1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
48 #include <linux/dca.h>
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name
[] = "igb";
54 char igb_driver_version
[] = DRV_VERSION
;
55 static const char igb_driver_string
[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright
[] = "Copyright (c) 2007-2009 Intel Corporation.";
59 static const struct e1000_info
*igb_info_tbl
[] = {
60 [board_82575
] = &e1000_82575_info
,
63 static struct pci_device_id igb_pci_tbl
[] = {
64 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576
), board_82575
},
65 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_NS
), board_82575
},
66 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_FIBER
), board_82575
},
67 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES
), board_82575
},
68 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES_QUAD
), board_82575
},
69 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_QUAD_COPPER
), board_82575
},
70 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
71 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
72 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
73 /* required last entry */
77 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
79 void igb_reset(struct igb_adapter
*);
80 static int igb_setup_all_tx_resources(struct igb_adapter
*);
81 static int igb_setup_all_rx_resources(struct igb_adapter
*);
82 static void igb_free_all_tx_resources(struct igb_adapter
*);
83 static void igb_free_all_rx_resources(struct igb_adapter
*);
84 void igb_update_stats(struct igb_adapter
*);
85 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
86 static void __devexit
igb_remove(struct pci_dev
*pdev
);
87 static int igb_sw_init(struct igb_adapter
*);
88 static int igb_open(struct net_device
*);
89 static int igb_close(struct net_device
*);
90 static void igb_configure_tx(struct igb_adapter
*);
91 static void igb_configure_rx(struct igb_adapter
*);
92 static void igb_setup_rctl(struct igb_adapter
*);
93 static void igb_clean_all_tx_rings(struct igb_adapter
*);
94 static void igb_clean_all_rx_rings(struct igb_adapter
*);
95 static void igb_clean_tx_ring(struct igb_ring
*);
96 static void igb_clean_rx_ring(struct igb_ring
*);
97 static void igb_set_rx_mode(struct net_device
*);
98 static void igb_update_phy_info(unsigned long);
99 static void igb_watchdog(unsigned long);
100 static void igb_watchdog_task(struct work_struct
*);
101 static netdev_tx_t
igb_xmit_frame_ring_adv(struct sk_buff
*,
104 static netdev_tx_t
igb_xmit_frame_adv(struct sk_buff
*skb
,
105 struct net_device
*);
106 static struct net_device_stats
*igb_get_stats(struct net_device
*);
107 static int igb_change_mtu(struct net_device
*, int);
108 static int igb_set_mac(struct net_device
*, void *);
109 static irqreturn_t
igb_intr(int irq
, void *);
110 static irqreturn_t
igb_intr_msi(int irq
, void *);
111 static irqreturn_t
igb_msix_other(int irq
, void *);
112 static irqreturn_t
igb_msix_rx(int irq
, void *);
113 static irqreturn_t
igb_msix_tx(int irq
, void *);
114 #ifdef CONFIG_IGB_DCA
115 static void igb_update_rx_dca(struct igb_ring
*);
116 static void igb_update_tx_dca(struct igb_ring
*);
117 static void igb_setup_dca(struct igb_adapter
*);
118 #endif /* CONFIG_IGB_DCA */
119 static bool igb_clean_tx_irq(struct igb_ring
*);
120 static int igb_poll(struct napi_struct
*, int);
121 static bool igb_clean_rx_irq_adv(struct igb_ring
*, int *, int);
122 static void igb_alloc_rx_buffers_adv(struct igb_ring
*, int);
123 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
124 static void igb_tx_timeout(struct net_device
*);
125 static void igb_reset_task(struct work_struct
*);
126 static void igb_vlan_rx_register(struct net_device
*, struct vlan_group
*);
127 static void igb_vlan_rx_add_vid(struct net_device
*, u16
);
128 static void igb_vlan_rx_kill_vid(struct net_device
*, u16
);
129 static void igb_restore_vlan(struct igb_adapter
*);
130 static void igb_ping_all_vfs(struct igb_adapter
*);
131 static void igb_msg_task(struct igb_adapter
*);
132 static int igb_rcv_msg_from_vf(struct igb_adapter
*, u32
);
133 static inline void igb_set_rah_pool(struct e1000_hw
*, int , int);
134 static void igb_vmm_control(struct igb_adapter
*);
135 static int igb_set_vf_mac(struct igb_adapter
*adapter
, int, unsigned char *);
136 static void igb_restore_vf_multicasts(struct igb_adapter
*adapter
);
138 static inline void igb_set_vmolr(struct e1000_hw
*hw
, int vfn
)
142 reg_data
= rd32(E1000_VMOLR(vfn
));
143 reg_data
|= E1000_VMOLR_BAM
| /* Accept broadcast */
144 E1000_VMOLR_ROPE
| /* Accept packets matched in UTA */
145 E1000_VMOLR_ROMPE
| /* Accept packets matched in MTA */
146 E1000_VMOLR_AUPE
| /* Accept untagged packets */
147 E1000_VMOLR_STRVLAN
; /* Strip vlan tags */
148 wr32(E1000_VMOLR(vfn
), reg_data
);
151 static inline int igb_set_vf_rlpml(struct igb_adapter
*adapter
, int size
,
154 struct e1000_hw
*hw
= &adapter
->hw
;
157 /* if it isn't the PF check to see if VFs are enabled and
158 * increase the size to support vlan tags */
159 if (vfn
< adapter
->vfs_allocated_count
&&
160 adapter
->vf_data
[vfn
].vlans_enabled
)
161 size
+= VLAN_TAG_SIZE
;
163 vmolr
= rd32(E1000_VMOLR(vfn
));
164 vmolr
&= ~E1000_VMOLR_RLPML_MASK
;
165 vmolr
|= size
| E1000_VMOLR_LPE
;
166 wr32(E1000_VMOLR(vfn
), vmolr
);
171 static inline void igb_set_rah_pool(struct e1000_hw
*hw
, int pool
, int entry
)
175 reg_data
= rd32(E1000_RAH(entry
));
176 reg_data
&= ~E1000_RAH_POOL_MASK
;
177 reg_data
|= E1000_RAH_POOL_1
<< pool
;;
178 wr32(E1000_RAH(entry
), reg_data
);
182 static int igb_suspend(struct pci_dev
*, pm_message_t
);
183 static int igb_resume(struct pci_dev
*);
185 static void igb_shutdown(struct pci_dev
*);
186 #ifdef CONFIG_IGB_DCA
187 static int igb_notify_dca(struct notifier_block
*, unsigned long, void *);
188 static struct notifier_block dca_notifier
= {
189 .notifier_call
= igb_notify_dca
,
194 #ifdef CONFIG_NET_POLL_CONTROLLER
195 /* for netdump / net console */
196 static void igb_netpoll(struct net_device
*);
198 #ifdef CONFIG_PCI_IOV
199 static unsigned int max_vfs
= 0;
200 module_param(max_vfs
, uint
, 0);
201 MODULE_PARM_DESC(max_vfs
, "Maximum number of virtual functions to allocate "
202 "per physical function");
203 #endif /* CONFIG_PCI_IOV */
205 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
206 pci_channel_state_t
);
207 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
208 static void igb_io_resume(struct pci_dev
*);
210 static struct pci_error_handlers igb_err_handler
= {
211 .error_detected
= igb_io_error_detected
,
212 .slot_reset
= igb_io_slot_reset
,
213 .resume
= igb_io_resume
,
217 static struct pci_driver igb_driver
= {
218 .name
= igb_driver_name
,
219 .id_table
= igb_pci_tbl
,
221 .remove
= __devexit_p(igb_remove
),
223 /* Power Managment Hooks */
224 .suspend
= igb_suspend
,
225 .resume
= igb_resume
,
227 .shutdown
= igb_shutdown
,
228 .err_handler
= &igb_err_handler
231 static int global_quad_port_a
; /* global quad port a indication */
233 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
234 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
235 MODULE_LICENSE("GPL");
236 MODULE_VERSION(DRV_VERSION
);
239 * Scale the NIC clock cycle by a large factor so that
240 * relatively small clock corrections can be added or
241 * substracted at each clock tick. The drawbacks of a
242 * large factor are a) that the clock register overflows
243 * more quickly (not such a big deal) and b) that the
244 * increment per tick has to fit into 24 bits.
247 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
249 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
251 * The base scale factor is intentionally a power of two
252 * so that the division in %struct timecounter can be done with
255 #define IGB_TSYNC_SHIFT (19)
256 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
259 * The duration of one clock cycle of the NIC.
261 * @todo This hard-coded value is part of the specification and might change
262 * in future hardware revisions. Add revision check.
264 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
266 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
267 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
271 * igb_read_clock - read raw cycle counter (to be used by time counter)
273 static cycle_t
igb_read_clock(const struct cyclecounter
*tc
)
275 struct igb_adapter
*adapter
=
276 container_of(tc
, struct igb_adapter
, cycles
);
277 struct e1000_hw
*hw
= &adapter
->hw
;
280 stamp
= rd32(E1000_SYSTIML
);
281 stamp
|= (u64
)rd32(E1000_SYSTIMH
) << 32ULL;
288 * igb_get_hw_dev_name - return device name string
289 * used by hardware layer to print debugging information
291 char *igb_get_hw_dev_name(struct e1000_hw
*hw
)
293 struct igb_adapter
*adapter
= hw
->back
;
294 return adapter
->netdev
->name
;
298 * igb_get_time_str - format current NIC and system time as string
300 static char *igb_get_time_str(struct igb_adapter
*adapter
,
303 cycle_t hw
= adapter
->cycles
.read(&adapter
->cycles
);
304 struct timespec nic
= ns_to_timespec(timecounter_read(&adapter
->clock
));
306 struct timespec delta
;
307 getnstimeofday(&sys
);
309 delta
= timespec_sub(nic
, sys
);
312 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
314 (long)nic
.tv_sec
, nic
.tv_nsec
,
315 (long)sys
.tv_sec
, sys
.tv_nsec
,
316 (long)delta
.tv_sec
, delta
.tv_nsec
);
323 * igb_desc_unused - calculate if we have unused descriptors
325 static int igb_desc_unused(struct igb_ring
*ring
)
327 if (ring
->next_to_clean
> ring
->next_to_use
)
328 return ring
->next_to_clean
- ring
->next_to_use
- 1;
330 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
334 * igb_init_module - Driver Registration Routine
336 * igb_init_module is the first routine called when the driver is
337 * loaded. All it does is register with the PCI subsystem.
339 static int __init
igb_init_module(void)
342 printk(KERN_INFO
"%s - version %s\n",
343 igb_driver_string
, igb_driver_version
);
345 printk(KERN_INFO
"%s\n", igb_copyright
);
347 global_quad_port_a
= 0;
349 #ifdef CONFIG_IGB_DCA
350 dca_register_notify(&dca_notifier
);
353 ret
= pci_register_driver(&igb_driver
);
357 module_init(igb_init_module
);
360 * igb_exit_module - Driver Exit Cleanup Routine
362 * igb_exit_module is called just before the driver is removed
365 static void __exit
igb_exit_module(void)
367 #ifdef CONFIG_IGB_DCA
368 dca_unregister_notify(&dca_notifier
);
370 pci_unregister_driver(&igb_driver
);
373 module_exit(igb_exit_module
);
375 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
377 * igb_cache_ring_register - Descriptor ring to register mapping
378 * @adapter: board private structure to initialize
380 * Once we know the feature-set enabled for the device, we'll cache
381 * the register offset the descriptor ring is assigned to.
383 static void igb_cache_ring_register(struct igb_adapter
*adapter
)
386 unsigned int rbase_offset
= adapter
->vfs_allocated_count
;
388 switch (adapter
->hw
.mac
.type
) {
390 /* The queues are allocated for virtualization such that VF 0
391 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
392 * In order to avoid collision we start at the first free queue
393 * and continue consuming queues in the same sequence
395 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
396 adapter
->rx_ring
[i
].reg_idx
= rbase_offset
+
398 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
399 adapter
->tx_ring
[i
].reg_idx
= rbase_offset
+
404 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
405 adapter
->rx_ring
[i
].reg_idx
= i
;
406 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
407 adapter
->tx_ring
[i
].reg_idx
= i
;
413 * igb_alloc_queues - Allocate memory for all rings
414 * @adapter: board private structure to initialize
416 * We allocate one ring per queue at run-time since we don't know the
417 * number of queues at compile-time.
419 static int igb_alloc_queues(struct igb_adapter
*adapter
)
423 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
424 sizeof(struct igb_ring
), GFP_KERNEL
);
425 if (!adapter
->tx_ring
)
428 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
429 sizeof(struct igb_ring
), GFP_KERNEL
);
430 if (!adapter
->rx_ring
) {
431 kfree(adapter
->tx_ring
);
435 adapter
->rx_ring
->buddy
= adapter
->tx_ring
;
437 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
438 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
439 ring
->count
= adapter
->tx_ring_count
;
440 ring
->adapter
= adapter
;
441 ring
->queue_index
= i
;
443 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
444 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
445 ring
->count
= adapter
->rx_ring_count
;
446 ring
->adapter
= adapter
;
447 ring
->queue_index
= i
;
448 ring
->itr_register
= E1000_ITR
;
450 /* set a default napi handler for each rx_ring */
451 netif_napi_add(adapter
->netdev
, &ring
->napi
, igb_poll
, 64);
454 igb_cache_ring_register(adapter
);
458 static void igb_free_queues(struct igb_adapter
*adapter
)
462 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
463 netif_napi_del(&adapter
->rx_ring
[i
].napi
);
465 adapter
->num_rx_queues
= 0;
466 adapter
->num_tx_queues
= 0;
468 kfree(adapter
->tx_ring
);
469 kfree(adapter
->rx_ring
);
472 #define IGB_N0_QUEUE -1
473 static void igb_assign_vector(struct igb_adapter
*adapter
, int rx_queue
,
474 int tx_queue
, int msix_vector
)
477 struct e1000_hw
*hw
= &adapter
->hw
;
480 switch (hw
->mac
.type
) {
482 /* The 82575 assigns vectors using a bitmask, which matches the
483 bitmask for the EICR/EIMS/EIMC registers. To assign one
484 or more queues to a vector, we write the appropriate bits
485 into the MSIXBM register for that vector. */
486 if (rx_queue
> IGB_N0_QUEUE
) {
487 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
488 adapter
->rx_ring
[rx_queue
].eims_value
= msixbm
;
490 if (tx_queue
> IGB_N0_QUEUE
) {
491 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
492 adapter
->tx_ring
[tx_queue
].eims_value
=
493 E1000_EICR_TX_QUEUE0
<< tx_queue
;
495 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
498 /* 82576 uses a table-based method for assigning vectors.
499 Each queue has a single entry in the table to which we write
500 a vector number along with a "valid" bit. Sadly, the layout
501 of the table is somewhat counterintuitive. */
502 if (rx_queue
> IGB_N0_QUEUE
) {
503 index
= (rx_queue
>> 1) + adapter
->vfs_allocated_count
;
504 ivar
= array_rd32(E1000_IVAR0
, index
);
505 if (rx_queue
& 0x1) {
506 /* vector goes into third byte of register */
507 ivar
= ivar
& 0xFF00FFFF;
508 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
510 /* vector goes into low byte of register */
511 ivar
= ivar
& 0xFFFFFF00;
512 ivar
|= msix_vector
| E1000_IVAR_VALID
;
514 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
515 array_wr32(E1000_IVAR0
, index
, ivar
);
517 if (tx_queue
> IGB_N0_QUEUE
) {
518 index
= (tx_queue
>> 1) + adapter
->vfs_allocated_count
;
519 ivar
= array_rd32(E1000_IVAR0
, index
);
520 if (tx_queue
& 0x1) {
521 /* vector goes into high byte of register */
522 ivar
= ivar
& 0x00FFFFFF;
523 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
525 /* vector goes into second byte of register */
526 ivar
= ivar
& 0xFFFF00FF;
527 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
529 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
530 array_wr32(E1000_IVAR0
, index
, ivar
);
540 * igb_configure_msix - Configure MSI-X hardware
542 * igb_configure_msix sets up the hardware to properly
543 * generate MSI-X interrupts.
545 static void igb_configure_msix(struct igb_adapter
*adapter
)
549 struct e1000_hw
*hw
= &adapter
->hw
;
551 adapter
->eims_enable_mask
= 0;
552 if (hw
->mac
.type
== e1000_82576
)
553 /* Turn on MSI-X capability first, or our settings
554 * won't stick. And it will take days to debug. */
555 wr32(E1000_GPIE
, E1000_GPIE_MSIX_MODE
|
556 E1000_GPIE_PBA
| E1000_GPIE_EIAME
|
559 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
560 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
561 igb_assign_vector(adapter
, IGB_N0_QUEUE
, i
, vector
++);
562 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
563 if (tx_ring
->itr_val
)
564 writel(tx_ring
->itr_val
,
565 hw
->hw_addr
+ tx_ring
->itr_register
);
567 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
570 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
571 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
572 rx_ring
->buddy
= NULL
;
573 igb_assign_vector(adapter
, i
, IGB_N0_QUEUE
, vector
++);
574 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
575 if (rx_ring
->itr_val
)
576 writel(rx_ring
->itr_val
,
577 hw
->hw_addr
+ rx_ring
->itr_register
);
579 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
583 /* set vector for other causes, i.e. link changes */
584 switch (hw
->mac
.type
) {
586 array_wr32(E1000_MSIXBM(0), vector
++,
589 tmp
= rd32(E1000_CTRL_EXT
);
590 /* enable MSI-X PBA support*/
591 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
593 /* Auto-Mask interrupts upon ICR read. */
594 tmp
|= E1000_CTRL_EXT_EIAME
;
595 tmp
|= E1000_CTRL_EXT_IRCA
;
597 wr32(E1000_CTRL_EXT
, tmp
);
598 adapter
->eims_enable_mask
|= E1000_EIMS_OTHER
;
599 adapter
->eims_other
= E1000_EIMS_OTHER
;
604 tmp
= (vector
++ | E1000_IVAR_VALID
) << 8;
605 wr32(E1000_IVAR_MISC
, tmp
);
607 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
608 adapter
->eims_other
= 1 << (vector
- 1);
611 /* do nothing, since nothing else supports MSI-X */
613 } /* switch (hw->mac.type) */
618 * igb_request_msix - Initialize MSI-X interrupts
620 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
623 static int igb_request_msix(struct igb_adapter
*adapter
)
625 struct net_device
*netdev
= adapter
->netdev
;
626 int i
, err
= 0, vector
= 0;
630 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
631 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
632 sprintf(ring
->name
, "%s-tx-%d", netdev
->name
, i
);
633 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
634 &igb_msix_tx
, 0, ring
->name
,
635 &(adapter
->tx_ring
[i
]));
638 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
639 ring
->itr_val
= 976; /* ~4000 ints/sec */
642 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
643 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
644 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
645 sprintf(ring
->name
, "%s-rx-%d", netdev
->name
, i
);
647 memcpy(ring
->name
, netdev
->name
, IFNAMSIZ
);
648 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
649 &igb_msix_rx
, 0, ring
->name
,
650 &(adapter
->rx_ring
[i
]));
653 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
654 ring
->itr_val
= adapter
->itr
;
658 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
659 &igb_msix_other
, 0, netdev
->name
, netdev
);
663 igb_configure_msix(adapter
);
669 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
671 if (adapter
->msix_entries
) {
672 pci_disable_msix(adapter
->pdev
);
673 kfree(adapter
->msix_entries
);
674 adapter
->msix_entries
= NULL
;
675 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
)
676 pci_disable_msi(adapter
->pdev
);
682 * igb_set_interrupt_capability - set MSI or MSI-X if supported
684 * Attempt to configure interrupts using the best available
685 * capabilities of the hardware and kernel.
687 static void igb_set_interrupt_capability(struct igb_adapter
*adapter
)
692 /* Number of supported queues. */
693 /* Having more queues than CPUs doesn't make sense. */
694 adapter
->num_rx_queues
= min_t(u32
, IGB_MAX_RX_QUEUES
, num_online_cpus());
695 adapter
->num_tx_queues
= min_t(u32
, IGB_MAX_TX_QUEUES
, num_online_cpus());
697 numvecs
= adapter
->num_tx_queues
+ adapter
->num_rx_queues
+ 1;
698 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
700 if (!adapter
->msix_entries
)
703 for (i
= 0; i
< numvecs
; i
++)
704 adapter
->msix_entries
[i
].entry
= i
;
706 err
= pci_enable_msix(adapter
->pdev
,
707 adapter
->msix_entries
,
712 igb_reset_interrupt_capability(adapter
);
714 /* If we can't do MSI-X, try MSI */
716 #ifdef CONFIG_PCI_IOV
717 /* disable SR-IOV for non MSI-X configurations */
718 if (adapter
->vf_data
) {
719 struct e1000_hw
*hw
= &adapter
->hw
;
720 /* disable iov and allow time for transactions to clear */
721 pci_disable_sriov(adapter
->pdev
);
724 kfree(adapter
->vf_data
);
725 adapter
->vf_data
= NULL
;
726 wr32(E1000_IOVCTL
, E1000_IOVCTL_REUSE_VFQ
);
728 dev_info(&adapter
->pdev
->dev
, "IOV Disabled\n");
731 adapter
->num_rx_queues
= 1;
732 adapter
->num_tx_queues
= 1;
733 if (!pci_enable_msi(adapter
->pdev
))
734 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
736 /* Notify the stack of the (possibly) reduced Tx Queue count. */
737 adapter
->netdev
->real_num_tx_queues
= adapter
->num_tx_queues
;
742 * igb_request_irq - initialize interrupts
744 * Attempts to configure interrupts using the best available
745 * capabilities of the hardware and kernel.
747 static int igb_request_irq(struct igb_adapter
*adapter
)
749 struct net_device
*netdev
= adapter
->netdev
;
750 struct e1000_hw
*hw
= &adapter
->hw
;
753 if (adapter
->msix_entries
) {
754 err
= igb_request_msix(adapter
);
757 /* fall back to MSI */
758 igb_reset_interrupt_capability(adapter
);
759 if (!pci_enable_msi(adapter
->pdev
))
760 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
761 igb_free_all_tx_resources(adapter
);
762 igb_free_all_rx_resources(adapter
);
763 adapter
->num_rx_queues
= 1;
764 igb_alloc_queues(adapter
);
766 switch (hw
->mac
.type
) {
768 wr32(E1000_MSIXBM(0),
769 (E1000_EICR_RX_QUEUE0
| E1000_EIMS_OTHER
));
772 wr32(E1000_IVAR0
, E1000_IVAR_VALID
);
779 if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
780 err
= request_irq(adapter
->pdev
->irq
, &igb_intr_msi
, 0,
781 netdev
->name
, netdev
);
784 /* fall back to legacy interrupts */
785 igb_reset_interrupt_capability(adapter
);
786 adapter
->flags
&= ~IGB_FLAG_HAS_MSI
;
789 err
= request_irq(adapter
->pdev
->irq
, &igb_intr
, IRQF_SHARED
,
790 netdev
->name
, netdev
);
793 dev_err(&adapter
->pdev
->dev
, "Error %d getting interrupt\n",
800 static void igb_free_irq(struct igb_adapter
*adapter
)
802 struct net_device
*netdev
= adapter
->netdev
;
804 if (adapter
->msix_entries
) {
807 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
808 free_irq(adapter
->msix_entries
[vector
++].vector
,
809 &(adapter
->tx_ring
[i
]));
810 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
811 free_irq(adapter
->msix_entries
[vector
++].vector
,
812 &(adapter
->rx_ring
[i
]));
814 free_irq(adapter
->msix_entries
[vector
++].vector
, netdev
);
818 free_irq(adapter
->pdev
->irq
, netdev
);
822 * igb_irq_disable - Mask off interrupt generation on the NIC
823 * @adapter: board private structure
825 static void igb_irq_disable(struct igb_adapter
*adapter
)
827 struct e1000_hw
*hw
= &adapter
->hw
;
829 if (adapter
->msix_entries
) {
830 u32 regval
= rd32(E1000_EIAM
);
831 wr32(E1000_EIAM
, regval
& ~adapter
->eims_enable_mask
);
832 wr32(E1000_EIMC
, adapter
->eims_enable_mask
);
833 regval
= rd32(E1000_EIAC
);
834 wr32(E1000_EIAC
, regval
& ~adapter
->eims_enable_mask
);
840 synchronize_irq(adapter
->pdev
->irq
);
844 * igb_irq_enable - Enable default interrupt generation settings
845 * @adapter: board private structure
847 static void igb_irq_enable(struct igb_adapter
*adapter
)
849 struct e1000_hw
*hw
= &adapter
->hw
;
851 if (adapter
->msix_entries
) {
852 u32 regval
= rd32(E1000_EIAC
);
853 wr32(E1000_EIAC
, regval
| adapter
->eims_enable_mask
);
854 regval
= rd32(E1000_EIAM
);
855 wr32(E1000_EIAM
, regval
| adapter
->eims_enable_mask
);
856 wr32(E1000_EIMS
, adapter
->eims_enable_mask
);
857 if (adapter
->vfs_allocated_count
)
858 wr32(E1000_MBVFIMR
, 0xFF);
859 wr32(E1000_IMS
, (E1000_IMS_LSC
| E1000_IMS_VMMB
|
860 E1000_IMS_DOUTSYNC
));
862 wr32(E1000_IMS
, IMS_ENABLE_MASK
);
863 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
867 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
869 struct net_device
*netdev
= adapter
->netdev
;
870 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
871 u16 old_vid
= adapter
->mng_vlan_id
;
872 if (adapter
->vlgrp
) {
873 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
874 if (adapter
->hw
.mng_cookie
.status
&
875 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
876 igb_vlan_rx_add_vid(netdev
, vid
);
877 adapter
->mng_vlan_id
= vid
;
879 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
881 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
883 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
884 igb_vlan_rx_kill_vid(netdev
, old_vid
);
886 adapter
->mng_vlan_id
= vid
;
891 * igb_release_hw_control - release control of the h/w to f/w
892 * @adapter: address of board private structure
894 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
895 * For ASF and Pass Through versions of f/w this means that the
896 * driver is no longer loaded.
899 static void igb_release_hw_control(struct igb_adapter
*adapter
)
901 struct e1000_hw
*hw
= &adapter
->hw
;
904 /* Let firmware take over control of h/w */
905 ctrl_ext
= rd32(E1000_CTRL_EXT
);
907 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
912 * igb_get_hw_control - get control of the h/w from f/w
913 * @adapter: address of board private structure
915 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
916 * For ASF and Pass Through versions of f/w this means that
917 * the driver is loaded.
920 static void igb_get_hw_control(struct igb_adapter
*adapter
)
922 struct e1000_hw
*hw
= &adapter
->hw
;
925 /* Let firmware know the driver has taken over */
926 ctrl_ext
= rd32(E1000_CTRL_EXT
);
928 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
932 * igb_configure - configure the hardware for RX and TX
933 * @adapter: private board structure
935 static void igb_configure(struct igb_adapter
*adapter
)
937 struct net_device
*netdev
= adapter
->netdev
;
940 igb_get_hw_control(adapter
);
941 igb_set_rx_mode(netdev
);
943 igb_restore_vlan(adapter
);
945 igb_configure_tx(adapter
);
946 igb_setup_rctl(adapter
);
947 igb_configure_rx(adapter
);
949 igb_rx_fifo_flush_82575(&adapter
->hw
);
951 /* call igb_desc_unused which always leaves
952 * at least 1 descriptor unused to make sure
953 * next_to_use != next_to_clean */
954 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
955 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
956 igb_alloc_rx_buffers_adv(ring
, igb_desc_unused(ring
));
960 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
965 * igb_up - Open the interface and prepare it to handle traffic
966 * @adapter: board private structure
969 int igb_up(struct igb_adapter
*adapter
)
971 struct e1000_hw
*hw
= &adapter
->hw
;
974 /* hardware has been reset, we need to reload some things */
975 igb_configure(adapter
);
977 clear_bit(__IGB_DOWN
, &adapter
->state
);
979 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
980 napi_enable(&adapter
->rx_ring
[i
].napi
);
981 if (adapter
->msix_entries
)
982 igb_configure_msix(adapter
);
984 igb_vmm_control(adapter
);
985 igb_set_rah_pool(hw
, adapter
->vfs_allocated_count
, 0);
986 igb_set_vmolr(hw
, adapter
->vfs_allocated_count
);
988 /* Clear any pending interrupts. */
990 igb_irq_enable(adapter
);
992 netif_tx_start_all_queues(adapter
->netdev
);
994 /* Fire a link change interrupt to start the watchdog. */
995 wr32(E1000_ICS
, E1000_ICS_LSC
);
999 void igb_down(struct igb_adapter
*adapter
)
1001 struct e1000_hw
*hw
= &adapter
->hw
;
1002 struct net_device
*netdev
= adapter
->netdev
;
1006 /* signal that we're down so the interrupt handler does not
1007 * reschedule our watchdog timer */
1008 set_bit(__IGB_DOWN
, &adapter
->state
);
1010 /* disable receives in the hardware */
1011 rctl
= rd32(E1000_RCTL
);
1012 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1013 /* flush and sleep below */
1015 netif_tx_stop_all_queues(netdev
);
1017 /* disable transmits in the hardware */
1018 tctl
= rd32(E1000_TCTL
);
1019 tctl
&= ~E1000_TCTL_EN
;
1020 wr32(E1000_TCTL
, tctl
);
1021 /* flush both disables and wait for them to finish */
1025 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1026 napi_disable(&adapter
->rx_ring
[i
].napi
);
1028 igb_irq_disable(adapter
);
1030 del_timer_sync(&adapter
->watchdog_timer
);
1031 del_timer_sync(&adapter
->phy_info_timer
);
1033 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
1034 netif_carrier_off(netdev
);
1036 /* record the stats before reset*/
1037 igb_update_stats(adapter
);
1039 adapter
->link_speed
= 0;
1040 adapter
->link_duplex
= 0;
1042 if (!pci_channel_offline(adapter
->pdev
))
1044 igb_clean_all_tx_rings(adapter
);
1045 igb_clean_all_rx_rings(adapter
);
1046 #ifdef CONFIG_IGB_DCA
1048 /* since we reset the hardware DCA settings were cleared */
1049 igb_setup_dca(adapter
);
1053 void igb_reinit_locked(struct igb_adapter
*adapter
)
1055 WARN_ON(in_interrupt());
1056 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
1060 clear_bit(__IGB_RESETTING
, &adapter
->state
);
1063 void igb_reset(struct igb_adapter
*adapter
)
1065 struct e1000_hw
*hw
= &adapter
->hw
;
1066 struct e1000_mac_info
*mac
= &hw
->mac
;
1067 struct e1000_fc_info
*fc
= &hw
->fc
;
1068 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
1071 /* Repartition Pba for greater than 9k mtu
1072 * To take effect CTRL.RST is required.
1074 switch (mac
->type
) {
1076 pba
= E1000_PBA_64K
;
1080 pba
= E1000_PBA_34K
;
1084 if ((adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
1085 (mac
->type
< e1000_82576
)) {
1086 /* adjust PBA for jumbo frames */
1087 wr32(E1000_PBA
, pba
);
1089 /* To maintain wire speed transmits, the Tx FIFO should be
1090 * large enough to accommodate two full transmit packets,
1091 * rounded up to the next 1KB and expressed in KB. Likewise,
1092 * the Rx FIFO should be large enough to accommodate at least
1093 * one full receive packet and is similarly rounded up and
1094 * expressed in KB. */
1095 pba
= rd32(E1000_PBA
);
1096 /* upper 16 bits has Tx packet buffer allocation size in KB */
1097 tx_space
= pba
>> 16;
1098 /* lower 16 bits has Rx packet buffer allocation size in KB */
1100 /* the tx fifo also stores 16 bytes of information about the tx
1101 * but don't include ethernet FCS because hardware appends it */
1102 min_tx_space
= (adapter
->max_frame_size
+
1103 sizeof(union e1000_adv_tx_desc
) -
1105 min_tx_space
= ALIGN(min_tx_space
, 1024);
1106 min_tx_space
>>= 10;
1107 /* software strips receive CRC, so leave room for it */
1108 min_rx_space
= adapter
->max_frame_size
;
1109 min_rx_space
= ALIGN(min_rx_space
, 1024);
1110 min_rx_space
>>= 10;
1112 /* If current Tx allocation is less than the min Tx FIFO size,
1113 * and the min Tx FIFO size is less than the current Rx FIFO
1114 * allocation, take space away from current Rx allocation */
1115 if (tx_space
< min_tx_space
&&
1116 ((min_tx_space
- tx_space
) < pba
)) {
1117 pba
= pba
- (min_tx_space
- tx_space
);
1119 /* if short on rx space, rx wins and must trump tx
1121 if (pba
< min_rx_space
)
1124 wr32(E1000_PBA
, pba
);
1127 /* flow control settings */
1128 /* The high water mark must be low enough to fit one full frame
1129 * (or the size used for early receive) above it in the Rx FIFO.
1130 * Set it to the lower of:
1131 * - 90% of the Rx FIFO size, or
1132 * - the full Rx FIFO size minus one full frame */
1133 hwm
= min(((pba
<< 10) * 9 / 10),
1134 ((pba
<< 10) - 2 * adapter
->max_frame_size
));
1136 if (mac
->type
< e1000_82576
) {
1137 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
1138 fc
->low_water
= fc
->high_water
- 8;
1140 fc
->high_water
= hwm
& 0xFFF0; /* 16-byte granularity */
1141 fc
->low_water
= fc
->high_water
- 16;
1143 fc
->pause_time
= 0xFFFF;
1145 fc
->current_mode
= fc
->requested_mode
;
1147 /* disable receive for all VFs and wait one second */
1148 if (adapter
->vfs_allocated_count
) {
1150 for (i
= 0 ; i
< adapter
->vfs_allocated_count
; i
++)
1151 adapter
->vf_data
[i
].clear_to_send
= false;
1153 /* ping all the active vfs to let them know we are going down */
1154 igb_ping_all_vfs(adapter
);
1156 /* disable transmits and receives */
1157 wr32(E1000_VFRE
, 0);
1158 wr32(E1000_VFTE
, 0);
1161 /* Allow time for pending master requests to run */
1162 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
1165 if (adapter
->hw
.mac
.ops
.init_hw(&adapter
->hw
))
1166 dev_err(&adapter
->pdev
->dev
, "Hardware Error\n");
1168 igb_update_mng_vlan(adapter
);
1170 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1171 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
1173 igb_reset_adaptive(&adapter
->hw
);
1174 igb_get_phy_info(&adapter
->hw
);
1177 static const struct net_device_ops igb_netdev_ops
= {
1178 .ndo_open
= igb_open
,
1179 .ndo_stop
= igb_close
,
1180 .ndo_start_xmit
= igb_xmit_frame_adv
,
1181 .ndo_get_stats
= igb_get_stats
,
1182 .ndo_set_rx_mode
= igb_set_rx_mode
,
1183 .ndo_set_multicast_list
= igb_set_rx_mode
,
1184 .ndo_set_mac_address
= igb_set_mac
,
1185 .ndo_change_mtu
= igb_change_mtu
,
1186 .ndo_do_ioctl
= igb_ioctl
,
1187 .ndo_tx_timeout
= igb_tx_timeout
,
1188 .ndo_validate_addr
= eth_validate_addr
,
1189 .ndo_vlan_rx_register
= igb_vlan_rx_register
,
1190 .ndo_vlan_rx_add_vid
= igb_vlan_rx_add_vid
,
1191 .ndo_vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
,
1192 #ifdef CONFIG_NET_POLL_CONTROLLER
1193 .ndo_poll_controller
= igb_netpoll
,
1198 * igb_probe - Device Initialization Routine
1199 * @pdev: PCI device information struct
1200 * @ent: entry in igb_pci_tbl
1202 * Returns 0 on success, negative on failure
1204 * igb_probe initializes an adapter identified by a pci_dev structure.
1205 * The OS initialization, configuring of the adapter private structure,
1206 * and a hardware reset occur.
1208 static int __devinit
igb_probe(struct pci_dev
*pdev
,
1209 const struct pci_device_id
*ent
)
1211 struct net_device
*netdev
;
1212 struct igb_adapter
*adapter
;
1213 struct e1000_hw
*hw
;
1214 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
1215 unsigned long mmio_start
, mmio_len
;
1216 int err
, pci_using_dac
;
1217 u16 eeprom_data
= 0;
1218 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
1221 err
= pci_enable_device_mem(pdev
);
1226 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
1228 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
1232 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
1234 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
1236 dev_err(&pdev
->dev
, "No usable DMA "
1237 "configuration, aborting\n");
1243 err
= pci_request_selected_regions(pdev
, pci_select_bars(pdev
,
1249 err
= pci_enable_pcie_error_reporting(pdev
);
1251 dev_err(&pdev
->dev
, "pci_enable_pcie_error_reporting failed "
1253 /* non-fatal, continue */
1256 pci_set_master(pdev
);
1257 pci_save_state(pdev
);
1260 netdev
= alloc_etherdev_mq(sizeof(struct igb_adapter
),
1261 IGB_ABS_MAX_TX_QUEUES
);
1263 goto err_alloc_etherdev
;
1265 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
1267 pci_set_drvdata(pdev
, netdev
);
1268 adapter
= netdev_priv(netdev
);
1269 adapter
->netdev
= netdev
;
1270 adapter
->pdev
= pdev
;
1273 adapter
->msg_enable
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
1275 mmio_start
= pci_resource_start(pdev
, 0);
1276 mmio_len
= pci_resource_len(pdev
, 0);
1279 hw
->hw_addr
= ioremap(mmio_start
, mmio_len
);
1283 netdev
->netdev_ops
= &igb_netdev_ops
;
1284 igb_set_ethtool_ops(netdev
);
1285 netdev
->watchdog_timeo
= 5 * HZ
;
1287 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1289 netdev
->mem_start
= mmio_start
;
1290 netdev
->mem_end
= mmio_start
+ mmio_len
;
1292 /* PCI config space info */
1293 hw
->vendor_id
= pdev
->vendor
;
1294 hw
->device_id
= pdev
->device
;
1295 hw
->revision_id
= pdev
->revision
;
1296 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1297 hw
->subsystem_device_id
= pdev
->subsystem_device
;
1299 /* setup the private structure */
1301 /* Copy the default MAC, PHY and NVM function pointers */
1302 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
1303 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
1304 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
1305 /* Initialize skew-specific constants */
1306 err
= ei
->get_invariants(hw
);
1310 #ifdef CONFIG_PCI_IOV
1311 /* since iov functionality isn't critical to base device function we
1312 * can accept failure. If it fails we don't allow iov to be enabled */
1313 if (hw
->mac
.type
== e1000_82576
) {
1314 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1315 unsigned int num_vfs
= (max_vfs
> 7) ? 7 : max_vfs
;
1317 unsigned char mac_addr
[ETH_ALEN
];
1320 adapter
->vf_data
= kcalloc(num_vfs
,
1321 sizeof(struct vf_data_storage
),
1323 if (!adapter
->vf_data
) {
1325 "Could not allocate VF private data - "
1326 "IOV enable failed\n");
1328 err
= pci_enable_sriov(pdev
, num_vfs
);
1330 adapter
->vfs_allocated_count
= num_vfs
;
1331 dev_info(&pdev
->dev
,
1332 "%d vfs allocated\n",
1335 i
< adapter
->vfs_allocated_count
;
1337 random_ether_addr(mac_addr
);
1338 igb_set_vf_mac(adapter
, i
,
1342 kfree(adapter
->vf_data
);
1343 adapter
->vf_data
= NULL
;
1350 /* setup the private structure */
1351 err
= igb_sw_init(adapter
);
1355 igb_get_bus_info_pcie(hw
);
1358 switch (hw
->mac
.type
) {
1360 adapter
->flags
|= IGB_FLAG_NEED_CTX_IDX
;
1367 hw
->phy
.autoneg_wait_to_complete
= false;
1368 hw
->mac
.adaptive_ifs
= true;
1370 /* Copper options */
1371 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1372 hw
->phy
.mdix
= AUTO_ALL_MODES
;
1373 hw
->phy
.disable_polarity_correction
= false;
1374 hw
->phy
.ms_type
= e1000_ms_hw_default
;
1377 if (igb_check_reset_block(hw
))
1378 dev_info(&pdev
->dev
,
1379 "PHY reset is blocked due to SOL/IDER session.\n");
1381 netdev
->features
= NETIF_F_SG
|
1383 NETIF_F_HW_VLAN_TX
|
1384 NETIF_F_HW_VLAN_RX
|
1385 NETIF_F_HW_VLAN_FILTER
;
1387 netdev
->features
|= NETIF_F_IPV6_CSUM
;
1388 netdev
->features
|= NETIF_F_TSO
;
1389 netdev
->features
|= NETIF_F_TSO6
;
1391 netdev
->features
|= NETIF_F_GRO
;
1393 netdev
->vlan_features
|= NETIF_F_TSO
;
1394 netdev
->vlan_features
|= NETIF_F_TSO6
;
1395 netdev
->vlan_features
|= NETIF_F_IP_CSUM
;
1396 netdev
->vlan_features
|= NETIF_F_IPV6_CSUM
;
1397 netdev
->vlan_features
|= NETIF_F_SG
;
1400 netdev
->features
|= NETIF_F_HIGHDMA
;
1402 if (adapter
->hw
.mac
.type
== e1000_82576
)
1403 netdev
->features
|= NETIF_F_SCTP_CSUM
;
1405 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(&adapter
->hw
);
1407 /* before reading the NVM, reset the controller to put the device in a
1408 * known good starting state */
1409 hw
->mac
.ops
.reset_hw(hw
);
1411 /* make sure the NVM is good */
1412 if (igb_validate_nvm_checksum(hw
) < 0) {
1413 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
1418 /* copy the MAC address out of the NVM */
1419 if (hw
->mac
.ops
.read_mac_addr(hw
))
1420 dev_err(&pdev
->dev
, "NVM Read Error\n");
1422 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1423 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1425 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1426 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
1431 setup_timer(&adapter
->watchdog_timer
, &igb_watchdog
,
1432 (unsigned long) adapter
);
1433 setup_timer(&adapter
->phy_info_timer
, &igb_update_phy_info
,
1434 (unsigned long) adapter
);
1436 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
1437 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
1439 /* Initialize link properties that are user-changeable */
1440 adapter
->fc_autoneg
= true;
1441 hw
->mac
.autoneg
= true;
1442 hw
->phy
.autoneg_advertised
= 0x2f;
1444 hw
->fc
.requested_mode
= e1000_fc_default
;
1445 hw
->fc
.current_mode
= e1000_fc_default
;
1447 adapter
->itr_setting
= IGB_DEFAULT_ITR
;
1448 adapter
->itr
= IGB_START_ITR
;
1450 igb_validate_mdi_setting(hw
);
1452 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1453 * enable the ACPI Magic Packet filter
1456 if (hw
->bus
.func
== 0)
1457 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1458 else if (hw
->bus
.func
== 1)
1459 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1461 if (eeprom_data
& eeprom_apme_mask
)
1462 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1464 /* now that we have the eeprom settings, apply the special cases where
1465 * the eeprom may be wrong or the board simply won't support wake on
1466 * lan on a particular port */
1467 switch (pdev
->device
) {
1468 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1469 adapter
->eeprom_wol
= 0;
1471 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1472 case E1000_DEV_ID_82576_FIBER
:
1473 case E1000_DEV_ID_82576_SERDES
:
1474 /* Wake events only supported on port A for dual fiber
1475 * regardless of eeprom setting */
1476 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
1477 adapter
->eeprom_wol
= 0;
1479 case E1000_DEV_ID_82576_QUAD_COPPER
:
1480 /* if quad port adapter, disable WoL on all but port A */
1481 if (global_quad_port_a
!= 0)
1482 adapter
->eeprom_wol
= 0;
1484 adapter
->flags
|= IGB_FLAG_QUAD_PORT_A
;
1485 /* Reset for multiple quad port adapters */
1486 if (++global_quad_port_a
== 4)
1487 global_quad_port_a
= 0;
1491 /* initialize the wol settings based on the eeprom settings */
1492 adapter
->wol
= adapter
->eeprom_wol
;
1493 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1495 /* reset the hardware with the new settings */
1498 /* let the f/w know that the h/w is now under the control of the
1500 igb_get_hw_control(adapter
);
1502 strcpy(netdev
->name
, "eth%d");
1503 err
= register_netdev(netdev
);
1507 /* carrier off reporting is important to ethtool even BEFORE open */
1508 netif_carrier_off(netdev
);
1510 #ifdef CONFIG_IGB_DCA
1511 if (dca_add_requester(&pdev
->dev
) == 0) {
1512 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
1513 dev_info(&pdev
->dev
, "DCA enabled\n");
1514 igb_setup_dca(adapter
);
1519 * Initialize hardware timer: we keep it running just in case
1520 * that some program needs it later on.
1522 memset(&adapter
->cycles
, 0, sizeof(adapter
->cycles
));
1523 adapter
->cycles
.read
= igb_read_clock
;
1524 adapter
->cycles
.mask
= CLOCKSOURCE_MASK(64);
1525 adapter
->cycles
.mult
= 1;
1526 adapter
->cycles
.shift
= IGB_TSYNC_SHIFT
;
1529 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS
* IGB_TSYNC_SCALE
);
1532 * Avoid rollover while we initialize by resetting the time counter.
1534 wr32(E1000_SYSTIML
, 0x00000000);
1535 wr32(E1000_SYSTIMH
, 0x00000000);
1538 * Set registers so that rollover occurs soon to test this.
1540 wr32(E1000_SYSTIML
, 0x00000000);
1541 wr32(E1000_SYSTIMH
, 0xFF800000);
1544 timecounter_init(&adapter
->clock
,
1546 ktime_to_ns(ktime_get_real()));
1549 * Synchronize our NIC clock against system wall clock. NIC
1550 * time stamp reading requires ~3us per sample, each sample
1551 * was pretty stable even under load => only require 10
1552 * samples for each offset comparison.
1554 memset(&adapter
->compare
, 0, sizeof(adapter
->compare
));
1555 adapter
->compare
.source
= &adapter
->clock
;
1556 adapter
->compare
.target
= ktime_get_real
;
1557 adapter
->compare
.num_samples
= 10;
1558 timecompare_update(&adapter
->compare
, 0);
1564 "igb: %s: hw %p initialized timer\n",
1565 igb_get_time_str(adapter
, buffer
),
1570 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
1571 /* print bus type/speed/width info */
1572 dev_info(&pdev
->dev
, "%s: (PCIe:%s:%s) %pM\n",
1574 ((hw
->bus
.speed
== e1000_bus_speed_2500
)
1575 ? "2.5Gb/s" : "unknown"),
1576 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
1577 (hw
->bus
.width
== e1000_bus_width_pcie_x2
) ? "Width x2" :
1578 (hw
->bus
.width
== e1000_bus_width_pcie_x1
) ? "Width x1" :
1582 igb_read_part_num(hw
, &part_num
);
1583 dev_info(&pdev
->dev
, "%s: PBA No: %06x-%03x\n", netdev
->name
,
1584 (part_num
>> 8), (part_num
& 0xff));
1586 dev_info(&pdev
->dev
,
1587 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1588 adapter
->msix_entries
? "MSI-X" :
1589 (adapter
->flags
& IGB_FLAG_HAS_MSI
) ? "MSI" : "legacy",
1590 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
1595 igb_release_hw_control(adapter
);
1597 if (!igb_check_reset_block(hw
))
1600 if (hw
->flash_address
)
1601 iounmap(hw
->flash_address
);
1603 igb_free_queues(adapter
);
1605 iounmap(hw
->hw_addr
);
1607 free_netdev(netdev
);
1609 pci_release_selected_regions(pdev
, pci_select_bars(pdev
,
1613 pci_disable_device(pdev
);
1618 * igb_remove - Device Removal Routine
1619 * @pdev: PCI device information struct
1621 * igb_remove is called by the PCI subsystem to alert the driver
1622 * that it should release a PCI device. The could be caused by a
1623 * Hot-Plug event, or because the driver is going to be removed from
1626 static void __devexit
igb_remove(struct pci_dev
*pdev
)
1628 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1629 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1630 struct e1000_hw
*hw
= &adapter
->hw
;
1633 /* flush_scheduled work may reschedule our watchdog task, so
1634 * explicitly disable watchdog tasks from being rescheduled */
1635 set_bit(__IGB_DOWN
, &adapter
->state
);
1636 del_timer_sync(&adapter
->watchdog_timer
);
1637 del_timer_sync(&adapter
->phy_info_timer
);
1639 flush_scheduled_work();
1641 #ifdef CONFIG_IGB_DCA
1642 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
1643 dev_info(&pdev
->dev
, "DCA disabled\n");
1644 dca_remove_requester(&pdev
->dev
);
1645 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
1646 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_DISABLE
);
1650 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1651 * would have already happened in close and is redundant. */
1652 igb_release_hw_control(adapter
);
1654 unregister_netdev(netdev
);
1656 if (!igb_check_reset_block(&adapter
->hw
))
1657 igb_reset_phy(&adapter
->hw
);
1659 igb_reset_interrupt_capability(adapter
);
1661 igb_free_queues(adapter
);
1663 #ifdef CONFIG_PCI_IOV
1664 /* reclaim resources allocated to VFs */
1665 if (adapter
->vf_data
) {
1666 /* disable iov and allow time for transactions to clear */
1667 pci_disable_sriov(pdev
);
1670 kfree(adapter
->vf_data
);
1671 adapter
->vf_data
= NULL
;
1672 wr32(E1000_IOVCTL
, E1000_IOVCTL_REUSE_VFQ
);
1674 dev_info(&pdev
->dev
, "IOV Disabled\n");
1677 iounmap(hw
->hw_addr
);
1678 if (hw
->flash_address
)
1679 iounmap(hw
->flash_address
);
1680 pci_release_selected_regions(pdev
, pci_select_bars(pdev
,
1683 free_netdev(netdev
);
1685 err
= pci_disable_pcie_error_reporting(pdev
);
1688 "pci_disable_pcie_error_reporting failed 0x%x\n", err
);
1690 pci_disable_device(pdev
);
1694 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1695 * @adapter: board private structure to initialize
1697 * igb_sw_init initializes the Adapter private data structure.
1698 * Fields are initialized based on PCI device information and
1699 * OS network device settings (MTU size).
1701 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
1703 struct e1000_hw
*hw
= &adapter
->hw
;
1704 struct net_device
*netdev
= adapter
->netdev
;
1705 struct pci_dev
*pdev
= adapter
->pdev
;
1707 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
1709 adapter
->tx_ring_count
= IGB_DEFAULT_TXD
;
1710 adapter
->rx_ring_count
= IGB_DEFAULT_RXD
;
1711 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1712 adapter
->rx_ps_hdr_size
= 0; /* disable packet split */
1713 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1714 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1716 /* This call may decrease the number of queues depending on
1717 * interrupt mode. */
1718 igb_set_interrupt_capability(adapter
);
1720 if (igb_alloc_queues(adapter
)) {
1721 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1725 /* Explicitly disable IRQ since the NIC can be in any state. */
1726 igb_irq_disable(adapter
);
1728 set_bit(__IGB_DOWN
, &adapter
->state
);
1733 * igb_open - Called when a network interface is made active
1734 * @netdev: network interface device structure
1736 * Returns 0 on success, negative value on failure
1738 * The open entry point is called when a network interface is made
1739 * active by the system (IFF_UP). At this point all resources needed
1740 * for transmit and receive operations are allocated, the interrupt
1741 * handler is registered with the OS, the watchdog timer is started,
1742 * and the stack is notified that the interface is ready.
1744 static int igb_open(struct net_device
*netdev
)
1746 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1747 struct e1000_hw
*hw
= &adapter
->hw
;
1751 /* disallow open during test */
1752 if (test_bit(__IGB_TESTING
, &adapter
->state
))
1755 netif_carrier_off(netdev
);
1757 /* allocate transmit descriptors */
1758 err
= igb_setup_all_tx_resources(adapter
);
1762 /* allocate receive descriptors */
1763 err
= igb_setup_all_rx_resources(adapter
);
1767 /* e1000_power_up_phy(adapter); */
1769 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1770 if ((adapter
->hw
.mng_cookie
.status
&
1771 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
1772 igb_update_mng_vlan(adapter
);
1774 /* before we allocate an interrupt, we must be ready to handle it.
1775 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1776 * as soon as we call pci_request_irq, so we have to setup our
1777 * clean_rx handler before we do so. */
1778 igb_configure(adapter
);
1780 igb_vmm_control(adapter
);
1781 igb_set_rah_pool(hw
, adapter
->vfs_allocated_count
, 0);
1782 igb_set_vmolr(hw
, adapter
->vfs_allocated_count
);
1784 err
= igb_request_irq(adapter
);
1788 /* From here on the code is the same as igb_up() */
1789 clear_bit(__IGB_DOWN
, &adapter
->state
);
1791 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1792 napi_enable(&adapter
->rx_ring
[i
].napi
);
1794 /* Clear any pending interrupts. */
1797 igb_irq_enable(adapter
);
1799 netif_tx_start_all_queues(netdev
);
1801 /* Fire a link status change interrupt to start the watchdog. */
1802 wr32(E1000_ICS
, E1000_ICS_LSC
);
1807 igb_release_hw_control(adapter
);
1808 /* e1000_power_down_phy(adapter); */
1809 igb_free_all_rx_resources(adapter
);
1811 igb_free_all_tx_resources(adapter
);
1819 * igb_close - Disables a network interface
1820 * @netdev: network interface device structure
1822 * Returns 0, this is not allowed to fail
1824 * The close entry point is called when an interface is de-activated
1825 * by the OS. The hardware is still under the driver's control, but
1826 * needs to be disabled. A global MAC reset is issued to stop the
1827 * hardware, and all transmit and receive resources are freed.
1829 static int igb_close(struct net_device
*netdev
)
1831 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1833 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
1836 igb_free_irq(adapter
);
1838 igb_free_all_tx_resources(adapter
);
1839 igb_free_all_rx_resources(adapter
);
1841 /* kill manageability vlan ID if supported, but not if a vlan with
1842 * the same ID is registered on the host OS (let 8021q kill it) */
1843 if ((adapter
->hw
.mng_cookie
.status
&
1844 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1846 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
1847 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1853 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1854 * @adapter: board private structure
1855 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1857 * Return 0 on success, negative on failure
1859 int igb_setup_tx_resources(struct igb_adapter
*adapter
,
1860 struct igb_ring
*tx_ring
)
1862 struct pci_dev
*pdev
= adapter
->pdev
;
1865 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1866 tx_ring
->buffer_info
= vmalloc(size
);
1867 if (!tx_ring
->buffer_info
)
1869 memset(tx_ring
->buffer_info
, 0, size
);
1871 /* round up to nearest 4K */
1872 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
1873 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1875 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
1881 tx_ring
->adapter
= adapter
;
1882 tx_ring
->next_to_use
= 0;
1883 tx_ring
->next_to_clean
= 0;
1887 vfree(tx_ring
->buffer_info
);
1888 dev_err(&adapter
->pdev
->dev
,
1889 "Unable to allocate memory for the transmit descriptor ring\n");
1894 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1895 * (Descriptors) for all queues
1896 * @adapter: board private structure
1898 * Return 0 on success, negative on failure
1900 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
1905 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1906 err
= igb_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1908 dev_err(&adapter
->pdev
->dev
,
1909 "Allocation for Tx Queue %u failed\n", i
);
1910 for (i
--; i
>= 0; i
--)
1911 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
1916 for (i
= 0; i
< IGB_MAX_TX_QUEUES
; i
++) {
1917 r_idx
= i
% adapter
->num_tx_queues
;
1918 adapter
->multi_tx_table
[i
] = &adapter
->tx_ring
[r_idx
];
1924 * igb_configure_tx - Configure transmit Unit after Reset
1925 * @adapter: board private structure
1927 * Configure the Tx unit of the MAC after a reset.
1929 static void igb_configure_tx(struct igb_adapter
*adapter
)
1932 struct e1000_hw
*hw
= &adapter
->hw
;
1937 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1938 struct igb_ring
*ring
= &adapter
->tx_ring
[i
];
1940 wr32(E1000_TDLEN(j
),
1941 ring
->count
* sizeof(union e1000_adv_tx_desc
));
1943 wr32(E1000_TDBAL(j
),
1944 tdba
& 0x00000000ffffffffULL
);
1945 wr32(E1000_TDBAH(j
), tdba
>> 32);
1947 ring
->head
= E1000_TDH(j
);
1948 ring
->tail
= E1000_TDT(j
);
1949 writel(0, hw
->hw_addr
+ ring
->tail
);
1950 writel(0, hw
->hw_addr
+ ring
->head
);
1951 txdctl
= rd32(E1000_TXDCTL(j
));
1952 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1953 wr32(E1000_TXDCTL(j
), txdctl
);
1955 /* Turn off Relaxed Ordering on head write-backs. The
1956 * writebacks MUST be delivered in order or it will
1957 * completely screw up our bookeeping.
1959 txctrl
= rd32(E1000_DCA_TXCTRL(j
));
1960 txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1961 wr32(E1000_DCA_TXCTRL(j
), txctrl
);
1964 /* disable queue 0 to prevent tail bump w/o re-configuration */
1965 if (adapter
->vfs_allocated_count
)
1966 wr32(E1000_TXDCTL(0), 0);
1968 /* Program the Transmit Control Register */
1969 tctl
= rd32(E1000_TCTL
);
1970 tctl
&= ~E1000_TCTL_CT
;
1971 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1972 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1974 igb_config_collision_dist(hw
);
1976 /* Setup Transmit Descriptor Settings for eop descriptor */
1977 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_RS
;
1979 /* Enable transmits */
1980 tctl
|= E1000_TCTL_EN
;
1982 wr32(E1000_TCTL
, tctl
);
1986 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1987 * @adapter: board private structure
1988 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1990 * Returns 0 on success, negative on failure
1992 int igb_setup_rx_resources(struct igb_adapter
*adapter
,
1993 struct igb_ring
*rx_ring
)
1995 struct pci_dev
*pdev
= adapter
->pdev
;
1998 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1999 rx_ring
->buffer_info
= vmalloc(size
);
2000 if (!rx_ring
->buffer_info
)
2002 memset(rx_ring
->buffer_info
, 0, size
);
2004 desc_len
= sizeof(union e1000_adv_rx_desc
);
2006 /* Round up to nearest 4K */
2007 rx_ring
->size
= rx_ring
->count
* desc_len
;
2008 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2010 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
2016 rx_ring
->next_to_clean
= 0;
2017 rx_ring
->next_to_use
= 0;
2019 rx_ring
->adapter
= adapter
;
2024 vfree(rx_ring
->buffer_info
);
2025 dev_err(&adapter
->pdev
->dev
, "Unable to allocate memory for "
2026 "the receive descriptor ring\n");
2031 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2032 * (Descriptors) for all queues
2033 * @adapter: board private structure
2035 * Return 0 on success, negative on failure
2037 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
2041 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2042 err
= igb_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2044 dev_err(&adapter
->pdev
->dev
,
2045 "Allocation for Rx Queue %u failed\n", i
);
2046 for (i
--; i
>= 0; i
--)
2047 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
2056 * igb_setup_rctl - configure the receive control registers
2057 * @adapter: Board private structure
2059 static void igb_setup_rctl(struct igb_adapter
*adapter
)
2061 struct e1000_hw
*hw
= &adapter
->hw
;
2066 rctl
= rd32(E1000_RCTL
);
2068 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2069 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
2071 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_RDMTS_HALF
|
2072 (hw
->mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2075 * enable stripping of CRC. It's unlikely this will break BMC
2076 * redirection as it did with e1000. Newer features require
2077 * that the HW strips the CRC.
2079 rctl
|= E1000_RCTL_SECRC
;
2082 * disable store bad packets and clear size bits.
2084 rctl
&= ~(E1000_RCTL_SBP
| E1000_RCTL_SZ_256
);
2086 /* enable LPE when to prevent packets larger than max_frame_size */
2087 rctl
|= E1000_RCTL_LPE
;
2089 /* Setup buffer sizes */
2090 switch (adapter
->rx_buffer_len
) {
2091 case IGB_RXBUFFER_256
:
2092 rctl
|= E1000_RCTL_SZ_256
;
2094 case IGB_RXBUFFER_512
:
2095 rctl
|= E1000_RCTL_SZ_512
;
2098 srrctl
= ALIGN(adapter
->rx_buffer_len
, 1024)
2099 >> E1000_SRRCTL_BSIZEPKT_SHIFT
;
2103 /* 82575 and greater support packet-split where the protocol
2104 * header is placed in skb->data and the packet data is
2105 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2106 * In the case of a non-split, skb->data is linearly filled,
2107 * followed by the page buffers. Therefore, skb->data is
2108 * sized to hold the largest protocol header.
2110 /* allocations using alloc_page take too long for regular MTU
2111 * so only enable packet split for jumbo frames */
2112 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
2113 adapter
->rx_ps_hdr_size
= IGB_RXBUFFER_128
;
2114 srrctl
|= adapter
->rx_ps_hdr_size
<<
2115 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
2116 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
2118 adapter
->rx_ps_hdr_size
= 0;
2119 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
2122 /* Attention!!! For SR-IOV PF driver operations you must enable
2123 * queue drop for all VF and PF queues to prevent head of line blocking
2124 * if an un-trusted VF does not provide descriptors to hardware.
2126 if (adapter
->vfs_allocated_count
) {
2129 /* set all queue drop enable bits */
2130 wr32(E1000_QDE
, ALL_QUEUES
);
2131 srrctl
|= E1000_SRRCTL_DROP_EN
;
2133 /* disable queue 0 to prevent tail write w/o re-config */
2134 wr32(E1000_RXDCTL(0), 0);
2136 vmolr
= rd32(E1000_VMOLR(adapter
->vfs_allocated_count
));
2137 if (rctl
& E1000_RCTL_LPE
)
2138 vmolr
|= E1000_VMOLR_LPE
;
2139 if (adapter
->num_rx_queues
> 1)
2140 vmolr
|= E1000_VMOLR_RSSE
;
2141 wr32(E1000_VMOLR(adapter
->vfs_allocated_count
), vmolr
);
2144 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2145 int j
= adapter
->rx_ring
[i
].reg_idx
;
2146 wr32(E1000_SRRCTL(j
), srrctl
);
2149 wr32(E1000_RCTL
, rctl
);
2153 * igb_rlpml_set - set maximum receive packet size
2154 * @adapter: board private structure
2156 * Configure maximum receivable packet size.
2158 static void igb_rlpml_set(struct igb_adapter
*adapter
)
2160 u32 max_frame_size
= adapter
->max_frame_size
;
2161 struct e1000_hw
*hw
= &adapter
->hw
;
2162 u16 pf_id
= adapter
->vfs_allocated_count
;
2165 max_frame_size
+= VLAN_TAG_SIZE
;
2167 /* if vfs are enabled we set RLPML to the largest possible request
2168 * size and set the VMOLR RLPML to the size we need */
2170 igb_set_vf_rlpml(adapter
, max_frame_size
, pf_id
);
2171 max_frame_size
= MAX_STD_JUMBO_FRAME_SIZE
+ VLAN_TAG_SIZE
;
2174 wr32(E1000_RLPML
, max_frame_size
);
2178 * igb_configure_vt_default_pool - Configure VT default pool
2179 * @adapter: board private structure
2181 * Configure the default pool
2183 static void igb_configure_vt_default_pool(struct igb_adapter
*adapter
)
2185 struct e1000_hw
*hw
= &adapter
->hw
;
2186 u16 pf_id
= adapter
->vfs_allocated_count
;
2189 /* not in sr-iov mode - do nothing */
2193 vtctl
= rd32(E1000_VT_CTL
);
2194 vtctl
&= ~(E1000_VT_CTL_DEFAULT_POOL_MASK
|
2195 E1000_VT_CTL_DISABLE_DEF_POOL
);
2196 vtctl
|= pf_id
<< E1000_VT_CTL_DEFAULT_POOL_SHIFT
;
2197 wr32(E1000_VT_CTL
, vtctl
);
2201 * igb_configure_rx - Configure receive Unit after Reset
2202 * @adapter: board private structure
2204 * Configure the Rx unit of the MAC after a reset.
2206 static void igb_configure_rx(struct igb_adapter
*adapter
)
2209 struct e1000_hw
*hw
= &adapter
->hw
;
2214 /* disable receives while setting up the descriptors */
2215 rctl
= rd32(E1000_RCTL
);
2216 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
2220 if (adapter
->itr_setting
> 3)
2221 wr32(E1000_ITR
, adapter
->itr
);
2223 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2224 * the Base and Length of the Rx Descriptor Ring */
2225 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2226 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
2227 int j
= ring
->reg_idx
;
2229 wr32(E1000_RDBAL(j
),
2230 rdba
& 0x00000000ffffffffULL
);
2231 wr32(E1000_RDBAH(j
), rdba
>> 32);
2232 wr32(E1000_RDLEN(j
),
2233 ring
->count
* sizeof(union e1000_adv_rx_desc
));
2235 ring
->head
= E1000_RDH(j
);
2236 ring
->tail
= E1000_RDT(j
);
2237 writel(0, hw
->hw_addr
+ ring
->tail
);
2238 writel(0, hw
->hw_addr
+ ring
->head
);
2240 rxdctl
= rd32(E1000_RXDCTL(j
));
2241 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
2242 rxdctl
&= 0xFFF00000;
2243 rxdctl
|= IGB_RX_PTHRESH
;
2244 rxdctl
|= IGB_RX_HTHRESH
<< 8;
2245 rxdctl
|= IGB_RX_WTHRESH
<< 16;
2246 wr32(E1000_RXDCTL(j
), rxdctl
);
2249 if (adapter
->num_rx_queues
> 1) {
2258 get_random_bytes(&random
[0], 40);
2260 if (hw
->mac
.type
>= e1000_82576
)
2264 for (j
= 0; j
< (32 * 4); j
++) {
2266 adapter
->rx_ring
[(j
% adapter
->num_rx_queues
)].reg_idx
<< shift
;
2269 hw
->hw_addr
+ E1000_RETA(0) + (j
& ~3));
2271 if (adapter
->vfs_allocated_count
)
2272 mrqc
= E1000_MRQC_ENABLE_VMDQ_RSS_2Q
;
2274 mrqc
= E1000_MRQC_ENABLE_RSS_4Q
;
2276 /* Fill out hash function seeds */
2277 for (j
= 0; j
< 10; j
++)
2278 array_wr32(E1000_RSSRK(0), j
, random
[j
]);
2280 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4
|
2281 E1000_MRQC_RSS_FIELD_IPV4_TCP
);
2282 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6
|
2283 E1000_MRQC_RSS_FIELD_IPV6_TCP
);
2284 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4_UDP
|
2285 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
2286 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX
|
2287 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
2289 wr32(E1000_MRQC
, mrqc
);
2290 } else if (adapter
->vfs_allocated_count
) {
2291 /* Enable multi-queue for sr-iov */
2292 wr32(E1000_MRQC
, E1000_MRQC_ENABLE_VMDQ
);
2295 /* Enable Receive Checksum Offload for TCP and UDP */
2296 rxcsum
= rd32(E1000_RXCSUM
);
2297 /* Disable raw packet checksumming */
2298 rxcsum
|= E1000_RXCSUM_PCSD
;
2300 if (adapter
->hw
.mac
.type
== e1000_82576
)
2301 /* Enable Receive Checksum Offload for SCTP */
2302 rxcsum
|= E1000_RXCSUM_CRCOFL
;
2304 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2305 wr32(E1000_RXCSUM
, rxcsum
);
2307 /* Set the default pool for the PF's first queue */
2308 igb_configure_vt_default_pool(adapter
);
2310 igb_rlpml_set(adapter
);
2312 /* Enable Receives */
2313 wr32(E1000_RCTL
, rctl
);
2317 * igb_free_tx_resources - Free Tx Resources per Queue
2318 * @tx_ring: Tx descriptor ring for a specific queue
2320 * Free all transmit software resources
2322 void igb_free_tx_resources(struct igb_ring
*tx_ring
)
2324 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
2326 igb_clean_tx_ring(tx_ring
);
2328 vfree(tx_ring
->buffer_info
);
2329 tx_ring
->buffer_info
= NULL
;
2331 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2333 tx_ring
->desc
= NULL
;
2337 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2338 * @adapter: board private structure
2340 * Free all transmit software resources
2342 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
2346 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2347 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
2350 static void igb_unmap_and_free_tx_resource(struct igb_adapter
*adapter
,
2351 struct igb_buffer
*buffer_info
)
2353 buffer_info
->dma
= 0;
2354 if (buffer_info
->skb
) {
2355 skb_dma_unmap(&adapter
->pdev
->dev
, buffer_info
->skb
,
2357 dev_kfree_skb_any(buffer_info
->skb
);
2358 buffer_info
->skb
= NULL
;
2360 buffer_info
->time_stamp
= 0;
2361 /* buffer_info must be completely set up in the transmit path */
2365 * igb_clean_tx_ring - Free Tx Buffers
2366 * @tx_ring: ring to be cleaned
2368 static void igb_clean_tx_ring(struct igb_ring
*tx_ring
)
2370 struct igb_adapter
*adapter
= tx_ring
->adapter
;
2371 struct igb_buffer
*buffer_info
;
2375 if (!tx_ring
->buffer_info
)
2377 /* Free all the Tx ring sk_buffs */
2379 for (i
= 0; i
< tx_ring
->count
; i
++) {
2380 buffer_info
= &tx_ring
->buffer_info
[i
];
2381 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
2384 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
2385 memset(tx_ring
->buffer_info
, 0, size
);
2387 /* Zero out the descriptor ring */
2389 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2391 tx_ring
->next_to_use
= 0;
2392 tx_ring
->next_to_clean
= 0;
2394 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
2395 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2399 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2400 * @adapter: board private structure
2402 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
2406 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2407 igb_clean_tx_ring(&adapter
->tx_ring
[i
]);
2411 * igb_free_rx_resources - Free Rx Resources
2412 * @rx_ring: ring to clean the resources from
2414 * Free all receive software resources
2416 void igb_free_rx_resources(struct igb_ring
*rx_ring
)
2418 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
2420 igb_clean_rx_ring(rx_ring
);
2422 vfree(rx_ring
->buffer_info
);
2423 rx_ring
->buffer_info
= NULL
;
2425 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2427 rx_ring
->desc
= NULL
;
2431 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2432 * @adapter: board private structure
2434 * Free all receive software resources
2436 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
2440 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2441 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
2445 * igb_clean_rx_ring - Free Rx Buffers per Queue
2446 * @rx_ring: ring to free buffers from
2448 static void igb_clean_rx_ring(struct igb_ring
*rx_ring
)
2450 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2451 struct igb_buffer
*buffer_info
;
2452 struct pci_dev
*pdev
= adapter
->pdev
;
2456 if (!rx_ring
->buffer_info
)
2458 /* Free all the Rx ring sk_buffs */
2459 for (i
= 0; i
< rx_ring
->count
; i
++) {
2460 buffer_info
= &rx_ring
->buffer_info
[i
];
2461 if (buffer_info
->dma
) {
2462 if (adapter
->rx_ps_hdr_size
)
2463 pci_unmap_single(pdev
, buffer_info
->dma
,
2464 adapter
->rx_ps_hdr_size
,
2465 PCI_DMA_FROMDEVICE
);
2467 pci_unmap_single(pdev
, buffer_info
->dma
,
2468 adapter
->rx_buffer_len
,
2469 PCI_DMA_FROMDEVICE
);
2470 buffer_info
->dma
= 0;
2473 if (buffer_info
->skb
) {
2474 dev_kfree_skb(buffer_info
->skb
);
2475 buffer_info
->skb
= NULL
;
2477 if (buffer_info
->page
) {
2478 if (buffer_info
->page_dma
)
2479 pci_unmap_page(pdev
, buffer_info
->page_dma
,
2481 PCI_DMA_FROMDEVICE
);
2482 put_page(buffer_info
->page
);
2483 buffer_info
->page
= NULL
;
2484 buffer_info
->page_dma
= 0;
2485 buffer_info
->page_offset
= 0;
2489 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
2490 memset(rx_ring
->buffer_info
, 0, size
);
2492 /* Zero out the descriptor ring */
2493 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2495 rx_ring
->next_to_clean
= 0;
2496 rx_ring
->next_to_use
= 0;
2498 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
2499 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
2503 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2504 * @adapter: board private structure
2506 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
2510 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2511 igb_clean_rx_ring(&adapter
->rx_ring
[i
]);
2515 * igb_set_mac - Change the Ethernet Address of the NIC
2516 * @netdev: network interface device structure
2517 * @p: pointer to an address structure
2519 * Returns 0 on success, negative on failure
2521 static int igb_set_mac(struct net_device
*netdev
, void *p
)
2523 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2524 struct e1000_hw
*hw
= &adapter
->hw
;
2525 struct sockaddr
*addr
= p
;
2527 if (!is_valid_ether_addr(addr
->sa_data
))
2528 return -EADDRNOTAVAIL
;
2530 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2531 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2533 igb_rar_set(hw
, hw
->mac
.addr
, 0);
2534 igb_set_rah_pool(hw
, adapter
->vfs_allocated_count
, 0);
2540 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2541 * @netdev: network interface device structure
2543 * The set_rx_mode entry point is called whenever the unicast or multicast
2544 * address lists or the network interface flags are updated. This routine is
2545 * responsible for configuring the hardware for proper unicast, multicast,
2546 * promiscuous mode, and all-multi behavior.
2548 static void igb_set_rx_mode(struct net_device
*netdev
)
2550 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2551 struct e1000_hw
*hw
= &adapter
->hw
;
2552 unsigned int rar_entries
= hw
->mac
.rar_entry_count
-
2553 (adapter
->vfs_allocated_count
+ 1);
2554 struct dev_mc_list
*mc_ptr
= netdev
->mc_list
;
2555 u8
*mta_list
= NULL
;
2559 /* Check for Promiscuous and All Multicast modes */
2560 rctl
= rd32(E1000_RCTL
);
2562 if (netdev
->flags
& IFF_PROMISC
) {
2563 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2564 rctl
&= ~E1000_RCTL_VFE
;
2566 if (netdev
->flags
& IFF_ALLMULTI
)
2567 rctl
|= E1000_RCTL_MPE
;
2569 rctl
&= ~E1000_RCTL_MPE
;
2571 if (netdev
->uc
.count
> rar_entries
)
2572 rctl
|= E1000_RCTL_UPE
;
2574 rctl
&= ~E1000_RCTL_UPE
;
2575 rctl
|= E1000_RCTL_VFE
;
2577 wr32(E1000_RCTL
, rctl
);
2579 if (netdev
->uc
.count
&& rar_entries
) {
2580 struct netdev_hw_addr
*ha
;
2581 list_for_each_entry(ha
, &netdev
->uc
.list
, list
) {
2584 igb_rar_set(hw
, ha
->addr
, rar_entries
);
2585 igb_set_rah_pool(hw
, adapter
->vfs_allocated_count
,
2590 /* write the addresses in reverse order to avoid write combining */
2591 for (; rar_entries
> 0 ; rar_entries
--) {
2592 wr32(E1000_RAH(rar_entries
), 0);
2593 wr32(E1000_RAL(rar_entries
), 0);
2597 if (!netdev
->mc_count
) {
2598 /* nothing to program, so clear mc list */
2599 igb_update_mc_addr_list(hw
, NULL
, 0);
2600 igb_restore_vf_multicasts(adapter
);
2604 mta_list
= kzalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2606 dev_err(&adapter
->pdev
->dev
,
2607 "failed to allocate multicast filter list\n");
2611 /* The shared function expects a packed array of only addresses. */
2612 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2615 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
, ETH_ALEN
);
2616 mc_ptr
= mc_ptr
->next
;
2618 igb_update_mc_addr_list(hw
, mta_list
, i
);
2620 igb_restore_vf_multicasts(adapter
);
2623 /* Need to wait a few seconds after link up to get diagnostic information from
2625 static void igb_update_phy_info(unsigned long data
)
2627 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
2628 igb_get_phy_info(&adapter
->hw
);
2632 * igb_has_link - check shared code for link and determine up/down
2633 * @adapter: pointer to driver private info
2635 static bool igb_has_link(struct igb_adapter
*adapter
)
2637 struct e1000_hw
*hw
= &adapter
->hw
;
2638 bool link_active
= false;
2641 /* get_link_status is set on LSC (link status) interrupt or
2642 * rx sequence error interrupt. get_link_status will stay
2643 * false until the e1000_check_for_link establishes link
2644 * for copper adapters ONLY
2646 switch (hw
->phy
.media_type
) {
2647 case e1000_media_type_copper
:
2648 if (hw
->mac
.get_link_status
) {
2649 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
2650 link_active
= !hw
->mac
.get_link_status
;
2655 case e1000_media_type_internal_serdes
:
2656 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
2657 link_active
= hw
->mac
.serdes_has_link
;
2660 case e1000_media_type_unknown
:
2668 * igb_watchdog - Timer Call-back
2669 * @data: pointer to adapter cast into an unsigned long
2671 static void igb_watchdog(unsigned long data
)
2673 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
2674 /* Do the rest outside of interrupt context */
2675 schedule_work(&adapter
->watchdog_task
);
2678 static void igb_watchdog_task(struct work_struct
*work
)
2680 struct igb_adapter
*adapter
= container_of(work
,
2681 struct igb_adapter
, watchdog_task
);
2682 struct e1000_hw
*hw
= &adapter
->hw
;
2683 struct net_device
*netdev
= adapter
->netdev
;
2684 struct igb_ring
*tx_ring
= adapter
->tx_ring
;
2689 link
= igb_has_link(adapter
);
2690 if ((netif_carrier_ok(netdev
)) && link
)
2694 if (!netif_carrier_ok(netdev
)) {
2696 hw
->mac
.ops
.get_speed_and_duplex(&adapter
->hw
,
2697 &adapter
->link_speed
,
2698 &adapter
->link_duplex
);
2700 ctrl
= rd32(E1000_CTRL
);
2701 /* Links status message must follow this format */
2702 printk(KERN_INFO
"igb: %s NIC Link is Up %d Mbps %s, "
2703 "Flow Control: %s\n",
2705 adapter
->link_speed
,
2706 adapter
->link_duplex
== FULL_DUPLEX
?
2707 "Full Duplex" : "Half Duplex",
2708 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2709 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2710 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2711 E1000_CTRL_TFCE
) ? "TX" : "None")));
2713 /* tweak tx_queue_len according to speed/duplex and
2714 * adjust the timeout factor */
2715 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2716 adapter
->tx_timeout_factor
= 1;
2717 switch (adapter
->link_speed
) {
2719 netdev
->tx_queue_len
= 10;
2720 adapter
->tx_timeout_factor
= 14;
2723 netdev
->tx_queue_len
= 100;
2724 /* maybe add some timeout factor ? */
2728 netif_carrier_on(netdev
);
2730 igb_ping_all_vfs(adapter
);
2732 /* link state has changed, schedule phy info update */
2733 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2734 mod_timer(&adapter
->phy_info_timer
,
2735 round_jiffies(jiffies
+ 2 * HZ
));
2738 if (netif_carrier_ok(netdev
)) {
2739 adapter
->link_speed
= 0;
2740 adapter
->link_duplex
= 0;
2741 /* Links status message must follow this format */
2742 printk(KERN_INFO
"igb: %s NIC Link is Down\n",
2744 netif_carrier_off(netdev
);
2746 igb_ping_all_vfs(adapter
);
2748 /* link state has changed, schedule phy info update */
2749 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2750 mod_timer(&adapter
->phy_info_timer
,
2751 round_jiffies(jiffies
+ 2 * HZ
));
2756 igb_update_stats(adapter
);
2758 hw
->mac
.tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2759 adapter
->tpt_old
= adapter
->stats
.tpt
;
2760 hw
->mac
.collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2761 adapter
->colc_old
= adapter
->stats
.colc
;
2763 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
2764 adapter
->gorc_old
= adapter
->stats
.gorc
;
2765 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
2766 adapter
->gotc_old
= adapter
->stats
.gotc
;
2768 igb_update_adaptive(&adapter
->hw
);
2770 if (!netif_carrier_ok(netdev
)) {
2771 if (igb_desc_unused(tx_ring
) + 1 < tx_ring
->count
) {
2772 /* We've lost link, so the controller stops DMA,
2773 * but we've got queued Tx work that's never going
2774 * to get done, so reset controller to flush Tx.
2775 * (Do the reset outside of interrupt context). */
2776 adapter
->tx_timeout_count
++;
2777 schedule_work(&adapter
->reset_task
);
2778 /* return immediately since reset is imminent */
2783 /* Cause software interrupt to ensure rx ring is cleaned */
2784 if (adapter
->msix_entries
) {
2785 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2786 eics
|= adapter
->rx_ring
[i
].eims_value
;
2787 wr32(E1000_EICS
, eics
);
2789 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
2792 /* Force detection of hung controller every watchdog period */
2793 tx_ring
->detect_tx_hung
= true;
2795 /* Reset the timer */
2796 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2797 mod_timer(&adapter
->watchdog_timer
,
2798 round_jiffies(jiffies
+ 2 * HZ
));
2801 enum latency_range
{
2805 latency_invalid
= 255
2810 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2812 * Stores a new ITR value based on strictly on packet size. This
2813 * algorithm is less sophisticated than that used in igb_update_itr,
2814 * due to the difficulty of synchronizing statistics across multiple
2815 * receive rings. The divisors and thresholds used by this fuction
2816 * were determined based on theoretical maximum wire speed and testing
2817 * data, in order to minimize response time while increasing bulk
2819 * This functionality is controlled by the InterruptThrottleRate module
2820 * parameter (see igb_param.c)
2821 * NOTE: This function is called only when operating in a multiqueue
2822 * receive environment.
2823 * @rx_ring: pointer to ring
2825 static void igb_update_ring_itr(struct igb_ring
*rx_ring
)
2827 int new_val
= rx_ring
->itr_val
;
2828 int avg_wire_size
= 0;
2829 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2831 if (!rx_ring
->total_packets
)
2832 goto clear_counts
; /* no packets, so don't do anything */
2834 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2835 * ints/sec - ITR timer value of 120 ticks.
2837 if (adapter
->link_speed
!= SPEED_1000
) {
2841 avg_wire_size
= rx_ring
->total_bytes
/ rx_ring
->total_packets
;
2843 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2844 avg_wire_size
+= 24;
2846 /* Don't starve jumbo frames */
2847 avg_wire_size
= min(avg_wire_size
, 3000);
2849 /* Give a little boost to mid-size frames */
2850 if ((avg_wire_size
> 300) && (avg_wire_size
< 1200))
2851 new_val
= avg_wire_size
/ 3;
2853 new_val
= avg_wire_size
/ 2;
2856 if (new_val
!= rx_ring
->itr_val
) {
2857 rx_ring
->itr_val
= new_val
;
2858 rx_ring
->set_itr
= 1;
2861 rx_ring
->total_bytes
= 0;
2862 rx_ring
->total_packets
= 0;
2866 * igb_update_itr - update the dynamic ITR value based on statistics
2867 * Stores a new ITR value based on packets and byte
2868 * counts during the last interrupt. The advantage of per interrupt
2869 * computation is faster updates and more accurate ITR for the current
2870 * traffic pattern. Constants in this function were computed
2871 * based on theoretical maximum wire speed and thresholds were set based
2872 * on testing data as well as attempting to minimize response time
2873 * while increasing bulk throughput.
2874 * this functionality is controlled by the InterruptThrottleRate module
2875 * parameter (see igb_param.c)
2876 * NOTE: These calculations are only valid when operating in a single-
2877 * queue environment.
2878 * @adapter: pointer to adapter
2879 * @itr_setting: current adapter->itr
2880 * @packets: the number of packets during this measurement interval
2881 * @bytes: the number of bytes during this measurement interval
2883 static unsigned int igb_update_itr(struct igb_adapter
*adapter
, u16 itr_setting
,
2884 int packets
, int bytes
)
2886 unsigned int retval
= itr_setting
;
2889 goto update_itr_done
;
2891 switch (itr_setting
) {
2892 case lowest_latency
:
2893 /* handle TSO and jumbo frames */
2894 if (bytes
/packets
> 8000)
2895 retval
= bulk_latency
;
2896 else if ((packets
< 5) && (bytes
> 512))
2897 retval
= low_latency
;
2899 case low_latency
: /* 50 usec aka 20000 ints/s */
2900 if (bytes
> 10000) {
2901 /* this if handles the TSO accounting */
2902 if (bytes
/packets
> 8000) {
2903 retval
= bulk_latency
;
2904 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
2905 retval
= bulk_latency
;
2906 } else if ((packets
> 35)) {
2907 retval
= lowest_latency
;
2909 } else if (bytes
/packets
> 2000) {
2910 retval
= bulk_latency
;
2911 } else if (packets
<= 2 && bytes
< 512) {
2912 retval
= lowest_latency
;
2915 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2916 if (bytes
> 25000) {
2918 retval
= low_latency
;
2919 } else if (bytes
< 1500) {
2920 retval
= low_latency
;
2929 static void igb_set_itr(struct igb_adapter
*adapter
)
2932 u32 new_itr
= adapter
->itr
;
2934 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2935 if (adapter
->link_speed
!= SPEED_1000
) {
2941 adapter
->rx_itr
= igb_update_itr(adapter
,
2943 adapter
->rx_ring
->total_packets
,
2944 adapter
->rx_ring
->total_bytes
);
2946 if (adapter
->rx_ring
->buddy
) {
2947 adapter
->tx_itr
= igb_update_itr(adapter
,
2949 adapter
->tx_ring
->total_packets
,
2950 adapter
->tx_ring
->total_bytes
);
2951 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2953 current_itr
= adapter
->rx_itr
;
2956 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2957 if (adapter
->itr_setting
== 3 && current_itr
== lowest_latency
)
2958 current_itr
= low_latency
;
2960 switch (current_itr
) {
2961 /* counts and packets in update_itr are dependent on these numbers */
2962 case lowest_latency
:
2963 new_itr
= 56; /* aka 70,000 ints/sec */
2966 new_itr
= 196; /* aka 20,000 ints/sec */
2969 new_itr
= 980; /* aka 4,000 ints/sec */
2976 adapter
->rx_ring
->total_bytes
= 0;
2977 adapter
->rx_ring
->total_packets
= 0;
2978 if (adapter
->rx_ring
->buddy
) {
2979 adapter
->rx_ring
->buddy
->total_bytes
= 0;
2980 adapter
->rx_ring
->buddy
->total_packets
= 0;
2983 if (new_itr
!= adapter
->itr
) {
2984 /* this attempts to bias the interrupt rate towards Bulk
2985 * by adding intermediate steps when interrupt rate is
2987 new_itr
= new_itr
> adapter
->itr
?
2988 max((new_itr
* adapter
->itr
) /
2989 (new_itr
+ (adapter
->itr
>> 2)), new_itr
) :
2991 /* Don't write the value here; it resets the adapter's
2992 * internal timer, and causes us to delay far longer than
2993 * we should between interrupts. Instead, we write the ITR
2994 * value at the beginning of the next interrupt so the timing
2995 * ends up being correct.
2997 adapter
->itr
= new_itr
;
2998 adapter
->rx_ring
->itr_val
= new_itr
;
2999 adapter
->rx_ring
->set_itr
= 1;
3006 #define IGB_TX_FLAGS_CSUM 0x00000001
3007 #define IGB_TX_FLAGS_VLAN 0x00000002
3008 #define IGB_TX_FLAGS_TSO 0x00000004
3009 #define IGB_TX_FLAGS_IPV4 0x00000008
3010 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3011 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3012 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3014 static inline int igb_tso_adv(struct igb_adapter
*adapter
,
3015 struct igb_ring
*tx_ring
,
3016 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
3018 struct e1000_adv_tx_context_desc
*context_desc
;
3021 struct igb_buffer
*buffer_info
;
3022 u32 info
= 0, tu_cmd
= 0;
3023 u32 mss_l4len_idx
, l4len
;
3026 if (skb_header_cloned(skb
)) {
3027 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
3032 l4len
= tcp_hdrlen(skb
);
3035 if (skb
->protocol
== htons(ETH_P_IP
)) {
3036 struct iphdr
*iph
= ip_hdr(skb
);
3039 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
3043 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
3044 ipv6_hdr(skb
)->payload_len
= 0;
3045 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3046 &ipv6_hdr(skb
)->daddr
,
3050 i
= tx_ring
->next_to_use
;
3052 buffer_info
= &tx_ring
->buffer_info
[i
];
3053 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
3054 /* VLAN MACLEN IPLEN */
3055 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
3056 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
3057 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
3058 *hdr_len
+= skb_network_offset(skb
);
3059 info
|= skb_network_header_len(skb
);
3060 *hdr_len
+= skb_network_header_len(skb
);
3061 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
3063 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3064 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
3066 if (skb
->protocol
== htons(ETH_P_IP
))
3067 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
3068 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
3070 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
3073 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
3074 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
3076 /* For 82575, context index must be unique per ring. */
3077 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
3078 mss_l4len_idx
|= tx_ring
->queue_index
<< 4;
3080 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
3081 context_desc
->seqnum_seed
= 0;
3083 buffer_info
->time_stamp
= jiffies
;
3084 buffer_info
->next_to_watch
= i
;
3085 buffer_info
->dma
= 0;
3087 if (i
== tx_ring
->count
)
3090 tx_ring
->next_to_use
= i
;
3095 static inline bool igb_tx_csum_adv(struct igb_adapter
*adapter
,
3096 struct igb_ring
*tx_ring
,
3097 struct sk_buff
*skb
, u32 tx_flags
)
3099 struct e1000_adv_tx_context_desc
*context_desc
;
3101 struct igb_buffer
*buffer_info
;
3102 u32 info
= 0, tu_cmd
= 0;
3104 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
3105 (tx_flags
& IGB_TX_FLAGS_VLAN
)) {
3106 i
= tx_ring
->next_to_use
;
3107 buffer_info
= &tx_ring
->buffer_info
[i
];
3108 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
3110 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
3111 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
3112 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
3113 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
3114 info
|= skb_network_header_len(skb
);
3116 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
3118 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
3120 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3123 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
)) {
3124 const struct vlan_ethhdr
*vhdr
=
3125 (const struct vlan_ethhdr
*)skb
->data
;
3127 protocol
= vhdr
->h_vlan_encapsulated_proto
;
3129 protocol
= skb
->protocol
;
3133 case cpu_to_be16(ETH_P_IP
):
3134 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
3135 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
3136 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
3137 else if (ip_hdr(skb
)->protocol
== IPPROTO_SCTP
)
3138 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_SCTP
;
3140 case cpu_to_be16(ETH_P_IPV6
):
3141 /* XXX what about other V6 headers?? */
3142 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
3143 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
3144 else if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_SCTP
)
3145 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_SCTP
;
3148 if (unlikely(net_ratelimit()))
3149 dev_warn(&adapter
->pdev
->dev
,
3150 "partial checksum but proto=%x!\n",
3156 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
3157 context_desc
->seqnum_seed
= 0;
3158 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
3159 context_desc
->mss_l4len_idx
=
3160 cpu_to_le32(tx_ring
->queue_index
<< 4);
3162 context_desc
->mss_l4len_idx
= 0;
3164 buffer_info
->time_stamp
= jiffies
;
3165 buffer_info
->next_to_watch
= i
;
3166 buffer_info
->dma
= 0;
3169 if (i
== tx_ring
->count
)
3171 tx_ring
->next_to_use
= i
;
3178 #define IGB_MAX_TXD_PWR 16
3179 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3181 static inline int igb_tx_map_adv(struct igb_adapter
*adapter
,
3182 struct igb_ring
*tx_ring
, struct sk_buff
*skb
,
3185 struct igb_buffer
*buffer_info
;
3186 unsigned int len
= skb_headlen(skb
);
3187 unsigned int count
= 0, i
;
3191 i
= tx_ring
->next_to_use
;
3193 if (skb_dma_map(&adapter
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
3194 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
3198 map
= skb_shinfo(skb
)->dma_maps
;
3200 buffer_info
= &tx_ring
->buffer_info
[i
];
3201 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
3202 buffer_info
->length
= len
;
3203 /* set time_stamp *before* dma to help avoid a possible race */
3204 buffer_info
->time_stamp
= jiffies
;
3205 buffer_info
->next_to_watch
= i
;
3206 buffer_info
->dma
= skb_shinfo(skb
)->dma_head
;
3208 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
3209 struct skb_frag_struct
*frag
;
3212 if (i
== tx_ring
->count
)
3215 frag
= &skb_shinfo(skb
)->frags
[f
];
3218 buffer_info
= &tx_ring
->buffer_info
[i
];
3219 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
3220 buffer_info
->length
= len
;
3221 buffer_info
->time_stamp
= jiffies
;
3222 buffer_info
->next_to_watch
= i
;
3223 buffer_info
->dma
= map
[count
];
3227 tx_ring
->buffer_info
[i
].skb
= skb
;
3228 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3233 static inline void igb_tx_queue_adv(struct igb_adapter
*adapter
,
3234 struct igb_ring
*tx_ring
,
3235 int tx_flags
, int count
, u32 paylen
,
3238 union e1000_adv_tx_desc
*tx_desc
= NULL
;
3239 struct igb_buffer
*buffer_info
;
3240 u32 olinfo_status
= 0, cmd_type_len
;
3243 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
3244 E1000_ADVTXD_DCMD_DEXT
);
3246 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
3247 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
3249 if (tx_flags
& IGB_TX_FLAGS_TSTAMP
)
3250 cmd_type_len
|= E1000_ADVTXD_MAC_TSTAMP
;
3252 if (tx_flags
& IGB_TX_FLAGS_TSO
) {
3253 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
3255 /* insert tcp checksum */
3256 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
3258 /* insert ip checksum */
3259 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
3260 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
3262 } else if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
3263 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
3266 if ((adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
) &&
3267 (tx_flags
& (IGB_TX_FLAGS_CSUM
| IGB_TX_FLAGS_TSO
|
3268 IGB_TX_FLAGS_VLAN
)))
3269 olinfo_status
|= tx_ring
->queue_index
<< 4;
3271 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
3273 i
= tx_ring
->next_to_use
;
3275 buffer_info
= &tx_ring
->buffer_info
[i
];
3276 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
3277 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3278 tx_desc
->read
.cmd_type_len
=
3279 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
3280 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
3282 if (i
== tx_ring
->count
)
3286 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
3287 /* Force memory writes to complete before letting h/w
3288 * know there are new descriptors to fetch. (Only
3289 * applicable for weak-ordered memory model archs,
3290 * such as IA-64). */
3293 tx_ring
->next_to_use
= i
;
3294 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
3295 /* we need this if more than one processor can write to our tail
3296 * at a time, it syncronizes IO on IA64/Altix systems */
3300 static int __igb_maybe_stop_tx(struct net_device
*netdev
,
3301 struct igb_ring
*tx_ring
, int size
)
3303 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3305 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
3307 /* Herbert's original patch had:
3308 * smp_mb__after_netif_stop_queue();
3309 * but since that doesn't exist yet, just open code it. */
3312 /* We need to check again in a case another CPU has just
3313 * made room available. */
3314 if (igb_desc_unused(tx_ring
) < size
)
3318 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
3319 ++adapter
->restart_queue
;
3323 static int igb_maybe_stop_tx(struct net_device
*netdev
,
3324 struct igb_ring
*tx_ring
, int size
)
3326 if (igb_desc_unused(tx_ring
) >= size
)
3328 return __igb_maybe_stop_tx(netdev
, tx_ring
, size
);
3331 static netdev_tx_t
igb_xmit_frame_ring_adv(struct sk_buff
*skb
,
3332 struct net_device
*netdev
,
3333 struct igb_ring
*tx_ring
)
3335 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3337 unsigned int tx_flags
= 0;
3341 union skb_shared_tx
*shtx
;
3343 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
3344 dev_kfree_skb_any(skb
);
3345 return NETDEV_TX_OK
;
3348 if (skb
->len
<= 0) {
3349 dev_kfree_skb_any(skb
);
3350 return NETDEV_TX_OK
;
3353 /* need: 1 descriptor per page,
3354 * + 2 desc gap to keep tail from touching head,
3355 * + 1 desc for skb->data,
3356 * + 1 desc for context descriptor,
3357 * otherwise try next time */
3358 if (igb_maybe_stop_tx(netdev
, tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
3359 /* this is a hard error */
3360 return NETDEV_TX_BUSY
;
3364 * TODO: check that there currently is no other packet with
3365 * time stamping in the queue
3367 * When doing time stamping, keep the connection to the socket
3368 * a while longer: it is still needed by skb_hwtstamp_tx(),
3369 * called either in igb_tx_hwtstamp() or by our caller when
3370 * doing software time stamping.
3373 if (unlikely(shtx
->hardware
)) {
3374 shtx
->in_progress
= 1;
3375 tx_flags
|= IGB_TX_FLAGS_TSTAMP
;
3378 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3379 tx_flags
|= IGB_TX_FLAGS_VLAN
;
3380 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
3383 if (skb
->protocol
== htons(ETH_P_IP
))
3384 tx_flags
|= IGB_TX_FLAGS_IPV4
;
3386 first
= tx_ring
->next_to_use
;
3387 tso
= skb_is_gso(skb
) ? igb_tso_adv(adapter
, tx_ring
, skb
, tx_flags
,
3391 dev_kfree_skb_any(skb
);
3392 return NETDEV_TX_OK
;
3396 tx_flags
|= IGB_TX_FLAGS_TSO
;
3397 else if (igb_tx_csum_adv(adapter
, tx_ring
, skb
, tx_flags
) &&
3398 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3399 tx_flags
|= IGB_TX_FLAGS_CSUM
;
3402 * count reflects descriptors mapped, if 0 then mapping error
3403 * has occured and we need to rewind the descriptor queue
3405 count
= igb_tx_map_adv(adapter
, tx_ring
, skb
, first
);
3408 igb_tx_queue_adv(adapter
, tx_ring
, tx_flags
, count
,
3410 /* Make sure there is space in the ring for the next send. */
3411 igb_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 4);
3413 dev_kfree_skb_any(skb
);
3414 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3415 tx_ring
->next_to_use
= first
;
3418 return NETDEV_TX_OK
;
3421 static netdev_tx_t
igb_xmit_frame_adv(struct sk_buff
*skb
,
3422 struct net_device
*netdev
)
3424 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3425 struct igb_ring
*tx_ring
;
3428 r_idx
= skb
->queue_mapping
& (IGB_ABS_MAX_TX_QUEUES
- 1);
3429 tx_ring
= adapter
->multi_tx_table
[r_idx
];
3431 /* This goes back to the question of how to logically map a tx queue
3432 * to a flow. Right now, performance is impacted slightly negatively
3433 * if using multiple tx queues. If the stack breaks away from a
3434 * single qdisc implementation, we can look at this again. */
3435 return igb_xmit_frame_ring_adv(skb
, netdev
, tx_ring
);
3439 * igb_tx_timeout - Respond to a Tx Hang
3440 * @netdev: network interface device structure
3442 static void igb_tx_timeout(struct net_device
*netdev
)
3444 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3445 struct e1000_hw
*hw
= &adapter
->hw
;
3447 /* Do the reset outside of interrupt context */
3448 adapter
->tx_timeout_count
++;
3449 schedule_work(&adapter
->reset_task
);
3451 (adapter
->eims_enable_mask
& ~adapter
->eims_other
));
3454 static void igb_reset_task(struct work_struct
*work
)
3456 struct igb_adapter
*adapter
;
3457 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
3459 igb_reinit_locked(adapter
);
3463 * igb_get_stats - Get System Network Statistics
3464 * @netdev: network interface device structure
3466 * Returns the address of the device statistics structure.
3467 * The statistics are actually updated from the timer callback.
3469 static struct net_device_stats
*igb_get_stats(struct net_device
*netdev
)
3471 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3473 /* only return the current stats */
3474 return &adapter
->net_stats
;
3478 * igb_change_mtu - Change the Maximum Transfer Unit
3479 * @netdev: network interface device structure
3480 * @new_mtu: new value for maximum frame size
3482 * Returns 0 on success, negative on failure
3484 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
3486 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3487 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3489 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
3490 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3491 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
3495 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3496 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
3500 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
3503 /* igb_down has a dependency on max_frame_size */
3504 adapter
->max_frame_size
= max_frame
;
3505 if (netif_running(netdev
))
3508 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3509 * means we reserve 2 more, this pushes us to allocate from the next
3511 * i.e. RXBUFFER_2048 --> size-4096 slab
3514 if (max_frame
<= IGB_RXBUFFER_256
)
3515 adapter
->rx_buffer_len
= IGB_RXBUFFER_256
;
3516 else if (max_frame
<= IGB_RXBUFFER_512
)
3517 adapter
->rx_buffer_len
= IGB_RXBUFFER_512
;
3518 else if (max_frame
<= IGB_RXBUFFER_1024
)
3519 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
3520 else if (max_frame
<= IGB_RXBUFFER_2048
)
3521 adapter
->rx_buffer_len
= IGB_RXBUFFER_2048
;
3523 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3524 adapter
->rx_buffer_len
= IGB_RXBUFFER_16384
;
3526 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
3529 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3530 if (adapter
->vfs_allocated_count
&&
3531 (adapter
->rx_buffer_len
< IGB_RXBUFFER_1024
))
3532 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
3534 /* adjust allocation if LPE protects us, and we aren't using SBP */
3535 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
3536 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
))
3537 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3539 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
3540 netdev
->mtu
, new_mtu
);
3541 netdev
->mtu
= new_mtu
;
3543 if (netif_running(netdev
))
3548 clear_bit(__IGB_RESETTING
, &adapter
->state
);
3554 * igb_update_stats - Update the board statistics counters
3555 * @adapter: board private structure
3558 void igb_update_stats(struct igb_adapter
*adapter
)
3560 struct e1000_hw
*hw
= &adapter
->hw
;
3561 struct pci_dev
*pdev
= adapter
->pdev
;
3564 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3567 * Prevent stats update while adapter is being reset, or if the pci
3568 * connection is down.
3570 if (adapter
->link_speed
== 0)
3572 if (pci_channel_offline(pdev
))
3575 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
3576 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
3577 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
3578 rd32(E1000_GORCH
); /* clear GORCL */
3579 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
3580 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
3581 adapter
->stats
.roc
+= rd32(E1000_ROC
);
3583 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
3584 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
3585 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
3586 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
3587 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
3588 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
3589 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
3590 adapter
->stats
.sec
+= rd32(E1000_SEC
);
3592 adapter
->stats
.mpc
+= rd32(E1000_MPC
);
3593 adapter
->stats
.scc
+= rd32(E1000_SCC
);
3594 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
3595 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
3596 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
3597 adapter
->stats
.dc
+= rd32(E1000_DC
);
3598 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
3599 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
3600 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
3601 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
3602 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
3603 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
3604 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
3605 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
3606 rd32(E1000_GOTCH
); /* clear GOTCL */
3607 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
3608 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
3609 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
3610 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
3611 adapter
->stats
.tor
+= rd32(E1000_TORH
);
3612 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
3613 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
3615 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
3616 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
3617 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
3618 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
3619 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
3620 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
3622 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
3623 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
3625 /* used for adaptive IFS */
3627 hw
->mac
.tx_packet_delta
= rd32(E1000_TPT
);
3628 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3629 hw
->mac
.collision_delta
= rd32(E1000_COLC
);
3630 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3632 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
3633 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
3634 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
3635 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
3636 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
3638 adapter
->stats
.iac
+= rd32(E1000_IAC
);
3639 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
3640 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
3641 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
3642 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
3643 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
3644 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
3645 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
3646 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
3648 /* Fill out the OS statistics structure */
3649 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3650 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3654 if (hw
->mac
.type
!= e1000_82575
) {
3656 u64 rqdpc_total
= 0;
3658 /* Read out drops stats per RX queue. Notice RQDPC (Receive
3659 * Queue Drop Packet Count) stats only gets incremented, if
3660 * the DROP_EN but it set (in the SRRCTL register for that
3661 * queue). If DROP_EN bit is NOT set, then the some what
3662 * equivalent count is stored in RNBC (not per queue basis).
3663 * Also note the drop count is due to lack of available
3666 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
3667 rqdpc_tmp
= rd32(E1000_RQDPC(i
)) & 0xFFF;
3668 adapter
->rx_ring
[i
].rx_stats
.drops
+= rqdpc_tmp
;
3669 rqdpc_total
+= adapter
->rx_ring
[i
].rx_stats
.drops
;
3671 adapter
->net_stats
.rx_fifo_errors
= rqdpc_total
;
3674 /* Note RNBC (Receive No Buffers Count) is an not an exact
3675 * drop count as the hardware FIFO might save the day. Thats
3676 * one of the reason for saving it in rx_fifo_errors, as its
3677 * potentially not a true drop.
3679 adapter
->net_stats
.rx_fifo_errors
+= adapter
->stats
.rnbc
;
3681 /* RLEC on some newer hardware can be incorrect so build
3682 * our own version based on RUC and ROC */
3683 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3684 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3685 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3686 adapter
->stats
.cexterr
;
3687 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
3689 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3690 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3691 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3694 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
3695 adapter
->stats
.latecol
;
3696 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3697 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3698 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3700 /* Tx Dropped needs to be maintained elsewhere */
3703 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
3704 if ((adapter
->link_speed
== SPEED_1000
) &&
3705 (!igb_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3706 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3707 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3711 /* Management Stats */
3712 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
3713 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
3714 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
3717 static irqreturn_t
igb_msix_other(int irq
, void *data
)
3719 struct net_device
*netdev
= data
;
3720 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3721 struct e1000_hw
*hw
= &adapter
->hw
;
3722 u32 icr
= rd32(E1000_ICR
);
3724 /* reading ICR causes bit 31 of EICR to be cleared */
3726 if(icr
& E1000_ICR_DOUTSYNC
) {
3727 /* HW is reporting DMA is out of sync */
3728 adapter
->stats
.doosync
++;
3731 /* Check for a mailbox event */
3732 if (icr
& E1000_ICR_VMMB
)
3733 igb_msg_task(adapter
);
3735 if (icr
& E1000_ICR_LSC
) {
3736 hw
->mac
.get_link_status
= 1;
3737 /* guard against interrupt when we're going down */
3738 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3739 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3742 wr32(E1000_IMS
, E1000_IMS_LSC
| E1000_IMS_DOUTSYNC
| E1000_IMS_VMMB
);
3743 wr32(E1000_EIMS
, adapter
->eims_other
);
3748 static irqreturn_t
igb_msix_tx(int irq
, void *data
)
3750 struct igb_ring
*tx_ring
= data
;
3751 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3752 struct e1000_hw
*hw
= &adapter
->hw
;
3754 #ifdef CONFIG_IGB_DCA
3755 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3756 igb_update_tx_dca(tx_ring
);
3759 tx_ring
->total_bytes
= 0;
3760 tx_ring
->total_packets
= 0;
3762 /* auto mask will automatically reenable the interrupt when we write
3764 if (!igb_clean_tx_irq(tx_ring
))
3765 /* Ring was not completely cleaned, so fire another interrupt */
3766 wr32(E1000_EICS
, tx_ring
->eims_value
);
3768 wr32(E1000_EIMS
, tx_ring
->eims_value
);
3773 static void igb_write_itr(struct igb_ring
*ring
)
3775 struct e1000_hw
*hw
= &ring
->adapter
->hw
;
3776 if ((ring
->adapter
->itr_setting
& 3) && ring
->set_itr
) {
3777 switch (hw
->mac
.type
) {
3779 wr32(ring
->itr_register
, ring
->itr_val
|
3783 wr32(ring
->itr_register
, ring
->itr_val
|
3784 (ring
->itr_val
<< 16));
3791 static irqreturn_t
igb_msix_rx(int irq
, void *data
)
3793 struct igb_ring
*rx_ring
= data
;
3795 /* Write the ITR value calculated at the end of the
3796 * previous interrupt.
3799 igb_write_itr(rx_ring
);
3801 if (napi_schedule_prep(&rx_ring
->napi
))
3802 __napi_schedule(&rx_ring
->napi
);
3804 #ifdef CONFIG_IGB_DCA
3805 if (rx_ring
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3806 igb_update_rx_dca(rx_ring
);
3811 #ifdef CONFIG_IGB_DCA
3812 static void igb_update_rx_dca(struct igb_ring
*rx_ring
)
3815 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3816 struct e1000_hw
*hw
= &adapter
->hw
;
3817 int cpu
= get_cpu();
3818 int q
= rx_ring
->reg_idx
;
3820 if (rx_ring
->cpu
!= cpu
) {
3821 dca_rxctrl
= rd32(E1000_DCA_RXCTRL(q
));
3822 if (hw
->mac
.type
== e1000_82576
) {
3823 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK_82576
;
3824 dca_rxctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
) <<
3825 E1000_DCA_RXCTRL_CPUID_SHIFT
;
3827 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK
;
3828 dca_rxctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
);
3830 dca_rxctrl
|= E1000_DCA_RXCTRL_DESC_DCA_EN
;
3831 dca_rxctrl
|= E1000_DCA_RXCTRL_HEAD_DCA_EN
;
3832 dca_rxctrl
|= E1000_DCA_RXCTRL_DATA_DCA_EN
;
3833 wr32(E1000_DCA_RXCTRL(q
), dca_rxctrl
);
3839 static void igb_update_tx_dca(struct igb_ring
*tx_ring
)
3842 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3843 struct e1000_hw
*hw
= &adapter
->hw
;
3844 int cpu
= get_cpu();
3845 int q
= tx_ring
->reg_idx
;
3847 if (tx_ring
->cpu
!= cpu
) {
3848 dca_txctrl
= rd32(E1000_DCA_TXCTRL(q
));
3849 if (hw
->mac
.type
== e1000_82576
) {
3850 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK_82576
;
3851 dca_txctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
) <<
3852 E1000_DCA_TXCTRL_CPUID_SHIFT
;
3854 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK
;
3855 dca_txctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
);
3857 dca_txctrl
|= E1000_DCA_TXCTRL_DESC_DCA_EN
;
3858 wr32(E1000_DCA_TXCTRL(q
), dca_txctrl
);
3864 static void igb_setup_dca(struct igb_adapter
*adapter
)
3866 struct e1000_hw
*hw
= &adapter
->hw
;
3869 if (!(adapter
->flags
& IGB_FLAG_DCA_ENABLED
))
3872 /* Always use CB2 mode, difference is masked in the CB driver. */
3873 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_CB2
);
3875 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3876 adapter
->tx_ring
[i
].cpu
= -1;
3877 igb_update_tx_dca(&adapter
->tx_ring
[i
]);
3879 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
3880 adapter
->rx_ring
[i
].cpu
= -1;
3881 igb_update_rx_dca(&adapter
->rx_ring
[i
]);
3885 static int __igb_notify_dca(struct device
*dev
, void *data
)
3887 struct net_device
*netdev
= dev_get_drvdata(dev
);
3888 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3889 struct e1000_hw
*hw
= &adapter
->hw
;
3890 unsigned long event
= *(unsigned long *)data
;
3893 case DCA_PROVIDER_ADD
:
3894 /* if already enabled, don't do it again */
3895 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3897 /* Always use CB2 mode, difference is masked
3898 * in the CB driver. */
3899 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_CB2
);
3900 if (dca_add_requester(dev
) == 0) {
3901 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
3902 dev_info(&adapter
->pdev
->dev
, "DCA enabled\n");
3903 igb_setup_dca(adapter
);
3906 /* Fall Through since DCA is disabled. */
3907 case DCA_PROVIDER_REMOVE
:
3908 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
3909 /* without this a class_device is left
3910 * hanging around in the sysfs model */
3911 dca_remove_requester(dev
);
3912 dev_info(&adapter
->pdev
->dev
, "DCA disabled\n");
3913 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
3914 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_DISABLE
);
3922 static int igb_notify_dca(struct notifier_block
*nb
, unsigned long event
,
3927 ret_val
= driver_for_each_device(&igb_driver
.driver
, NULL
, &event
,
3930 return ret_val
? NOTIFY_BAD
: NOTIFY_DONE
;
3932 #endif /* CONFIG_IGB_DCA */
3934 static void igb_ping_all_vfs(struct igb_adapter
*adapter
)
3936 struct e1000_hw
*hw
= &adapter
->hw
;
3940 for (i
= 0 ; i
< adapter
->vfs_allocated_count
; i
++) {
3941 ping
= E1000_PF_CONTROL_MSG
;
3942 if (adapter
->vf_data
[i
].clear_to_send
)
3943 ping
|= E1000_VT_MSGTYPE_CTS
;
3944 igb_write_mbx(hw
, &ping
, 1, i
);
3948 static int igb_set_vf_multicasts(struct igb_adapter
*adapter
,
3949 u32
*msgbuf
, u32 vf
)
3951 int n
= (msgbuf
[0] & E1000_VT_MSGINFO_MASK
) >> E1000_VT_MSGINFO_SHIFT
;
3952 u16
*hash_list
= (u16
*)&msgbuf
[1];
3953 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
3956 /* only up to 30 hash values supported */
3960 /* salt away the number of multi cast addresses assigned
3961 * to this VF for later use to restore when the PF multi cast
3964 vf_data
->num_vf_mc_hashes
= n
;
3966 /* VFs are limited to using the MTA hash table for their multicast
3968 for (i
= 0; i
< n
; i
++)
3969 vf_data
->vf_mc_hashes
[i
] = hash_list
[i
];
3971 /* Flush and reset the mta with the new values */
3972 igb_set_rx_mode(adapter
->netdev
);
3977 static void igb_restore_vf_multicasts(struct igb_adapter
*adapter
)
3979 struct e1000_hw
*hw
= &adapter
->hw
;
3980 struct vf_data_storage
*vf_data
;
3983 for (i
= 0; i
< adapter
->vfs_allocated_count
; i
++) {
3984 vf_data
= &adapter
->vf_data
[i
];
3985 for (j
= 0; j
< vf_data
->num_vf_mc_hashes
; j
++)
3986 igb_mta_set(hw
, vf_data
->vf_mc_hashes
[j
]);
3990 static void igb_clear_vf_vfta(struct igb_adapter
*adapter
, u32 vf
)
3992 struct e1000_hw
*hw
= &adapter
->hw
;
3993 u32 pool_mask
, reg
, vid
;
3996 pool_mask
= 1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
);
3998 /* Find the vlan filter for this id */
3999 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
4000 reg
= rd32(E1000_VLVF(i
));
4002 /* remove the vf from the pool */
4005 /* if pool is empty then remove entry from vfta */
4006 if (!(reg
& E1000_VLVF_POOLSEL_MASK
) &&
4007 (reg
& E1000_VLVF_VLANID_ENABLE
)) {
4009 vid
= reg
& E1000_VLVF_VLANID_MASK
;
4010 igb_vfta_set(hw
, vid
, false);
4013 wr32(E1000_VLVF(i
), reg
);
4016 adapter
->vf_data
[vf
].vlans_enabled
= 0;
4019 static s32
igb_vlvf_set(struct igb_adapter
*adapter
, u32 vid
, bool add
, u32 vf
)
4021 struct e1000_hw
*hw
= &adapter
->hw
;
4024 /* It is an error to call this function when VFs are not enabled */
4025 if (!adapter
->vfs_allocated_count
)
4028 /* Find the vlan filter for this id */
4029 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
4030 reg
= rd32(E1000_VLVF(i
));
4031 if ((reg
& E1000_VLVF_VLANID_ENABLE
) &&
4032 vid
== (reg
& E1000_VLVF_VLANID_MASK
))
4037 if (i
== E1000_VLVF_ARRAY_SIZE
) {
4038 /* Did not find a matching VLAN ID entry that was
4039 * enabled. Search for a free filter entry, i.e.
4040 * one without the enable bit set
4042 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
4043 reg
= rd32(E1000_VLVF(i
));
4044 if (!(reg
& E1000_VLVF_VLANID_ENABLE
))
4048 if (i
< E1000_VLVF_ARRAY_SIZE
) {
4049 /* Found an enabled/available entry */
4050 reg
|= 1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
);
4052 /* if !enabled we need to set this up in vfta */
4053 if (!(reg
& E1000_VLVF_VLANID_ENABLE
)) {
4054 /* add VID to filter table, if bit already set
4055 * PF must have added it outside of table */
4056 if (igb_vfta_set(hw
, vid
, true))
4057 reg
|= 1 << (E1000_VLVF_POOLSEL_SHIFT
+
4058 adapter
->vfs_allocated_count
);
4059 reg
|= E1000_VLVF_VLANID_ENABLE
;
4061 reg
&= ~E1000_VLVF_VLANID_MASK
;
4064 wr32(E1000_VLVF(i
), reg
);
4066 /* do not modify RLPML for PF devices */
4067 if (vf
>= adapter
->vfs_allocated_count
)
4070 if (!adapter
->vf_data
[vf
].vlans_enabled
) {
4072 reg
= rd32(E1000_VMOLR(vf
));
4073 size
= reg
& E1000_VMOLR_RLPML_MASK
;
4075 reg
&= ~E1000_VMOLR_RLPML_MASK
;
4077 wr32(E1000_VMOLR(vf
), reg
);
4079 adapter
->vf_data
[vf
].vlans_enabled
++;
4084 if (i
< E1000_VLVF_ARRAY_SIZE
) {
4085 /* remove vf from the pool */
4086 reg
&= ~(1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
));
4087 /* if pool is empty then remove entry from vfta */
4088 if (!(reg
& E1000_VLVF_POOLSEL_MASK
)) {
4090 igb_vfta_set(hw
, vid
, false);
4092 wr32(E1000_VLVF(i
), reg
);
4094 /* do not modify RLPML for PF devices */
4095 if (vf
>= adapter
->vfs_allocated_count
)
4098 adapter
->vf_data
[vf
].vlans_enabled
--;
4099 if (!adapter
->vf_data
[vf
].vlans_enabled
) {
4101 reg
= rd32(E1000_VMOLR(vf
));
4102 size
= reg
& E1000_VMOLR_RLPML_MASK
;
4104 reg
&= ~E1000_VMOLR_RLPML_MASK
;
4106 wr32(E1000_VMOLR(vf
), reg
);
4114 static int igb_set_vf_vlan(struct igb_adapter
*adapter
, u32
*msgbuf
, u32 vf
)
4116 int add
= (msgbuf
[0] & E1000_VT_MSGINFO_MASK
) >> E1000_VT_MSGINFO_SHIFT
;
4117 int vid
= (msgbuf
[1] & E1000_VLVF_VLANID_MASK
);
4119 return igb_vlvf_set(adapter
, vid
, add
, vf
);
4122 static inline void igb_vf_reset_event(struct igb_adapter
*adapter
, u32 vf
)
4124 struct e1000_hw
*hw
= &adapter
->hw
;
4126 /* disable mailbox functionality for vf */
4127 adapter
->vf_data
[vf
].clear_to_send
= false;
4129 /* reset offloads to defaults */
4130 igb_set_vmolr(hw
, vf
);
4132 /* reset vlans for device */
4133 igb_clear_vf_vfta(adapter
, vf
);
4135 /* reset multicast table array for vf */
4136 adapter
->vf_data
[vf
].num_vf_mc_hashes
= 0;
4138 /* Flush and reset the mta with the new values */
4139 igb_set_rx_mode(adapter
->netdev
);
4142 static inline void igb_vf_reset_msg(struct igb_adapter
*adapter
, u32 vf
)
4144 struct e1000_hw
*hw
= &adapter
->hw
;
4145 unsigned char *vf_mac
= adapter
->vf_data
[vf
].vf_mac_addresses
;
4146 int rar_entry
= hw
->mac
.rar_entry_count
- (vf
+ 1);
4148 u8
*addr
= (u8
*)(&msgbuf
[1]);
4150 /* process all the same items cleared in a function level reset */
4151 igb_vf_reset_event(adapter
, vf
);
4153 /* set vf mac address */
4154 igb_rar_set(hw
, vf_mac
, rar_entry
);
4155 igb_set_rah_pool(hw
, vf
, rar_entry
);
4157 /* enable transmit and receive for vf */
4158 reg
= rd32(E1000_VFTE
);
4159 wr32(E1000_VFTE
, reg
| (1 << vf
));
4160 reg
= rd32(E1000_VFRE
);
4161 wr32(E1000_VFRE
, reg
| (1 << vf
));
4163 /* enable mailbox functionality for vf */
4164 adapter
->vf_data
[vf
].clear_to_send
= true;
4166 /* reply to reset with ack and vf mac address */
4167 msgbuf
[0] = E1000_VF_RESET
| E1000_VT_MSGTYPE_ACK
;
4168 memcpy(addr
, vf_mac
, 6);
4169 igb_write_mbx(hw
, msgbuf
, 3, vf
);
4172 static int igb_set_vf_mac_addr(struct igb_adapter
*adapter
, u32
*msg
, int vf
)
4174 unsigned char *addr
= (char *)&msg
[1];
4177 if (is_valid_ether_addr(addr
))
4178 err
= igb_set_vf_mac(adapter
, vf
, addr
);
4184 static void igb_rcv_ack_from_vf(struct igb_adapter
*adapter
, u32 vf
)
4186 struct e1000_hw
*hw
= &adapter
->hw
;
4187 u32 msg
= E1000_VT_MSGTYPE_NACK
;
4189 /* if device isn't clear to send it shouldn't be reading either */
4190 if (!adapter
->vf_data
[vf
].clear_to_send
)
4191 igb_write_mbx(hw
, &msg
, 1, vf
);
4195 static void igb_msg_task(struct igb_adapter
*adapter
)
4197 struct e1000_hw
*hw
= &adapter
->hw
;
4200 for (vf
= 0; vf
< adapter
->vfs_allocated_count
; vf
++) {
4201 /* process any reset requests */
4202 if (!igb_check_for_rst(hw
, vf
)) {
4203 adapter
->vf_data
[vf
].clear_to_send
= false;
4204 igb_vf_reset_event(adapter
, vf
);
4207 /* process any messages pending */
4208 if (!igb_check_for_msg(hw
, vf
))
4209 igb_rcv_msg_from_vf(adapter
, vf
);
4211 /* process any acks */
4212 if (!igb_check_for_ack(hw
, vf
))
4213 igb_rcv_ack_from_vf(adapter
, vf
);
4218 static int igb_rcv_msg_from_vf(struct igb_adapter
*adapter
, u32 vf
)
4220 u32 mbx_size
= E1000_VFMAILBOX_SIZE
;
4221 u32 msgbuf
[mbx_size
];
4222 struct e1000_hw
*hw
= &adapter
->hw
;
4225 retval
= igb_read_mbx(hw
, msgbuf
, mbx_size
, vf
);
4228 dev_err(&adapter
->pdev
->dev
,
4229 "Error receiving message from VF\n");
4231 /* this is a message we already processed, do nothing */
4232 if (msgbuf
[0] & (E1000_VT_MSGTYPE_ACK
| E1000_VT_MSGTYPE_NACK
))
4236 * until the vf completes a reset it should not be
4237 * allowed to start any configuration.
4240 if (msgbuf
[0] == E1000_VF_RESET
) {
4241 igb_vf_reset_msg(adapter
, vf
);
4246 if (!adapter
->vf_data
[vf
].clear_to_send
) {
4247 msgbuf
[0] |= E1000_VT_MSGTYPE_NACK
;
4248 igb_write_mbx(hw
, msgbuf
, 1, vf
);
4252 switch ((msgbuf
[0] & 0xFFFF)) {
4253 case E1000_VF_SET_MAC_ADDR
:
4254 retval
= igb_set_vf_mac_addr(adapter
, msgbuf
, vf
);
4256 case E1000_VF_SET_MULTICAST
:
4257 retval
= igb_set_vf_multicasts(adapter
, msgbuf
, vf
);
4259 case E1000_VF_SET_LPE
:
4260 retval
= igb_set_vf_rlpml(adapter
, msgbuf
[1], vf
);
4262 case E1000_VF_SET_VLAN
:
4263 retval
= igb_set_vf_vlan(adapter
, msgbuf
, vf
);
4266 dev_err(&adapter
->pdev
->dev
, "Unhandled Msg %08x\n", msgbuf
[0]);
4271 /* notify the VF of the results of what it sent us */
4273 msgbuf
[0] |= E1000_VT_MSGTYPE_NACK
;
4275 msgbuf
[0] |= E1000_VT_MSGTYPE_ACK
;
4277 msgbuf
[0] |= E1000_VT_MSGTYPE_CTS
;
4279 igb_write_mbx(hw
, msgbuf
, 1, vf
);
4285 * igb_intr_msi - Interrupt Handler
4286 * @irq: interrupt number
4287 * @data: pointer to a network interface device structure
4289 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
4291 struct net_device
*netdev
= data
;
4292 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4293 struct e1000_hw
*hw
= &adapter
->hw
;
4294 /* read ICR disables interrupts using IAM */
4295 u32 icr
= rd32(E1000_ICR
);
4297 igb_write_itr(adapter
->rx_ring
);
4299 if(icr
& E1000_ICR_DOUTSYNC
) {
4300 /* HW is reporting DMA is out of sync */
4301 adapter
->stats
.doosync
++;
4304 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
4305 hw
->mac
.get_link_status
= 1;
4306 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4307 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
4310 napi_schedule(&adapter
->rx_ring
[0].napi
);
4316 * igb_intr - Legacy Interrupt Handler
4317 * @irq: interrupt number
4318 * @data: pointer to a network interface device structure
4320 static irqreturn_t
igb_intr(int irq
, void *data
)
4322 struct net_device
*netdev
= data
;
4323 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4324 struct e1000_hw
*hw
= &adapter
->hw
;
4325 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4326 * need for the IMC write */
4327 u32 icr
= rd32(E1000_ICR
);
4329 return IRQ_NONE
; /* Not our interrupt */
4331 igb_write_itr(adapter
->rx_ring
);
4333 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4334 * not set, then the adapter didn't send an interrupt */
4335 if (!(icr
& E1000_ICR_INT_ASSERTED
))
4338 if(icr
& E1000_ICR_DOUTSYNC
) {
4339 /* HW is reporting DMA is out of sync */
4340 adapter
->stats
.doosync
++;
4343 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
4344 hw
->mac
.get_link_status
= 1;
4345 /* guard against interrupt when we're going down */
4346 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4347 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
4350 napi_schedule(&adapter
->rx_ring
[0].napi
);
4355 static inline void igb_rx_irq_enable(struct igb_ring
*rx_ring
)
4357 struct igb_adapter
*adapter
= rx_ring
->adapter
;
4358 struct e1000_hw
*hw
= &adapter
->hw
;
4360 if (adapter
->itr_setting
& 3) {
4361 if (adapter
->num_rx_queues
== 1)
4362 igb_set_itr(adapter
);
4364 igb_update_ring_itr(rx_ring
);
4367 if (!test_bit(__IGB_DOWN
, &adapter
->state
)) {
4368 if (adapter
->msix_entries
)
4369 wr32(E1000_EIMS
, rx_ring
->eims_value
);
4371 igb_irq_enable(adapter
);
4376 * igb_poll - NAPI Rx polling callback
4377 * @napi: napi polling structure
4378 * @budget: count of how many packets we should handle
4380 static int igb_poll(struct napi_struct
*napi
, int budget
)
4382 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
4385 #ifdef CONFIG_IGB_DCA
4386 if (rx_ring
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
4387 igb_update_rx_dca(rx_ring
);
4389 igb_clean_rx_irq_adv(rx_ring
, &work_done
, budget
);
4391 if (rx_ring
->buddy
) {
4392 #ifdef CONFIG_IGB_DCA
4393 if (rx_ring
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
4394 igb_update_tx_dca(rx_ring
->buddy
);
4396 if (!igb_clean_tx_irq(rx_ring
->buddy
))
4400 /* If not enough Rx work done, exit the polling mode */
4401 if (work_done
< budget
) {
4402 napi_complete(napi
);
4403 igb_rx_irq_enable(rx_ring
);
4410 * igb_hwtstamp - utility function which checks for TX time stamp
4411 * @adapter: board private structure
4412 * @skb: packet that was just sent
4414 * If we were asked to do hardware stamping and such a time stamp is
4415 * available, then it must have been for this skb here because we only
4416 * allow only one such packet into the queue.
4418 static void igb_tx_hwtstamp(struct igb_adapter
*adapter
, struct sk_buff
*skb
)
4420 union skb_shared_tx
*shtx
= skb_tx(skb
);
4421 struct e1000_hw
*hw
= &adapter
->hw
;
4423 if (unlikely(shtx
->hardware
)) {
4424 u32 valid
= rd32(E1000_TSYNCTXCTL
) & E1000_TSYNCTXCTL_VALID
;
4426 u64 regval
= rd32(E1000_TXSTMPL
);
4428 struct skb_shared_hwtstamps shhwtstamps
;
4430 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
4431 regval
|= (u64
)rd32(E1000_TXSTMPH
) << 32;
4432 ns
= timecounter_cyc2time(&adapter
->clock
,
4434 timecompare_update(&adapter
->compare
, ns
);
4435 shhwtstamps
.hwtstamp
= ns_to_ktime(ns
);
4436 shhwtstamps
.syststamp
=
4437 timecompare_transform(&adapter
->compare
, ns
);
4438 skb_tstamp_tx(skb
, &shhwtstamps
);
4444 * igb_clean_tx_irq - Reclaim resources after transmit completes
4445 * @adapter: board private structure
4446 * returns true if ring is completely cleaned
4448 static bool igb_clean_tx_irq(struct igb_ring
*tx_ring
)
4450 struct igb_adapter
*adapter
= tx_ring
->adapter
;
4451 struct net_device
*netdev
= adapter
->netdev
;
4452 struct e1000_hw
*hw
= &adapter
->hw
;
4453 struct igb_buffer
*buffer_info
;
4454 struct sk_buff
*skb
;
4455 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
4456 unsigned int total_bytes
= 0, total_packets
= 0;
4457 unsigned int i
, eop
, count
= 0;
4458 bool cleaned
= false;
4460 i
= tx_ring
->next_to_clean
;
4461 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
4462 eop_desc
= E1000_TX_DESC_ADV(*tx_ring
, eop
);
4464 while ((eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
4465 (count
< tx_ring
->count
)) {
4466 for (cleaned
= false; !cleaned
; count
++) {
4467 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
4468 buffer_info
= &tx_ring
->buffer_info
[i
];
4469 cleaned
= (i
== eop
);
4470 skb
= buffer_info
->skb
;
4473 unsigned int segs
, bytecount
;
4474 /* gso_segs is currently only valid for tcp */
4475 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
4476 /* multiply data chunks by size of headers */
4477 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
4479 total_packets
+= segs
;
4480 total_bytes
+= bytecount
;
4482 igb_tx_hwtstamp(adapter
, skb
);
4485 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
4486 tx_desc
->wb
.status
= 0;
4489 if (i
== tx_ring
->count
)
4492 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
4493 eop_desc
= E1000_TX_DESC_ADV(*tx_ring
, eop
);
4496 tx_ring
->next_to_clean
= i
;
4498 if (unlikely(count
&&
4499 netif_carrier_ok(netdev
) &&
4500 igb_desc_unused(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
4501 /* Make sure that anybody stopping the queue after this
4502 * sees the new next_to_clean.
4505 if (__netif_subqueue_stopped(netdev
, tx_ring
->queue_index
) &&
4506 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
4507 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
4508 ++adapter
->restart_queue
;
4512 if (tx_ring
->detect_tx_hung
) {
4513 /* Detect a transmit hang in hardware, this serializes the
4514 * check with the clearing of time_stamp and movement of i */
4515 tx_ring
->detect_tx_hung
= false;
4516 if (tx_ring
->buffer_info
[i
].time_stamp
&&
4517 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
4518 (adapter
->tx_timeout_factor
* HZ
))
4519 && !(rd32(E1000_STATUS
) &
4520 E1000_STATUS_TXOFF
)) {
4522 /* detected Tx unit hang */
4523 dev_err(&adapter
->pdev
->dev
,
4524 "Detected Tx Unit Hang\n"
4528 " next_to_use <%x>\n"
4529 " next_to_clean <%x>\n"
4530 "buffer_info[next_to_clean]\n"
4531 " time_stamp <%lx>\n"
4532 " next_to_watch <%x>\n"
4534 " desc.status <%x>\n",
4535 tx_ring
->queue_index
,
4536 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
4537 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
4538 tx_ring
->next_to_use
,
4539 tx_ring
->next_to_clean
,
4540 tx_ring
->buffer_info
[i
].time_stamp
,
4543 eop_desc
->wb
.status
);
4544 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
4547 tx_ring
->total_bytes
+= total_bytes
;
4548 tx_ring
->total_packets
+= total_packets
;
4549 tx_ring
->tx_stats
.bytes
+= total_bytes
;
4550 tx_ring
->tx_stats
.packets
+= total_packets
;
4551 adapter
->net_stats
.tx_bytes
+= total_bytes
;
4552 adapter
->net_stats
.tx_packets
+= total_packets
;
4553 return (count
< tx_ring
->count
);
4557 * igb_receive_skb - helper function to handle rx indications
4558 * @ring: pointer to receive ring receving this packet
4559 * @status: descriptor status field as written by hardware
4560 * @rx_desc: receive descriptor containing vlan and type information.
4561 * @skb: pointer to sk_buff to be indicated to stack
4563 static void igb_receive_skb(struct igb_ring
*ring
, u8 status
,
4564 union e1000_adv_rx_desc
* rx_desc
,
4565 struct sk_buff
*skb
)
4567 struct igb_adapter
* adapter
= ring
->adapter
;
4568 bool vlan_extracted
= (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
));
4570 skb_record_rx_queue(skb
, ring
->queue_index
);
4572 vlan_gro_receive(&ring
->napi
, adapter
->vlgrp
,
4573 le16_to_cpu(rx_desc
->wb
.upper
.vlan
),
4576 napi_gro_receive(&ring
->napi
, skb
);
4579 static inline void igb_rx_checksum_adv(struct igb_adapter
*adapter
,
4580 u32 status_err
, struct sk_buff
*skb
)
4582 skb
->ip_summed
= CHECKSUM_NONE
;
4584 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4585 if ((status_err
& E1000_RXD_STAT_IXSM
) ||
4586 (adapter
->flags
& IGB_FLAG_RX_CSUM_DISABLED
))
4588 /* TCP/UDP checksum error bit is set */
4590 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
4592 * work around errata with sctp packets where the TCPE aka
4593 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4594 * packets, (aka let the stack check the crc32c)
4596 if (!((adapter
->hw
.mac
.type
== e1000_82576
) &&
4598 adapter
->hw_csum_err
++;
4599 /* let the stack verify checksum errors */
4602 /* It must be a TCP or UDP packet with a valid checksum */
4603 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
4604 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
4606 dev_dbg(&adapter
->pdev
->dev
, "cksum success: bits %08X\n", status_err
);
4607 adapter
->hw_csum_good
++;
4610 static inline u16
igb_get_hlen(struct igb_adapter
*adapter
,
4611 union e1000_adv_rx_desc
*rx_desc
)
4613 /* HW will not DMA in data larger than the given buffer, even if it
4614 * parses the (NFS, of course) header to be larger. In that case, it
4615 * fills the header buffer and spills the rest into the page.
4617 u16 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hdr_info
) &
4618 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
4619 if (hlen
> adapter
->rx_ps_hdr_size
)
4620 hlen
= adapter
->rx_ps_hdr_size
;
4624 static bool igb_clean_rx_irq_adv(struct igb_ring
*rx_ring
,
4625 int *work_done
, int budget
)
4627 struct igb_adapter
*adapter
= rx_ring
->adapter
;
4628 struct net_device
*netdev
= adapter
->netdev
;
4629 struct e1000_hw
*hw
= &adapter
->hw
;
4630 struct pci_dev
*pdev
= adapter
->pdev
;
4631 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
4632 struct igb_buffer
*buffer_info
, *next_buffer
;
4633 struct sk_buff
*skb
;
4634 bool cleaned
= false;
4635 int cleaned_count
= 0;
4636 unsigned int total_bytes
= 0, total_packets
= 0;
4641 i
= rx_ring
->next_to_clean
;
4642 buffer_info
= &rx_ring
->buffer_info
[i
];
4643 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
4644 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
4646 while (staterr
& E1000_RXD_STAT_DD
) {
4647 if (*work_done
>= budget
)
4651 skb
= buffer_info
->skb
;
4652 prefetch(skb
->data
- NET_IP_ALIGN
);
4653 buffer_info
->skb
= NULL
;
4656 if (i
== rx_ring
->count
)
4658 next_rxd
= E1000_RX_DESC_ADV(*rx_ring
, i
);
4660 next_buffer
= &rx_ring
->buffer_info
[i
];
4662 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
4666 /* this is the fast path for the non-packet split case */
4667 if (!adapter
->rx_ps_hdr_size
) {
4668 pci_unmap_single(pdev
, buffer_info
->dma
,
4669 adapter
->rx_buffer_len
,
4670 PCI_DMA_FROMDEVICE
);
4671 buffer_info
->dma
= 0;
4672 skb_put(skb
, length
);
4676 if (buffer_info
->dma
) {
4677 u16 hlen
= igb_get_hlen(adapter
, rx_desc
);
4678 pci_unmap_single(pdev
, buffer_info
->dma
,
4679 adapter
->rx_ps_hdr_size
,
4680 PCI_DMA_FROMDEVICE
);
4681 buffer_info
->dma
= 0;
4686 pci_unmap_page(pdev
, buffer_info
->page_dma
,
4687 PAGE_SIZE
/ 2, PCI_DMA_FROMDEVICE
);
4688 buffer_info
->page_dma
= 0;
4690 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
++,
4692 buffer_info
->page_offset
,
4695 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
4696 (page_count(buffer_info
->page
) != 1))
4697 buffer_info
->page
= NULL
;
4699 get_page(buffer_info
->page
);
4702 skb
->data_len
+= length
;
4704 skb
->truesize
+= length
;
4707 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
4708 buffer_info
->skb
= next_buffer
->skb
;
4709 buffer_info
->dma
= next_buffer
->dma
;
4710 next_buffer
->skb
= skb
;
4711 next_buffer
->dma
= 0;
4716 * If this bit is set, then the RX registers contain
4717 * the time stamp. No other packet will be time
4718 * stamped until we read these registers, so read the
4719 * registers to make them available again. Because
4720 * only one packet can be time stamped at a time, we
4721 * know that the register values must belong to this
4722 * one here and therefore we don't need to compare
4723 * any of the additional attributes stored for it.
4725 * If nothing went wrong, then it should have a
4726 * skb_shared_tx that we can turn into a
4727 * skb_shared_hwtstamps.
4729 * TODO: can time stamping be triggered (thus locking
4730 * the registers) without the packet reaching this point
4731 * here? In that case RX time stamping would get stuck.
4733 * TODO: in "time stamp all packets" mode this bit is
4734 * not set. Need a global flag for this mode and then
4735 * always read the registers. Cannot be done without
4738 if (unlikely(staterr
& E1000_RXD_STAT_TS
)) {
4741 struct skb_shared_hwtstamps
*shhwtstamps
=
4744 WARN(!(rd32(E1000_TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
),
4745 "igb: no RX time stamp available for time stamped packet");
4746 regval
= rd32(E1000_RXSTMPL
);
4747 regval
|= (u64
)rd32(E1000_RXSTMPH
) << 32;
4748 ns
= timecounter_cyc2time(&adapter
->clock
, regval
);
4749 timecompare_update(&adapter
->compare
, ns
);
4750 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
4751 shhwtstamps
->hwtstamp
= ns_to_ktime(ns
);
4752 shhwtstamps
->syststamp
=
4753 timecompare_transform(&adapter
->compare
, ns
);
4756 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
4757 dev_kfree_skb_irq(skb
);
4761 total_bytes
+= skb
->len
;
4764 igb_rx_checksum_adv(adapter
, staterr
, skb
);
4766 skb
->protocol
= eth_type_trans(skb
, netdev
);
4768 igb_receive_skb(rx_ring
, staterr
, rx_desc
, skb
);
4771 rx_desc
->wb
.upper
.status_error
= 0;
4773 /* return some buffers to hardware, one at a time is too slow */
4774 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
4775 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
4779 /* use prefetched values */
4781 buffer_info
= next_buffer
;
4782 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
4785 rx_ring
->next_to_clean
= i
;
4786 cleaned_count
= igb_desc_unused(rx_ring
);
4789 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
4791 rx_ring
->total_packets
+= total_packets
;
4792 rx_ring
->total_bytes
+= total_bytes
;
4793 rx_ring
->rx_stats
.packets
+= total_packets
;
4794 rx_ring
->rx_stats
.bytes
+= total_bytes
;
4795 adapter
->net_stats
.rx_bytes
+= total_bytes
;
4796 adapter
->net_stats
.rx_packets
+= total_packets
;
4801 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4802 * @adapter: address of board private structure
4804 static void igb_alloc_rx_buffers_adv(struct igb_ring
*rx_ring
,
4807 struct igb_adapter
*adapter
= rx_ring
->adapter
;
4808 struct net_device
*netdev
= adapter
->netdev
;
4809 struct pci_dev
*pdev
= adapter
->pdev
;
4810 union e1000_adv_rx_desc
*rx_desc
;
4811 struct igb_buffer
*buffer_info
;
4812 struct sk_buff
*skb
;
4816 i
= rx_ring
->next_to_use
;
4817 buffer_info
= &rx_ring
->buffer_info
[i
];
4819 if (adapter
->rx_ps_hdr_size
)
4820 bufsz
= adapter
->rx_ps_hdr_size
;
4822 bufsz
= adapter
->rx_buffer_len
;
4824 while (cleaned_count
--) {
4825 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
4827 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
4828 if (!buffer_info
->page
) {
4829 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4830 if (!buffer_info
->page
) {
4831 adapter
->alloc_rx_buff_failed
++;
4834 buffer_info
->page_offset
= 0;
4836 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
4838 buffer_info
->page_dma
=
4839 pci_map_page(pdev
, buffer_info
->page
,
4840 buffer_info
->page_offset
,
4842 PCI_DMA_FROMDEVICE
);
4845 if (!buffer_info
->skb
) {
4846 skb
= netdev_alloc_skb(netdev
, bufsz
+ NET_IP_ALIGN
);
4848 adapter
->alloc_rx_buff_failed
++;
4852 /* Make buffer alignment 2 beyond a 16 byte boundary
4853 * this will result in a 16 byte aligned IP header after
4854 * the 14 byte MAC header is removed
4856 skb_reserve(skb
, NET_IP_ALIGN
);
4858 buffer_info
->skb
= skb
;
4859 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4861 PCI_DMA_FROMDEVICE
);
4863 /* Refresh the desc even if buffer_addrs didn't change because
4864 * each write-back erases this info. */
4865 if (adapter
->rx_ps_hdr_size
) {
4866 rx_desc
->read
.pkt_addr
=
4867 cpu_to_le64(buffer_info
->page_dma
);
4868 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
4870 rx_desc
->read
.pkt_addr
=
4871 cpu_to_le64(buffer_info
->dma
);
4872 rx_desc
->read
.hdr_addr
= 0;
4876 if (i
== rx_ring
->count
)
4878 buffer_info
= &rx_ring
->buffer_info
[i
];
4882 if (rx_ring
->next_to_use
!= i
) {
4883 rx_ring
->next_to_use
= i
;
4885 i
= (rx_ring
->count
- 1);
4889 /* Force memory writes to complete before letting h/w
4890 * know there are new descriptors to fetch. (Only
4891 * applicable for weak-ordered memory model archs,
4892 * such as IA-64). */
4894 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
4904 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4906 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4907 struct mii_ioctl_data
*data
= if_mii(ifr
);
4909 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
4914 data
->phy_id
= adapter
->hw
.phy
.addr
;
4917 if (igb_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
4929 * igb_hwtstamp_ioctl - control hardware time stamping
4934 * Outgoing time stamping can be enabled and disabled. Play nice and
4935 * disable it when requested, although it shouldn't case any overhead
4936 * when no packet needs it. At most one packet in the queue may be
4937 * marked for time stamping, otherwise it would be impossible to tell
4938 * for sure to which packet the hardware time stamp belongs.
4940 * Incoming time stamping has to be configured via the hardware
4941 * filters. Not all combinations are supported, in particular event
4942 * type has to be specified. Matching the kind of event packet is
4943 * not supported, with the exception of "all V2 events regardless of
4947 static int igb_hwtstamp_ioctl(struct net_device
*netdev
,
4948 struct ifreq
*ifr
, int cmd
)
4950 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4951 struct e1000_hw
*hw
= &adapter
->hw
;
4952 struct hwtstamp_config config
;
4953 u32 tsync_tx_ctl_bit
= E1000_TSYNCTXCTL_ENABLED
;
4954 u32 tsync_rx_ctl_bit
= E1000_TSYNCRXCTL_ENABLED
;
4955 u32 tsync_rx_ctl_type
= 0;
4956 u32 tsync_rx_cfg
= 0;
4959 short port
= 319; /* PTP */
4962 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
4965 /* reserved for future extensions */
4969 switch (config
.tx_type
) {
4970 case HWTSTAMP_TX_OFF
:
4971 tsync_tx_ctl_bit
= 0;
4973 case HWTSTAMP_TX_ON
:
4974 tsync_tx_ctl_bit
= E1000_TSYNCTXCTL_ENABLED
;
4980 switch (config
.rx_filter
) {
4981 case HWTSTAMP_FILTER_NONE
:
4982 tsync_rx_ctl_bit
= 0;
4984 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
4985 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
4986 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
4987 case HWTSTAMP_FILTER_ALL
:
4989 * register TSYNCRXCFG must be set, therefore it is not
4990 * possible to time stamp both Sync and Delay_Req messages
4991 * => fall back to time stamping all packets
4993 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_ALL
;
4994 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
4996 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
4997 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_L4_V1
;
4998 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE
;
5001 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
5002 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_L4_V1
;
5003 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE
;
5006 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
5007 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
5008 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
5009 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE
;
5012 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
5014 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
5015 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
5016 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
5017 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE
;
5020 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
5022 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
5023 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
5024 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
5025 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
5026 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
5033 /* enable/disable TX */
5034 regval
= rd32(E1000_TSYNCTXCTL
);
5035 regval
= (regval
& ~E1000_TSYNCTXCTL_ENABLED
) | tsync_tx_ctl_bit
;
5036 wr32(E1000_TSYNCTXCTL
, regval
);
5038 /* enable/disable RX, define which PTP packets are time stamped */
5039 regval
= rd32(E1000_TSYNCRXCTL
);
5040 regval
= (regval
& ~E1000_TSYNCRXCTL_ENABLED
) | tsync_rx_ctl_bit
;
5041 regval
= (regval
& ~0xE) | tsync_rx_ctl_type
;
5042 wr32(E1000_TSYNCRXCTL
, regval
);
5043 wr32(E1000_TSYNCRXCFG
, tsync_rx_cfg
);
5046 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
5047 * (Ethertype to filter on)
5048 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
5049 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
5051 wr32(E1000_ETQF0
, is_l2
? 0x440088f7 : 0);
5053 /* L4 Queue Filter[0]: only filter by source and destination port */
5054 wr32(E1000_SPQF0
, htons(port
));
5055 wr32(E1000_IMIREXT(0), is_l4
?
5056 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
5057 wr32(E1000_IMIR(0), is_l4
?
5059 | (0<<16) /* immediate interrupt disabled */
5060 | 0 /* (1<<17) bit cleared: do not bypass
5061 destination port check */)
5063 wr32(E1000_FTQF0
, is_l4
?
5065 | (1<<15) /* VF not compared */
5066 | (1<<27) /* Enable Timestamping */
5067 | (7<<28) /* only source port filter enabled,
5068 source/target address and protocol
5070 : ((1<<15) | (15<<28) /* all mask bits set = filter not
5075 adapter
->hwtstamp_config
= config
;
5077 /* clear TX/RX time stamp registers, just to be sure */
5078 regval
= rd32(E1000_TXSTMPH
);
5079 regval
= rd32(E1000_RXSTMPH
);
5081 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
5091 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
5097 return igb_mii_ioctl(netdev
, ifr
, cmd
);
5099 return igb_hwtstamp_ioctl(netdev
, ifr
, cmd
);
5105 s32
igb_read_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
5107 struct igb_adapter
*adapter
= hw
->back
;
5110 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
5112 return -E1000_ERR_CONFIG
;
5114 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
5119 s32
igb_write_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
5121 struct igb_adapter
*adapter
= hw
->back
;
5124 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
5126 return -E1000_ERR_CONFIG
;
5128 pci_write_config_word(adapter
->pdev
, cap_offset
+ reg
, *value
);
5133 static void igb_vlan_rx_register(struct net_device
*netdev
,
5134 struct vlan_group
*grp
)
5136 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5137 struct e1000_hw
*hw
= &adapter
->hw
;
5140 igb_irq_disable(adapter
);
5141 adapter
->vlgrp
= grp
;
5144 /* enable VLAN tag insert/strip */
5145 ctrl
= rd32(E1000_CTRL
);
5146 ctrl
|= E1000_CTRL_VME
;
5147 wr32(E1000_CTRL
, ctrl
);
5149 /* enable VLAN receive filtering */
5150 rctl
= rd32(E1000_RCTL
);
5151 rctl
&= ~E1000_RCTL_CFIEN
;
5152 wr32(E1000_RCTL
, rctl
);
5153 igb_update_mng_vlan(adapter
);
5155 /* disable VLAN tag insert/strip */
5156 ctrl
= rd32(E1000_CTRL
);
5157 ctrl
&= ~E1000_CTRL_VME
;
5158 wr32(E1000_CTRL
, ctrl
);
5160 if (adapter
->mng_vlan_id
!= (u16
)IGB_MNG_VLAN_NONE
) {
5161 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
5162 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
5166 igb_rlpml_set(adapter
);
5168 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
5169 igb_irq_enable(adapter
);
5172 static void igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
5174 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5175 struct e1000_hw
*hw
= &adapter
->hw
;
5176 int pf_id
= adapter
->vfs_allocated_count
;
5178 if ((hw
->mng_cookie
.status
&
5179 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
5180 (vid
== adapter
->mng_vlan_id
))
5183 /* add vid to vlvf if sr-iov is enabled,
5184 * if that fails add directly to filter table */
5185 if (igb_vlvf_set(adapter
, vid
, true, pf_id
))
5186 igb_vfta_set(hw
, vid
, true);
5190 static void igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
5192 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5193 struct e1000_hw
*hw
= &adapter
->hw
;
5194 int pf_id
= adapter
->vfs_allocated_count
;
5196 igb_irq_disable(adapter
);
5197 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
5199 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
5200 igb_irq_enable(adapter
);
5202 if ((adapter
->hw
.mng_cookie
.status
&
5203 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
5204 (vid
== adapter
->mng_vlan_id
)) {
5205 /* release control to f/w */
5206 igb_release_hw_control(adapter
);
5210 /* remove vid from vlvf if sr-iov is enabled,
5211 * if not in vlvf remove from vfta */
5212 if (igb_vlvf_set(adapter
, vid
, false, pf_id
))
5213 igb_vfta_set(hw
, vid
, false);
5216 static void igb_restore_vlan(struct igb_adapter
*adapter
)
5218 igb_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
5220 if (adapter
->vlgrp
) {
5222 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
5223 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
5225 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
5230 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u16 spddplx
)
5232 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
5237 case SPEED_10
+ DUPLEX_HALF
:
5238 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
5240 case SPEED_10
+ DUPLEX_FULL
:
5241 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
5243 case SPEED_100
+ DUPLEX_HALF
:
5244 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
5246 case SPEED_100
+ DUPLEX_FULL
:
5247 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
5249 case SPEED_1000
+ DUPLEX_FULL
:
5251 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
5253 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
5255 dev_err(&adapter
->pdev
->dev
,
5256 "Unsupported Speed/Duplex configuration\n");
5262 static int __igb_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
5264 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5265 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5266 struct e1000_hw
*hw
= &adapter
->hw
;
5267 u32 ctrl
, rctl
, status
;
5268 u32 wufc
= adapter
->wol
;
5273 netif_device_detach(netdev
);
5275 if (netif_running(netdev
))
5278 igb_reset_interrupt_capability(adapter
);
5280 igb_free_queues(adapter
);
5283 retval
= pci_save_state(pdev
);
5288 status
= rd32(E1000_STATUS
);
5289 if (status
& E1000_STATUS_LU
)
5290 wufc
&= ~E1000_WUFC_LNKC
;
5293 igb_setup_rctl(adapter
);
5294 igb_set_rx_mode(netdev
);
5296 /* turn on all-multi mode if wake on multicast is enabled */
5297 if (wufc
& E1000_WUFC_MC
) {
5298 rctl
= rd32(E1000_RCTL
);
5299 rctl
|= E1000_RCTL_MPE
;
5300 wr32(E1000_RCTL
, rctl
);
5303 ctrl
= rd32(E1000_CTRL
);
5304 /* advertise wake from D3Cold */
5305 #define E1000_CTRL_ADVD3WUC 0x00100000
5306 /* phy power management enable */
5307 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5308 ctrl
|= E1000_CTRL_ADVD3WUC
;
5309 wr32(E1000_CTRL
, ctrl
);
5311 /* Allow time for pending master requests to run */
5312 igb_disable_pcie_master(&adapter
->hw
);
5314 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
5315 wr32(E1000_WUFC
, wufc
);
5318 wr32(E1000_WUFC
, 0);
5321 *enable_wake
= wufc
|| adapter
->en_mng_pt
;
5323 igb_shutdown_serdes_link_82575(hw
);
5325 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5326 * would have already happened in close and is redundant. */
5327 igb_release_hw_control(adapter
);
5329 pci_disable_device(pdev
);
5335 static int igb_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5340 retval
= __igb_shutdown(pdev
, &wake
);
5345 pci_prepare_to_sleep(pdev
);
5347 pci_wake_from_d3(pdev
, false);
5348 pci_set_power_state(pdev
, PCI_D3hot
);
5354 static int igb_resume(struct pci_dev
*pdev
)
5356 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5357 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5358 struct e1000_hw
*hw
= &adapter
->hw
;
5361 pci_set_power_state(pdev
, PCI_D0
);
5362 pci_restore_state(pdev
);
5364 err
= pci_enable_device_mem(pdev
);
5367 "igb: Cannot enable PCI device from suspend\n");
5370 pci_set_master(pdev
);
5372 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5373 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5375 igb_set_interrupt_capability(adapter
);
5377 if (igb_alloc_queues(adapter
)) {
5378 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
5382 /* e1000_power_up_phy(adapter); */
5386 /* let the f/w know that the h/w is now under the control of the
5388 igb_get_hw_control(adapter
);
5390 wr32(E1000_WUS
, ~0);
5392 if (netif_running(netdev
)) {
5393 err
= igb_open(netdev
);
5398 netif_device_attach(netdev
);
5404 static void igb_shutdown(struct pci_dev
*pdev
)
5408 __igb_shutdown(pdev
, &wake
);
5410 if (system_state
== SYSTEM_POWER_OFF
) {
5411 pci_wake_from_d3(pdev
, wake
);
5412 pci_set_power_state(pdev
, PCI_D3hot
);
5416 #ifdef CONFIG_NET_POLL_CONTROLLER
5418 * Polling 'interrupt' - used by things like netconsole to send skbs
5419 * without having to re-enable interrupts. It's not called while
5420 * the interrupt routine is executing.
5422 static void igb_netpoll(struct net_device
*netdev
)
5424 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5425 struct e1000_hw
*hw
= &adapter
->hw
;
5428 if (!adapter
->msix_entries
) {
5429 igb_irq_disable(adapter
);
5430 napi_schedule(&adapter
->rx_ring
[0].napi
);
5434 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
5435 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
5436 wr32(E1000_EIMC
, tx_ring
->eims_value
);
5437 igb_clean_tx_irq(tx_ring
);
5438 wr32(E1000_EIMS
, tx_ring
->eims_value
);
5441 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
5442 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
5443 wr32(E1000_EIMC
, rx_ring
->eims_value
);
5444 napi_schedule(&rx_ring
->napi
);
5447 #endif /* CONFIG_NET_POLL_CONTROLLER */
5450 * igb_io_error_detected - called when PCI error is detected
5451 * @pdev: Pointer to PCI device
5452 * @state: The current pci connection state
5454 * This function is called after a PCI bus error affecting
5455 * this device has been detected.
5457 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
5458 pci_channel_state_t state
)
5460 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5461 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5463 netif_device_detach(netdev
);
5465 if (state
== pci_channel_io_perm_failure
)
5466 return PCI_ERS_RESULT_DISCONNECT
;
5468 if (netif_running(netdev
))
5470 pci_disable_device(pdev
);
5472 /* Request a slot slot reset. */
5473 return PCI_ERS_RESULT_NEED_RESET
;
5477 * igb_io_slot_reset - called after the pci bus has been reset.
5478 * @pdev: Pointer to PCI device
5480 * Restart the card from scratch, as if from a cold-boot. Implementation
5481 * resembles the first-half of the igb_resume routine.
5483 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
5485 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5486 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5487 struct e1000_hw
*hw
= &adapter
->hw
;
5488 pci_ers_result_t result
;
5491 if (pci_enable_device_mem(pdev
)) {
5493 "Cannot re-enable PCI device after reset.\n");
5494 result
= PCI_ERS_RESULT_DISCONNECT
;
5496 pci_set_master(pdev
);
5497 pci_restore_state(pdev
);
5499 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5500 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5503 wr32(E1000_WUS
, ~0);
5504 result
= PCI_ERS_RESULT_RECOVERED
;
5507 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
5509 dev_err(&pdev
->dev
, "pci_cleanup_aer_uncorrect_error_status "
5510 "failed 0x%0x\n", err
);
5511 /* non-fatal, continue */
5518 * igb_io_resume - called when traffic can start flowing again.
5519 * @pdev: Pointer to PCI device
5521 * This callback is called when the error recovery driver tells us that
5522 * its OK to resume normal operation. Implementation resembles the
5523 * second-half of the igb_resume routine.
5525 static void igb_io_resume(struct pci_dev
*pdev
)
5527 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5528 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5530 if (netif_running(netdev
)) {
5531 if (igb_up(adapter
)) {
5532 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
5537 netif_device_attach(netdev
);
5539 /* let the f/w know that the h/w is now under the control of the
5541 igb_get_hw_control(adapter
);
5544 static int igb_set_vf_mac(struct igb_adapter
*adapter
,
5545 int vf
, unsigned char *mac_addr
)
5547 struct e1000_hw
*hw
= &adapter
->hw
;
5548 /* VF MAC addresses start at end of receive addresses and moves
5549 * torwards the first, as a result a collision should not be possible */
5550 int rar_entry
= hw
->mac
.rar_entry_count
- (vf
+ 1);
5552 memcpy(adapter
->vf_data
[vf
].vf_mac_addresses
, mac_addr
, ETH_ALEN
);
5554 igb_rar_set(hw
, mac_addr
, rar_entry
);
5555 igb_set_rah_pool(hw
, vf
, rar_entry
);
5560 static void igb_vmm_control(struct igb_adapter
*adapter
)
5562 struct e1000_hw
*hw
= &adapter
->hw
;
5565 if (!adapter
->vfs_allocated_count
)
5568 /* VF's need PF reset indication before they
5569 * can send/receive mail */
5570 reg_data
= rd32(E1000_CTRL_EXT
);
5571 reg_data
|= E1000_CTRL_EXT_PFRSTD
;
5572 wr32(E1000_CTRL_EXT
, reg_data
);
5574 igb_vmdq_set_loopback_pf(hw
, true);
5575 igb_vmdq_set_replication_pf(hw
, true);