ERROR << 16;
1069 break;
1071 /* Must be some other type of check condition */
1072 dev_warn(&h->pdev->dev, "cp %p has check condition: "
1073 "unknown type: "
1074 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1075 "Returning result: 0x%x, "
1076 "cmd=[%02x %02x %02x %02x %02x "
1077 "%02x %02x %02x %02x %02x %02x "
1078 "%02x %02x %02x %02x %02x]\n",
1079 cp, sense_key, asc, ascq,
1080 cmd->result,
1081 cmd->cmnd[0], cmd->cmnd[1],
1082 cmd->cmnd[2], cmd->cmnd[3],
1083 cmd->cmnd[4], cmd->cmnd[5],
1084 cmd->cmnd[6], cmd->cmnd[7],
1085 cmd->cmnd[8], cmd->cmnd[9],
1086 cmd->cmnd[10], cmd->cmnd[11],
1087 cmd->cmnd[12], cmd->cmnd[13],
1088 cmd->cmnd[14], cmd->cmnd[15]);
1089 break;
1093 /* Problem was not a check condition
1094 * Pass it up to the upper layers...
1096 if (ei->ScsiStatus) {
1097 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1098 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1099 "Returning result: 0x%x\n",
1100 cp, ei->ScsiStatus,
1101 sense_key, asc, ascq,
1102 cmd->result);
1103 } else { /* scsi status is zero??? How??? */
1104 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1105 "Returning no connection.\n", cp),
1107 /* Ordinarily, this case should never happen,
1108 * but there is a bug in some released firmware
1109 * revisions that allows it to happen if, for
1110 * example, a 4100 backplane loses power and
1111 * the tape drive is in it. We assume that
1112 * it's a fatal error of some kind because we
1113 * can't show that it wasn't. We will make it
1114 * look like selection timeout since that is
1115 * the most common reason for this to occur,
1116 * and it's severe enough.
1119 cmd->result = DID_NO_CONNECT << 16;
1121 break;
1123 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1124 break;
1125 case CMD_DATA_OVERRUN:
1126 dev_warn(&h->pdev->dev, "cp %p has"
1127 " completed with data overrun "
1128 "reported\n", cp);
1129 break;
1130 case CMD_INVALID: {
1131 /* print_bytes(cp, sizeof(*cp), 1, 0);
1132 print_cmd(cp); */
1133 /* We get CMD_INVALID if you address a non-existent device
1134 * instead of a selection timeout (no response). You will
1135 * see this if you yank out a drive, then try to access it.
1136 * This is kind of a shame because it means that any other
1137 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1138 * missing target. */
1139 cmd->result = DID_NO_CONNECT << 16;
1141 break;
1142 case CMD_PROTOCOL_ERR:
1143 dev_warn(&h->pdev->dev, "cp %p has "
1144 "protocol error \n", cp);
1145 break;
1146 case CMD_HARDWARE_ERR:
1147 cmd->result = DID_ERROR << 16;
1148 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1149 break;
1150 case CMD_CONNECTION_LOST:
1151 cmd->result = DID_ERROR << 16;
1152 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1153 break;
1154 case CMD_ABORTED:
1155 cmd->result = DID_ABORT << 16;
1156 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1157 cp, ei->ScsiStatus);
1158 break;
1159 case CMD_ABORT_FAILED:
1160 cmd->result = DID_ERROR << 16;
1161 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1162 break;
1163 case CMD_UNSOLICITED_ABORT:
1164 cmd->result = DID_RESET << 16;
1165 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1166 "abort\n", cp);
1167 break;
1168 case CMD_TIMEOUT:
1169 cmd->result = DID_TIME_OUT << 16;
1170 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1171 break;
1172 case CMD_UNABORTABLE:
1173 cmd->result = DID_ERROR << 16;
1174 dev_warn(&h->pdev->dev, "Command unabortable\n");
1175 break;
1176 default:
1177 cmd->result = DID_ERROR << 16;
1178 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1179 cp, ei->CommandStatus);
1181 cmd->scsi_done(cmd);
1182 cmd_free(h, cp);
1185 static int hpsa_scsi_detect(struct ctlr_info *h)
1187 struct Scsi_Host *sh;
1188 int error;
1190 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1191 if (sh == NULL)
1192 goto fail;
1194 sh->io_port = 0;
1195 sh->n_io_port = 0;
1196 sh->this_id = -1;
1197 sh->max_channel = 3;
1198 sh->max_cmd_len = MAX_COMMAND_SIZE;
1199 sh->max_lun = HPSA_MAX_LUN;
1200 sh->max_id = HPSA_MAX_LUN;
1201 sh->can_queue = h->nr_cmds;
1202 sh->cmd_per_lun = h->nr_cmds;
1203 sh->sg_tablesize = h->maxsgentries;
1204 h->scsi_host = sh;
1205 sh->hostdata[0] = (unsigned long) h;
1206 sh->irq = h->intr[h->intr_mode];
1207 sh->unique_id = sh->irq;
1208 error = scsi_add_host(sh, &h->pdev->dev);
1209 if (error)
1210 goto fail_host_put;
1211 scsi_scan_host(sh);
1212 return 0;
1214 fail_host_put:
1215 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1216 " failed for controller %d\n", h->ctlr);
1217 scsi_host_put(sh);
1218 return error;
1219 fail:
1220 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1221 " failed for controller %d\n", h->ctlr);
1222 return -ENOMEM;
1225 static void hpsa_pci_unmap(struct pci_dev *pdev,
1226 struct CommandList *c, int sg_used, int data_direction)
1228 int i;
1229 union u64bit addr64;
1231 for (i = 0; i < sg_used; i++) {
1232 addr64.val32.lower = c->SG[i].Addr.lower;
1233 addr64.val32.upper = c->SG[i].Addr.upper;
1234 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1235 data_direction);
1239 static void hpsa_map_one(struct pci_dev *pdev,
1240 struct CommandList *cp,
1241 unsigned char *buf,
1242 size_t buflen,
1243 int data_direction)
1245 u64 addr64;
1247 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1248 cp->Header.SGList = 0;
1249 cp->Header.SGTotal = 0;
1250 return;
1253 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1254 cp->SG[0].Addr.lower =
1255 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1256 cp->SG[0].Addr.upper =
1257 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1258 cp->SG[0].Len = buflen;
1259 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1260 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1263 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1264 struct CommandList *c)
1266 DECLARE_COMPLETION_ONSTACK(wait);
1268 c->waiting = &wait;
1269 enqueue_cmd_and_start_io(h, c);
1270 wait_for_completion(&wait);
1273 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1274 struct CommandList *c, int data_direction)
1276 int retry_count = 0;
1278 do {
1279 memset(c->err_info, 0, sizeof(c->err_info));
1280 hpsa_scsi_do_simple_cmd_core(h, c);
1281 retry_count++;
1282 } while (check_for_unit_attention(h, c) && retry_count <= 3);
1283 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1286 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1288 struct ErrorInfo *ei;
1289 struct device *d = &cp->h->pdev->dev;
1291 ei = cp->err_info;
1292 switch (ei->CommandStatus) {
1293 case CMD_TARGET_STATUS:
1294 dev_warn(d, "cmd %p has completed with errors\n", cp);
1295 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1296 ei->ScsiStatus);
1297 if (ei->ScsiStatus == 0)
1298 dev_warn(d, "SCSI status is abnormally zero. "
1299 "(probably indicates selection timeout "
1300 "reported incorrectly due to a known "
1301 "firmware bug, circa July, 2001.)\n");
1302 break;
1303 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1304 dev_info(d, "UNDERRUN\n");
1305 break;
1306 case CMD_DATA_OVERRUN:
1307 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1308 break;
1309 case CMD_INVALID: {
1310 /* controller unfortunately reports SCSI passthru's
1311 * to non-existent targets as invalid commands.
1313 dev_warn(d, "cp %p is reported invalid (probably means "
1314 "target device no longer present)\n", cp);
1315 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1316 print_cmd(cp); */
1318 break;
1319 case CMD_PROTOCOL_ERR:
1320 dev_warn(d, "cp %p has protocol error \n", cp);
1321 break;
1322 case CMD_HARDWARE_ERR:
1323 /* cmd->result = DID_ERROR << 16; */
1324 dev_warn(d, "cp %p had hardware error\n", cp);
1325 break;
1326 case CMD_CONNECTION_LOST:
1327 dev_warn(d, "cp %p had connection lost\n", cp);
1328 break;
1329 case CMD_ABORTED:
1330 dev_warn(d, "cp %p was aborted\n", cp);
1331 break;
1332 case CMD_ABORT_FAILED:
1333 dev_warn(d, "cp %p reports abort failed\n", cp);
1334 break;
1335 case CMD_UNSOLICITED_ABORT:
1336 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1337 break;
1338 case CMD_TIMEOUT:
1339 dev_warn(d, "cp %p timed out\n", cp);
1340 break;
1341 case CMD_UNABORTABLE:
1342 dev_warn(d, "Command unabortable\n");
1343 break;
1344 default:
1345 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1346 ei->CommandStatus);
1350 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1351 unsigned char page, unsigned char *buf,
1352 unsigned char bufsize)
1354 int rc = IO_OK;
1355 struct CommandList *c;
1356 struct ErrorInfo *ei;
1358 c = cmd_special_alloc(h);
1360 if (c == NULL) { /* trouble... */
1361 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1362 return -ENOMEM;
1365 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1366 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1367 ei = c->err_info;
1368 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1369 hpsa_scsi_interpret_error(c);
1370 rc = -1;
1372 cmd_special_free(h, c);
1373 return rc;
1376 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1378 int rc = IO_OK;
1379 struct CommandList *c;
1380 struct ErrorInfo *ei;
1382 c = cmd_special_alloc(h);
1384 if (c == NULL) { /* trouble... */
1385 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1386 return -ENOMEM;
1389 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1390 hpsa_scsi_do_simple_cmd_core(h, c);
1391 /* no unmap needed here because no data xfer. */
1393 ei = c->err_info;
1394 if (ei->CommandStatus != 0) {
1395 hpsa_scsi_interpret_error(c);
1396 rc = -1;
1398 cmd_special_free(h, c);
1399 return rc;
1402 static void hpsa_get_raid_level(struct ctlr_info *h,
1403 unsigned char *scsi3addr, unsigned char *raid_level)
1405 int rc;
1406 unsigned char *buf;
1408 *raid_level = RAID_UNKNOWN;
1409 buf = kzalloc(64, GFP_KERNEL);
1410 if (!buf)
1411 return;
1412 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1413 if (rc == 0)
1414 *raid_level = buf[8];
1415 if (*raid_level > RAID_UNKNOWN)
1416 *raid_level = RAID_UNKNOWN;
1417 kfree(buf);
1418 return;
1421 /* Get the device id from inquiry page 0x83 */
1422 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1423 unsigned char *device_id, int buflen)
1425 int rc;
1426 unsigned char *buf;
1428 if (buflen > 16)
1429 buflen = 16;
1430 buf = kzalloc(64, GFP_KERNEL);
1431 if (!buf)
1432 return -1;
1433 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1434 if (rc == 0)
1435 memcpy(device_id, &buf[8], buflen);
1436 kfree(buf);
1437 return rc != 0;
1440 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1441 struct ReportLUNdata *buf, int bufsize,
1442 int extended_response)
1444 int rc = IO_OK;
1445 struct CommandList *c;
1446 unsigned char scsi3addr[8];
1447 struct ErrorInfo *ei;
1449 c = cmd_special_alloc(h);
1450 if (c == NULL) { /* trouble... */
1451 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1452 return -1;
1454 /* address the controller */
1455 memset(scsi3addr, 0, sizeof(scsi3addr));
1456 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1457 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1458 if (extended_response)
1459 c->Request.CDB[1] = extended_response;
1460 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1461 ei = c->err_info;
1462 if (ei->CommandStatus != 0 &&
1463 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1464 hpsa_scsi_interpret_error(c);
1465 rc = -1;
1467 cmd_special_free(h, c);
1468 return rc;
1471 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1472 struct ReportLUNdata *buf,
1473 int bufsize, int extended_response)
1475 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1478 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1479 struct ReportLUNdata *buf, int bufsize)
1481 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1484 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1485 int bus, int target, int lun)
1487 device->bus = bus;
1488 device->target = target;
1489 device->lun = lun;
1492 static int hpsa_update_device_info(struct ctlr_info *h,
1493 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1495 #define OBDR_TAPE_INQ_SIZE 49
1496 unsigned char *inq_buff;
1498 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1499 if (!inq_buff)
1500 goto bail_out;
1502 /* Do an inquiry to the device to see what it is. */
1503 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1504 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1505 /* Inquiry failed (msg printed already) */
1506 dev_err(&h->pdev->dev,
1507 "hpsa_update_device_info: inquiry failed\n");
1508 goto bail_out;
1511 this_device->devtype = (inq_buff[0] & 0x1f);
1512 memcpy(this_device->scsi3addr, scsi3addr, 8);
1513 memcpy(this_device->vendor, &inq_buff[8],
1514 sizeof(this_device->vendor));
1515 memcpy(this_device->model, &inq_buff[16],
1516 sizeof(this_device->model));
1517 memset(this_device->device_id, 0,
1518 sizeof(this_device->device_id));
1519 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1520 sizeof(this_device->device_id));
1522 if (this_device->devtype == TYPE_DISK &&
1523 is_logical_dev_addr_mode(scsi3addr))
1524 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1525 else
1526 this_device->raid_level = RAID_UNKNOWN;
1528 kfree(inq_buff);
1529 return 0;
1531 bail_out:
1532 kfree(inq_buff);
1533 return 1;
1536 static unsigned char *msa2xxx_model[] = {
1537 "MSA2012",
1538 "MSA2024",
1539 "MSA2312",
1540 "MSA2324",
1541 NULL,
1544 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1546 int i;
1548 for (i = 0; msa2xxx_model[i]; i++)
1549 if (strncmp(device->model, msa2xxx_model[i],
1550 strlen(msa2xxx_model[i])) == 0)
1551 return 1;
1552 return 0;
1555 /* Helper function to assign bus, target, lun mapping of devices.
1556 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1557 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1558 * Logical drive target and lun are assigned at this time, but
1559 * physical device lun and target assignment are deferred (assigned
1560 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1562 static void figure_bus_target_lun(struct ctlr_info *h,
1563 u8 *lunaddrbytes, int *bus, int *target, int *lun,
1564 struct hpsa_scsi_dev_t *device)
1566 u32 lunid;
1568 if (is_logical_dev_addr_mode(lunaddrbytes)) {
1569 /* logical device */
1570 if (unlikely(is_scsi_rev_5(h))) {
1571 /* p1210m, logical drives lun assignments
1572 * match SCSI REPORT LUNS data.
1574 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1575 *bus = 0;
1576 *target = 0;
1577 *lun = (lunid & 0x3fff) + 1;
1578 } else {
1579 /* not p1210m... */
1580 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1581 if (is_msa2xxx(h, device)) {
1582 /* msa2xxx way, put logicals on bus 1
1583 * and match target/lun numbers box
1584 * reports.
1586 *bus = 1;
1587 *target = (lunid >> 16) & 0x3fff;
1588 *lun = lunid & 0x00ff;
1589 } else {
1590 /* Traditional smart array way. */
1591 *bus = 0;
1592 *lun = 0;
1593 *target = lunid & 0x3fff;
1596 } else {
1597 /* physical device */
1598 if (is_hba_lunid(lunaddrbytes))
1599 if (unlikely(is_scsi_rev_5(h))) {
1600 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1601 *target = 0;
1602 *lun = 0;
1603 return;
1604 } else
1605 *bus = 3; /* traditional smartarray */
1606 else
1607 *bus = 2; /* physical disk */
1608 *target = -1;
1609 *lun = -1; /* we will fill these in later. */
1614 * If there is no lun 0 on a target, linux won't find any devices.
1615 * For the MSA2xxx boxes, we have to manually detect the enclosure
1616 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1617 * it for some reason. *tmpdevice is the target we're adding,
1618 * this_device is a pointer into the current element of currentsd[]
1619 * that we're building up in update_scsi_devices(), below.
1620 * lunzerobits is a bitmap that tracks which targets already have a
1621 * lun 0 assigned.
1622 * Returns 1 if an enclosure was added, 0 if not.
1624 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1625 struct hpsa_scsi_dev_t *tmpdevice,
1626 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1627 int bus, int target, int lun, unsigned long lunzerobits[],
1628 int *nmsa2xxx_enclosures)
1630 unsigned char scsi3addr[8];
1632 if (test_bit(target, lunzerobits))
1633 return 0; /* There is already a lun 0 on this target. */
1635 if (!is_logical_dev_addr_mode(lunaddrbytes))
1636 return 0; /* It's the logical targets that may lack lun 0. */
1638 if (!is_msa2xxx(h, tmpdevice))
1639 return 0; /* It's only the MSA2xxx that have this problem. */
1641 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1642 return 0;
1644 memset(scsi3addr, 0, 8);
1645 scsi3addr[3] = target;
1646 if (is_hba_lunid(scsi3addr))
1647 return 0; /* Don't add the RAID controller here. */
1649 if (is_scsi_rev_5(h))
1650 return 0; /* p1210m doesn't need to do this. */
1652 #define MAX_MSA2XXX_ENCLOSURES 32
1653 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1654 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1655 "enclosures exceeded. Check your hardware "
1656 "configuration.");
1657 return 0;
1660 if (hpsa_update_device_info(h, scsi3addr, this_device))
1661 return 0;
1662 (*nmsa2xxx_enclosures)++;
1663 hpsa_set_bus_target_lun(this_device, bus, target, 0);
1664 set_bit(target, lunzerobits);
1665 return 1;
1669 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1670 * logdev. The number of luns in physdev and logdev are returned in
1671 * *nphysicals and *nlogicals, respectively.
1672 * Returns 0 on success, -1 otherwise.
1674 static int hpsa_gather_lun_info(struct ctlr_info *h,
1675 int reportlunsize,
1676 struct ReportLUNdata *physdev, u32 *nphysicals,
1677 struct ReportLUNdata *logdev, u32 *nlogicals)
1679 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1680 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1681 return -1;
1683 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1684 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1685 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1686 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1687 *nphysicals - HPSA_MAX_PHYS_LUN);
1688 *nphysicals = HPSA_MAX_PHYS_LUN;
1690 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1691 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1692 return -1;
1694 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1695 /* Reject Logicals in excess of our max capability. */
1696 if (*nlogicals > HPSA_MAX_LUN) {
1697 dev_warn(&h->pdev->dev,
1698 "maximum logical LUNs (%d) exceeded. "
1699 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1700 *nlogicals - HPSA_MAX_LUN);
1701 *nlogicals = HPSA_MAX_LUN;
1703 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1704 dev_warn(&h->pdev->dev,
1705 "maximum logical + physical LUNs (%d) exceeded. "
1706 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1707 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1708 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1710 return 0;
1713 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1714 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1715 struct ReportLUNdata *logdev_list)
1717 /* Helper function, figure out where the LUN ID info is coming from
1718 * given index i, lists of physical and logical devices, where in
1719 * the list the raid controller is supposed to appear (first or last)
1722 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1723 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1725 if (i == raid_ctlr_position)
1726 return RAID_CTLR_LUNID;
1728 if (i < logicals_start)
1729 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1731 if (i < last_device)
1732 return &logdev_list->LUN[i - nphysicals -
1733 (raid_ctlr_position == 0)][0];
1734 BUG();
1735 return NULL;
1738 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1740 /* the idea here is we could get notified
1741 * that some devices have changed, so we do a report
1742 * physical luns and report logical luns cmd, and adjust
1743 * our list of devices accordingly.
1745 * The scsi3addr's of devices won't change so long as the
1746 * adapter is not reset. That means we can rescan and
1747 * tell which devices we already know about, vs. new
1748 * devices, vs. disappearing devices.
1750 struct ReportLUNdata *physdev_list = NULL;
1751 struct ReportLUNdata *logdev_list = NULL;
1752 unsigned char *inq_buff = NULL;
1753 u32 nphysicals = 0;
1754 u32 nlogicals = 0;
1755 u32 ndev_allocated = 0;
1756 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1757 int ncurrent = 0;
1758 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1759 int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1760 int bus, target, lun;
1761 int raid_ctlr_position;
1762 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1764 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1765 GFP_KERNEL);
1766 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1767 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1768 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1769 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1771 if (!currentsd || !physdev_list || !logdev_list ||
1772 !inq_buff || !tmpdevice) {
1773 dev_err(&h->pdev->dev, "out of memory\n");
1774 goto out;
1776 memset(lunzerobits, 0, sizeof(lunzerobits));
1778 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1779 logdev_list, &nlogicals))
1780 goto out;
1782 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1783 * but each of them 4 times through different paths. The plus 1
1784 * is for the RAID controller.
1786 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1788 /* Allocate the per device structures */
1789 for (i = 0; i < ndevs_to_allocate; i++) {
1790 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1791 if (!currentsd[i]) {
1792 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1793 __FILE__, __LINE__);
1794 goto out;
1796 ndev_allocated++;
1799 if (unlikely(is_scsi_rev_5(h)))
1800 raid_ctlr_position = 0;
1801 else
1802 raid_ctlr_position = nphysicals + nlogicals;
1804 /* adjust our table of devices */
1805 nmsa2xxx_enclosures = 0;
1806 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1807 u8 *lunaddrbytes;
1809 /* Figure out where the LUN ID info is coming from */
1810 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1811 i, nphysicals, nlogicals, physdev_list, logdev_list);
1812 /* skip masked physical devices. */
1813 if (lunaddrbytes[3] & 0xC0 &&
1814 i < nphysicals + (raid_ctlr_position == 0))
1815 continue;
1817 /* Get device type, vendor, model, device id */
1818 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1819 continue; /* skip it if we can't talk to it. */
1820 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1821 tmpdevice);
1822 this_device = currentsd[ncurrent];
1825 * For the msa2xxx boxes, we have to insert a LUN 0 which
1826 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1827 * is nonetheless an enclosure device there. We have to
1828 * present that otherwise linux won't find anything if
1829 * there is no lun 0.
1831 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1832 lunaddrbytes, bus, target, lun, lunzerobits,
1833 &nmsa2xxx_enclosures)) {
1834 ncurrent++;
1835 this_device = currentsd[ncurrent];
1838 *this_device = *tmpdevice;
1839 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1841 switch (this_device->devtype) {
1842 case TYPE_ROM: {
1843 /* We don't *really* support actual CD-ROM devices,
1844 * just "One Button Disaster Recovery" tape drive
1845 * which temporarily pretends to be a CD-ROM drive.
1846 * So we check that the device is really an OBDR tape
1847 * device by checking for "$DR-10" in bytes 43-48 of
1848 * the inquiry data.
1850 char obdr_sig[7];
1851 #define OBDR_TAPE_SIG "$DR-10"
1852 strncpy(obdr_sig, &inq_buff[43], 6);
1853 obdr_sig[6] = '\0';
1854 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1855 /* Not OBDR device, ignore it. */
1856 break;
1858 ncurrent++;
1859 break;
1860 case TYPE_DISK:
1861 if (i < nphysicals)
1862 break;
1863 ncurrent++;
1864 break;
1865 case TYPE_TAPE:
1866 case TYPE_MEDIUM_CHANGER:
1867 ncurrent++;
1868 break;
1869 case TYPE_RAID:
1870 /* Only present the Smartarray HBA as a RAID controller.
1871 * If it's a RAID controller other than the HBA itself
1872 * (an external RAID controller, MSA500 or similar)
1873 * don't present it.
1875 if (!is_hba_lunid(lunaddrbytes))
1876 break;
1877 ncurrent++;
1878 break;
1879 default:
1880 break;
1882 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1883 break;
1885 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1886 out:
1887 kfree(tmpdevice);
1888 for (i = 0; i < ndev_allocated; i++)
1889 kfree(currentsd[i]);
1890 kfree(currentsd);
1891 kfree(inq_buff);
1892 kfree(physdev_list);
1893 kfree(logdev_list);
1896 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1897 * dma mapping and fills in the scatter gather entries of the
1898 * hpsa command, cp.
1900 static int hpsa_scatter_gather(struct ctlr_info *h,
1901 struct CommandList *cp,
1902 struct scsi_cmnd *cmd)
1904 unsigned int len;
1905 struct scatterlist *sg;
1906 u64 addr64;
1907 int use_sg, i, sg_index, chained;
1908 struct SGDescriptor *curr_sg;
1910 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1912 use_sg = scsi_dma_map(cmd);
1913 if (use_sg < 0)
1914 return use_sg;
1916 if (!use_sg)
1917 goto sglist_finished;
1919 curr_sg = cp->SG;
1920 chained = 0;
1921 sg_index = 0;
1922 scsi_for_each_sg(cmd, sg, use_sg, i) {
1923 if (i == h->max_cmd_sg_entries - 1 &&
1924 use_sg > h->max_cmd_sg_entries) {
1925 chained = 1;
1926 curr_sg = h->cmd_sg_list[cp->cmdindex];
1927 sg_index = 0;
1929 addr64 = (u64) sg_dma_address(sg);
1930 len = sg_dma_len(sg);
1931 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1932 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1933 curr_sg->Len = len;
1934 curr_sg->Ext = 0; /* we are not chaining */
1935 curr_sg++;
1938 if (use_sg + chained > h->maxSG)
1939 h->maxSG = use_sg + chained;
1941 if (chained) {
1942 cp->Header.SGList = h->max_cmd_sg_entries;
1943 cp->Header.SGTotal = (u16) (use_sg + 1);
1944 hpsa_map_sg_chain_block(h, cp);
1945 return 0;
1948 sglist_finished:
1950 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
1951 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1952 return 0;
1956 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1957 void (*done)(struct scsi_cmnd *))
1959 struct ctlr_info *h;
1960 struct hpsa_scsi_dev_t *dev;
1961 unsigned char scsi3addr[8];
1962 struct CommandList *c;
1963 unsigned long flags;
1965 /* Get the ptr to our adapter structure out of cmd->host. */
1966 h = sdev_to_hba(cmd->device);
1967 dev = cmd->device->hostdata;
1968 if (!dev) {
1969 cmd->result = DID_NO_CONNECT << 16;
1970 done(cmd);
1971 return 0;
1973 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1975 /* Need a lock as this is being allocated from the pool */
1976 spin_lock_irqsave(&h->lock, flags);
1977 c = cmd_alloc(h);
1978 spin_unlock_irqrestore(&h->lock, flags);
1979 if (c == NULL) { /* trouble... */
1980 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1981 return SCSI_MLQUEUE_HOST_BUSY;
1984 /* Fill in the command list header */
1986 cmd->scsi_done = done; /* save this for use by completion code */
1988 /* save c in case we have to abort it */
1989 cmd->host_scribble = (unsigned char *) c;
1991 c->cmd_type = CMD_SCSI;
1992 c->scsi_cmd = cmd;
1993 c->Header.ReplyQueue = 0; /* unused in simple mode */
1994 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1995 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1996 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1998 /* Fill in the request block... */
2000 c->Request.Timeout = 0;
2001 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2002 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2003 c->Request.CDBLen = cmd->cmd_len;
2004 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2005 c->Request.Type.Type = TYPE_CMD;
2006 c->Request.Type.Attribute = ATTR_SIMPLE;
2007 switch (cmd->sc_data_direction) {
2008 case DMA_TO_DEVICE:
2009 c->Request.Type.Direction = XFER_WRITE;
2010 break;
2011 case DMA_FROM_DEVICE:
2012 c->Request.Type.Direction = XFER_READ;
2013 break;
2014 case DMA_NONE:
2015 c->Request.Type.Direction = XFER_NONE;
2016 break;
2017 case DMA_BIDIRECTIONAL:
2018 /* This can happen if a buggy application does a scsi passthru
2019 * and sets both inlen and outlen to non-zero. ( see
2020 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2023 c->Request.Type.Direction = XFER_RSVD;
2024 /* This is technically wrong, and hpsa controllers should
2025 * reject it with CMD_INVALID, which is the most correct
2026 * response, but non-fibre backends appear to let it
2027 * slide by, and give the same results as if this field
2028 * were set correctly. Either way is acceptable for
2029 * our purposes here.
2032 break;
2034 default:
2035 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2036 cmd->sc_data_direction);
2037 BUG();
2038 break;
2041 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2042 cmd_free(h, c);
2043 return SCSI_MLQUEUE_HOST_BUSY;
2045 enqueue_cmd_and_start_io(h, c);
2046 /* the cmd'll come back via intr handler in complete_scsi_command() */
2047 return 0;
2050 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2052 static void hpsa_scan_start(struct Scsi_Host *sh)
2054 struct ctlr_info *h = shost_to_hba(sh);
2055 unsigned long flags;
2057 /* wait until any scan already in progress is finished. */
2058 while (1) {
2059 spin_lock_irqsave(&h->scan_lock, flags);
2060 if (h->scan_finished)
2061 break;
2062 spin_unlock_irqrestore(&h->scan_lock, flags);
2063 wait_event(h->scan_wait_queue, h->scan_finished);
2064 /* Note: We don't need to worry about a race between this
2065 * thread and driver unload because the midlayer will
2066 * have incremented the reference count, so unload won't
2067 * happen if we're in here.
2070 h->scan_finished = 0; /* mark scan as in progress */
2071 spin_unlock_irqrestore(&h->scan_lock, flags);
2073 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2075 spin_lock_irqsave(&h->scan_lock, flags);
2076 h->scan_finished = 1; /* mark scan as finished. */
2077 wake_up_all(&h->scan_wait_queue);
2078 spin_unlock_irqrestore(&h->scan_lock, flags);
2081 static int hpsa_scan_finished(struct Scsi_Host *sh,
2082 unsigned long elapsed_time)
2084 struct ctlr_info *h = shost_to_hba(sh);
2085 unsigned long flags;
2086 int finished;
2088 spin_lock_irqsave(&h->scan_lock, flags);
2089 finished = h->scan_finished;
2090 spin_unlock_irqrestore(&h->scan_lock, flags);
2091 return finished;
2094 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2095 int qdepth, int reason)
2097 struct ctlr_info *h = sdev_to_hba(sdev);
2099 if (reason != SCSI_QDEPTH_DEFAULT)
2100 return -ENOTSUPP;
2102 if (qdepth < 1)
2103 qdepth = 1;
2104 else
2105 if (qdepth > h->nr_cmds)
2106 qdepth = h->nr_cmds;
2107 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2108 return sdev->queue_depth;
2111 static void hpsa_unregister_scsi(struct ctlr_info *h)
2113 /* we are being forcibly unloaded, and may not refuse. */
2114 scsi_remove_host(h->scsi_host);
2115 scsi_host_put(h->scsi_host);
2116 h->scsi_host = NULL;
2119 static int hpsa_register_scsi(struct ctlr_info *h)
2121 int rc;
2123 rc = hpsa_scsi_detect(h);
2124 if (rc != 0)
2125 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2126 " hpsa_scsi_detect(), rc is %d\n", rc);
2127 return rc;
2130 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2131 unsigned char lunaddr[])
2133 int rc = 0;
2134 int count = 0;
2135 int waittime = 1; /* seconds */
2136 struct CommandList *c;
2138 c = cmd_special_alloc(h);
2139 if (!c) {
2140 dev_warn(&h->pdev->dev, "out of memory in "
2141 "wait_for_device_to_become_ready.\n");
2142 return IO_ERROR;
2145 /* Send test unit ready until device ready, or give up. */
2146 while (count < HPSA_TUR_RETRY_LIMIT) {
2148 /* Wait for a bit. do this first, because if we send
2149 * the TUR right away, the reset will just abort it.
2151 msleep(1000 * waittime);
2152 count++;
2154 /* Increase wait time with each try, up to a point. */
2155 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2156 waittime = waittime * 2;
2158 /* Send the Test Unit Ready */
2159 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2160 hpsa_scsi_do_simple_cmd_core(h, c);
2161 /* no unmap needed here because no data xfer. */
2163 if (c->err_info->CommandStatus == CMD_SUCCESS)
2164 break;
2166 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2167 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2168 (c->err_info->SenseInfo[2] == NO_SENSE ||
2169 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2170 break;
2172 dev_warn(&h->pdev->dev, "waiting %d secs "
2173 "for device to become ready.\n", waittime);
2174 rc = 1; /* device not ready. */
2177 if (rc)
2178 dev_warn(&h->pdev->dev, "giving up on device.\n");
2179 else
2180 dev_warn(&h->pdev->dev, "device is ready.\n");
2182 cmd_special_free(h, c);
2183 return rc;
2186 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2187 * complaining. Doing a host- or bus-reset can't do anything good here.
2189 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2191 int rc;
2192 struct ctlr_info *h;
2193 struct hpsa_scsi_dev_t *dev;
2195 /* find the controller to which the command to be aborted was sent */
2196 h = sdev_to_hba(scsicmd->device);
2197 if (h == NULL) /* paranoia */
2198 return FAILED;
2199 dev = scsicmd->device->hostdata;
2200 if (!dev) {
2201 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2202 "device lookup failed.\n");
2203 return FAILED;
2205 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2206 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2207 /* send a reset to the SCSI LUN which the command was sent to */
2208 rc = hpsa_send_reset(h, dev->scsi3addr);
2209 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2210 return SUCCESS;
2212 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2213 return FAILED;
2217 * For operations that cannot sleep, a command block is allocated at init,
2218 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2219 * which ones are free or in use. Lock must be held when calling this.
2220 * cmd_free() is the complement.
2222 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2224 struct CommandList *c;
2225 int i;
2226 union u64bit temp64;
2227 dma_addr_t cmd_dma_handle, err_dma_handle;
2229 do {
2230 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2231 if (i == h->nr_cmds)
2232 return NULL;
2233 } while (test_and_set_bit
2234 (i & (BITS_PER_LONG - 1),
2235 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2236 c = h->cmd_pool + i;
2237 memset(c, 0, sizeof(*c));
2238 cmd_dma_handle = h->cmd_pool_dhandle
2239 + i * sizeof(*c);
2240 c->err_info = h->errinfo_pool + i;
2241 memset(c->err_info, 0, sizeof(*c->err_info));
2242 err_dma_handle = h->errinfo_pool_dhandle
2243 + i * sizeof(*c->err_info);
2244 h->nr_allocs++;
2246 c->cmdindex = i;
2248 INIT_LIST_HEAD(&c->list);
2249 c->busaddr = (u32) cmd_dma_handle;
2250 temp64.val = (u64) err_dma_handle;
2251 c->ErrDesc.Addr.lower = temp64.val32.lower;
2252 c->ErrDesc.Addr.upper = temp64.val32.upper;
2253 c->ErrDesc.Len = sizeof(*c->err_info);
2255 c->h = h;
2256 return c;
2259 /* For operations that can wait for kmalloc to possibly sleep,
2260 * this routine can be called. Lock need not be held to call
2261 * cmd_special_alloc. cmd_special_free() is the complement.
2263 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2265 struct CommandList *c;
2266 union u64bit temp64;
2267 dma_addr_t cmd_dma_handle, err_dma_handle;
2269 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2270 if (c == NULL)
2271 return NULL;
2272 memset(c, 0, sizeof(*c));
2274 c->cmdindex = -1;
2276 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2277 &err_dma_handle);
2279 if (c->err_info == NULL) {
2280 pci_free_consistent(h->pdev,
2281 sizeof(*c), c, cmd_dma_handle);
2282 return NULL;
2284 memset(c->err_info, 0, sizeof(*c->err_info));
2286 INIT_LIST_HEAD(&c->list);
2287 c->busaddr = (u32) cmd_dma_handle;
2288 temp64.val = (u64) err_dma_handle;
2289 c->ErrDesc.Addr.lower = temp64.val32.lower;
2290 c->ErrDesc.Addr.upper = temp64.val32.upper;
2291 c->ErrDesc.Len = sizeof(*c->err_info);
2293 c->h = h;
2294 return c;
2297 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2299 int i;
2301 i = c - h->cmd_pool;
2302 clear_bit(i & (BITS_PER_LONG - 1),
2303 h->cmd_pool_bits + (i / BITS_PER_LONG));
2304 h->nr_frees++;
2307 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2309 union u64bit temp64;
2311 temp64.val32.lower = c->ErrDesc.Addr.lower;
2312 temp64.val32.upper = c->ErrDesc.Addr.upper;
2313 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2314 c->err_info, (dma_addr_t) temp64.val);
2315 pci_free_consistent(h->pdev, sizeof(*c),
2316 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2319 #ifdef CONFIG_COMPAT
2321 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2323 IOCTL32_Command_struct __user *arg32 =
2324 (IOCTL32_Command_struct __user *) arg;
2325 IOCTL_Command_struct arg64;
2326 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2327 int err;
2328 u32 cp;
2330 memset(&arg64, 0, sizeof(arg64));
2331 err = 0;
2332 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2333 sizeof(arg64.LUN_info));
2334 err |= copy_from_user(&arg64.Request, &arg32->Request,
2335 sizeof(arg64.Request));
2336 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2337 sizeof(arg64.error_info));
2338 err |= get_user(arg64.buf_size, &arg32->buf_size);
2339 err |= get_user(cp, &arg32->buf);
2340 arg64.buf = compat_ptr(cp);
2341 err |= copy_to_user(p, &arg64, sizeof(arg64));
2343 if (err)
2344 return -EFAULT;
2346 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2347 if (err)
2348 return err;
2349 err |= copy_in_user(&arg32->error_info, &p->error_info,
2350 sizeof(arg32->error_info));
2351 if (err)
2352 return -EFAULT;
2353 return err;
2356 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2357 int cmd, void *arg)
2359 BIG_IOCTL32_Command_struct __user *arg32 =
2360 (BIG_IOCTL32_Command_struct __user *) arg;
2361 BIG_IOCTL_Command_struct arg64;
2362 BIG_IOCTL_Command_struct __user *p =
2363 compat_alloc_user_space(sizeof(arg64));
2364 int err;
2365 u32 cp;
2367 memset(&arg64, 0, sizeof(arg64));
2368 err = 0;
2369 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2370 sizeof(arg64.LUN_info));
2371 err |= copy_from_user(&arg64.Request, &arg32->Request,
2372 sizeof(arg64.Request));
2373 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2374 sizeof(arg64.error_info));
2375 err |= get_user(arg64.buf_size, &arg32->buf_size);
2376 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2377 err |= get_user(cp, &arg32->buf);
2378 arg64.buf = compat_ptr(cp);
2379 err |= copy_to_user(p, &arg64, sizeof(arg64));
2381 if (err)
2382 return -EFAULT;
2384 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2385 if (err)
2386 return err;
2387 err |= copy_in_user(&arg32->error_info, &p->error_info,
2388 sizeof(arg32->error_info));
2389 if (err)
2390 return -EFAULT;
2391 return err;
2394 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2396 switch (cmd) {
2397 case CCISS_GETPCIINFO:
2398 case CCISS_GETINTINFO:
2399 case CCISS_SETINTINFO:
2400 case CCISS_GETNODENAME:
2401 case CCISS_SETNODENAME:
2402 case CCISS_GETHEARTBEAT:
2403 case CCISS_GETBUSTYPES:
2404 case CCISS_GETFIRMVER:
2405 case CCISS_GETDRIVVER:
2406 case CCISS_REVALIDVOLS:
2407 case CCISS_DEREGDISK:
2408 case CCISS_REGNEWDISK:
2409 case CCISS_REGNEWD:
2410 case CCISS_RESCANDISK:
2411 case CCISS_GETLUNINFO:
2412 return hpsa_ioctl(dev, cmd, arg);
2414 case CCISS_PASSTHRU32:
2415 return hpsa_ioctl32_passthru(dev, cmd, arg);
2416 case CCISS_BIG_PASSTHRU32:
2417 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2419 default:
2420 return -ENOIOCTLCMD;
2423 #endif
2425 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2427 struct hpsa_pci_info pciinfo;
2429 if (!argp)
2430 return -EINVAL;
2431 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2432 pciinfo.bus = h->pdev->bus->number;
2433 pciinfo.dev_fn = h->pdev->devfn;
2434 pciinfo.board_id = h->board_id;
2435 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2436 return -EFAULT;
2437 return 0;
2440 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2442 DriverVer_type DriverVer;
2443 unsigned char vmaj, vmin, vsubmin;
2444 int rc;
2446 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2447 &vmaj, &vmin, &vsubmin);
2448 if (rc != 3) {
2449 dev_info(&h->pdev->dev, "driver version string '%s' "
2450 "unrecognized.", HPSA_DRIVER_VERSION);
2451 vmaj = 0;
2452 vmin = 0;
2453 vsubmin = 0;
2455 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2456 if (!argp)
2457 return -EINVAL;
2458 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2459 return -EFAULT;
2460 return 0;
2463 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2465 IOCTL_Command_struct iocommand;
2466 struct CommandList *c;
2467 char *buff = NULL;
2468 union u64bit temp64;
2470 if (!argp)
2471 return -EINVAL;
2472 if (!capable(CAP_SYS_RAWIO))
2473 return -EPERM;
2474 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2475 return -EFAULT;
2476 if ((iocommand.buf_size < 1) &&
2477 (iocommand.Request.Type.Direction != XFER_NONE)) {
2478 return -EINVAL;
2480 if (iocommand.buf_size > 0) {
2481 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2482 if (buff == NULL)
2483 return -EFAULT;
2484 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2485 /* Copy the data into the buffer we created */
2486 if (copy_from_user(buff, iocommand.buf,
2487 iocommand.buf_size)) {
2488 kfree(buff);
2489 return -EFAULT;
2491 } else {
2492 memset(buff, 0, iocommand.buf_size);
2495 c = cmd_special_alloc(h);
2496 if (c == NULL) {
2497 kfree(buff);
2498 return -ENOMEM;
2500 /* Fill in the command type */
2501 c->cmd_type = CMD_IOCTL_PEND;
2502 /* Fill in Command Header */
2503 c->Header.ReplyQueue = 0; /* unused in simple mode */
2504 if (iocommand.buf_size > 0) { /* buffer to fill */
2505 c->Header.SGList = 1;
2506 c->Header.SGTotal = 1;
2507 } else { /* no buffers to fill */
2508 c->Header.SGList = 0;
2509 c->Header.SGTotal = 0;
2511 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2512 /* use the kernel address the cmd block for tag */
2513 c->Header.Tag.lower = c->busaddr;
2515 /* Fill in Request block */
2516 memcpy(&c->Request, &iocommand.Request,
2517 sizeof(c->Request));
2519 /* Fill in the scatter gather information */
2520 if (iocommand.buf_size > 0) {
2521 temp64.val = pci_map_single(h->pdev, buff,
2522 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2523 c->SG[0].Addr.lower = temp64.val32.lower;
2524 c->SG[0].Addr.upper = temp64.val32.upper;
2525 c->SG[0].Len = iocommand.buf_size;
2526 c->SG[0].Ext = 0; /* we are not chaining*/
2528 hpsa_scsi_do_simple_cmd_core(h, c);
2529 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2530 check_ioctl_unit_attention(h, c);
2532 /* Copy the error information out */
2533 memcpy(&iocommand.error_info, c->err_info,
2534 sizeof(iocommand.error_info));
2535 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2536 kfree(buff);
2537 cmd_special_free(h, c);
2538 return -EFAULT;
2540 if (iocommand.Request.Type.Direction == XFER_READ &&
2541 iocommand.buf_size > 0) {
2542 /* Copy the data out of the buffer we created */
2543 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2544 kfree(buff);
2545 cmd_special_free(h, c);
2546 return -EFAULT;
2549 kfree(buff);
2550 cmd_special_free(h, c);
2551 return 0;
2554 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2556 BIG_IOCTL_Command_struct *ioc;
2557 struct CommandList *c;
2558 unsigned char **buff = NULL;
2559 int *buff_size = NULL;
2560 union u64bit temp64;
2561 BYTE sg_used = 0;
2562 int status = 0;
2563 int i;
2564 u32 left;
2565 u32 sz;
2566 BYTE __user *data_ptr;
2568 if (!argp)
2569 return -EINVAL;
2570 if (!capable(CAP_SYS_RAWIO))
2571 return -EPERM;
2572 ioc = (BIG_IOCTL_Command_struct *)
2573 kmalloc(sizeof(*ioc), GFP_KERNEL);
2574 if (!ioc) {
2575 status = -ENOMEM;
2576 goto cleanup1;
2578 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2579 status = -EFAULT;
2580 goto cleanup1;
2582 if ((ioc->buf_size < 1) &&
2583 (ioc->Request.Type.Direction != XFER_NONE)) {
2584 status = -EINVAL;
2585 goto cleanup1;
2587 /* Check kmalloc limits using all SGs */
2588 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2589 status = -EINVAL;
2590 goto cleanup1;
2592 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2593 status = -EINVAL;
2594 goto cleanup1;
2596 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2597 if (!buff) {
2598 status = -ENOMEM;
2599 goto cleanup1;
2601 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2602 if (!buff_size) {
2603 status = -ENOMEM;
2604 goto cleanup1;
2606 left = ioc->buf_size;
2607 data_ptr = ioc->buf;
2608 while (left) {
2609 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2610 buff_size[sg_used] = sz;
2611 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2612 if (buff[sg_used] == NULL) {
2613 status = -ENOMEM;
2614 goto cleanup1;
2616 if (ioc->Request.Type.Direction == XFER_WRITE) {
2617 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2618 status = -ENOMEM;
2619 goto cleanup1;
2621 } else
2622 memset(buff[sg_used], 0, sz);
2623 left -= sz;
2624 data_ptr += sz;
2625 sg_used++;
2627 c = cmd_special_alloc(h);
2628 if (c == NULL) {
2629 status = -ENOMEM;
2630 goto cleanup1;
2632 c->cmd_type = CMD_IOCTL_PEND;
2633 c->Header.ReplyQueue = 0;
2634 c->Header.SGList = c->Header.SGTotal = sg_used;
2635 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2636 c->Header.Tag.lower = c->busaddr;
2637 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2638 if (ioc->buf_size > 0) {
2639 int i;
2640 for (i = 0; i < sg_used; i++) {
2641 temp64.val = pci_map_single(h->pdev, buff[i],
2642 buff_size[i], PCI_DMA_BIDIRECTIONAL);
2643 c->SG[i].Addr.lower = temp64.val32.lower;
2644 c->SG[i].Addr.upper = temp64.val32.upper;
2645 c->SG[i].Len = buff_size[i];
2646 /* we are not chaining */
2647 c->SG[i].Ext = 0;
2650 hpsa_scsi_do_simple_cmd_core(h, c);
2651 if (sg_used)
2652 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2653 check_ioctl_unit_attention(h, c);
2654 /* Copy the error information out */
2655 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2656 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2657 cmd_special_free(h, c);
2658 status = -EFAULT;
2659 goto cleanup1;
2661 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2662 /* Copy the data out of the buffer we created */
2663 BYTE __user *ptr = ioc->buf;
2664 for (i = 0; i < sg_used; i++) {
2665 if (copy_to_user(ptr, buff[i], buff_size[i])) {
2666 cmd_special_free(h, c);
2667 status = -EFAULT;
2668 goto cleanup1;
2670 ptr += buff_size[i];
2673 cmd_special_free(h, c);
2674 status = 0;
2675 cleanup1:
2676 if (buff) {
2677 for (i = 0; i < sg_used; i++)
2678 kfree(buff[i]);
2679 kfree(buff);
2681 kfree(buff_size);
2682 kfree(ioc);
2683 return status;
2686 static void check_ioctl_unit_attention(struct ctlr_info *h,
2687 struct CommandList *c)
2689 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2690 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2691 (void) check_for_unit_attention(h, c);
2694 * ioctl
2696 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2698 struct ctlr_info *h;
2699 void __user *argp = (void __user *)arg;
2701 h = sdev_to_hba(dev);
2703 switch (cmd) {
2704 case CCISS_DEREGDISK:
2705 case CCISS_REGNEWDISK:
2706 case CCISS_REGNEWD:
2707 hpsa_scan_start(h->scsi_host);
2708 return 0;
2709 case CCISS_GETPCIINFO:
2710 return hpsa_getpciinfo_ioctl(h, argp);
2711 case CCISS_GETDRIVVER:
2712 return hpsa_getdrivver_ioctl(h, argp);
2713 case CCISS_PASSTHRU:
2714 return hpsa_passthru_ioctl(h, argp);
2715 case CCISS_BIG_PASSTHRU:
2716 return hpsa_big_passthru_ioctl(h, argp);
2717 default:
2718 return -ENOTTY;
2722 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2723 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2724 int cmd_type)
2726 int pci_dir = XFER_NONE;
2728 c->cmd_type = CMD_IOCTL_PEND;
2729 c->Header.ReplyQueue = 0;
2730 if (buff != NULL && size > 0) {
2731 c->Header.SGList = 1;
2732 c->Header.SGTotal = 1;
2733 } else {
2734 c->Header.SGList = 0;
2735 c->Header.SGTotal = 0;
2737 c->Header.Tag.lower = c->busaddr;
2738 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2740 c->Request.Type.Type = cmd_type;
2741 if (cmd_type == TYPE_CMD) {
2742 switch (cmd) {
2743 case HPSA_INQUIRY:
2744 /* are we trying to read a vital product page */
2745 if (page_code != 0) {
2746 c->Request.CDB[1] = 0x01;
2747 c->Request.CDB[2] = page_code;
2749 c->Request.CDBLen = 6;
2750 c->Request.Type.Attribute = ATTR_SIMPLE;
2751 c->Request.Type.Direction = XFER_READ;
2752 c->Request.Timeout = 0;
2753 c->Request.CDB[0] = HPSA_INQUIRY;
2754 c->Request.CDB[4] = size & 0xFF;
2755 break;
2756 case HPSA_REPORT_LOG:
2757 case HPSA_REPORT_PHYS:
2758 /* Talking to controller so It's a physical command
2759 mode = 00 target = 0. Nothing to write.
2761 c->Request.CDBLen = 12;
2762 c->Request.Type.Attribute = ATTR_SIMPLE;
2763 c->Request.Type.Direction = XFER_READ;
2764 c->Request.Timeout = 0;
2765 c->Request.CDB[0] = cmd;
2766 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2767 c->Request.CDB[7] = (size >> 16) & 0xFF;
2768 c->Request.CDB[8] = (size >> 8) & 0xFF;
2769 c->Request.CDB[9] = size & 0xFF;
2770 break;
2771 case HPSA_CACHE_FLUSH:
2772 c->Request.CDBLen = 12;
2773 c->Request.Type.Attribute = ATTR_SIMPLE;
2774 c->Request.Type.Direction = XFER_WRITE;
2775 c->Request.Timeout = 0;
2776 c->Request.CDB[0] = BMIC_WRITE;
2777 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2778 break;
2779 case TEST_UNIT_READY:
2780 c->Request.CDBLen = 6;
2781 c->Request.Type.Attribute = ATTR_SIMPLE;
2782 c->Request.Type.Direction = XFER_NONE;
2783 c->Request.Timeout = 0;
2784 break;
2785 default:
2786 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2787 BUG();
2788 return;
2790 } else if (cmd_type == TYPE_MSG) {
2791 switch (cmd) {
2793 case HPSA_DEVICE_RESET_MSG:
2794 c->Request.CDBLen = 16;
2795 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
2796 c->Request.Type.Attribute = ATTR_SIMPLE;
2797 c->Request.Type.Direction = XFER_NONE;
2798 c->Request.Timeout = 0; /* Don't time out */
2799 c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */
2800 c->Request.CDB[1] = 0x03; /* Reset target above */
2801 /* If bytes 4-7 are zero, it means reset the */
2802 /* LunID device */
2803 c->Request.CDB[4] = 0x00;
2804 c->Request.CDB[5] = 0x00;
2805 c->Request.CDB[6] = 0x00;
2806 c->Request.CDB[7] = 0x00;
2807 break;
2809 default:
2810 dev_warn(&h->pdev->dev, "unknown message type %d\n",
2811 cmd);
2812 BUG();
2814 } else {
2815 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2816 BUG();
2819 switch (c->Request.Type.Direction) {
2820 case XFER_READ:
2821 pci_dir = PCI_DMA_FROMDEVICE;
2822 break;
2823 case XFER_WRITE:
2824 pci_dir = PCI_DMA_TODEVICE;
2825 break;
2826 case XFER_NONE:
2827 pci_dir = PCI_DMA_NONE;
2828 break;
2829 default:
2830 pci_dir = PCI_DMA_BIDIRECTIONAL;
2833 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2835 return;
2839 * Map (physical) PCI mem into (virtual) kernel space
2841 static void __iomem *remap_pci_mem(ulong base, ulong size)
2843 ulong page_base = ((ulong) base) & PAGE_MASK;
2844 ulong page_offs = ((ulong) base) - page_base;
2845 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2847 return page_remapped ? (page_remapped + page_offs) : NULL;
2850 /* Takes cmds off the submission queue and sends them to the hardware,
2851 * then puts them on the queue of cmds waiting for completion.
2853 static void start_io(struct ctlr_info *h)
2855 struct CommandList *c;
2857 while (!list_empty(&h->reqQ)) {
2858 c = list_entry(h->reqQ.next, struct CommandList, list);
2859 /* can't do anything if fifo is full */
2860 if ((h->access.fifo_full(h))) {
2861 dev_warn(&h->pdev->dev, "fifo full\n");
2862 break;
2865 /* Get the first entry from the Request Q */
2866 removeQ(c);
2867 h->Qdepth--;
2869 /* Tell the controller execute command */
2870 h->access.submit_command(h, c);
2872 /* Put job onto the completed Q */
2873 addQ(&h->cmpQ, c);
2877 static inline unsigned long get_next_completion(struct ctlr_info *h)
2879 return h->access.command_completed(h);
2882 static inline bool interrupt_pending(struct ctlr_info *h)
2884 return h->access.intr_pending(h);
2887 static inline long interrupt_not_for_us(struct ctlr_info *h)
2889 return (h->access.intr_pending(h) == 0) ||
2890 (h->interrupts_enabled == 0);
2893 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2894 u32 raw_tag)
2896 if (unlikely(tag_index >= h->nr_cmds)) {
2897 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2898 return 1;
2900 return 0;
2903 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2905 removeQ(c);
2906 if (likely(c->cmd_type == CMD_SCSI))
2907 complete_scsi_command(c, 0, raw_tag);
2908 else if (c->cmd_type == CMD_IOCTL_PEND)
2909 complete(c->waiting);
2912 static inline u32 hpsa_tag_contains_index(u32 tag)
2914 return tag & DIRECT_LOOKUP_BIT;
2917 static inline u32 hpsa_tag_to_index(u32 tag)
2919 return tag >> DIRECT_LOOKUP_SHIFT;
2923 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
2925 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
2926 #define HPSA_SIMPLE_ERROR_BITS 0x03
2927 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
2928 return tag & ~HPSA_SIMPLE_ERROR_BITS;
2929 return tag & ~HPSA_PERF_ERROR_BITS;
2932 /* process completion of an indexed ("direct lookup") command */
2933 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2934 u32 raw_tag)
2936 u32 tag_index;
2937 struct CommandList *c;
2939 tag_index = hpsa_tag_to_index(raw_tag);
2940 if (bad_tag(h, tag_index, raw_tag))
2941 return next_command(h);
2942 c = h->cmd_pool + tag_index;
2943 finish_cmd(c, raw_tag);
2944 return next_command(h);
2947 /* process completion of a non-indexed command */
2948 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2949 u32 raw_tag)
2951 u32 tag;
2952 struct CommandList *c = NULL;
2954 tag = hpsa_tag_discard_error_bits(h, raw_tag);
2955 list_for_each_entry(c, &h->cmpQ, list) {
2956 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2957 finish_cmd(c, raw_tag);
2958 return next_command(h);
2961 bad_tag(h, h->nr_cmds + 1, raw_tag);
2962 return next_command(h);
2965 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2967 struct ctlr_info *h = dev_id;
2968 unsigned long flags;
2969 u32 raw_tag;
2971 if (interrupt_not_for_us(h))
2972 return IRQ_NONE;
2973 spin_lock_irqsave(&h->lock, flags);
2974 while (interrupt_pending(h)) {
2975 raw_tag = get_next_completion(h);
2976 while (raw_tag != FIFO_EMPTY) {
2977 if (hpsa_tag_contains_index(raw_tag))
2978 raw_tag = process_indexed_cmd(h, raw_tag);
2979 else
2980 raw_tag = process_nonindexed_cmd(h, raw_tag);
2983 spin_unlock_irqrestore(&h->lock, flags);
2984 return IRQ_HANDLED;
2987 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
2989 struct ctlr_info *h = dev_id;
2990 unsigned long flags;
2991 u32 raw_tag;
2993 spin_lock_irqsave(&h->lock, flags);
2994 raw_tag = get_next_completion(h);
2995 while (raw_tag != FIFO_EMPTY) {
2996 if (hpsa_tag_contains_index(raw_tag))
2997 raw_tag = process_indexed_cmd(h, raw_tag);
2998 else
2999 raw_tag = process_nonindexed_cmd(h, raw_tag);
3001 spin_unlock_irqrestore(&h->lock, flags);
3002 return IRQ_HANDLED;
3005 /* Send a message CDB to the firmware. Careful, this only works
3006 * in simple mode, not performant mode due to the tag lookup.
3007 * We only ever use this immediately after a controller reset.
3009 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3010 unsigned char type)
3012 struct Command {
3013 struct CommandListHeader CommandHeader;
3014 struct RequestBlock Request;
3015 struct ErrDescriptor ErrorDescriptor;
3017 struct Command *cmd;
3018 static const size_t cmd_sz = sizeof(*cmd) +
3019 sizeof(cmd->ErrorDescriptor);
3020 dma_addr_t paddr64;
3021 uint32_t paddr32, tag;
3022 void __iomem *vaddr;
3023 int i, err;
3025 vaddr = pci_ioremap_bar(pdev, 0);
3026 if (vaddr == NULL)
3027 return -ENOMEM;
3029 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3030 * CCISS commands, so they must be allocated from the lower 4GiB of
3031 * memory.
3033 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3034 if (err) {
3035 iounmap(vaddr);
3036 return -ENOMEM;
3039 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3040 if (cmd == NULL) {
3041 iounmap(vaddr);
3042 return -ENOMEM;
3045 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3046 * although there's no guarantee, we assume that the address is at
3047 * least 4-byte aligned (most likely, it's page-aligned).
3049 paddr32 = paddr64;
3051 cmd->CommandHeader.ReplyQueue = 0;
3052 cmd->CommandHeader.SGList = 0;
3053 cmd->CommandHeader.SGTotal = 0;
3054 cmd->CommandHeader.Tag.lower = paddr32;
3055 cmd->CommandHeader.Tag.upper = 0;
3056 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3058 cmd->Request.CDBLen = 16;
3059 cmd->Request.Type.Type = TYPE_MSG;
3060 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3061 cmd->Request.Type.Direction = XFER_NONE;
3062 cmd->Request.Timeout = 0; /* Don't time out */
3063 cmd->Request.CDB[0] = opcode;
3064 cmd->Request.CDB[1] = type;
3065 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3066 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3067 cmd->ErrorDescriptor.Addr.upper = 0;
3068 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3070 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3072 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3073 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3074 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3075 break;
3076 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3079 iounmap(vaddr);
3081 /* we leak the DMA buffer here ... no choice since the controller could
3082 * still complete the command.
3084 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3085 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3086 opcode, type);
3087 return -ETIMEDOUT;
3090 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3092 if (tag & HPSA_ERROR_BIT) {
3093 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3094 opcode, type);
3095 return -EIO;
3098 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3099 opcode, type);
3100 return 0;
3103 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3104 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3106 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3107 void * __iomem vaddr, bool use_doorbell)
3109 u16 pmcsr;
3110 int pos;
3112 if (use_doorbell) {
3113 /* For everything after the P600, the PCI power state method
3114 * of resetting the controller doesn't work, so we have this
3115 * other way using the doorbell register.
3117 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3118 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3119 msleep(1000);
3120 } else { /* Try to do it the PCI power state way */
3122 /* Quoting from the Open CISS Specification: "The Power
3123 * Management Control/Status Register (CSR) controls the power
3124 * state of the device. The normal operating state is D0,
3125 * CSR=00h. The software off state is D3, CSR=03h. To reset
3126 * the controller, place the interface device in D3 then to D0,
3127 * this causes a secondary PCI reset which will reset the
3128 * controller." */
3130 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3131 if (pos == 0) {
3132 dev_err(&pdev->dev,
3133 "hpsa_reset_controller: "
3134 "PCI PM not supported\n");
3135 return -ENODEV;
3137 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3138 /* enter the D3hot power management state */
3139 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3140 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3141 pmcsr |= PCI_D3hot;
3142 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3144 msleep(500);
3146 /* enter the D0 power management state */
3147 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3148 pmcsr |= PCI_D0;
3149 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3151 msleep(500);
3153 return 0;
3156 /* This does a hard reset of the controller using PCI power management
3157 * states or the using the doorbell register.
3159 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3161 u64 cfg_offset;
3162 u32 cfg_base_addr;
3163 u64 cfg_base_addr_index;
3164 void __iomem *vaddr;
3165 unsigned long paddr;
3166 u32 misc_fw_support, active_transport;
3167 int rc;
3168 struct CfgTable __iomem *cfgtable;
3169 bool use_doorbell;
3170 u32 board_id;
3171 u16 command_register;
3173 /* For controllers as old as the P600, this is very nearly
3174 * the same thing as
3176 * pci_save_state(pci_dev);
3177 * pci_set_power_state(pci_dev, PCI_D3hot);
3178 * pci_set_power_state(pci_dev, PCI_D0);
3179 * pci_restore_state(pci_dev);
3181 * For controllers newer than the P600, the pci power state
3182 * method of resetting doesn't work so we have another way
3183 * using the doorbell register.
3186 /* Exclude 640x boards. These are two pci devices in one slot
3187 * which share a battery backed cache module. One controls the
3188 * cache, the other accesses the cache through the one that controls
3189 * it. If we reset the one controlling the cache, the other will
3190 * likely not be happy. Just forbid resetting this conjoined mess.
3191 * The 640x isn't really supported by hpsa anyway.
3193 rc = hpsa_lookup_board_id(pdev, &board_id);
3194 if (rc < 0) {
3195 dev_warn(&pdev->dev, "Not resetting device.\n");
3196 return -ENODEV;
3198 if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3199 return -ENOTSUPP;
3201 /* Save the PCI command register */
3202 pci_read_config_word(pdev, 4, &command_register);
3203 /* Turn the board off. This is so that later pci_restore_state()
3204 * won't turn the board on before the rest of config space is ready.
3206 pci_disable_device(pdev);
3207 pci_save_state(pdev);
3209 /* find the first memory BAR, so we can find the cfg table */
3210 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3211 if (rc)
3212 return rc;
3213 vaddr = remap_pci_mem(paddr, 0x250);
3214 if (!vaddr)
3215 return -ENOMEM;
3217 /* find cfgtable in order to check if reset via doorbell is supported */
3218 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3219 &cfg_base_addr_index, &cfg_offset);
3220 if (rc)
3221 goto unmap_vaddr;
3222 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3223 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3224 if (!cfgtable) {
3225 rc = -ENOMEM;
3226 goto unmap_vaddr;
3229 /* If reset via doorbell register is supported, use that. */
3230 misc_fw_support = readl(&cfgtable->misc_fw_support);
3231 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3233 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3234 if (rc)
3235 goto unmap_cfgtable;
3237 pci_restore_state(pdev);
3238 rc = pci_enable_device(pdev);
3239 if (rc) {
3240 dev_warn(&pdev->dev, "failed to enable device.\n");
3241 goto unmap_cfgtable;
3243 pci_write_config_word(pdev, 4, command_register);
3245 /* Some devices (notably the HP Smart Array 5i Controller)
3246 need a little pause here */
3247 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3249 /* Wait for board to become not ready, then ready. */
3250 dev_info(&pdev->dev, "Waiting for board to become ready.\n");
3251 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3252 if (rc)
3253 dev_warn(&pdev->dev,
3254 "failed waiting for board to become not ready\n");
3255 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3256 if (rc) {
3257 dev_warn(&pdev->dev,
3258 "failed waiting for board to become ready\n");
3259 goto unmap_cfgtable;
3261 dev_info(&pdev->dev, "board ready.\n");
3263 /* Controller should be in simple mode at this point. If it's not,
3264 * It means we're on one of those controllers which doesn't support
3265 * the doorbell reset method and on which the PCI power management reset
3266 * method doesn't work (P800, for example.)
3267 * In those cases, pretend the reset worked and hope for the best.
3269 active_transport = readl(&cfgtable->TransportActive);
3270 if (active_transport & PERFORMANT_MODE) {
3271 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3272 " proceeding anyway.\n");
3273 rc = -ENOTSUPP;
3276 unmap_cfgtable:
3277 iounmap(cfgtable);
3279 unmap_vaddr:
3280 iounmap(vaddr);
3281 return rc;
3285 * We cannot read the structure directly, for portability we must use
3286 * the io functions.
3287 * This is for debug only.
3289 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3291 #ifdef HPSA_DEBUG
3292 int i;
3293 char temp_name[17];
3295 dev_info(dev, "Controller Configuration information\n");
3296 dev_info(dev, "------------------------------------\n");
3297 for (i = 0; i < 4; i++)
3298 temp_name[i] = readb(&(tb->Signature[i]));
3299 temp_name[4] = '\0';
3300 dev_info(dev, " Signature = %s\n", temp_name);
3301 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3302 dev_info(dev, " Transport methods supported = 0x%x\n",
3303 readl(&(tb->TransportSupport)));
3304 dev_info(dev, " Transport methods active = 0x%x\n",
3305 readl(&(tb->TransportActive)));
3306 dev_info(dev, " Requested transport Method = 0x%x\n",
3307 readl(&(tb->HostWrite.TransportRequest)));
3308 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3309 readl(&(tb->HostWrite.CoalIntDelay)));
3310 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3311 readl(&(tb->HostWrite.CoalIntCount)));
3312 dev_info(dev, " Max outstanding commands = 0x%d\n",
3313 readl(&(tb->CmdsOutMax)));
3314 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3315 for (i = 0; i < 16; i++)
3316 temp_name[i] = readb(&(tb->ServerName[i]));
3317 temp_name[16] = '\0';
3318 dev_info(dev, " Server Name = %s\n", temp_name);
3319 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3320 readl(&(tb->HeartBeat)));
3321 #endif /* HPSA_DEBUG */
3324 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3326 int i, offset, mem_type, bar_type;
3328 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3329 return 0;
3330 offset = 0;
3331 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3332 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3333 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3334 offset += 4;
3335 else {
3336 mem_type = pci_resource_flags(pdev, i) &
3337 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3338 switch (mem_type) {
3339 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3340 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3341 offset += 4; /* 32 bit */
3342 break;
3343 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3344 offset += 8;
3345 break;
3346 default: /* reserved in PCI 2.2 */
3347 dev_warn(&pdev->dev,
3348 "base address is invalid\n");
3349 return -1;
3350 break;
3353 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3354 return i + 1;
3356 return -1;
3359 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3360 * controllers that are capable. If not, we use IO-APIC mode.
3363 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3365 #ifdef CONFIG_PCI_MSI
3366 int err;
3367 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3368 {0, 2}, {0, 3}
3371 /* Some boards advertise MSI but don't really support it */
3372 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3373 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3374 goto default_int_mode;
3375 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3376 dev_info(&h->pdev->dev, "MSIX\n");
3377 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3378 if (!err) {
3379 h->intr[0] = hpsa_msix_entries[0].vector;
3380 h->intr[1] = hpsa_msix_entries[1].vector;
3381 h->intr[2] = hpsa_msix_entries[2].vector;
3382 h->intr[3] = hpsa_msix_entries[3].vector;
3383 h->msix_vector = 1;
3384 return;
3386 if (err > 0) {
3387 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3388 "available\n", err);
3389 goto default_int_mode;
3390 } else {
3391 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3392 err);
3393 goto default_int_mode;
3396 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3397 dev_info(&h->pdev->dev, "MSI\n");
3398 if (!pci_enable_msi(h->pdev))
3399 h->msi_vector = 1;
3400 else
3401 dev_warn(&h->pdev->dev, "MSI init failed\n");
3403 default_int_mode:
3404 #endif /* CONFIG_PCI_MSI */
3405 /* if we get here we're going to use the default interrupt mode */
3406 h->intr[h->intr_mode] = h->pdev->irq;
3409 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3411 int i;
3412 u32 subsystem_vendor_id, subsystem_device_id;
3414 subsystem_vendor_id = pdev->subsystem_vendor;
3415 subsystem_device_id = pdev->subsystem_device;
3416 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3417 subsystem_vendor_id;
3419 for (i = 0; i < ARRAY_SIZE(products); i++)
3420 if (*board_id == products[i].board_id)
3421 return i;
3423 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3424 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3425 !hpsa_allow_any) {
3426 dev_warn(&pdev->dev, "unrecognized board ID: "
3427 "0x%08x, ignoring.\n", *board_id);
3428 return -ENODEV;
3430 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3433 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3435 u16 command;
3437 (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3438 return ((command & PCI_COMMAND_MEMORY) == 0);
3441 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3442 unsigned long *memory_bar)
3444 int i;
3446 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3447 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3448 /* addressing mode bits already removed */
3449 *memory_bar = pci_resource_start(pdev, i);
3450 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3451 *memory_bar);
3452 return 0;
3454 dev_warn(&pdev->dev, "no memory BAR found\n");
3455 return -ENODEV;
3458 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3459 void __iomem *vaddr, int wait_for_ready)
3461 int i, iterations;
3462 u32 scratchpad;
3463 if (wait_for_ready)
3464 iterations = HPSA_BOARD_READY_ITERATIONS;
3465 else
3466 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3468 for (i = 0; i < iterations; i++) {
3469 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3470 if (wait_for_ready) {
3471 if (scratchpad == HPSA_FIRMWARE_READY)
3472 return 0;
3473 } else {
3474 if (scratchpad != HPSA_FIRMWARE_READY)
3475 return 0;
3477 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3479 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3480 return -ENODEV;
3483 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3484 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3485 u64 *cfg_offset)
3487 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3488 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3489 *cfg_base_addr &= (u32) 0x0000ffff;
3490 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3491 if (*cfg_base_addr_index == -1) {
3492 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3493 return -ENODEV;
3495 return 0;
3498 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3500 u64 cfg_offset;
3501 u32 cfg_base_addr;
3502 u64 cfg_base_addr_index;
3503 u32 trans_offset;
3504 int rc;
3506 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3507 &cfg_base_addr_index, &cfg_offset);
3508 if (rc)
3509 return rc;
3510 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3511 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3512 if (!h->cfgtable)
3513 return -ENOMEM;
3514 /* Find performant mode table. */
3515 trans_offset = readl(&h->cfgtable->TransMethodOffset);
3516 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3517 cfg_base_addr_index)+cfg_offset+trans_offset,
3518 sizeof(*h->transtable));
3519 if (!h->transtable)
3520 return -ENOMEM;
3521 return 0;
3524 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3526 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3528 /* Limit commands in memory limited kdump scenario. */
3529 if (reset_devices && h->max_commands > 32)
3530 h->max_commands = 32;
3532 if (h->max_commands < 16) {
3533 dev_warn(&h->pdev->dev, "Controller reports "
3534 "max supported commands of %d, an obvious lie. "
3535 "Using 16. Ensure that firmware is up to date.\n",
3536 h->max_commands);
3537 h->max_commands = 16;
3541 /* Interrogate the hardware for some limits:
3542 * max commands, max SG elements without chaining, and with chaining,
3543 * SG chain block size, etc.
3545 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3547 hpsa_get_max_perf_mode_cmds(h);
3548 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3549 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3551 * Limit in-command s/g elements to 32 save dma'able memory.
3552 * Howvever spec says if 0, use 31
3554 h->max_cmd_sg_entries = 31;
3555 if (h->maxsgentries > 512) {
3556 h->max_cmd_sg_entries = 32;
3557 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3558 h->maxsgentries--; /* save one for chain pointer */
3559 } else {
3560 h->maxsgentries = 31; /* default to traditional values */
3561 h->chainsize = 0;
3565 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3567 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3568 (readb(&h->cfgtable->Signature[1]) != 'I') ||
3569 (readb(&h->cfgtable->Signature[2]) != 'S') ||
3570 (readb(&h->cfgtable->Signature[3]) != 'S')) {
3571 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3572 return false;
3574 return true;
3577 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3578 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3580 #ifdef CONFIG_X86
3581 u32 prefetch;
3583 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3584 prefetch |= 0x100;
3585 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3586 #endif
3589 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
3590 * in a prefetch beyond physical memory.
3592 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3594 u32 dma_prefetch;
3596 if (h->board_id != 0x3225103C)
3597 return;
3598 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3599 dma_prefetch |= 0x8000;
3600 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3603 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3605 int i;
3606 u32 doorbell_value;
3607 unsigned long flags;
3609 /* under certain very rare conditions, this can take awhile.
3610 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3611 * as we enter this code.)
3613 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3614 spin_lock_irqsave(&h->lock, flags);
3615 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3616 spin_unlock_irqrestore(&h->lock, flags);
3617 if (!doorbell_value & CFGTBL_ChangeReq)
3618 break;
3619 /* delay and try again */
3620 usleep_range(10000, 20000);
3624 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3626 u32 trans_support;
3628 trans_support = readl(&(h->cfgtable->TransportSupport));
3629 if (!(trans_support & SIMPLE_MODE))
3630 return -ENOTSUPP;
3632 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3633 /* Update the field, and then ring the doorbell */
3634 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3635 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3636 hpsa_wait_for_mode_change_ack(h);
3637 print_cfg_table(&h->pdev->dev, h->cfgtable);
3638 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3639 dev_warn(&h->pdev->dev,
3640 "unable to get board into simple mode\n");
3641 return -ENODEV;
3643 h->transMethod = CFGTBL_Trans_Simple;
3644 return 0;
3647 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3649 int prod_index, err;
3651 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3652 if (prod_index < 0)
3653 return -ENODEV;
3654 h->product_name = products[prod_index].product_name;
3655 h->access = *(products[prod_index].access);
3657 if (hpsa_board_disabled(h->pdev)) {
3658 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3659 return -ENODEV;
3661 err = pci_enable_device(h->pdev);
3662 if (err) {
3663 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3664 return err;
3667 err = pci_request_regions(h->pdev, "hpsa");
3668 if (err) {
3669 dev_err(&h->pdev->dev,
3670 "cannot obtain PCI resources, aborting\n");
3671 return err;
3673 hpsa_interrupt_mode(h);
3674 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3675 if (err)
3676 goto err_out_free_res;
3677 h->vaddr = remap_pci_mem(h->paddr, 0x250);
3678 if (!h->vaddr) {
3679 err = -ENOMEM;
3680 goto err_out_free_res;
3682 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3683 if (err)
3684 goto err_out_free_res;
3685 err = hpsa_find_cfgtables(h);
3686 if (err)
3687 goto err_out_free_res;
3688 hpsa_find_board_params(h);
3690 if (!hpsa_CISS_signature_present(h)) {
3691 err = -ENODEV;
3692 goto err_out_free_res;
3694 hpsa_enable_scsi_prefetch(h);
3695 hpsa_p600_dma_prefetch_quirk(h);
3696 err = hpsa_enter_simple_mode(h);
3697 if (err)
3698 goto err_out_free_res;
3699 return 0;
3701 err_out_free_res:
3702 if (h->transtable)
3703 iounmap(h->transtable);
3704 if (h->cfgtable)
3705 iounmap(h->cfgtable);
3706 if (h->vaddr)
3707 iounmap(h->vaddr);
3709 * Deliberately omit pci_disable_device(): it does something nasty to
3710 * Smart Array controllers that pci_enable_device does not undo
3712 pci_release_regions(h->pdev);
3713 return err;
3716 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3718 int rc;
3720 #define HBA_INQUIRY_BYTE_COUNT 64
3721 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3722 if (!h->hba_inquiry_data)
3723 return;
3724 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3725 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3726 if (rc != 0) {
3727 kfree(h->hba_inquiry_data);
3728 h->hba_inquiry_data = NULL;
3732 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3734 int rc, i;
3736 if (!reset_devices)
3737 return 0;
3739 /* Reset the controller with a PCI power-cycle or via doorbell */
3740 rc = hpsa_kdump_hard_reset_controller(pdev);
3742 /* -ENOTSUPP here means we cannot reset the controller
3743 * but it's already (and still) up and running in
3744 * "performant mode". Or, it might be 640x, which can't reset
3745 * due to concerns about shared bbwc between 6402/6404 pair.
3747 if (rc == -ENOTSUPP)
3748 return 0; /* just try to do the kdump anyhow. */
3749 if (rc)
3750 return -ENODEV;
3752 /* Now try to get the controller to respond to a no-op */
3753 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3754 if (hpsa_noop(pdev) == 0)
3755 break;
3756 else
3757 dev_warn(&pdev->dev, "no-op failed%s\n",
3758 (i < 11 ? "; re-trying" : ""));
3760 return 0;
3763 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3764 const struct pci_device_id *ent)
3766 int dac, rc;
3767 struct ctlr_info *h;
3769 if (number_of_controllers == 0)
3770 printk(KERN_INFO DRIVER_NAME "\n");
3772 rc = hpsa_init_reset_devices(pdev);
3773 if (rc)
3774 return rc;
3776 /* Command structures must be aligned on a 32-byte boundary because
3777 * the 5 lower bits of the address are used by the hardware. and by
3778 * the driver. See comments in hpsa.h for more info.
3780 #define COMMANDLIST_ALIGNMENT 32
3781 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3782 h = kzalloc(sizeof(*h), GFP_KERNEL);
3783 if (!h)
3784 return -ENOMEM;
3786 h->pdev = pdev;
3787 h->busy_initializing = 1;
3788 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
3789 INIT_LIST_HEAD(&h->cmpQ);
3790 INIT_LIST_HEAD(&h->reqQ);
3791 spin_lock_init(&h->lock);
3792 spin_lock_init(&h->scan_lock);
3793 rc = hpsa_pci_init(h);
3794 if (rc != 0)
3795 goto clean1;
3797 sprintf(h->devname, "hpsa%d", number_of_controllers);
3798 h->ctlr = number_of_controllers;
3799 number_of_controllers++;
3801 /* configure PCI DMA stuff */
3802 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3803 if (rc == 0) {
3804 dac = 1;
3805 } else {
3806 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3807 if (rc == 0) {
3808 dac = 0;
3809 } else {
3810 dev_err(&pdev->dev, "no suitable DMA available\n");
3811 goto clean1;
3815 /* make sure the board interrupts are off */
3816 h->access.set_intr_mask(h, HPSA_INTR_OFF);
3818 if (h->msix_vector || h->msi_vector)
3819 rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_msi,
3820 IRQF_DISABLED, h->devname, h);
3821 else
3822 rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_intx,
3823 IRQF_DISABLED, h->devname, h);
3824 if (rc) {
3825 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3826 h->intr[h->intr_mode], h->devname);
3827 goto clean2;
3830 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3831 h->devname, pdev->device,
3832 h->intr[h->intr_mode], dac ? "" : " not");
3834 h->cmd_pool_bits =
3835 kmalloc(((h->nr_cmds + BITS_PER_LONG -
3836 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3837 h->cmd_pool = pci_alloc_consistent(h->pdev,
3838 h->nr_cmds * sizeof(*h->cmd_pool),
3839 &(h->cmd_pool_dhandle));
3840 h->errinfo_pool = pci_alloc_consistent(h->pdev,
3841 h->nr_cmds * sizeof(*h->errinfo_pool),
3842 &(h->errinfo_pool_dhandle));
3843 if ((h->cmd_pool_bits == NULL)
3844 || (h->cmd_pool == NULL)
3845 || (h->errinfo_pool == NULL)) {
3846 dev_err(&pdev->dev, "out of memory");
3847 rc = -ENOMEM;
3848 goto clean4;
3850 if (hpsa_allocate_sg_chain_blocks(h))
3851 goto clean4;
3852 init_waitqueue_head(&h->scan_wait_queue);
3853 h->scan_finished = 1; /* no scan currently in progress */
3855 pci_set_drvdata(pdev, h);
3856 memset(h->cmd_pool_bits, 0,
3857 ((h->nr_cmds + BITS_PER_LONG -
3858 1) / BITS_PER_LONG) * sizeof(unsigned long));
3860 hpsa_scsi_setup(h);
3862 /* Turn the interrupts on so we can service requests */
3863 h->access.set_intr_mask(h, HPSA_INTR_ON);
3865 hpsa_put_ctlr_into_performant_mode(h);
3866 hpsa_hba_inquiry(h);
3867 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
3868 h->busy_initializing = 0;
3869 return 1;
3871 clean4:
3872 hpsa_free_sg_chain_blocks(h);
3873 kfree(h->cmd_pool_bits);
3874 if (h->cmd_pool)
3875 pci_free_consistent(h->pdev,
3876 h->nr_cmds * sizeof(struct CommandList),
3877 h->cmd_pool, h->cmd_pool_dhandle);
3878 if (h->errinfo_pool)
3879 pci_free_consistent(h->pdev,
3880 h->nr_cmds * sizeof(struct ErrorInfo),
3881 h->errinfo_pool,
3882 h->errinfo_pool_dhandle);
3883 free_irq(h->intr[h->intr_mode], h);
3884 clean2:
3885 clean1:
3886 h->busy_initializing = 0;
3887 kfree(h);
3888 return rc;
3891 static void hpsa_flush_cache(struct ctlr_info *h)
3893 char *flush_buf;
3894 struct CommandList *c;
3896 flush_buf = kzalloc(4, GFP_KERNEL);
3897 if (!flush_buf)
3898 return;
3900 c = cmd_special_alloc(h);
3901 if (!c) {
3902 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3903 goto out_of_memory;
3905 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3906 RAID_CTLR_LUNID, TYPE_CMD);
3907 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3908 if (c->err_info->CommandStatus != 0)
3909 dev_warn(&h->pdev->dev,
3910 "error flushing cache on controller\n");
3911 cmd_special_free(h, c);
3912 out_of_memory:
3913 kfree(flush_buf);
3916 static void hpsa_shutdown(struct pci_dev *pdev)
3918 struct ctlr_info *h;
3920 h = pci_get_drvdata(pdev);
3921 /* Turn board interrupts off and send the flush cache command
3922 * sendcmd will turn off interrupt, and send the flush...
3923 * To write all data in the battery backed cache to disks
3925 hpsa_flush_cache(h);
3926 h->access.set_intr_mask(h, HPSA_INTR_OFF);
3927 free_irq(h->intr[h->intr_mode], h);
3928 #ifdef CONFIG_PCI_MSI
3929 if (h->msix_vector)
3930 pci_disable_msix(h->pdev);
3931 else if (h->msi_vector)
3932 pci_disable_msi(h->pdev);
3933 #endif /* CONFIG_PCI_MSI */
3936 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3938 struct ctlr_info *h;
3940 if (pci_get_drvdata(pdev) == NULL) {
3941 dev_err(&pdev->dev, "unable to remove device \n");
3942 return;
3944 h = pci_get_drvdata(pdev);
3945 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
3946 hpsa_shutdown(pdev);
3947 iounmap(h->vaddr);
3948 iounmap(h->transtable);
3949 iounmap(h->cfgtable);
3950 hpsa_free_sg_chain_blocks(h);
3951 pci_free_consistent(h->pdev,
3952 h->nr_cmds * sizeof(struct CommandList),
3953 h->cmd_pool, h->cmd_pool_dhandle);
3954 pci_free_consistent(h->pdev,
3955 h->nr_cmds * sizeof(struct ErrorInfo),
3956 h->errinfo_pool, h->errinfo_pool_dhandle);
3957 pci_free_consistent(h->pdev, h->reply_pool_size,
3958 h->reply_pool, h->reply_pool_dhandle);
3959 kfree(h->cmd_pool_bits);
3960 kfree(h->blockFetchTable);
3961 kfree(h->hba_inquiry_data);
3963 * Deliberately omit pci_disable_device(): it does something nasty to
3964 * Smart Array controllers that pci_enable_device does not undo
3966 pci_release_regions(pdev);
3967 pci_set_drvdata(pdev, NULL);
3968 kfree(h);
3971 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3972 __attribute__((unused)) pm_message_t state)
3974 return -ENOSYS;
3977 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3979 return -ENOSYS;
3982 static struct pci_driver hpsa_pci_driver = {
3983 .name = "hpsa",
3984 .probe = hpsa_init_one,
3985 .remove = __devexit_p(hpsa_remove_one),
3986 .id_table = hpsa_pci_device_id, /* id_table */
3987 .shutdown = hpsa_shutdown,
3988 .suspend = hpsa_suspend,
3989 .resume = hpsa_resume,
3992 /* Fill in bucket_map[], given nsgs (the max number of
3993 * scatter gather elements supported) and bucket[],
3994 * which is an array of 8 integers. The bucket[] array
3995 * contains 8 different DMA transfer sizes (in 16
3996 * byte increments) which the controller uses to fetch
3997 * commands. This function fills in bucket_map[], which
3998 * maps a given number of scatter gather elements to one of
3999 * the 8 DMA transfer sizes. The point of it is to allow the
4000 * controller to only do as much DMA as needed to fetch the
4001 * command, with the DMA transfer size encoded in the lower
4002 * bits of the command address.
4004 static void calc_bucket_map(int bucket[], int num_buckets,
4005 int nsgs, int *bucket_map)
4007 int i, j, b, size;
4009 /* even a command with 0 SGs requires 4 blocks */
4010 #define MINIMUM_TRANSFER_BLOCKS 4
4011 #define NUM_BUCKETS 8
4012 /* Note, bucket_map must have nsgs+1 entries. */
4013 for (i = 0; i <= nsgs; i++) {
4014 /* Compute size of a command with i SG entries */
4015 size = i + MINIMUM_TRANSFER_BLOCKS;
4016 b = num_buckets; /* Assume the biggest bucket */
4017 /* Find the bucket that is just big enough */
4018 for (j = 0; j < 8; j++) {
4019 if (bucket[j] >= size) {
4020 b = j;
4021 break;
4024 /* for a command with i SG entries, use bucket b. */
4025 bucket_map[i] = b;
4029 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4030 u32 use_short_tags)
4032 int i;
4033 unsigned long register_value;
4035 /* This is a bit complicated. There are 8 registers on
4036 * the controller which we write to to tell it 8 different
4037 * sizes of commands which there may be. It's a way of
4038 * reducing the DMA done to fetch each command. Encoded into
4039 * each command's tag are 3 bits which communicate to the controller
4040 * which of the eight sizes that command fits within. The size of
4041 * each command depends on how many scatter gather entries there are.
4042 * Each SG entry requires 16 bytes. The eight registers are programmed
4043 * with the number of 16-byte blocks a command of that size requires.
4044 * The smallest command possible requires 5 such 16 byte blocks.
4045 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4046 * blocks. Note, this only extends to the SG entries contained
4047 * within the command block, and does not extend to chained blocks
4048 * of SG elements. bft[] contains the eight values we write to
4049 * the registers. They are not evenly distributed, but have more
4050 * sizes for small commands, and fewer sizes for larger commands.
4052 int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4053 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4054 /* 5 = 1 s/g entry or 4k
4055 * 6 = 2 s/g entry or 8k
4056 * 8 = 4 s/g entry or 16k
4057 * 10 = 6 s/g entry or 24k
4060 h->reply_pool_wraparound = 1; /* spec: init to 1 */
4062 /* Controller spec: zero out this buffer. */
4063 memset(h->reply_pool, 0, h->reply_pool_size);
4064 h->reply_pool_head = h->reply_pool;
4066 bft[7] = h->max_sg_entries + 4;
4067 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4068 for (i = 0; i < 8; i++)
4069 writel(bft[i], &h->transtable->BlockFetch[i]);
4071 /* size of controller ring buffer */
4072 writel(h->max_commands, &h->transtable->RepQSize);
4073 writel(1, &h->transtable->RepQCount);
4074 writel(0, &h->transtable->RepQCtrAddrLow32);
4075 writel(0, &h->transtable->RepQCtrAddrHigh32);
4076 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4077 writel(0, &h->transtable->RepQAddr0High32);
4078 writel(CFGTBL_Trans_Performant | use_short_tags,
4079 &(h->cfgtable->HostWrite.TransportRequest));
4080 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4081 hpsa_wait_for_mode_change_ack(h);
4082 register_value = readl(&(h->cfgtable->TransportActive));
4083 if (!(register_value & CFGTBL_Trans_Performant)) {
4084 dev_warn(&h->pdev->dev, "unable to get board into"
4085 " performant mode\n");
4086 return;
4088 /* Change the access methods to the performant access methods */
4089 h->access = SA5_performant_access;
4090 h->transMethod = CFGTBL_Trans_Performant;
4093 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4095 u32 trans_support;
4097 if (hpsa_simple_mode)
4098 return;
4100 trans_support = readl(&(h->cfgtable->TransportSupport));
4101 if (!(trans_support & PERFORMANT_MODE))
4102 return;
4104 hpsa_get_max_perf_mode_cmds(h);
4105 h->max_sg_entries = 32;
4106 /* Performant mode ring buffer and supporting data structures */
4107 h->reply_pool_size = h->max_commands * sizeof(u64);
4108 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4109 &(h->reply_pool_dhandle));
4111 /* Need a block fetch table for performant mode */
4112 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4113 sizeof(u32)), GFP_KERNEL);
4115 if ((h->reply_pool == NULL)
4116 || (h->blockFetchTable == NULL))
4117 goto clean_up;
4119 hpsa_enter_performant_mode(h,
4120 trans_support & CFGTBL_Trans_use_short_tags);
4122 return;
4124 clean_up:
4125 if (h->reply_pool)
4126 pci_free_consistent(h->pdev, h->reply_pool_size,
4127 h->reply_pool, h->reply_pool_dhandle);
4128 kfree(h->blockFetchTable);
4132 * This is it. Register the PCI driver information for the cards we control
4133 * the OS will call our registered routines when it finds one of our cards.
4135 static int __init hpsa_init(void)
4137 return pci_register_driver(&hpsa_pci_driver);
4140 static void __exit hpsa_cleanup(void)
4142 pci_unregister_driver(&hpsa_pci_driver);
4145 module_init(hpsa_init);
4146 module_exit(hpsa_cleanup);