2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/jiffies.h>
39 #include <linux/hdreg.h>
40 #include <linux/spinlock.h>
41 #include <linux/compat.h>
42 #include <linux/mutex.h>
43 #include <asm/uaccess.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/blkdev.h>
48 #include <linux/genhd.h>
49 #include <linux/completion.h>
50 #include <scsi/scsi.h>
52 #include <scsi/scsi_ioctl.h>
53 #include <linux/cdrom.h>
54 #include <linux/scatterlist.h>
55 #include <linux/kthread.h>
57 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
58 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
59 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
61 /* Embedded module documentation macros - see modules.h */
62 MODULE_AUTHOR("Hewlett-Packard Company");
63 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
64 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
65 MODULE_VERSION("3.6.26");
66 MODULE_LICENSE("GPL");
68 static DEFINE_MUTEX(cciss_mutex
);
69 static struct proc_dir_entry
*proc_cciss
;
71 #include "cciss_cmd.h"
73 #include <linux/cciss_ioctl.h>
75 /* define the PCI info for the cards we can control */
76 static const struct pci_device_id cciss_pci_device_id
[] = {
77 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISS
, 0x0E11, 0x4070},
78 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4080},
79 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4082},
80 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4083},
81 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x4091},
82 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409A},
83 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409B},
84 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409C},
85 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409D},
86 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSA
, 0x103C, 0x3225},
87 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3223},
88 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3234},
89 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3235},
90 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3211},
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3212},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3213},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3214},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3215},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3237},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x323D},
100 MODULE_DEVICE_TABLE(pci
, cciss_pci_device_id
);
102 /* board_id = Subsystem Device ID & Vendor ID
103 * product = Marketing Name for the board
104 * access = Address of the struct of function pointers
106 static struct board_type products
[] = {
107 {0x40700E11, "Smart Array 5300", &SA5_access
},
108 {0x40800E11, "Smart Array 5i", &SA5B_access
},
109 {0x40820E11, "Smart Array 532", &SA5B_access
},
110 {0x40830E11, "Smart Array 5312", &SA5B_access
},
111 {0x409A0E11, "Smart Array 641", &SA5_access
},
112 {0x409B0E11, "Smart Array 642", &SA5_access
},
113 {0x409C0E11, "Smart Array 6400", &SA5_access
},
114 {0x409D0E11, "Smart Array 6400 EM", &SA5_access
},
115 {0x40910E11, "Smart Array 6i", &SA5_access
},
116 {0x3225103C, "Smart Array P600", &SA5_access
},
117 {0x3223103C, "Smart Array P800", &SA5_access
},
118 {0x3234103C, "Smart Array P400", &SA5_access
},
119 {0x3235103C, "Smart Array P400i", &SA5_access
},
120 {0x3211103C, "Smart Array E200i", &SA5_access
},
121 {0x3212103C, "Smart Array E200", &SA5_access
},
122 {0x3213103C, "Smart Array E200i", &SA5_access
},
123 {0x3214103C, "Smart Array E200i", &SA5_access
},
124 {0x3215103C, "Smart Array E200i", &SA5_access
},
125 {0x3237103C, "Smart Array E500", &SA5_access
},
126 {0x3223103C, "Smart Array P800", &SA5_access
},
127 {0x3234103C, "Smart Array P400", &SA5_access
},
128 {0x323D103C, "Smart Array P700m", &SA5_access
},
131 /* How long to wait (in milliseconds) for board to go into simple mode */
132 #define MAX_CONFIG_WAIT 30000
133 #define MAX_IOCTL_CONFIG_WAIT 1000
135 /*define how many times we will try a command because of bus resets */
136 #define MAX_CMD_RETRIES 3
140 /* Originally cciss driver only supports 8 major numbers */
141 #define MAX_CTLR_ORIG 8
143 static ctlr_info_t
*hba
[MAX_CTLR
];
145 static struct task_struct
*cciss_scan_thread
;
146 static DEFINE_MUTEX(scan_mutex
);
147 static LIST_HEAD(scan_q
);
149 static void do_cciss_request(struct request_queue
*q
);
150 static irqreturn_t
do_cciss_intx(int irq
, void *dev_id
);
151 static irqreturn_t
do_cciss_msix_intr(int irq
, void *dev_id
);
152 static int cciss_open(struct block_device
*bdev
, fmode_t mode
);
153 static int cciss_unlocked_open(struct block_device
*bdev
, fmode_t mode
);
154 static int cciss_release(struct gendisk
*disk
, fmode_t mode
);
155 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
156 unsigned int cmd
, unsigned long arg
);
157 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
158 unsigned int cmd
, unsigned long arg
);
159 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
);
161 static int cciss_revalidate(struct gendisk
*disk
);
162 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
, int via_ioctl
);
163 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
164 int clear_all
, int via_ioctl
);
166 static void cciss_read_capacity(ctlr_info_t
*h
, int logvol
,
167 sector_t
*total_size
, unsigned int *block_size
);
168 static void cciss_read_capacity_16(ctlr_info_t
*h
, int logvol
,
169 sector_t
*total_size
, unsigned int *block_size
);
170 static void cciss_geometry_inquiry(ctlr_info_t
*h
, int logvol
,
172 unsigned int block_size
, InquiryData_struct
*inq_buff
,
173 drive_info_struct
*drv
);
174 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*);
175 static void start_io(ctlr_info_t
*h
);
176 static int sendcmd_withirq(ctlr_info_t
*h
, __u8 cmd
, void *buff
, size_t size
,
177 __u8 page_code
, unsigned char scsi3addr
[],
179 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
181 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
);
183 static int add_to_scan_list(struct ctlr_info
*h
);
184 static int scan_thread(void *data
);
185 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
);
186 static void cciss_hba_release(struct device
*dev
);
187 static void cciss_device_release(struct device
*dev
);
188 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
);
189 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
);
190 static inline u32
next_command(ctlr_info_t
*h
);
191 static int __devinit
cciss_find_cfg_addrs(struct pci_dev
*pdev
,
192 void __iomem
*vaddr
, u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
194 static int __devinit
cciss_pci_find_memory_BAR(struct pci_dev
*pdev
,
195 unsigned long *memory_bar
);
198 /* performant mode helper functions */
199 static void calc_bucket_map(int *bucket
, int num_buckets
, int nsgs
,
201 static void cciss_put_controller_into_performant_mode(ctlr_info_t
*h
);
203 #ifdef CONFIG_PROC_FS
204 static void cciss_procinit(ctlr_info_t
*h
);
206 static void cciss_procinit(ctlr_info_t
*h
)
209 #endif /* CONFIG_PROC_FS */
212 static int cciss_compat_ioctl(struct block_device
*, fmode_t
,
213 unsigned, unsigned long);
216 static const struct block_device_operations cciss_fops
= {
217 .owner
= THIS_MODULE
,
218 .open
= cciss_unlocked_open
,
219 .release
= cciss_release
,
221 .getgeo
= cciss_getgeo
,
223 .compat_ioctl
= cciss_compat_ioctl
,
225 .revalidate_disk
= cciss_revalidate
,
228 /* set_performant_mode: Modify the tag for cciss performant
229 * set bit 0 for pull model, bits 3-1 for block fetch
232 static void set_performant_mode(ctlr_info_t
*h
, CommandList_struct
*c
)
234 if (likely(h
->transMethod
== CFGTBL_Trans_Performant
))
235 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
239 * Enqueuing and dequeuing functions for cmdlists.
241 static inline void addQ(struct list_head
*list
, CommandList_struct
*c
)
243 list_add_tail(&c
->list
, list
);
246 static inline void removeQ(CommandList_struct
*c
)
249 * After kexec/dump some commands might still
250 * be in flight, which the firmware will try
251 * to complete. Resetting the firmware doesn't work
252 * with old fw revisions, so we have to mark
253 * them off as 'stale' to prevent the driver from
256 if (WARN_ON(list_empty(&c
->list
))) {
257 c
->cmd_type
= CMD_MSG_STALE
;
261 list_del_init(&c
->list
);
264 static void enqueue_cmd_and_start_io(ctlr_info_t
*h
,
265 CommandList_struct
*c
)
268 set_performant_mode(h
, c
);
269 spin_lock_irqsave(&h
->lock
, flags
);
272 if (h
->Qdepth
> h
->maxQsinceinit
)
273 h
->maxQsinceinit
= h
->Qdepth
;
275 spin_unlock_irqrestore(&h
->lock
, flags
);
278 static void cciss_free_sg_chain_blocks(SGDescriptor_struct
**cmd_sg_list
,
285 for (i
= 0; i
< nr_cmds
; i
++) {
286 kfree(cmd_sg_list
[i
]);
287 cmd_sg_list
[i
] = NULL
;
292 static SGDescriptor_struct
**cciss_allocate_sg_chain_blocks(
293 ctlr_info_t
*h
, int chainsize
, int nr_cmds
)
296 SGDescriptor_struct
**cmd_sg_list
;
301 cmd_sg_list
= kmalloc(sizeof(*cmd_sg_list
) * nr_cmds
, GFP_KERNEL
);
305 /* Build up chain blocks for each command */
306 for (j
= 0; j
< nr_cmds
; j
++) {
307 /* Need a block of chainsized s/g elements. */
308 cmd_sg_list
[j
] = kmalloc((chainsize
*
309 sizeof(*cmd_sg_list
[j
])), GFP_KERNEL
);
310 if (!cmd_sg_list
[j
]) {
311 dev_err(&h
->pdev
->dev
, "Cannot get memory "
312 "for s/g chains.\n");
318 cciss_free_sg_chain_blocks(cmd_sg_list
, nr_cmds
);
322 static void cciss_unmap_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
)
324 SGDescriptor_struct
*chain_sg
;
327 if (c
->Header
.SGTotal
<= h
->max_cmd_sgentries
)
330 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
331 temp64
.val32
.lower
= chain_sg
->Addr
.lower
;
332 temp64
.val32
.upper
= chain_sg
->Addr
.upper
;
333 pci_unmap_single(h
->pdev
, temp64
.val
, chain_sg
->Len
, PCI_DMA_TODEVICE
);
336 static void cciss_map_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
,
337 SGDescriptor_struct
*chain_block
, int len
)
339 SGDescriptor_struct
*chain_sg
;
342 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
343 chain_sg
->Ext
= CCISS_SG_CHAIN
;
345 temp64
.val
= pci_map_single(h
->pdev
, chain_block
, len
,
347 chain_sg
->Addr
.lower
= temp64
.val32
.lower
;
348 chain_sg
->Addr
.upper
= temp64
.val32
.upper
;
351 #include "cciss_scsi.c" /* For SCSI tape support */
353 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
356 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
358 #ifdef CONFIG_PROC_FS
361 * Report information about this controller.
363 #define ENG_GIG 1000000000
364 #define ENG_GIG_FACTOR (ENG_GIG/512)
365 #define ENGAGE_SCSI "engage scsi"
367 static void cciss_seq_show_header(struct seq_file
*seq
)
369 ctlr_info_t
*h
= seq
->private;
371 seq_printf(seq
, "%s: HP %s Controller\n"
372 "Board ID: 0x%08lx\n"
373 "Firmware Version: %c%c%c%c\n"
375 "Logical drives: %d\n"
376 "Current Q depth: %d\n"
377 "Current # commands on controller: %d\n"
378 "Max Q depth since init: %d\n"
379 "Max # commands on controller since init: %d\n"
380 "Max SG entries since init: %d\n",
383 (unsigned long)h
->board_id
,
384 h
->firm_ver
[0], h
->firm_ver
[1], h
->firm_ver
[2],
385 h
->firm_ver
[3], (unsigned int)h
->intr
[PERF_MODE_INT
],
387 h
->Qdepth
, h
->commands_outstanding
,
388 h
->maxQsinceinit
, h
->max_outstanding
, h
->maxSG
);
390 #ifdef CONFIG_CISS_SCSI_TAPE
391 cciss_seq_tape_report(seq
, h
);
392 #endif /* CONFIG_CISS_SCSI_TAPE */
395 static void *cciss_seq_start(struct seq_file
*seq
, loff_t
*pos
)
397 ctlr_info_t
*h
= seq
->private;
400 /* prevent displaying bogus info during configuration
401 * or deconfiguration of a logical volume
403 spin_lock_irqsave(&h
->lock
, flags
);
404 if (h
->busy_configuring
) {
405 spin_unlock_irqrestore(&h
->lock
, flags
);
406 return ERR_PTR(-EBUSY
);
408 h
->busy_configuring
= 1;
409 spin_unlock_irqrestore(&h
->lock
, flags
);
412 cciss_seq_show_header(seq
);
417 static int cciss_seq_show(struct seq_file
*seq
, void *v
)
419 sector_t vol_sz
, vol_sz_frac
;
420 ctlr_info_t
*h
= seq
->private;
421 unsigned ctlr
= h
->ctlr
;
423 drive_info_struct
*drv
= h
->drv
[*pos
];
425 if (*pos
> h
->highest_lun
)
428 if (drv
== NULL
) /* it's possible for h->drv[] to have holes. */
434 vol_sz
= drv
->nr_blocks
;
435 vol_sz_frac
= sector_div(vol_sz
, ENG_GIG_FACTOR
);
437 sector_div(vol_sz_frac
, ENG_GIG_FACTOR
);
439 if (drv
->raid_level
< 0 || drv
->raid_level
> RAID_UNKNOWN
)
440 drv
->raid_level
= RAID_UNKNOWN
;
441 seq_printf(seq
, "cciss/c%dd%d:"
442 "\t%4u.%02uGB\tRAID %s\n",
443 ctlr
, (int) *pos
, (int)vol_sz
, (int)vol_sz_frac
,
444 raid_label
[drv
->raid_level
]);
448 static void *cciss_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
450 ctlr_info_t
*h
= seq
->private;
452 if (*pos
> h
->highest_lun
)
459 static void cciss_seq_stop(struct seq_file
*seq
, void *v
)
461 ctlr_info_t
*h
= seq
->private;
463 /* Only reset h->busy_configuring if we succeeded in setting
464 * it during cciss_seq_start. */
465 if (v
== ERR_PTR(-EBUSY
))
468 h
->busy_configuring
= 0;
471 static const struct seq_operations cciss_seq_ops
= {
472 .start
= cciss_seq_start
,
473 .show
= cciss_seq_show
,
474 .next
= cciss_seq_next
,
475 .stop
= cciss_seq_stop
,
478 static int cciss_seq_open(struct inode
*inode
, struct file
*file
)
480 int ret
= seq_open(file
, &cciss_seq_ops
);
481 struct seq_file
*seq
= file
->private_data
;
484 seq
->private = PDE(inode
)->data
;
490 cciss_proc_write(struct file
*file
, const char __user
*buf
,
491 size_t length
, loff_t
*ppos
)
496 #ifndef CONFIG_CISS_SCSI_TAPE
500 if (!buf
|| length
> PAGE_SIZE
- 1)
503 buffer
= (char *)__get_free_page(GFP_KERNEL
);
508 if (copy_from_user(buffer
, buf
, length
))
510 buffer
[length
] = '\0';
512 #ifdef CONFIG_CISS_SCSI_TAPE
513 if (strncmp(ENGAGE_SCSI
, buffer
, sizeof ENGAGE_SCSI
- 1) == 0) {
514 struct seq_file
*seq
= file
->private_data
;
515 ctlr_info_t
*h
= seq
->private;
517 err
= cciss_engage_scsi(h
);
521 #endif /* CONFIG_CISS_SCSI_TAPE */
523 /* might be nice to have "disengage" too, but it's not
524 safely possible. (only 1 module use count, lock issues.) */
527 free_page((unsigned long)buffer
);
531 static const struct file_operations cciss_proc_fops
= {
532 .owner
= THIS_MODULE
,
533 .open
= cciss_seq_open
,
536 .release
= seq_release
,
537 .write
= cciss_proc_write
,
540 static void __devinit
cciss_procinit(ctlr_info_t
*h
)
542 struct proc_dir_entry
*pde
;
544 if (proc_cciss
== NULL
)
545 proc_cciss
= proc_mkdir("driver/cciss", NULL
);
548 pde
= proc_create_data(h
->devname
, S_IWUSR
| S_IRUSR
| S_IRGRP
|
550 &cciss_proc_fops
, h
);
552 #endif /* CONFIG_PROC_FS */
554 #define MAX_PRODUCT_NAME_LEN 19
556 #define to_hba(n) container_of(n, struct ctlr_info, dev)
557 #define to_drv(n) container_of(n, drive_info_struct, dev)
559 /* List of controllers which cannot be reset on kexec with reset_devices */
560 static u32 unresettable_controller
[] = {
561 0x324a103C, /* Smart Array P712m */
562 0x324b103C, /* SmartArray P711m */
563 0x3223103C, /* Smart Array P800 */
564 0x3234103C, /* Smart Array P400 */
565 0x3235103C, /* Smart Array P400i */
566 0x3211103C, /* Smart Array E200i */
567 0x3212103C, /* Smart Array E200 */
568 0x3213103C, /* Smart Array E200i */
569 0x3214103C, /* Smart Array E200i */
570 0x3215103C, /* Smart Array E200i */
571 0x3237103C, /* Smart Array E500 */
572 0x323D103C, /* Smart Array P700m */
573 0x409C0E11, /* Smart Array 6400 */
574 0x409D0E11, /* Smart Array 6400 EM */
577 static int ctlr_is_resettable(struct ctlr_info
*h
)
581 for (i
= 0; i
< ARRAY_SIZE(unresettable_controller
); i
++)
582 if (unresettable_controller
[i
] == h
->board_id
)
587 static ssize_t
host_show_resettable(struct device
*dev
,
588 struct device_attribute
*attr
,
591 struct ctlr_info
*h
= to_hba(dev
);
593 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
));
595 static DEVICE_ATTR(resettable
, S_IRUGO
, host_show_resettable
, NULL
);
597 static ssize_t
host_store_rescan(struct device
*dev
,
598 struct device_attribute
*attr
,
599 const char *buf
, size_t count
)
601 struct ctlr_info
*h
= to_hba(dev
);
604 wake_up_process(cciss_scan_thread
);
605 wait_for_completion_interruptible(&h
->scan_wait
);
609 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
611 static ssize_t
dev_show_unique_id(struct device
*dev
,
612 struct device_attribute
*attr
,
615 drive_info_struct
*drv
= to_drv(dev
);
616 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
621 spin_lock_irqsave(&h
->lock
, flags
);
622 if (h
->busy_configuring
)
625 memcpy(sn
, drv
->serial_no
, sizeof(sn
));
626 spin_unlock_irqrestore(&h
->lock
, flags
);
631 return snprintf(buf
, 16 * 2 + 2,
632 "%02X%02X%02X%02X%02X%02X%02X%02X"
633 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
634 sn
[0], sn
[1], sn
[2], sn
[3],
635 sn
[4], sn
[5], sn
[6], sn
[7],
636 sn
[8], sn
[9], sn
[10], sn
[11],
637 sn
[12], sn
[13], sn
[14], sn
[15]);
639 static DEVICE_ATTR(unique_id
, S_IRUGO
, dev_show_unique_id
, NULL
);
641 static ssize_t
dev_show_vendor(struct device
*dev
,
642 struct device_attribute
*attr
,
645 drive_info_struct
*drv
= to_drv(dev
);
646 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
647 char vendor
[VENDOR_LEN
+ 1];
651 spin_lock_irqsave(&h
->lock
, flags
);
652 if (h
->busy_configuring
)
655 memcpy(vendor
, drv
->vendor
, VENDOR_LEN
+ 1);
656 spin_unlock_irqrestore(&h
->lock
, flags
);
661 return snprintf(buf
, sizeof(vendor
) + 1, "%s\n", drv
->vendor
);
663 static DEVICE_ATTR(vendor
, S_IRUGO
, dev_show_vendor
, NULL
);
665 static ssize_t
dev_show_model(struct device
*dev
,
666 struct device_attribute
*attr
,
669 drive_info_struct
*drv
= to_drv(dev
);
670 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
671 char model
[MODEL_LEN
+ 1];
675 spin_lock_irqsave(&h
->lock
, flags
);
676 if (h
->busy_configuring
)
679 memcpy(model
, drv
->model
, MODEL_LEN
+ 1);
680 spin_unlock_irqrestore(&h
->lock
, flags
);
685 return snprintf(buf
, sizeof(model
) + 1, "%s\n", drv
->model
);
687 static DEVICE_ATTR(model
, S_IRUGO
, dev_show_model
, NULL
);
689 static ssize_t
dev_show_rev(struct device
*dev
,
690 struct device_attribute
*attr
,
693 drive_info_struct
*drv
= to_drv(dev
);
694 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
695 char rev
[REV_LEN
+ 1];
699 spin_lock_irqsave(&h
->lock
, flags
);
700 if (h
->busy_configuring
)
703 memcpy(rev
, drv
->rev
, REV_LEN
+ 1);
704 spin_unlock_irqrestore(&h
->lock
, flags
);
709 return snprintf(buf
, sizeof(rev
) + 1, "%s\n", drv
->rev
);
711 static DEVICE_ATTR(rev
, S_IRUGO
, dev_show_rev
, NULL
);
713 static ssize_t
cciss_show_lunid(struct device
*dev
,
714 struct device_attribute
*attr
, char *buf
)
716 drive_info_struct
*drv
= to_drv(dev
);
717 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
719 unsigned char lunid
[8];
721 spin_lock_irqsave(&h
->lock
, flags
);
722 if (h
->busy_configuring
) {
723 spin_unlock_irqrestore(&h
->lock
, flags
);
727 spin_unlock_irqrestore(&h
->lock
, flags
);
730 memcpy(lunid
, drv
->LunID
, sizeof(lunid
));
731 spin_unlock_irqrestore(&h
->lock
, flags
);
732 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
733 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
734 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
736 static DEVICE_ATTR(lunid
, S_IRUGO
, cciss_show_lunid
, NULL
);
738 static ssize_t
cciss_show_raid_level(struct device
*dev
,
739 struct device_attribute
*attr
, char *buf
)
741 drive_info_struct
*drv
= to_drv(dev
);
742 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
746 spin_lock_irqsave(&h
->lock
, flags
);
747 if (h
->busy_configuring
) {
748 spin_unlock_irqrestore(&h
->lock
, flags
);
751 raid
= drv
->raid_level
;
752 spin_unlock_irqrestore(&h
->lock
, flags
);
753 if (raid
< 0 || raid
> RAID_UNKNOWN
)
756 return snprintf(buf
, strlen(raid_label
[raid
]) + 7, "RAID %s\n",
759 static DEVICE_ATTR(raid_level
, S_IRUGO
, cciss_show_raid_level
, NULL
);
761 static ssize_t
cciss_show_usage_count(struct device
*dev
,
762 struct device_attribute
*attr
, char *buf
)
764 drive_info_struct
*drv
= to_drv(dev
);
765 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
769 spin_lock_irqsave(&h
->lock
, flags
);
770 if (h
->busy_configuring
) {
771 spin_unlock_irqrestore(&h
->lock
, flags
);
774 count
= drv
->usage_count
;
775 spin_unlock_irqrestore(&h
->lock
, flags
);
776 return snprintf(buf
, 20, "%d\n", count
);
778 static DEVICE_ATTR(usage_count
, S_IRUGO
, cciss_show_usage_count
, NULL
);
780 static struct attribute
*cciss_host_attrs
[] = {
781 &dev_attr_rescan
.attr
,
782 &dev_attr_resettable
.attr
,
786 static struct attribute_group cciss_host_attr_group
= {
787 .attrs
= cciss_host_attrs
,
790 static const struct attribute_group
*cciss_host_attr_groups
[] = {
791 &cciss_host_attr_group
,
795 static struct device_type cciss_host_type
= {
796 .name
= "cciss_host",
797 .groups
= cciss_host_attr_groups
,
798 .release
= cciss_hba_release
,
801 static struct attribute
*cciss_dev_attrs
[] = {
802 &dev_attr_unique_id
.attr
,
803 &dev_attr_model
.attr
,
804 &dev_attr_vendor
.attr
,
806 &dev_attr_lunid
.attr
,
807 &dev_attr_raid_level
.attr
,
808 &dev_attr_usage_count
.attr
,
812 static struct attribute_group cciss_dev_attr_group
= {
813 .attrs
= cciss_dev_attrs
,
816 static const struct attribute_group
*cciss_dev_attr_groups
[] = {
817 &cciss_dev_attr_group
,
821 static struct device_type cciss_dev_type
= {
822 .name
= "cciss_device",
823 .groups
= cciss_dev_attr_groups
,
824 .release
= cciss_device_release
,
827 static struct bus_type cciss_bus_type
= {
832 * cciss_hba_release is called when the reference count
833 * of h->dev goes to zero.
835 static void cciss_hba_release(struct device
*dev
)
838 * nothing to do, but need this to avoid a warning
839 * about not having a release handler from lib/kref.c.
844 * Initialize sysfs entry for each controller. This sets up and registers
845 * the 'cciss#' directory for each individual controller under
846 * /sys/bus/pci/devices/<dev>/.
848 static int cciss_create_hba_sysfs_entry(struct ctlr_info
*h
)
850 device_initialize(&h
->dev
);
851 h
->dev
.type
= &cciss_host_type
;
852 h
->dev
.bus
= &cciss_bus_type
;
853 dev_set_name(&h
->dev
, "%s", h
->devname
);
854 h
->dev
.parent
= &h
->pdev
->dev
;
856 return device_add(&h
->dev
);
860 * Remove sysfs entries for an hba.
862 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info
*h
)
865 put_device(&h
->dev
); /* final put. */
868 /* cciss_device_release is called when the reference count
869 * of h->drv[x]dev goes to zero.
871 static void cciss_device_release(struct device
*dev
)
873 drive_info_struct
*drv
= to_drv(dev
);
878 * Initialize sysfs for each logical drive. This sets up and registers
879 * the 'c#d#' directory for each individual logical drive under
880 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
881 * /sys/block/cciss!c#d# to this entry.
883 static long cciss_create_ld_sysfs_entry(struct ctlr_info
*h
,
888 if (h
->drv
[drv_index
]->device_initialized
)
891 dev
= &h
->drv
[drv_index
]->dev
;
892 device_initialize(dev
);
893 dev
->type
= &cciss_dev_type
;
894 dev
->bus
= &cciss_bus_type
;
895 dev_set_name(dev
, "c%dd%d", h
->ctlr
, drv_index
);
896 dev
->parent
= &h
->dev
;
897 h
->drv
[drv_index
]->device_initialized
= 1;
898 return device_add(dev
);
902 * Remove sysfs entries for a logical drive.
904 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info
*h
, int drv_index
,
907 struct device
*dev
= &h
->drv
[drv_index
]->dev
;
909 /* special case for c*d0, we only destroy it on controller exit */
910 if (drv_index
== 0 && !ctlr_exiting
)
914 put_device(dev
); /* the "final" put. */
915 h
->drv
[drv_index
] = NULL
;
919 * For operations that cannot sleep, a command block is allocated at init,
920 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
921 * which ones are free or in use.
923 static CommandList_struct
*cmd_alloc(ctlr_info_t
*h
)
925 CommandList_struct
*c
;
928 dma_addr_t cmd_dma_handle
, err_dma_handle
;
931 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
934 } while (test_and_set_bit(i
& (BITS_PER_LONG
- 1),
935 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
937 memset(c
, 0, sizeof(CommandList_struct
));
938 cmd_dma_handle
= h
->cmd_pool_dhandle
+ i
* sizeof(CommandList_struct
);
939 c
->err_info
= h
->errinfo_pool
+ i
;
940 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
941 err_dma_handle
= h
->errinfo_pool_dhandle
942 + i
* sizeof(ErrorInfo_struct
);
947 INIT_LIST_HEAD(&c
->list
);
948 c
->busaddr
= (__u32
) cmd_dma_handle
;
949 temp64
.val
= (__u64
) err_dma_handle
;
950 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
951 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
952 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
958 /* allocate a command using pci_alloc_consistent, used for ioctls,
959 * etc., not for the main i/o path.
961 static CommandList_struct
*cmd_special_alloc(ctlr_info_t
*h
)
963 CommandList_struct
*c
;
965 dma_addr_t cmd_dma_handle
, err_dma_handle
;
967 c
= (CommandList_struct
*) pci_alloc_consistent(h
->pdev
,
968 sizeof(CommandList_struct
), &cmd_dma_handle
);
971 memset(c
, 0, sizeof(CommandList_struct
));
975 c
->err_info
= (ErrorInfo_struct
*)
976 pci_alloc_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
979 if (c
->err_info
== NULL
) {
980 pci_free_consistent(h
->pdev
,
981 sizeof(CommandList_struct
), c
, cmd_dma_handle
);
984 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
986 INIT_LIST_HEAD(&c
->list
);
987 c
->busaddr
= (__u32
) cmd_dma_handle
;
988 temp64
.val
= (__u64
) err_dma_handle
;
989 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
990 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
991 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
997 static void cmd_free(ctlr_info_t
*h
, CommandList_struct
*c
)
1001 i
= c
- h
->cmd_pool
;
1002 clear_bit(i
& (BITS_PER_LONG
- 1),
1003 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
1007 static void cmd_special_free(ctlr_info_t
*h
, CommandList_struct
*c
)
1011 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
1012 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
1013 pci_free_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
1014 c
->err_info
, (dma_addr_t
) temp64
.val
);
1015 pci_free_consistent(h
->pdev
, sizeof(CommandList_struct
),
1016 c
, (dma_addr_t
) c
->busaddr
);
1019 static inline ctlr_info_t
*get_host(struct gendisk
*disk
)
1021 return disk
->queue
->queuedata
;
1024 static inline drive_info_struct
*get_drv(struct gendisk
*disk
)
1026 return disk
->private_data
;
1030 * Open. Make sure the device is really there.
1032 static int cciss_open(struct block_device
*bdev
, fmode_t mode
)
1034 ctlr_info_t
*h
= get_host(bdev
->bd_disk
);
1035 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1037 dev_dbg(&h
->pdev
->dev
, "cciss_open %s\n", bdev
->bd_disk
->disk_name
);
1038 if (drv
->busy_configuring
)
1041 * Root is allowed to open raw volume zero even if it's not configured
1042 * so array config can still work. Root is also allowed to open any
1043 * volume that has a LUN ID, so it can issue IOCTL to reread the
1044 * disk information. I don't think I really like this
1045 * but I'm already using way to many device nodes to claim another one
1046 * for "raw controller".
1048 if (drv
->heads
== 0) {
1049 if (MINOR(bdev
->bd_dev
) != 0) { /* not node 0? */
1050 /* if not node 0 make sure it is a partition = 0 */
1051 if (MINOR(bdev
->bd_dev
) & 0x0f) {
1053 /* if it is, make sure we have a LUN ID */
1054 } else if (memcmp(drv
->LunID
, CTLR_LUNID
,
1055 sizeof(drv
->LunID
))) {
1059 if (!capable(CAP_SYS_ADMIN
))
1067 static int cciss_unlocked_open(struct block_device
*bdev
, fmode_t mode
)
1071 mutex_lock(&cciss_mutex
);
1072 ret
= cciss_open(bdev
, mode
);
1073 mutex_unlock(&cciss_mutex
);
1079 * Close. Sync first.
1081 static int cciss_release(struct gendisk
*disk
, fmode_t mode
)
1084 drive_info_struct
*drv
;
1086 mutex_lock(&cciss_mutex
);
1088 drv
= get_drv(disk
);
1089 dev_dbg(&h
->pdev
->dev
, "cciss_release %s\n", disk
->disk_name
);
1092 mutex_unlock(&cciss_mutex
);
1096 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
1097 unsigned cmd
, unsigned long arg
)
1100 mutex_lock(&cciss_mutex
);
1101 ret
= cciss_ioctl(bdev
, mode
, cmd
, arg
);
1102 mutex_unlock(&cciss_mutex
);
1106 #ifdef CONFIG_COMPAT
1108 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1109 unsigned cmd
, unsigned long arg
);
1110 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1111 unsigned cmd
, unsigned long arg
);
1113 static int cciss_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1114 unsigned cmd
, unsigned long arg
)
1117 case CCISS_GETPCIINFO
:
1118 case CCISS_GETINTINFO
:
1119 case CCISS_SETINTINFO
:
1120 case CCISS_GETNODENAME
:
1121 case CCISS_SETNODENAME
:
1122 case CCISS_GETHEARTBEAT
:
1123 case CCISS_GETBUSTYPES
:
1124 case CCISS_GETFIRMVER
:
1125 case CCISS_GETDRIVVER
:
1126 case CCISS_REVALIDVOLS
:
1127 case CCISS_DEREGDISK
:
1128 case CCISS_REGNEWDISK
:
1130 case CCISS_RESCANDISK
:
1131 case CCISS_GETLUNINFO
:
1132 return do_ioctl(bdev
, mode
, cmd
, arg
);
1134 case CCISS_PASSTHRU32
:
1135 return cciss_ioctl32_passthru(bdev
, mode
, cmd
, arg
);
1136 case CCISS_BIG_PASSTHRU32
:
1137 return cciss_ioctl32_big_passthru(bdev
, mode
, cmd
, arg
);
1140 return -ENOIOCTLCMD
;
1144 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1145 unsigned cmd
, unsigned long arg
)
1147 IOCTL32_Command_struct __user
*arg32
=
1148 (IOCTL32_Command_struct __user
*) arg
;
1149 IOCTL_Command_struct arg64
;
1150 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
1156 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1157 sizeof(arg64
.LUN_info
));
1159 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1160 sizeof(arg64
.Request
));
1162 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1163 sizeof(arg64
.error_info
));
1164 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1165 err
|= get_user(cp
, &arg32
->buf
);
1166 arg64
.buf
= compat_ptr(cp
);
1167 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1172 err
= do_ioctl(bdev
, mode
, CCISS_PASSTHRU
, (unsigned long)p
);
1176 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1177 sizeof(arg32
->error_info
));
1183 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1184 unsigned cmd
, unsigned long arg
)
1186 BIG_IOCTL32_Command_struct __user
*arg32
=
1187 (BIG_IOCTL32_Command_struct __user
*) arg
;
1188 BIG_IOCTL_Command_struct arg64
;
1189 BIG_IOCTL_Command_struct __user
*p
=
1190 compat_alloc_user_space(sizeof(arg64
));
1194 memset(&arg64
, 0, sizeof(arg64
));
1197 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1198 sizeof(arg64
.LUN_info
));
1200 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1201 sizeof(arg64
.Request
));
1203 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1204 sizeof(arg64
.error_info
));
1205 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1206 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
1207 err
|= get_user(cp
, &arg32
->buf
);
1208 arg64
.buf
= compat_ptr(cp
);
1209 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1214 err
= do_ioctl(bdev
, mode
, CCISS_BIG_PASSTHRU
, (unsigned long)p
);
1218 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1219 sizeof(arg32
->error_info
));
1226 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1228 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1230 if (!drv
->cylinders
)
1233 geo
->heads
= drv
->heads
;
1234 geo
->sectors
= drv
->sectors
;
1235 geo
->cylinders
= drv
->cylinders
;
1239 static void check_ioctl_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
1241 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
1242 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
1243 (void)check_for_unit_attention(h
, c
);
1246 static int cciss_getpciinfo(ctlr_info_t
*h
, void __user
*argp
)
1248 cciss_pci_info_struct pciinfo
;
1252 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
1253 pciinfo
.bus
= h
->pdev
->bus
->number
;
1254 pciinfo
.dev_fn
= h
->pdev
->devfn
;
1255 pciinfo
.board_id
= h
->board_id
;
1256 if (copy_to_user(argp
, &pciinfo
, sizeof(cciss_pci_info_struct
)))
1261 static int cciss_getintinfo(ctlr_info_t
*h
, void __user
*argp
)
1263 cciss_coalint_struct intinfo
;
1267 intinfo
.delay
= readl(&h
->cfgtable
->HostWrite
.CoalIntDelay
);
1268 intinfo
.count
= readl(&h
->cfgtable
->HostWrite
.CoalIntCount
);
1270 (argp
, &intinfo
, sizeof(cciss_coalint_struct
)))
1275 static int cciss_setintinfo(ctlr_info_t
*h
, void __user
*argp
)
1277 cciss_coalint_struct intinfo
;
1278 unsigned long flags
;
1283 if (!capable(CAP_SYS_ADMIN
))
1285 if (copy_from_user(&intinfo
, argp
, sizeof(intinfo
)))
1287 if ((intinfo
.delay
== 0) && (intinfo
.count
== 0))
1289 spin_lock_irqsave(&h
->lock
, flags
);
1290 /* Update the field, and then ring the doorbell */
1291 writel(intinfo
.delay
, &(h
->cfgtable
->HostWrite
.CoalIntDelay
));
1292 writel(intinfo
.count
, &(h
->cfgtable
->HostWrite
.CoalIntCount
));
1293 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
1295 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1296 if (!(readl(h
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
1298 udelay(1000); /* delay and try again */
1300 spin_unlock_irqrestore(&h
->lock
, flags
);
1301 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1306 static int cciss_getnodename(ctlr_info_t
*h
, void __user
*argp
)
1308 NodeName_type NodeName
;
1313 for (i
= 0; i
< 16; i
++)
1314 NodeName
[i
] = readb(&h
->cfgtable
->ServerName
[i
]);
1315 if (copy_to_user(argp
, NodeName
, sizeof(NodeName_type
)))
1320 static int cciss_setnodename(ctlr_info_t
*h
, void __user
*argp
)
1322 NodeName_type NodeName
;
1323 unsigned long flags
;
1328 if (!capable(CAP_SYS_ADMIN
))
1330 if (copy_from_user(NodeName
, argp
, sizeof(NodeName_type
)))
1332 spin_lock_irqsave(&h
->lock
, flags
);
1333 /* Update the field, and then ring the doorbell */
1334 for (i
= 0; i
< 16; i
++)
1335 writeb(NodeName
[i
], &h
->cfgtable
->ServerName
[i
]);
1336 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
1337 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1338 if (!(readl(h
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
1340 udelay(1000); /* delay and try again */
1342 spin_unlock_irqrestore(&h
->lock
, flags
);
1343 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1348 static int cciss_getheartbeat(ctlr_info_t
*h
, void __user
*argp
)
1350 Heartbeat_type heartbeat
;
1354 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
1355 if (copy_to_user(argp
, &heartbeat
, sizeof(Heartbeat_type
)))
1360 static int cciss_getbustypes(ctlr_info_t
*h
, void __user
*argp
)
1362 BusTypes_type BusTypes
;
1366 BusTypes
= readl(&h
->cfgtable
->BusTypes
);
1367 if (copy_to_user(argp
, &BusTypes
, sizeof(BusTypes_type
)))
1372 static int cciss_getfirmver(ctlr_info_t
*h
, void __user
*argp
)
1374 FirmwareVer_type firmware
;
1378 memcpy(firmware
, h
->firm_ver
, 4);
1381 (argp
, firmware
, sizeof(FirmwareVer_type
)))
1386 static int cciss_getdrivver(ctlr_info_t
*h
, void __user
*argp
)
1388 DriverVer_type DriverVer
= DRIVER_VERSION
;
1392 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
1397 static int cciss_getluninfo(ctlr_info_t
*h
,
1398 struct gendisk
*disk
, void __user
*argp
)
1400 LogvolInfo_struct luninfo
;
1401 drive_info_struct
*drv
= get_drv(disk
);
1405 memcpy(&luninfo
.LunID
, drv
->LunID
, sizeof(luninfo
.LunID
));
1406 luninfo
.num_opens
= drv
->usage_count
;
1407 luninfo
.num_parts
= 0;
1408 if (copy_to_user(argp
, &luninfo
, sizeof(LogvolInfo_struct
)))
1413 static int cciss_passthru(ctlr_info_t
*h
, void __user
*argp
)
1415 IOCTL_Command_struct iocommand
;
1416 CommandList_struct
*c
;
1419 DECLARE_COMPLETION_ONSTACK(wait
);
1424 if (!capable(CAP_SYS_RAWIO
))
1428 (&iocommand
, argp
, sizeof(IOCTL_Command_struct
)))
1430 if ((iocommand
.buf_size
< 1) &&
1431 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
1434 if (iocommand
.buf_size
> 0) {
1435 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
1439 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
1440 /* Copy the data into the buffer we created */
1441 if (copy_from_user(buff
, iocommand
.buf
, iocommand
.buf_size
)) {
1446 memset(buff
, 0, iocommand
.buf_size
);
1448 c
= cmd_special_alloc(h
);
1453 /* Fill in the command type */
1454 c
->cmd_type
= CMD_IOCTL_PEND
;
1455 /* Fill in Command Header */
1456 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
1457 if (iocommand
.buf_size
> 0) { /* buffer to fill */
1458 c
->Header
.SGList
= 1;
1459 c
->Header
.SGTotal
= 1;
1460 } else { /* no buffers to fill */
1461 c
->Header
.SGList
= 0;
1462 c
->Header
.SGTotal
= 0;
1464 c
->Header
.LUN
= iocommand
.LUN_info
;
1465 /* use the kernel address the cmd block for tag */
1466 c
->Header
.Tag
.lower
= c
->busaddr
;
1468 /* Fill in Request block */
1469 c
->Request
= iocommand
.Request
;
1471 /* Fill in the scatter gather information */
1472 if (iocommand
.buf_size
> 0) {
1473 temp64
.val
= pci_map_single(h
->pdev
, buff
,
1474 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
1475 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
1476 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
1477 c
->SG
[0].Len
= iocommand
.buf_size
;
1478 c
->SG
[0].Ext
= 0; /* we are not chaining */
1482 enqueue_cmd_and_start_io(h
, c
);
1483 wait_for_completion(&wait
);
1485 /* unlock the buffers from DMA */
1486 temp64
.val32
.lower
= c
->SG
[0].Addr
.lower
;
1487 temp64
.val32
.upper
= c
->SG
[0].Addr
.upper
;
1488 pci_unmap_single(h
->pdev
, (dma_addr_t
) temp64
.val
, iocommand
.buf_size
,
1489 PCI_DMA_BIDIRECTIONAL
);
1490 check_ioctl_unit_attention(h
, c
);
1492 /* Copy the error information out */
1493 iocommand
.error_info
= *(c
->err_info
);
1494 if (copy_to_user(argp
, &iocommand
, sizeof(IOCTL_Command_struct
))) {
1496 cmd_special_free(h
, c
);
1500 if (iocommand
.Request
.Type
.Direction
== XFER_READ
) {
1501 /* Copy the data out of the buffer we created */
1502 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
1504 cmd_special_free(h
, c
);
1509 cmd_special_free(h
, c
);
1513 static int cciss_bigpassthru(ctlr_info_t
*h
, void __user
*argp
)
1515 BIG_IOCTL_Command_struct
*ioc
;
1516 CommandList_struct
*c
;
1517 unsigned char **buff
= NULL
;
1518 int *buff_size
= NULL
;
1523 DECLARE_COMPLETION_ONSTACK(wait
);
1526 BYTE __user
*data_ptr
;
1530 if (!capable(CAP_SYS_RAWIO
))
1532 ioc
= (BIG_IOCTL_Command_struct
*)
1533 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
1538 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
1542 if ((ioc
->buf_size
< 1) &&
1543 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
1547 /* Check kmalloc limits using all SGs */
1548 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
1552 if (ioc
->buf_size
> ioc
->malloc_size
* MAXSGENTRIES
) {
1556 buff
= kzalloc(MAXSGENTRIES
* sizeof(char *), GFP_KERNEL
);
1561 buff_size
= kmalloc(MAXSGENTRIES
* sizeof(int), GFP_KERNEL
);
1566 left
= ioc
->buf_size
;
1567 data_ptr
= ioc
->buf
;
1569 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
1570 buff_size
[sg_used
] = sz
;
1571 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
1572 if (buff
[sg_used
] == NULL
) {
1576 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
1577 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
1582 memset(buff
[sg_used
], 0, sz
);
1588 c
= cmd_special_alloc(h
);
1593 c
->cmd_type
= CMD_IOCTL_PEND
;
1594 c
->Header
.ReplyQueue
= 0;
1595 c
->Header
.SGList
= sg_used
;
1596 c
->Header
.SGTotal
= sg_used
;
1597 c
->Header
.LUN
= ioc
->LUN_info
;
1598 c
->Header
.Tag
.lower
= c
->busaddr
;
1600 c
->Request
= ioc
->Request
;
1601 for (i
= 0; i
< sg_used
; i
++) {
1602 temp64
.val
= pci_map_single(h
->pdev
, buff
[i
], buff_size
[i
],
1603 PCI_DMA_BIDIRECTIONAL
);
1604 c
->SG
[i
].Addr
.lower
= temp64
.val32
.lower
;
1605 c
->SG
[i
].Addr
.upper
= temp64
.val32
.upper
;
1606 c
->SG
[i
].Len
= buff_size
[i
];
1607 c
->SG
[i
].Ext
= 0; /* we are not chaining */
1610 enqueue_cmd_and_start_io(h
, c
);
1611 wait_for_completion(&wait
);
1612 /* unlock the buffers from DMA */
1613 for (i
= 0; i
< sg_used
; i
++) {
1614 temp64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1615 temp64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1616 pci_unmap_single(h
->pdev
,
1617 (dma_addr_t
) temp64
.val
, buff_size
[i
],
1618 PCI_DMA_BIDIRECTIONAL
);
1620 check_ioctl_unit_attention(h
, c
);
1621 /* Copy the error information out */
1622 ioc
->error_info
= *(c
->err_info
);
1623 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
1624 cmd_special_free(h
, c
);
1628 if (ioc
->Request
.Type
.Direction
== XFER_READ
) {
1629 /* Copy the data out of the buffer we created */
1630 BYTE __user
*ptr
= ioc
->buf
;
1631 for (i
= 0; i
< sg_used
; i
++) {
1632 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
1633 cmd_special_free(h
, c
);
1637 ptr
+= buff_size
[i
];
1640 cmd_special_free(h
, c
);
1644 for (i
= 0; i
< sg_used
; i
++)
1653 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
1654 unsigned int cmd
, unsigned long arg
)
1656 struct gendisk
*disk
= bdev
->bd_disk
;
1657 ctlr_info_t
*h
= get_host(disk
);
1658 void __user
*argp
= (void __user
*)arg
;
1660 dev_dbg(&h
->pdev
->dev
, "cciss_ioctl: Called with cmd=%x %lx\n",
1663 case CCISS_GETPCIINFO
:
1664 return cciss_getpciinfo(h
, argp
);
1665 case CCISS_GETINTINFO
:
1666 return cciss_getintinfo(h
, argp
);
1667 case CCISS_SETINTINFO
:
1668 return cciss_setintinfo(h
, argp
);
1669 case CCISS_GETNODENAME
:
1670 return cciss_getnodename(h
, argp
);
1671 case CCISS_SETNODENAME
:
1672 return cciss_setnodename(h
, argp
);
1673 case CCISS_GETHEARTBEAT
:
1674 return cciss_getheartbeat(h
, argp
);
1675 case CCISS_GETBUSTYPES
:
1676 return cciss_getbustypes(h
, argp
);
1677 case CCISS_GETFIRMVER
:
1678 return cciss_getfirmver(h
, argp
);
1679 case CCISS_GETDRIVVER
:
1680 return cciss_getdrivver(h
, argp
);
1681 case CCISS_DEREGDISK
:
1683 case CCISS_REVALIDVOLS
:
1684 return rebuild_lun_table(h
, 0, 1);
1685 case CCISS_GETLUNINFO
:
1686 return cciss_getluninfo(h
, disk
, argp
);
1687 case CCISS_PASSTHRU
:
1688 return cciss_passthru(h
, argp
);
1689 case CCISS_BIG_PASSTHRU
:
1690 return cciss_bigpassthru(h
, argp
);
1692 /* scsi_cmd_ioctl handles these, below, though some are not */
1693 /* very meaningful for cciss. SG_IO is the main one people want. */
1695 case SG_GET_VERSION_NUM
:
1696 case SG_SET_TIMEOUT
:
1697 case SG_GET_TIMEOUT
:
1698 case SG_GET_RESERVED_SIZE
:
1699 case SG_SET_RESERVED_SIZE
:
1700 case SG_EMULATED_HOST
:
1702 case SCSI_IOCTL_SEND_COMMAND
:
1703 return scsi_cmd_ioctl(disk
->queue
, disk
, mode
, cmd
, argp
);
1705 /* scsi_cmd_ioctl would normally handle these, below, but */
1706 /* they aren't a good fit for cciss, as CD-ROMs are */
1707 /* not supported, and we don't have any bus/target/lun */
1708 /* which we present to the kernel. */
1710 case CDROM_SEND_PACKET
:
1711 case CDROMCLOSETRAY
:
1713 case SCSI_IOCTL_GET_IDLUN
:
1714 case SCSI_IOCTL_GET_BUS_NUMBER
:
1720 static void cciss_check_queues(ctlr_info_t
*h
)
1722 int start_queue
= h
->next_to_run
;
1725 /* check to see if we have maxed out the number of commands that can
1726 * be placed on the queue. If so then exit. We do this check here
1727 * in case the interrupt we serviced was from an ioctl and did not
1728 * free any new commands.
1730 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
)
1733 /* We have room on the queue for more commands. Now we need to queue
1734 * them up. We will also keep track of the next queue to run so
1735 * that every queue gets a chance to be started first.
1737 for (i
= 0; i
< h
->highest_lun
+ 1; i
++) {
1738 int curr_queue
= (start_queue
+ i
) % (h
->highest_lun
+ 1);
1739 /* make sure the disk has been added and the drive is real
1740 * because this can be called from the middle of init_one.
1742 if (!h
->drv
[curr_queue
])
1744 if (!(h
->drv
[curr_queue
]->queue
) ||
1745 !(h
->drv
[curr_queue
]->heads
))
1747 blk_start_queue(h
->gendisk
[curr_queue
]->queue
);
1749 /* check to see if we have maxed out the number of commands
1750 * that can be placed on the queue.
1752 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
) {
1753 if (curr_queue
== start_queue
) {
1755 (start_queue
+ 1) % (h
->highest_lun
+ 1);
1758 h
->next_to_run
= curr_queue
;
1765 static void cciss_softirq_done(struct request
*rq
)
1767 CommandList_struct
*c
= rq
->completion_data
;
1768 ctlr_info_t
*h
= hba
[c
->ctlr
];
1769 SGDescriptor_struct
*curr_sg
= c
->SG
;
1771 unsigned long flags
;
1775 if (c
->Request
.Type
.Direction
== XFER_READ
)
1776 ddir
= PCI_DMA_FROMDEVICE
;
1778 ddir
= PCI_DMA_TODEVICE
;
1780 /* command did not need to be retried */
1781 /* unmap the DMA mapping for all the scatter gather elements */
1782 for (i
= 0; i
< c
->Header
.SGList
; i
++) {
1783 if (curr_sg
[sg_index
].Ext
== CCISS_SG_CHAIN
) {
1784 cciss_unmap_sg_chain_block(h
, c
);
1785 /* Point to the next block */
1786 curr_sg
= h
->cmd_sg_list
[c
->cmdindex
];
1789 temp64
.val32
.lower
= curr_sg
[sg_index
].Addr
.lower
;
1790 temp64
.val32
.upper
= curr_sg
[sg_index
].Addr
.upper
;
1791 pci_unmap_page(h
->pdev
, temp64
.val
, curr_sg
[sg_index
].Len
,
1796 dev_dbg(&h
->pdev
->dev
, "Done with %p\n", rq
);
1798 /* set the residual count for pc requests */
1799 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1800 rq
->resid_len
= c
->err_info
->ResidualCnt
;
1802 blk_end_request_all(rq
, (rq
->errors
== 0) ? 0 : -EIO
);
1804 spin_lock_irqsave(&h
->lock
, flags
);
1806 cciss_check_queues(h
);
1807 spin_unlock_irqrestore(&h
->lock
, flags
);
1810 static inline void log_unit_to_scsi3addr(ctlr_info_t
*h
,
1811 unsigned char scsi3addr
[], uint32_t log_unit
)
1813 memcpy(scsi3addr
, h
->drv
[log_unit
]->LunID
,
1814 sizeof(h
->drv
[log_unit
]->LunID
));
1817 /* This function gets the SCSI vendor, model, and revision of a logical drive
1818 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1819 * they cannot be read.
1821 static void cciss_get_device_descr(ctlr_info_t
*h
, int logvol
,
1822 char *vendor
, char *model
, char *rev
)
1825 InquiryData_struct
*inq_buf
;
1826 unsigned char scsi3addr
[8];
1832 inq_buf
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1836 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
1837 rc
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buf
, sizeof(*inq_buf
), 0,
1838 scsi3addr
, TYPE_CMD
);
1840 memcpy(vendor
, &inq_buf
->data_byte
[8], VENDOR_LEN
);
1841 vendor
[VENDOR_LEN
] = '\0';
1842 memcpy(model
, &inq_buf
->data_byte
[16], MODEL_LEN
);
1843 model
[MODEL_LEN
] = '\0';
1844 memcpy(rev
, &inq_buf
->data_byte
[32], REV_LEN
);
1845 rev
[REV_LEN
] = '\0';
1852 /* This function gets the serial number of a logical drive via
1853 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1854 * number cannot be had, for whatever reason, 16 bytes of 0xff
1855 * are returned instead.
1857 static void cciss_get_serial_no(ctlr_info_t
*h
, int logvol
,
1858 unsigned char *serial_no
, int buflen
)
1860 #define PAGE_83_INQ_BYTES 64
1863 unsigned char scsi3addr
[8];
1867 memset(serial_no
, 0xff, buflen
);
1868 buf
= kzalloc(PAGE_83_INQ_BYTES
, GFP_KERNEL
);
1871 memset(serial_no
, 0, buflen
);
1872 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
1873 rc
= sendcmd_withirq(h
, CISS_INQUIRY
, buf
,
1874 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1876 memcpy(serial_no
, &buf
[8], buflen
);
1882 * cciss_add_disk sets up the block device queue for a logical drive
1884 static int cciss_add_disk(ctlr_info_t
*h
, struct gendisk
*disk
,
1887 disk
->queue
= blk_init_queue(do_cciss_request
, &h
->lock
);
1889 goto init_queue_failure
;
1890 sprintf(disk
->disk_name
, "cciss/c%dd%d", h
->ctlr
, drv_index
);
1891 disk
->major
= h
->major
;
1892 disk
->first_minor
= drv_index
<< NWD_SHIFT
;
1893 disk
->fops
= &cciss_fops
;
1894 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
1896 disk
->private_data
= h
->drv
[drv_index
];
1897 disk
->driverfs_dev
= &h
->drv
[drv_index
]->dev
;
1899 /* Set up queue information */
1900 blk_queue_bounce_limit(disk
->queue
, h
->pdev
->dma_mask
);
1902 /* This is a hardware imposed limit. */
1903 blk_queue_max_segments(disk
->queue
, h
->maxsgentries
);
1905 blk_queue_max_hw_sectors(disk
->queue
, h
->cciss_max_sectors
);
1907 blk_queue_softirq_done(disk
->queue
, cciss_softirq_done
);
1909 disk
->queue
->queuedata
= h
;
1911 blk_queue_logical_block_size(disk
->queue
,
1912 h
->drv
[drv_index
]->block_size
);
1914 /* Make sure all queue data is written out before */
1915 /* setting h->drv[drv_index]->queue, as setting this */
1916 /* allows the interrupt handler to start the queue */
1918 h
->drv
[drv_index
]->queue
= disk
->queue
;
1923 blk_cleanup_queue(disk
->queue
);
1929 /* This function will check the usage_count of the drive to be updated/added.
1930 * If the usage_count is zero and it is a heretofore unknown drive, or,
1931 * the drive's capacity, geometry, or serial number has changed,
1932 * then the drive information will be updated and the disk will be
1933 * re-registered with the kernel. If these conditions don't hold,
1934 * then it will be left alone for the next reboot. The exception to this
1935 * is disk 0 which will always be left registered with the kernel since it
1936 * is also the controller node. Any changes to disk 0 will show up on
1939 static void cciss_update_drive_info(ctlr_info_t
*h
, int drv_index
,
1940 int first_time
, int via_ioctl
)
1942 struct gendisk
*disk
;
1943 InquiryData_struct
*inq_buff
= NULL
;
1944 unsigned int block_size
;
1945 sector_t total_size
;
1946 unsigned long flags
= 0;
1948 drive_info_struct
*drvinfo
;
1950 /* Get information about the disk and modify the driver structure */
1951 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1952 drvinfo
= kzalloc(sizeof(*drvinfo
), GFP_KERNEL
);
1953 if (inq_buff
== NULL
|| drvinfo
== NULL
)
1956 /* testing to see if 16-byte CDBs are already being used */
1957 if (h
->cciss_read
== CCISS_READ_16
) {
1958 cciss_read_capacity_16(h
, drv_index
,
1959 &total_size
, &block_size
);
1962 cciss_read_capacity(h
, drv_index
, &total_size
, &block_size
);
1963 /* if read_capacity returns all F's this volume is >2TB */
1964 /* in size so we switch to 16-byte CDB's for all */
1965 /* read/write ops */
1966 if (total_size
== 0xFFFFFFFFULL
) {
1967 cciss_read_capacity_16(h
, drv_index
,
1968 &total_size
, &block_size
);
1969 h
->cciss_read
= CCISS_READ_16
;
1970 h
->cciss_write
= CCISS_WRITE_16
;
1972 h
->cciss_read
= CCISS_READ_10
;
1973 h
->cciss_write
= CCISS_WRITE_10
;
1977 cciss_geometry_inquiry(h
, drv_index
, total_size
, block_size
,
1979 drvinfo
->block_size
= block_size
;
1980 drvinfo
->nr_blocks
= total_size
+ 1;
1982 cciss_get_device_descr(h
, drv_index
, drvinfo
->vendor
,
1983 drvinfo
->model
, drvinfo
->rev
);
1984 cciss_get_serial_no(h
, drv_index
, drvinfo
->serial_no
,
1985 sizeof(drvinfo
->serial_no
));
1986 /* Save the lunid in case we deregister the disk, below. */
1987 memcpy(drvinfo
->LunID
, h
->drv
[drv_index
]->LunID
,
1988 sizeof(drvinfo
->LunID
));
1990 /* Is it the same disk we already know, and nothing's changed? */
1991 if (h
->drv
[drv_index
]->raid_level
!= -1 &&
1992 ((memcmp(drvinfo
->serial_no
,
1993 h
->drv
[drv_index
]->serial_no
, 16) == 0) &&
1994 drvinfo
->block_size
== h
->drv
[drv_index
]->block_size
&&
1995 drvinfo
->nr_blocks
== h
->drv
[drv_index
]->nr_blocks
&&
1996 drvinfo
->heads
== h
->drv
[drv_index
]->heads
&&
1997 drvinfo
->sectors
== h
->drv
[drv_index
]->sectors
&&
1998 drvinfo
->cylinders
== h
->drv
[drv_index
]->cylinders
))
1999 /* The disk is unchanged, nothing to update */
2002 /* If we get here it's not the same disk, or something's changed,
2003 * so we need to * deregister it, and re-register it, if it's not
2005 * If the disk already exists then deregister it before proceeding
2006 * (unless it's the first disk (for the controller node).
2008 if (h
->drv
[drv_index
]->raid_level
!= -1 && drv_index
!= 0) {
2009 dev_warn(&h
->pdev
->dev
, "disk %d has changed.\n", drv_index
);
2010 spin_lock_irqsave(&h
->lock
, flags
);
2011 h
->drv
[drv_index
]->busy_configuring
= 1;
2012 spin_unlock_irqrestore(&h
->lock
, flags
);
2014 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2015 * which keeps the interrupt handler from starting
2018 ret
= deregister_disk(h
, drv_index
, 0, via_ioctl
);
2021 /* If the disk is in use return */
2025 /* Save the new information from cciss_geometry_inquiry
2026 * and serial number inquiry. If the disk was deregistered
2027 * above, then h->drv[drv_index] will be NULL.
2029 if (h
->drv
[drv_index
] == NULL
) {
2030 drvinfo
->device_initialized
= 0;
2031 h
->drv
[drv_index
] = drvinfo
;
2032 drvinfo
= NULL
; /* so it won't be freed below. */
2034 /* special case for cxd0 */
2035 h
->drv
[drv_index
]->block_size
= drvinfo
->block_size
;
2036 h
->drv
[drv_index
]->nr_blocks
= drvinfo
->nr_blocks
;
2037 h
->drv
[drv_index
]->heads
= drvinfo
->heads
;
2038 h
->drv
[drv_index
]->sectors
= drvinfo
->sectors
;
2039 h
->drv
[drv_index
]->cylinders
= drvinfo
->cylinders
;
2040 h
->drv
[drv_index
]->raid_level
= drvinfo
->raid_level
;
2041 memcpy(h
->drv
[drv_index
]->serial_no
, drvinfo
->serial_no
, 16);
2042 memcpy(h
->drv
[drv_index
]->vendor
, drvinfo
->vendor
,
2044 memcpy(h
->drv
[drv_index
]->model
, drvinfo
->model
, MODEL_LEN
+ 1);
2045 memcpy(h
->drv
[drv_index
]->rev
, drvinfo
->rev
, REV_LEN
+ 1);
2049 disk
= h
->gendisk
[drv_index
];
2050 set_capacity(disk
, h
->drv
[drv_index
]->nr_blocks
);
2052 /* If it's not disk 0 (drv_index != 0)
2053 * or if it was disk 0, but there was previously
2054 * no actual corresponding configured logical drive
2055 * (raid_leve == -1) then we want to update the
2056 * logical drive's information.
2058 if (drv_index
|| first_time
) {
2059 if (cciss_add_disk(h
, disk
, drv_index
) != 0) {
2060 cciss_free_gendisk(h
, drv_index
);
2061 cciss_free_drive_info(h
, drv_index
);
2062 dev_warn(&h
->pdev
->dev
, "could not update disk %d\n",
2073 dev_err(&h
->pdev
->dev
, "out of memory\n");
2077 /* This function will find the first index of the controllers drive array
2078 * that has a null drv pointer and allocate the drive info struct and
2079 * will return that index This is where new drives will be added.
2080 * If the index to be returned is greater than the highest_lun index for
2081 * the controller then highest_lun is set * to this new index.
2082 * If there are no available indexes or if tha allocation fails, then -1
2083 * is returned. * "controller_node" is used to know if this is a real
2084 * logical drive, or just the controller node, which determines if this
2085 * counts towards highest_lun.
2087 static int cciss_alloc_drive_info(ctlr_info_t
*h
, int controller_node
)
2090 drive_info_struct
*drv
;
2092 /* Search for an empty slot for our drive info */
2093 for (i
= 0; i
< CISS_MAX_LUN
; i
++) {
2095 /* if not cxd0 case, and it's occupied, skip it. */
2096 if (h
->drv
[i
] && i
!= 0)
2099 * If it's cxd0 case, and drv is alloc'ed already, and a
2100 * disk is configured there, skip it.
2102 if (i
== 0 && h
->drv
[i
] && h
->drv
[i
]->raid_level
!= -1)
2106 * We've found an empty slot. Update highest_lun
2107 * provided this isn't just the fake cxd0 controller node.
2109 if (i
> h
->highest_lun
&& !controller_node
)
2112 /* If adding a real disk at cxd0, and it's already alloc'ed */
2113 if (i
== 0 && h
->drv
[i
] != NULL
)
2117 * Found an empty slot, not already alloc'ed. Allocate it.
2118 * Mark it with raid_level == -1, so we know it's new later on.
2120 drv
= kzalloc(sizeof(*drv
), GFP_KERNEL
);
2123 drv
->raid_level
= -1; /* so we know it's new */
2130 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
)
2132 kfree(h
->drv
[drv_index
]);
2133 h
->drv
[drv_index
] = NULL
;
2136 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
)
2138 put_disk(h
->gendisk
[drv_index
]);
2139 h
->gendisk
[drv_index
] = NULL
;
2142 /* cciss_add_gendisk finds a free hba[]->drv structure
2143 * and allocates a gendisk if needed, and sets the lunid
2144 * in the drvinfo structure. It returns the index into
2145 * the ->drv[] array, or -1 if none are free.
2146 * is_controller_node indicates whether highest_lun should
2147 * count this disk, or if it's only being added to provide
2148 * a means to talk to the controller in case no logical
2149 * drives have yet been configured.
2151 static int cciss_add_gendisk(ctlr_info_t
*h
, unsigned char lunid
[],
2152 int controller_node
)
2156 drv_index
= cciss_alloc_drive_info(h
, controller_node
);
2157 if (drv_index
== -1)
2160 /*Check if the gendisk needs to be allocated */
2161 if (!h
->gendisk
[drv_index
]) {
2162 h
->gendisk
[drv_index
] =
2163 alloc_disk(1 << NWD_SHIFT
);
2164 if (!h
->gendisk
[drv_index
]) {
2165 dev_err(&h
->pdev
->dev
,
2166 "could not allocate a new disk %d\n",
2168 goto err_free_drive_info
;
2171 memcpy(h
->drv
[drv_index
]->LunID
, lunid
,
2172 sizeof(h
->drv
[drv_index
]->LunID
));
2173 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
2175 /* Don't need to mark this busy because nobody */
2176 /* else knows about this disk yet to contend */
2177 /* for access to it. */
2178 h
->drv
[drv_index
]->busy_configuring
= 0;
2183 cciss_free_gendisk(h
, drv_index
);
2184 err_free_drive_info
:
2185 cciss_free_drive_info(h
, drv_index
);
2189 /* This is for the special case of a controller which
2190 * has no logical drives. In this case, we still need
2191 * to register a disk so the controller can be accessed
2192 * by the Array Config Utility.
2194 static void cciss_add_controller_node(ctlr_info_t
*h
)
2196 struct gendisk
*disk
;
2199 if (h
->gendisk
[0] != NULL
) /* already did this? Then bail. */
2202 drv_index
= cciss_add_gendisk(h
, CTLR_LUNID
, 1);
2203 if (drv_index
== -1)
2205 h
->drv
[drv_index
]->block_size
= 512;
2206 h
->drv
[drv_index
]->nr_blocks
= 0;
2207 h
->drv
[drv_index
]->heads
= 0;
2208 h
->drv
[drv_index
]->sectors
= 0;
2209 h
->drv
[drv_index
]->cylinders
= 0;
2210 h
->drv
[drv_index
]->raid_level
= -1;
2211 memset(h
->drv
[drv_index
]->serial_no
, 0, 16);
2212 disk
= h
->gendisk
[drv_index
];
2213 if (cciss_add_disk(h
, disk
, drv_index
) == 0)
2215 cciss_free_gendisk(h
, drv_index
);
2216 cciss_free_drive_info(h
, drv_index
);
2218 dev_warn(&h
->pdev
->dev
, "could not add disk 0.\n");
2222 /* This function will add and remove logical drives from the Logical
2223 * drive array of the controller and maintain persistency of ordering
2224 * so that mount points are preserved until the next reboot. This allows
2225 * for the removal of logical drives in the middle of the drive array
2226 * without a re-ordering of those drives.
2228 * h = The controller to perform the operations on
2230 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
,
2234 ReportLunData_struct
*ld_buff
= NULL
;
2240 unsigned char lunid
[8] = CTLR_LUNID
;
2241 unsigned long flags
;
2243 if (!capable(CAP_SYS_RAWIO
))
2246 /* Set busy_configuring flag for this operation */
2247 spin_lock_irqsave(&h
->lock
, flags
);
2248 if (h
->busy_configuring
) {
2249 spin_unlock_irqrestore(&h
->lock
, flags
);
2252 h
->busy_configuring
= 1;
2253 spin_unlock_irqrestore(&h
->lock
, flags
);
2255 ld_buff
= kzalloc(sizeof(ReportLunData_struct
), GFP_KERNEL
);
2256 if (ld_buff
== NULL
)
2259 return_code
= sendcmd_withirq(h
, CISS_REPORT_LOG
, ld_buff
,
2260 sizeof(ReportLunData_struct
),
2261 0, CTLR_LUNID
, TYPE_CMD
);
2263 if (return_code
== IO_OK
)
2264 listlength
= be32_to_cpu(*(__be32
*) ld_buff
->LUNListLength
);
2265 else { /* reading number of logical volumes failed */
2266 dev_warn(&h
->pdev
->dev
,
2267 "report logical volume command failed\n");
2272 num_luns
= listlength
/ 8; /* 8 bytes per entry */
2273 if (num_luns
> CISS_MAX_LUN
) {
2274 num_luns
= CISS_MAX_LUN
;
2275 dev_warn(&h
->pdev
->dev
, "more luns configured"
2276 " on controller than can be handled by"
2281 cciss_add_controller_node(h
);
2283 /* Compare controller drive array to driver's drive array
2284 * to see if any drives are missing on the controller due
2285 * to action of Array Config Utility (user deletes drive)
2286 * and deregister logical drives which have disappeared.
2288 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2292 /* skip holes in the array from already deleted drives */
2293 if (h
->drv
[i
] == NULL
)
2296 for (j
= 0; j
< num_luns
; j
++) {
2297 memcpy(lunid
, &ld_buff
->LUN
[j
][0], sizeof(lunid
));
2298 if (memcmp(h
->drv
[i
]->LunID
, lunid
,
2299 sizeof(lunid
)) == 0) {
2305 /* Deregister it from the OS, it's gone. */
2306 spin_lock_irqsave(&h
->lock
, flags
);
2307 h
->drv
[i
]->busy_configuring
= 1;
2308 spin_unlock_irqrestore(&h
->lock
, flags
);
2309 return_code
= deregister_disk(h
, i
, 1, via_ioctl
);
2310 if (h
->drv
[i
] != NULL
)
2311 h
->drv
[i
]->busy_configuring
= 0;
2315 /* Compare controller drive array to driver's drive array.
2316 * Check for updates in the drive information and any new drives
2317 * on the controller due to ACU adding logical drives, or changing
2318 * a logical drive's size, etc. Reregister any new/changed drives
2320 for (i
= 0; i
< num_luns
; i
++) {
2325 memcpy(lunid
, &ld_buff
->LUN
[i
][0], sizeof(lunid
));
2326 /* Find if the LUN is already in the drive array
2327 * of the driver. If so then update its info
2328 * if not in use. If it does not exist then find
2329 * the first free index and add it.
2331 for (j
= 0; j
<= h
->highest_lun
; j
++) {
2332 if (h
->drv
[j
] != NULL
&&
2333 memcmp(h
->drv
[j
]->LunID
, lunid
,
2334 sizeof(h
->drv
[j
]->LunID
)) == 0) {
2341 /* check if the drive was found already in the array */
2343 drv_index
= cciss_add_gendisk(h
, lunid
, 0);
2344 if (drv_index
== -1)
2347 cciss_update_drive_info(h
, drv_index
, first_time
, via_ioctl
);
2352 h
->busy_configuring
= 0;
2353 /* We return -1 here to tell the ACU that we have registered/updated
2354 * all of the drives that we can and to keep it from calling us
2359 dev_err(&h
->pdev
->dev
, "out of memory\n");
2360 h
->busy_configuring
= 0;
2364 static void cciss_clear_drive_info(drive_info_struct
*drive_info
)
2366 /* zero out the disk size info */
2367 drive_info
->nr_blocks
= 0;
2368 drive_info
->block_size
= 0;
2369 drive_info
->heads
= 0;
2370 drive_info
->sectors
= 0;
2371 drive_info
->cylinders
= 0;
2372 drive_info
->raid_level
= -1;
2373 memset(drive_info
->serial_no
, 0, sizeof(drive_info
->serial_no
));
2374 memset(drive_info
->model
, 0, sizeof(drive_info
->model
));
2375 memset(drive_info
->rev
, 0, sizeof(drive_info
->rev
));
2376 memset(drive_info
->vendor
, 0, sizeof(drive_info
->vendor
));
2378 * don't clear the LUNID though, we need to remember which
2383 /* This function will deregister the disk and it's queue from the
2384 * kernel. It must be called with the controller lock held and the
2385 * drv structures busy_configuring flag set. It's parameters are:
2387 * disk = This is the disk to be deregistered
2388 * drv = This is the drive_info_struct associated with the disk to be
2389 * deregistered. It contains information about the disk used
2391 * clear_all = This flag determines whether or not the disk information
2392 * is going to be completely cleared out and the highest_lun
2393 * reset. Sometimes we want to clear out information about
2394 * the disk in preparation for re-adding it. In this case
2395 * the highest_lun should be left unchanged and the LunID
2396 * should not be cleared.
2398 * This indicates whether we've reached this path via ioctl.
2399 * This affects the maximum usage count allowed for c0d0 to be messed with.
2400 * If this path is reached via ioctl(), then the max_usage_count will
2401 * be 1, as the process calling ioctl() has got to have the device open.
2402 * If we get here via sysfs, then the max usage count will be zero.
2404 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
2405 int clear_all
, int via_ioctl
)
2408 struct gendisk
*disk
;
2409 drive_info_struct
*drv
;
2410 int recalculate_highest_lun
;
2412 if (!capable(CAP_SYS_RAWIO
))
2415 drv
= h
->drv
[drv_index
];
2416 disk
= h
->gendisk
[drv_index
];
2418 /* make sure logical volume is NOT is use */
2419 if (clear_all
|| (h
->gendisk
[0] == disk
)) {
2420 if (drv
->usage_count
> via_ioctl
)
2422 } else if (drv
->usage_count
> 0)
2425 recalculate_highest_lun
= (drv
== h
->drv
[h
->highest_lun
]);
2427 /* invalidate the devices and deregister the disk. If it is disk
2428 * zero do not deregister it but just zero out it's values. This
2429 * allows us to delete disk zero but keep the controller registered.
2431 if (h
->gendisk
[0] != disk
) {
2432 struct request_queue
*q
= disk
->queue
;
2433 if (disk
->flags
& GENHD_FL_UP
) {
2434 cciss_destroy_ld_sysfs_entry(h
, drv_index
, 0);
2438 blk_cleanup_queue(q
);
2439 /* If clear_all is set then we are deleting the logical
2440 * drive, not just refreshing its info. For drives
2441 * other than disk 0 we will call put_disk. We do not
2442 * do this for disk 0 as we need it to be able to
2443 * configure the controller.
2446 /* This isn't pretty, but we need to find the
2447 * disk in our array and NULL our the pointer.
2448 * This is so that we will call alloc_disk if
2449 * this index is used again later.
2451 for (i
=0; i
< CISS_MAX_LUN
; i
++){
2452 if (h
->gendisk
[i
] == disk
) {
2453 h
->gendisk
[i
] = NULL
;
2460 set_capacity(disk
, 0);
2461 cciss_clear_drive_info(drv
);
2466 /* if it was the last disk, find the new hightest lun */
2467 if (clear_all
&& recalculate_highest_lun
) {
2468 int newhighest
= -1;
2469 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2470 /* if the disk has size > 0, it is available */
2471 if (h
->drv
[i
] && h
->drv
[i
]->heads
)
2474 h
->highest_lun
= newhighest
;
2479 static int fill_cmd(ctlr_info_t
*h
, CommandList_struct
*c
, __u8 cmd
, void *buff
,
2480 size_t size
, __u8 page_code
, unsigned char *scsi3addr
,
2483 u64bit buff_dma_handle
;
2486 c
->cmd_type
= CMD_IOCTL_PEND
;
2487 c
->Header
.ReplyQueue
= 0;
2489 c
->Header
.SGList
= 1;
2490 c
->Header
.SGTotal
= 1;
2492 c
->Header
.SGList
= 0;
2493 c
->Header
.SGTotal
= 0;
2495 c
->Header
.Tag
.lower
= c
->busaddr
;
2496 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
2498 c
->Request
.Type
.Type
= cmd_type
;
2499 if (cmd_type
== TYPE_CMD
) {
2502 /* are we trying to read a vital product page */
2503 if (page_code
!= 0) {
2504 c
->Request
.CDB
[1] = 0x01;
2505 c
->Request
.CDB
[2] = page_code
;
2507 c
->Request
.CDBLen
= 6;
2508 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2509 c
->Request
.Type
.Direction
= XFER_READ
;
2510 c
->Request
.Timeout
= 0;
2511 c
->Request
.CDB
[0] = CISS_INQUIRY
;
2512 c
->Request
.CDB
[4] = size
& 0xFF;
2514 case CISS_REPORT_LOG
:
2515 case CISS_REPORT_PHYS
:
2516 /* Talking to controller so It's a physical command
2517 mode = 00 target = 0. Nothing to write.
2519 c
->Request
.CDBLen
= 12;
2520 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2521 c
->Request
.Type
.Direction
= XFER_READ
;
2522 c
->Request
.Timeout
= 0;
2523 c
->Request
.CDB
[0] = cmd
;
2524 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
2525 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
2526 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
2527 c
->Request
.CDB
[9] = size
& 0xFF;
2530 case CCISS_READ_CAPACITY
:
2531 c
->Request
.CDBLen
= 10;
2532 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2533 c
->Request
.Type
.Direction
= XFER_READ
;
2534 c
->Request
.Timeout
= 0;
2535 c
->Request
.CDB
[0] = cmd
;
2537 case CCISS_READ_CAPACITY_16
:
2538 c
->Request
.CDBLen
= 16;
2539 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2540 c
->Request
.Type
.Direction
= XFER_READ
;
2541 c
->Request
.Timeout
= 0;
2542 c
->Request
.CDB
[0] = cmd
;
2543 c
->Request
.CDB
[1] = 0x10;
2544 c
->Request
.CDB
[10] = (size
>> 24) & 0xFF;
2545 c
->Request
.CDB
[11] = (size
>> 16) & 0xFF;
2546 c
->Request
.CDB
[12] = (size
>> 8) & 0xFF;
2547 c
->Request
.CDB
[13] = size
& 0xFF;
2548 c
->Request
.Timeout
= 0;
2549 c
->Request
.CDB
[0] = cmd
;
2551 case CCISS_CACHE_FLUSH
:
2552 c
->Request
.CDBLen
= 12;
2553 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2554 c
->Request
.Type
.Direction
= XFER_WRITE
;
2555 c
->Request
.Timeout
= 0;
2556 c
->Request
.CDB
[0] = BMIC_WRITE
;
2557 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
2559 case TEST_UNIT_READY
:
2560 c
->Request
.CDBLen
= 6;
2561 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2562 c
->Request
.Type
.Direction
= XFER_NONE
;
2563 c
->Request
.Timeout
= 0;
2566 dev_warn(&h
->pdev
->dev
, "Unknown Command 0x%c\n", cmd
);
2569 } else if (cmd_type
== TYPE_MSG
) {
2571 case 0: /* ABORT message */
2572 c
->Request
.CDBLen
= 12;
2573 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2574 c
->Request
.Type
.Direction
= XFER_WRITE
;
2575 c
->Request
.Timeout
= 0;
2576 c
->Request
.CDB
[0] = cmd
; /* abort */
2577 c
->Request
.CDB
[1] = 0; /* abort a command */
2578 /* buff contains the tag of the command to abort */
2579 memcpy(&c
->Request
.CDB
[4], buff
, 8);
2581 case 1: /* RESET message */
2582 c
->Request
.CDBLen
= 16;
2583 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2584 c
->Request
.Type
.Direction
= XFER_NONE
;
2585 c
->Request
.Timeout
= 0;
2586 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
2587 c
->Request
.CDB
[0] = cmd
; /* reset */
2588 c
->Request
.CDB
[1] = 0x03; /* reset a target */
2590 case 3: /* No-Op message */
2591 c
->Request
.CDBLen
= 1;
2592 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2593 c
->Request
.Type
.Direction
= XFER_WRITE
;
2594 c
->Request
.Timeout
= 0;
2595 c
->Request
.CDB
[0] = cmd
;
2598 dev_warn(&h
->pdev
->dev
,
2599 "unknown message type %d\n", cmd
);
2603 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
2606 /* Fill in the scatter gather information */
2608 buff_dma_handle
.val
= (__u64
) pci_map_single(h
->pdev
,
2610 PCI_DMA_BIDIRECTIONAL
);
2611 c
->SG
[0].Addr
.lower
= buff_dma_handle
.val32
.lower
;
2612 c
->SG
[0].Addr
.upper
= buff_dma_handle
.val32
.upper
;
2613 c
->SG
[0].Len
= size
;
2614 c
->SG
[0].Ext
= 0; /* we are not chaining */
2619 static int check_target_status(ctlr_info_t
*h
, CommandList_struct
*c
)
2621 switch (c
->err_info
->ScsiStatus
) {
2624 case SAM_STAT_CHECK_CONDITION
:
2625 switch (0xf & c
->err_info
->SenseInfo
[2]) {
2626 case 0: return IO_OK
; /* no sense */
2627 case 1: return IO_OK
; /* recovered error */
2629 if (check_for_unit_attention(h
, c
))
2630 return IO_NEEDS_RETRY
;
2631 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x "
2632 "check condition, sense key = 0x%02x\n",
2633 c
->Request
.CDB
[0], c
->err_info
->SenseInfo
[2]);
2637 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x"
2638 "scsi status = 0x%02x\n",
2639 c
->Request
.CDB
[0], c
->err_info
->ScsiStatus
);
2645 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
)
2647 int return_status
= IO_OK
;
2649 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2652 switch (c
->err_info
->CommandStatus
) {
2653 case CMD_TARGET_STATUS
:
2654 return_status
= check_target_status(h
, c
);
2656 case CMD_DATA_UNDERRUN
:
2657 case CMD_DATA_OVERRUN
:
2658 /* expected for inquiry and report lun commands */
2661 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x is "
2662 "reported invalid\n", c
->Request
.CDB
[0]);
2663 return_status
= IO_ERROR
;
2665 case CMD_PROTOCOL_ERR
:
2666 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x has "
2667 "protocol error\n", c
->Request
.CDB
[0]);
2668 return_status
= IO_ERROR
;
2670 case CMD_HARDWARE_ERR
:
2671 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x had "
2672 " hardware error\n", c
->Request
.CDB
[0]);
2673 return_status
= IO_ERROR
;
2675 case CMD_CONNECTION_LOST
:
2676 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x had "
2677 "connection lost\n", c
->Request
.CDB
[0]);
2678 return_status
= IO_ERROR
;
2681 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x was "
2682 "aborted\n", c
->Request
.CDB
[0]);
2683 return_status
= IO_ERROR
;
2685 case CMD_ABORT_FAILED
:
2686 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x reports "
2687 "abort failed\n", c
->Request
.CDB
[0]);
2688 return_status
= IO_ERROR
;
2690 case CMD_UNSOLICITED_ABORT
:
2691 dev_warn(&h
->pdev
->dev
, "unsolicited abort 0x%02x\n",
2693 return_status
= IO_NEEDS_RETRY
;
2696 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x returned "
2697 "unknown status %x\n", c
->Request
.CDB
[0],
2698 c
->err_info
->CommandStatus
);
2699 return_status
= IO_ERROR
;
2701 return return_status
;
2704 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
2707 DECLARE_COMPLETION_ONSTACK(wait
);
2708 u64bit buff_dma_handle
;
2709 int return_status
= IO_OK
;
2713 enqueue_cmd_and_start_io(h
, c
);
2715 wait_for_completion(&wait
);
2717 if (c
->err_info
->CommandStatus
== 0 || !attempt_retry
)
2720 return_status
= process_sendcmd_error(h
, c
);
2722 if (return_status
== IO_NEEDS_RETRY
&&
2723 c
->retry_count
< MAX_CMD_RETRIES
) {
2724 dev_warn(&h
->pdev
->dev
, "retrying 0x%02x\n",
2727 /* erase the old error information */
2728 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2729 return_status
= IO_OK
;
2730 INIT_COMPLETION(wait
);
2735 /* unlock the buffers from DMA */
2736 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2737 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2738 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2739 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2740 return return_status
;
2743 static int sendcmd_withirq(ctlr_info_t
*h
, __u8 cmd
, void *buff
, size_t size
,
2744 __u8 page_code
, unsigned char scsi3addr
[],
2747 CommandList_struct
*c
;
2750 c
= cmd_special_alloc(h
);
2753 return_status
= fill_cmd(h
, c
, cmd
, buff
, size
, page_code
,
2754 scsi3addr
, cmd_type
);
2755 if (return_status
== IO_OK
)
2756 return_status
= sendcmd_withirq_core(h
, c
, 1);
2758 cmd_special_free(h
, c
);
2759 return return_status
;
2762 static void cciss_geometry_inquiry(ctlr_info_t
*h
, int logvol
,
2763 sector_t total_size
,
2764 unsigned int block_size
,
2765 InquiryData_struct
*inq_buff
,
2766 drive_info_struct
*drv
)
2770 unsigned char scsi3addr
[8];
2772 memset(inq_buff
, 0, sizeof(InquiryData_struct
));
2773 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2774 return_code
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buff
,
2775 sizeof(*inq_buff
), 0xC1, scsi3addr
, TYPE_CMD
);
2776 if (return_code
== IO_OK
) {
2777 if (inq_buff
->data_byte
[8] == 0xFF) {
2778 dev_warn(&h
->pdev
->dev
,
2779 "reading geometry failed, volume "
2780 "does not support reading geometry\n");
2782 drv
->sectors
= 32; /* Sectors per track */
2783 drv
->cylinders
= total_size
+ 1;
2784 drv
->raid_level
= RAID_UNKNOWN
;
2786 drv
->heads
= inq_buff
->data_byte
[6];
2787 drv
->sectors
= inq_buff
->data_byte
[7];
2788 drv
->cylinders
= (inq_buff
->data_byte
[4] & 0xff) << 8;
2789 drv
->cylinders
+= inq_buff
->data_byte
[5];
2790 drv
->raid_level
= inq_buff
->data_byte
[8];
2792 drv
->block_size
= block_size
;
2793 drv
->nr_blocks
= total_size
+ 1;
2794 t
= drv
->heads
* drv
->sectors
;
2796 sector_t real_size
= total_size
+ 1;
2797 unsigned long rem
= sector_div(real_size
, t
);
2800 drv
->cylinders
= real_size
;
2802 } else { /* Get geometry failed */
2803 dev_warn(&h
->pdev
->dev
, "reading geometry failed\n");
2808 cciss_read_capacity(ctlr_info_t
*h
, int logvol
, sector_t
*total_size
,
2809 unsigned int *block_size
)
2811 ReadCapdata_struct
*buf
;
2813 unsigned char scsi3addr
[8];
2815 buf
= kzalloc(sizeof(ReadCapdata_struct
), GFP_KERNEL
);
2817 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2821 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2822 return_code
= sendcmd_withirq(h
, CCISS_READ_CAPACITY
, buf
,
2823 sizeof(ReadCapdata_struct
), 0, scsi3addr
, TYPE_CMD
);
2824 if (return_code
== IO_OK
) {
2825 *total_size
= be32_to_cpu(*(__be32
*) buf
->total_size
);
2826 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2827 } else { /* read capacity command failed */
2828 dev_warn(&h
->pdev
->dev
, "read capacity failed\n");
2830 *block_size
= BLOCK_SIZE
;
2835 static void cciss_read_capacity_16(ctlr_info_t
*h
, int logvol
,
2836 sector_t
*total_size
, unsigned int *block_size
)
2838 ReadCapdata_struct_16
*buf
;
2840 unsigned char scsi3addr
[8];
2842 buf
= kzalloc(sizeof(ReadCapdata_struct_16
), GFP_KERNEL
);
2844 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2848 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2849 return_code
= sendcmd_withirq(h
, CCISS_READ_CAPACITY_16
,
2850 buf
, sizeof(ReadCapdata_struct_16
),
2851 0, scsi3addr
, TYPE_CMD
);
2852 if (return_code
== IO_OK
) {
2853 *total_size
= be64_to_cpu(*(__be64
*) buf
->total_size
);
2854 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2855 } else { /* read capacity command failed */
2856 dev_warn(&h
->pdev
->dev
, "read capacity failed\n");
2858 *block_size
= BLOCK_SIZE
;
2860 dev_info(&h
->pdev
->dev
, " blocks= %llu block_size= %d\n",
2861 (unsigned long long)*total_size
+1, *block_size
);
2865 static int cciss_revalidate(struct gendisk
*disk
)
2867 ctlr_info_t
*h
= get_host(disk
);
2868 drive_info_struct
*drv
= get_drv(disk
);
2871 unsigned int block_size
;
2872 sector_t total_size
;
2873 InquiryData_struct
*inq_buff
= NULL
;
2875 for (logvol
= 0; logvol
<= h
->highest_lun
; logvol
++) {
2876 if (!h
->drv
[logvol
])
2878 if (memcmp(h
->drv
[logvol
]->LunID
, drv
->LunID
,
2879 sizeof(drv
->LunID
)) == 0) {
2888 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
2889 if (inq_buff
== NULL
) {
2890 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2893 if (h
->cciss_read
== CCISS_READ_10
) {
2894 cciss_read_capacity(h
, logvol
,
2895 &total_size
, &block_size
);
2897 cciss_read_capacity_16(h
, logvol
,
2898 &total_size
, &block_size
);
2900 cciss_geometry_inquiry(h
, logvol
, total_size
, block_size
,
2903 blk_queue_logical_block_size(drv
->queue
, drv
->block_size
);
2904 set_capacity(disk
, drv
->nr_blocks
);
2911 * Map (physical) PCI mem into (virtual) kernel space
2913 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
2915 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
2916 ulong page_offs
= ((ulong
) base
) - page_base
;
2917 void __iomem
*page_remapped
= ioremap(page_base
, page_offs
+ size
);
2919 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
2923 * Takes jobs of the Q and sends them to the hardware, then puts it on
2924 * the Q to wait for completion.
2926 static void start_io(ctlr_info_t
*h
)
2928 CommandList_struct
*c
;
2930 while (!list_empty(&h
->reqQ
)) {
2931 c
= list_entry(h
->reqQ
.next
, CommandList_struct
, list
);
2932 /* can't do anything if fifo is full */
2933 if ((h
->access
.fifo_full(h
))) {
2934 dev_warn(&h
->pdev
->dev
, "fifo full\n");
2938 /* Get the first entry from the Request Q */
2942 /* Tell the controller execute command */
2943 h
->access
.submit_command(h
, c
);
2945 /* Put job onto the completed Q */
2950 /* Assumes that h->lock is held. */
2951 /* Zeros out the error record and then resends the command back */
2952 /* to the controller */
2953 static inline void resend_cciss_cmd(ctlr_info_t
*h
, CommandList_struct
*c
)
2955 /* erase the old error information */
2956 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2958 /* add it to software queue and then send it to the controller */
2961 if (h
->Qdepth
> h
->maxQsinceinit
)
2962 h
->maxQsinceinit
= h
->Qdepth
;
2967 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte
,
2968 unsigned int msg_byte
, unsigned int host_byte
,
2969 unsigned int driver_byte
)
2971 /* inverse of macros in scsi.h */
2972 return (scsi_status_byte
& 0xff) |
2973 ((msg_byte
& 0xff) << 8) |
2974 ((host_byte
& 0xff) << 16) |
2975 ((driver_byte
& 0xff) << 24);
2978 static inline int evaluate_target_status(ctlr_info_t
*h
,
2979 CommandList_struct
*cmd
, int *retry_cmd
)
2981 unsigned char sense_key
;
2982 unsigned char status_byte
, msg_byte
, host_byte
, driver_byte
;
2986 /* If we get in here, it means we got "target status", that is, scsi status */
2987 status_byte
= cmd
->err_info
->ScsiStatus
;
2988 driver_byte
= DRIVER_OK
;
2989 msg_byte
= cmd
->err_info
->CommandStatus
; /* correct? seems too device specific */
2991 if (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
)
2992 host_byte
= DID_PASSTHROUGH
;
2996 error_value
= make_status_bytes(status_byte
, msg_byte
,
2997 host_byte
, driver_byte
);
2999 if (cmd
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
) {
3000 if (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
)
3001 dev_warn(&h
->pdev
->dev
, "cmd %p "
3002 "has SCSI Status 0x%x\n",
3003 cmd
, cmd
->err_info
->ScsiStatus
);
3007 /* check the sense key */
3008 sense_key
= 0xf & cmd
->err_info
->SenseInfo
[2];
3009 /* no status or recovered error */
3010 if (((sense_key
== 0x0) || (sense_key
== 0x1)) &&
3011 (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
))
3014 if (check_for_unit_attention(h
, cmd
)) {
3015 *retry_cmd
= !(cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
);
3019 /* Not SG_IO or similar? */
3020 if (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
) {
3021 if (error_value
!= 0)
3022 dev_warn(&h
->pdev
->dev
, "cmd %p has CHECK CONDITION"
3023 " sense key = 0x%x\n", cmd
, sense_key
);
3027 /* SG_IO or similar, copy sense data back */
3028 if (cmd
->rq
->sense
) {
3029 if (cmd
->rq
->sense_len
> cmd
->err_info
->SenseLen
)
3030 cmd
->rq
->sense_len
= cmd
->err_info
->SenseLen
;
3031 memcpy(cmd
->rq
->sense
, cmd
->err_info
->SenseInfo
,
3032 cmd
->rq
->sense_len
);
3034 cmd
->rq
->sense_len
= 0;
3039 /* checks the status of the job and calls complete buffers to mark all
3040 * buffers for the completed job. Note that this function does not need
3041 * to hold the hba/queue lock.
3043 static inline void complete_command(ctlr_info_t
*h
, CommandList_struct
*cmd
,
3047 struct request
*rq
= cmd
->rq
;
3052 rq
->errors
= make_status_bytes(0, 0, 0, DRIVER_TIMEOUT
);
3054 if (cmd
->err_info
->CommandStatus
== 0) /* no error has occurred */
3055 goto after_error_processing
;
3057 switch (cmd
->err_info
->CommandStatus
) {
3058 case CMD_TARGET_STATUS
:
3059 rq
->errors
= evaluate_target_status(h
, cmd
, &retry_cmd
);
3061 case CMD_DATA_UNDERRUN
:
3062 if (cmd
->rq
->cmd_type
== REQ_TYPE_FS
) {
3063 dev_warn(&h
->pdev
->dev
, "cmd %p has"
3064 " completed with data underrun "
3066 cmd
->rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
3069 case CMD_DATA_OVERRUN
:
3070 if (cmd
->rq
->cmd_type
== REQ_TYPE_FS
)
3071 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p has"
3072 " completed with data overrun "
3076 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p is "
3077 "reported invalid\n", cmd
);
3078 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3079 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3080 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3081 DID_PASSTHROUGH
: DID_ERROR
);
3083 case CMD_PROTOCOL_ERR
:
3084 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p has "
3085 "protocol error\n", cmd
);
3086 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3087 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3088 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3089 DID_PASSTHROUGH
: DID_ERROR
);
3091 case CMD_HARDWARE_ERR
:
3092 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p had "
3093 " hardware error\n", cmd
);
3094 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3095 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3096 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3097 DID_PASSTHROUGH
: DID_ERROR
);
3099 case CMD_CONNECTION_LOST
:
3100 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p had "
3101 "connection lost\n", cmd
);
3102 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3103 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3104 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3105 DID_PASSTHROUGH
: DID_ERROR
);
3108 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p was "
3110 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3111 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3112 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3113 DID_PASSTHROUGH
: DID_ABORT
);
3115 case CMD_ABORT_FAILED
:
3116 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p reports "
3117 "abort failed\n", cmd
);
3118 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3119 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3120 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3121 DID_PASSTHROUGH
: DID_ERROR
);
3123 case CMD_UNSOLICITED_ABORT
:
3124 dev_warn(&h
->pdev
->dev
, "cciss%d: unsolicited "
3125 "abort %p\n", h
->ctlr
, cmd
);
3126 if (cmd
->retry_count
< MAX_CMD_RETRIES
) {
3128 dev_warn(&h
->pdev
->dev
, "retrying %p\n", cmd
);
3131 dev_warn(&h
->pdev
->dev
,
3132 "%p retried too many times\n", cmd
);
3133 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3134 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3135 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3136 DID_PASSTHROUGH
: DID_ABORT
);
3139 dev_warn(&h
->pdev
->dev
, "cmd %p timedout\n", cmd
);
3140 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3141 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3142 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3143 DID_PASSTHROUGH
: DID_ERROR
);
3146 dev_warn(&h
->pdev
->dev
, "cmd %p returned "
3147 "unknown status %x\n", cmd
,
3148 cmd
->err_info
->CommandStatus
);
3149 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3150 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3151 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3152 DID_PASSTHROUGH
: DID_ERROR
);
3155 after_error_processing
:
3157 /* We need to return this command */
3159 resend_cciss_cmd(h
, cmd
);
3162 cmd
->rq
->completion_data
= cmd
;
3163 blk_complete_request(cmd
->rq
);
3166 static inline u32
cciss_tag_contains_index(u32 tag
)
3168 #define DIRECT_LOOKUP_BIT 0x10
3169 return tag
& DIRECT_LOOKUP_BIT
;
3172 static inline u32
cciss_tag_to_index(u32 tag
)
3174 #define DIRECT_LOOKUP_SHIFT 5
3175 return tag
>> DIRECT_LOOKUP_SHIFT
;
3178 static inline u32
cciss_tag_discard_error_bits(u32 tag
)
3180 #define CCISS_ERROR_BITS 0x03
3181 return tag
& ~CCISS_ERROR_BITS
;
3184 static inline void cciss_mark_tag_indexed(u32
*tag
)
3186 *tag
|= DIRECT_LOOKUP_BIT
;
3189 static inline void cciss_set_tag_index(u32
*tag
, u32 index
)
3191 *tag
|= (index
<< DIRECT_LOOKUP_SHIFT
);
3195 * Get a request and submit it to the controller.
3197 static void do_cciss_request(struct request_queue
*q
)
3199 ctlr_info_t
*h
= q
->queuedata
;
3200 CommandList_struct
*c
;
3203 struct request
*creq
;
3205 struct scatterlist
*tmp_sg
;
3206 SGDescriptor_struct
*curr_sg
;
3207 drive_info_struct
*drv
;
3213 creq
= blk_peek_request(q
);
3217 BUG_ON(creq
->nr_phys_segments
> h
->maxsgentries
);
3223 blk_start_request(creq
);
3225 tmp_sg
= h
->scatter_list
[c
->cmdindex
];
3226 spin_unlock_irq(q
->queue_lock
);
3228 c
->cmd_type
= CMD_RWREQ
;
3231 /* fill in the request */
3232 drv
= creq
->rq_disk
->private_data
;
3233 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
3234 /* got command from pool, so use the command block index instead */
3235 /* for direct lookups. */
3236 /* The first 2 bits are reserved for controller error reporting. */
3237 cciss_set_tag_index(&c
->Header
.Tag
.lower
, c
->cmdindex
);
3238 cciss_mark_tag_indexed(&c
->Header
.Tag
.lower
);
3239 memcpy(&c
->Header
.LUN
, drv
->LunID
, sizeof(drv
->LunID
));
3240 c
->Request
.CDBLen
= 10; /* 12 byte commands not in FW yet; */
3241 c
->Request
.Type
.Type
= TYPE_CMD
; /* It is a command. */
3242 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3243 c
->Request
.Type
.Direction
=
3244 (rq_data_dir(creq
) == READ
) ? XFER_READ
: XFER_WRITE
;
3245 c
->Request
.Timeout
= 0; /* Don't time out */
3247 (rq_data_dir(creq
) == READ
) ? h
->cciss_read
: h
->cciss_write
;
3248 start_blk
= blk_rq_pos(creq
);
3249 dev_dbg(&h
->pdev
->dev
, "sector =%d nr_sectors=%d\n",
3250 (int)blk_rq_pos(creq
), (int)blk_rq_sectors(creq
));
3251 sg_init_table(tmp_sg
, h
->maxsgentries
);
3252 seg
= blk_rq_map_sg(q
, creq
, tmp_sg
);
3254 /* get the DMA records for the setup */
3255 if (c
->Request
.Type
.Direction
== XFER_READ
)
3256 dir
= PCI_DMA_FROMDEVICE
;
3258 dir
= PCI_DMA_TODEVICE
;
3264 for (i
= 0; i
< seg
; i
++) {
3265 if (((sg_index
+1) == (h
->max_cmd_sgentries
)) &&
3266 !chained
&& ((seg
- i
) > 1)) {
3267 /* Point to next chain block. */
3268 curr_sg
= h
->cmd_sg_list
[c
->cmdindex
];
3272 curr_sg
[sg_index
].Len
= tmp_sg
[i
].length
;
3273 temp64
.val
= (__u64
) pci_map_page(h
->pdev
, sg_page(&tmp_sg
[i
]),
3275 tmp_sg
[i
].length
, dir
);
3276 curr_sg
[sg_index
].Addr
.lower
= temp64
.val32
.lower
;
3277 curr_sg
[sg_index
].Addr
.upper
= temp64
.val32
.upper
;
3278 curr_sg
[sg_index
].Ext
= 0; /* we are not chaining */
3282 cciss_map_sg_chain_block(h
, c
, h
->cmd_sg_list
[c
->cmdindex
],
3283 (seg
- (h
->max_cmd_sgentries
- 1)) *
3284 sizeof(SGDescriptor_struct
));
3286 /* track how many SG entries we are using */
3290 dev_dbg(&h
->pdev
->dev
, "Submitting %u sectors in %d segments "
3292 blk_rq_sectors(creq
), seg
, chained
);
3294 c
->Header
.SGTotal
= seg
+ chained
;
3295 if (seg
<= h
->max_cmd_sgentries
)
3296 c
->Header
.SGList
= c
->Header
.SGTotal
;
3298 c
->Header
.SGList
= h
->max_cmd_sgentries
;
3299 set_performant_mode(h
, c
);
3301 if (likely(creq
->cmd_type
== REQ_TYPE_FS
)) {
3302 if(h
->cciss_read
== CCISS_READ_10
) {
3303 c
->Request
.CDB
[1] = 0;
3304 c
->Request
.CDB
[2] = (start_blk
>> 24) & 0xff; /* MSB */
3305 c
->Request
.CDB
[3] = (start_blk
>> 16) & 0xff;
3306 c
->Request
.CDB
[4] = (start_blk
>> 8) & 0xff;
3307 c
->Request
.CDB
[5] = start_blk
& 0xff;
3308 c
->Request
.CDB
[6] = 0; /* (sect >> 24) & 0xff; MSB */
3309 c
->Request
.CDB
[7] = (blk_rq_sectors(creq
) >> 8) & 0xff;
3310 c
->Request
.CDB
[8] = blk_rq_sectors(creq
) & 0xff;
3311 c
->Request
.CDB
[9] = c
->Request
.CDB
[11] = c
->Request
.CDB
[12] = 0;
3313 u32 upper32
= upper_32_bits(start_blk
);
3315 c
->Request
.CDBLen
= 16;
3316 c
->Request
.CDB
[1]= 0;
3317 c
->Request
.CDB
[2]= (upper32
>> 24) & 0xff; /* MSB */
3318 c
->Request
.CDB
[3]= (upper32
>> 16) & 0xff;
3319 c
->Request
.CDB
[4]= (upper32
>> 8) & 0xff;
3320 c
->Request
.CDB
[5]= upper32
& 0xff;
3321 c
->Request
.CDB
[6]= (start_blk
>> 24) & 0xff;
3322 c
->Request
.CDB
[7]= (start_blk
>> 16) & 0xff;
3323 c
->Request
.CDB
[8]= (start_blk
>> 8) & 0xff;
3324 c
->Request
.CDB
[9]= start_blk
& 0xff;
3325 c
->Request
.CDB
[10]= (blk_rq_sectors(creq
) >> 24) & 0xff;
3326 c
->Request
.CDB
[11]= (blk_rq_sectors(creq
) >> 16) & 0xff;
3327 c
->Request
.CDB
[12]= (blk_rq_sectors(creq
) >> 8) & 0xff;
3328 c
->Request
.CDB
[13]= blk_rq_sectors(creq
) & 0xff;
3329 c
->Request
.CDB
[14] = c
->Request
.CDB
[15] = 0;
3331 } else if (creq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
3332 c
->Request
.CDBLen
= creq
->cmd_len
;
3333 memcpy(c
->Request
.CDB
, creq
->cmd
, BLK_MAX_CDB
);
3335 dev_warn(&h
->pdev
->dev
, "bad request type %d\n",
3340 spin_lock_irq(q
->queue_lock
);
3344 if (h
->Qdepth
> h
->maxQsinceinit
)
3345 h
->maxQsinceinit
= h
->Qdepth
;
3351 /* We will already have the driver lock here so not need
3357 static inline unsigned long get_next_completion(ctlr_info_t
*h
)
3359 return h
->access
.command_completed(h
);
3362 static inline int interrupt_pending(ctlr_info_t
*h
)
3364 return h
->access
.intr_pending(h
);
3367 static inline long interrupt_not_for_us(ctlr_info_t
*h
)
3369 return ((h
->access
.intr_pending(h
) == 0) ||
3370 (h
->interrupts_enabled
== 0));
3373 static inline int bad_tag(ctlr_info_t
*h
, u32 tag_index
,
3376 if (unlikely(tag_index
>= h
->nr_cmds
)) {
3377 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
3383 static inline void finish_cmd(ctlr_info_t
*h
, CommandList_struct
*c
,
3387 if (likely(c
->cmd_type
== CMD_RWREQ
))
3388 complete_command(h
, c
, 0);
3389 else if (c
->cmd_type
== CMD_IOCTL_PEND
)
3390 complete(c
->waiting
);
3391 #ifdef CONFIG_CISS_SCSI_TAPE
3392 else if (c
->cmd_type
== CMD_SCSI
)
3393 complete_scsi_command(c
, 0, raw_tag
);
3397 static inline u32
next_command(ctlr_info_t
*h
)
3401 if (unlikely(h
->transMethod
!= CFGTBL_Trans_Performant
))
3402 return h
->access
.command_completed(h
);
3404 if ((*(h
->reply_pool_head
) & 1) == (h
->reply_pool_wraparound
)) {
3405 a
= *(h
->reply_pool_head
); /* Next cmd in ring buffer */
3406 (h
->reply_pool_head
)++;
3407 h
->commands_outstanding
--;
3411 /* Check for wraparound */
3412 if (h
->reply_pool_head
== (h
->reply_pool
+ h
->max_commands
)) {
3413 h
->reply_pool_head
= h
->reply_pool
;
3414 h
->reply_pool_wraparound
^= 1;
3419 /* process completion of an indexed ("direct lookup") command */
3420 static inline u32
process_indexed_cmd(ctlr_info_t
*h
, u32 raw_tag
)
3423 CommandList_struct
*c
;
3425 tag_index
= cciss_tag_to_index(raw_tag
);
3426 if (bad_tag(h
, tag_index
, raw_tag
))
3427 return next_command(h
);
3428 c
= h
->cmd_pool
+ tag_index
;
3429 finish_cmd(h
, c
, raw_tag
);
3430 return next_command(h
);
3433 /* process completion of a non-indexed command */
3434 static inline u32
process_nonindexed_cmd(ctlr_info_t
*h
, u32 raw_tag
)
3437 CommandList_struct
*c
= NULL
;
3438 __u32 busaddr_masked
, tag_masked
;
3440 tag
= cciss_tag_discard_error_bits(raw_tag
);
3441 list_for_each_entry(c
, &h
->cmpQ
, list
) {
3442 busaddr_masked
= cciss_tag_discard_error_bits(c
->busaddr
);
3443 tag_masked
= cciss_tag_discard_error_bits(tag
);
3444 if (busaddr_masked
== tag_masked
) {
3445 finish_cmd(h
, c
, raw_tag
);
3446 return next_command(h
);
3449 bad_tag(h
, h
->nr_cmds
+ 1, raw_tag
);
3450 return next_command(h
);
3453 static irqreturn_t
do_cciss_intx(int irq
, void *dev_id
)
3455 ctlr_info_t
*h
= dev_id
;
3456 unsigned long flags
;
3459 if (interrupt_not_for_us(h
))
3461 spin_lock_irqsave(&h
->lock
, flags
);
3462 while (interrupt_pending(h
)) {
3463 raw_tag
= get_next_completion(h
);
3464 while (raw_tag
!= FIFO_EMPTY
) {
3465 if (cciss_tag_contains_index(raw_tag
))
3466 raw_tag
= process_indexed_cmd(h
, raw_tag
);
3468 raw_tag
= process_nonindexed_cmd(h
, raw_tag
);
3471 spin_unlock_irqrestore(&h
->lock
, flags
);
3475 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3476 * check the interrupt pending register because it is not set.
3478 static irqreturn_t
do_cciss_msix_intr(int irq
, void *dev_id
)
3480 ctlr_info_t
*h
= dev_id
;
3481 unsigned long flags
;
3484 spin_lock_irqsave(&h
->lock
, flags
);
3485 raw_tag
= get_next_completion(h
);
3486 while (raw_tag
!= FIFO_EMPTY
) {
3487 if (cciss_tag_contains_index(raw_tag
))
3488 raw_tag
= process_indexed_cmd(h
, raw_tag
);
3490 raw_tag
= process_nonindexed_cmd(h
, raw_tag
);
3492 spin_unlock_irqrestore(&h
->lock
, flags
);
3497 * add_to_scan_list() - add controller to rescan queue
3498 * @h: Pointer to the controller.
3500 * Adds the controller to the rescan queue if not already on the queue.
3502 * returns 1 if added to the queue, 0 if skipped (could be on the
3503 * queue already, or the controller could be initializing or shutting
3506 static int add_to_scan_list(struct ctlr_info
*h
)
3508 struct ctlr_info
*test_h
;
3512 if (h
->busy_initializing
)
3515 if (!mutex_trylock(&h
->busy_shutting_down
))
3518 mutex_lock(&scan_mutex
);
3519 list_for_each_entry(test_h
, &scan_q
, scan_list
) {
3525 if (!found
&& !h
->busy_scanning
) {
3526 INIT_COMPLETION(h
->scan_wait
);
3527 list_add_tail(&h
->scan_list
, &scan_q
);
3530 mutex_unlock(&scan_mutex
);
3531 mutex_unlock(&h
->busy_shutting_down
);
3537 * remove_from_scan_list() - remove controller from rescan queue
3538 * @h: Pointer to the controller.
3540 * Removes the controller from the rescan queue if present. Blocks if
3541 * the controller is currently conducting a rescan. The controller
3542 * can be in one of three states:
3543 * 1. Doesn't need a scan
3544 * 2. On the scan list, but not scanning yet (we remove it)
3545 * 3. Busy scanning (and not on the list). In this case we want to wait for
3546 * the scan to complete to make sure the scanning thread for this
3547 * controller is completely idle.
3549 static void remove_from_scan_list(struct ctlr_info
*h
)
3551 struct ctlr_info
*test_h
, *tmp_h
;
3553 mutex_lock(&scan_mutex
);
3554 list_for_each_entry_safe(test_h
, tmp_h
, &scan_q
, scan_list
) {
3555 if (test_h
== h
) { /* state 2. */
3556 list_del(&h
->scan_list
);
3557 complete_all(&h
->scan_wait
);
3558 mutex_unlock(&scan_mutex
);
3562 if (h
->busy_scanning
) { /* state 3. */
3563 mutex_unlock(&scan_mutex
);
3564 wait_for_completion(&h
->scan_wait
);
3565 } else { /* state 1, nothing to do. */
3566 mutex_unlock(&scan_mutex
);
3571 * scan_thread() - kernel thread used to rescan controllers
3574 * A kernel thread used scan for drive topology changes on
3575 * controllers. The thread processes only one controller at a time
3576 * using a queue. Controllers are added to the queue using
3577 * add_to_scan_list() and removed from the queue either after done
3578 * processing or using remove_from_scan_list().
3582 static int scan_thread(void *data
)
3584 struct ctlr_info
*h
;
3587 set_current_state(TASK_INTERRUPTIBLE
);
3589 if (kthread_should_stop())
3593 mutex_lock(&scan_mutex
);
3594 if (list_empty(&scan_q
)) {
3595 mutex_unlock(&scan_mutex
);
3599 h
= list_entry(scan_q
.next
,
3602 list_del(&h
->scan_list
);
3603 h
->busy_scanning
= 1;
3604 mutex_unlock(&scan_mutex
);
3606 rebuild_lun_table(h
, 0, 0);
3607 complete_all(&h
->scan_wait
);
3608 mutex_lock(&scan_mutex
);
3609 h
->busy_scanning
= 0;
3610 mutex_unlock(&scan_mutex
);
3617 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
3619 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
3622 switch (c
->err_info
->SenseInfo
[12]) {
3624 dev_warn(&h
->pdev
->dev
, "a state change "
3625 "detected, command retried\n");
3629 dev_warn(&h
->pdev
->dev
, "LUN failure "
3630 "detected, action required\n");
3633 case REPORT_LUNS_CHANGED
:
3634 dev_warn(&h
->pdev
->dev
, "report LUN data changed\n");
3636 * Here, we could call add_to_scan_list and wake up the scan thread,
3637 * except that it's quite likely that we will get more than one
3638 * REPORT_LUNS_CHANGED condition in quick succession, which means
3639 * that those which occur after the first one will likely happen
3640 * *during* the scan_thread's rescan. And the rescan code is not
3641 * robust enough to restart in the middle, undoing what it has already
3642 * done, and it's not clear that it's even possible to do this, since
3643 * part of what it does is notify the block layer, which starts
3644 * doing it's own i/o to read partition tables and so on, and the
3645 * driver doesn't have visibility to know what might need undoing.
3646 * In any event, if possible, it is horribly complicated to get right
3647 * so we just don't do it for now.
3649 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3653 case POWER_OR_RESET
:
3654 dev_warn(&h
->pdev
->dev
,
3655 "a power on or device reset detected\n");
3658 case UNIT_ATTENTION_CLEARED
:
3659 dev_warn(&h
->pdev
->dev
,
3660 "unit attention cleared by another initiator\n");
3664 dev_warn(&h
->pdev
->dev
, "unknown unit attention detected\n");
3670 * We cannot read the structure directly, for portability we must use
3672 * This is for debug only.
3674 static void print_cfg_table(ctlr_info_t
*h
)
3678 CfgTable_struct
*tb
= h
->cfgtable
;
3680 dev_dbg(&h
->pdev
->dev
, "Controller Configuration information\n");
3681 dev_dbg(&h
->pdev
->dev
, "------------------------------------\n");
3682 for (i
= 0; i
< 4; i
++)
3683 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
3684 temp_name
[4] = '\0';
3685 dev_dbg(&h
->pdev
->dev
, " Signature = %s\n", temp_name
);
3686 dev_dbg(&h
->pdev
->dev
, " Spec Number = %d\n",
3687 readl(&(tb
->SpecValence
)));
3688 dev_dbg(&h
->pdev
->dev
, " Transport methods supported = 0x%x\n",
3689 readl(&(tb
->TransportSupport
)));
3690 dev_dbg(&h
->pdev
->dev
, " Transport methods active = 0x%x\n",
3691 readl(&(tb
->TransportActive
)));
3692 dev_dbg(&h
->pdev
->dev
, " Requested transport Method = 0x%x\n",
3693 readl(&(tb
->HostWrite
.TransportRequest
)));
3694 dev_dbg(&h
->pdev
->dev
, " Coalesce Interrupt Delay = 0x%x\n",
3695 readl(&(tb
->HostWrite
.CoalIntDelay
)));
3696 dev_dbg(&h
->pdev
->dev
, " Coalesce Interrupt Count = 0x%x\n",
3697 readl(&(tb
->HostWrite
.CoalIntCount
)));
3698 dev_dbg(&h
->pdev
->dev
, " Max outstanding commands = 0x%d\n",
3699 readl(&(tb
->CmdsOutMax
)));
3700 dev_dbg(&h
->pdev
->dev
, " Bus Types = 0x%x\n",
3701 readl(&(tb
->BusTypes
)));
3702 for (i
= 0; i
< 16; i
++)
3703 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
3704 temp_name
[16] = '\0';
3705 dev_dbg(&h
->pdev
->dev
, " Server Name = %s\n", temp_name
);
3706 dev_dbg(&h
->pdev
->dev
, " Heartbeat Counter = 0x%x\n\n\n",
3707 readl(&(tb
->HeartBeat
)));
3710 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
3712 int i
, offset
, mem_type
, bar_type
;
3713 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
3716 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3717 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
3718 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
3721 mem_type
= pci_resource_flags(pdev
, i
) &
3722 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
3724 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
3725 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
3726 offset
+= 4; /* 32 bit */
3728 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
3731 default: /* reserved in PCI 2.2 */
3732 dev_warn(&pdev
->dev
,
3733 "Base address is invalid\n");
3738 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
3744 /* Fill in bucket_map[], given nsgs (the max number of
3745 * scatter gather elements supported) and bucket[],
3746 * which is an array of 8 integers. The bucket[] array
3747 * contains 8 different DMA transfer sizes (in 16
3748 * byte increments) which the controller uses to fetch
3749 * commands. This function fills in bucket_map[], which
3750 * maps a given number of scatter gather elements to one of
3751 * the 8 DMA transfer sizes. The point of it is to allow the
3752 * controller to only do as much DMA as needed to fetch the
3753 * command, with the DMA transfer size encoded in the lower
3754 * bits of the command address.
3756 static void calc_bucket_map(int bucket
[], int num_buckets
,
3757 int nsgs
, int *bucket_map
)
3761 /* even a command with 0 SGs requires 4 blocks */
3762 #define MINIMUM_TRANSFER_BLOCKS 4
3763 #define NUM_BUCKETS 8
3764 /* Note, bucket_map must have nsgs+1 entries. */
3765 for (i
= 0; i
<= nsgs
; i
++) {
3766 /* Compute size of a command with i SG entries */
3767 size
= i
+ MINIMUM_TRANSFER_BLOCKS
;
3768 b
= num_buckets
; /* Assume the biggest bucket */
3769 /* Find the bucket that is just big enough */
3770 for (j
= 0; j
< 8; j
++) {
3771 if (bucket
[j
] >= size
) {
3776 /* for a command with i SG entries, use bucket b. */
3781 static void __devinit
cciss_wait_for_mode_change_ack(ctlr_info_t
*h
)
3785 /* under certain very rare conditions, this can take awhile.
3786 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3787 * as we enter this code.) */
3788 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
3789 if (!(readl(h
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
3791 usleep_range(10000, 20000);
3795 static __devinit
void cciss_enter_performant_mode(ctlr_info_t
*h
)
3797 /* This is a bit complicated. There are 8 registers on
3798 * the controller which we write to to tell it 8 different
3799 * sizes of commands which there may be. It's a way of
3800 * reducing the DMA done to fetch each command. Encoded into
3801 * each command's tag are 3 bits which communicate to the controller
3802 * which of the eight sizes that command fits within. The size of
3803 * each command depends on how many scatter gather entries there are.
3804 * Each SG entry requires 16 bytes. The eight registers are programmed
3805 * with the number of 16-byte blocks a command of that size requires.
3806 * The smallest command possible requires 5 such 16 byte blocks.
3807 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3808 * blocks. Note, this only extends to the SG entries contained
3809 * within the command block, and does not extend to chained blocks
3810 * of SG elements. bft[] contains the eight values we write to
3811 * the registers. They are not evenly distributed, but have more
3812 * sizes for small commands, and fewer sizes for larger commands.
3815 int bft
[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES
+ 4};
3817 * 5 = 1 s/g entry or 4k
3818 * 6 = 2 s/g entry or 8k
3819 * 8 = 4 s/g entry or 16k
3820 * 10 = 6 s/g entry or 24k
3822 unsigned long register_value
;
3823 BUILD_BUG_ON(28 > MAXSGENTRIES
+ 4);
3825 h
->reply_pool_wraparound
= 1; /* spec: init to 1 */
3827 /* Controller spec: zero out this buffer. */
3828 memset(h
->reply_pool
, 0, h
->max_commands
* sizeof(__u64
));
3829 h
->reply_pool_head
= h
->reply_pool
;
3831 trans_offset
= readl(&(h
->cfgtable
->TransMethodOffset
));
3832 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->maxsgentries
,
3833 h
->blockFetchTable
);
3834 writel(bft
[0], &h
->transtable
->BlockFetch0
);
3835 writel(bft
[1], &h
->transtable
->BlockFetch1
);
3836 writel(bft
[2], &h
->transtable
->BlockFetch2
);
3837 writel(bft
[3], &h
->transtable
->BlockFetch3
);
3838 writel(bft
[4], &h
->transtable
->BlockFetch4
);
3839 writel(bft
[5], &h
->transtable
->BlockFetch5
);
3840 writel(bft
[6], &h
->transtable
->BlockFetch6
);
3841 writel(bft
[7], &h
->transtable
->BlockFetch7
);
3843 /* size of controller ring buffer */
3844 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
3845 writel(1, &h
->transtable
->RepQCount
);
3846 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
3847 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
3848 writel(h
->reply_pool_dhandle
, &h
->transtable
->RepQAddr0Low32
);
3849 writel(0, &h
->transtable
->RepQAddr0High32
);
3850 writel(CFGTBL_Trans_Performant
,
3851 &(h
->cfgtable
->HostWrite
.TransportRequest
));
3853 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
3854 cciss_wait_for_mode_change_ack(h
);
3855 register_value
= readl(&(h
->cfgtable
->TransportActive
));
3856 if (!(register_value
& CFGTBL_Trans_Performant
))
3857 dev_warn(&h
->pdev
->dev
, "cciss: unable to get board into"
3858 " performant mode\n");
3861 static void __devinit
cciss_put_controller_into_performant_mode(ctlr_info_t
*h
)
3863 __u32 trans_support
;
3865 dev_dbg(&h
->pdev
->dev
, "Trying to put board into Performant mode\n");
3866 /* Attempt to put controller into performant mode if supported */
3867 /* Does board support performant mode? */
3868 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
3869 if (!(trans_support
& PERFORMANT_MODE
))
3872 dev_dbg(&h
->pdev
->dev
, "Placing controller into performant mode\n");
3873 /* Performant mode demands commands on a 32 byte boundary
3874 * pci_alloc_consistent aligns on page boundarys already.
3875 * Just need to check if divisible by 32
3877 if ((sizeof(CommandList_struct
) % 32) != 0) {
3878 dev_warn(&h
->pdev
->dev
, "%s %d %s\n",
3879 "cciss info: command size[",
3880 (int)sizeof(CommandList_struct
),
3881 "] not divisible by 32, no performant mode..\n");
3885 /* Performant mode ring buffer and supporting data structures */
3886 h
->reply_pool
= (__u64
*)pci_alloc_consistent(
3887 h
->pdev
, h
->max_commands
* sizeof(__u64
),
3888 &(h
->reply_pool_dhandle
));
3890 /* Need a block fetch table for performant mode */
3891 h
->blockFetchTable
= kmalloc(((h
->maxsgentries
+1) *
3892 sizeof(__u32
)), GFP_KERNEL
);
3894 if ((h
->reply_pool
== NULL
) || (h
->blockFetchTable
== NULL
))
3897 cciss_enter_performant_mode(h
);
3899 /* Change the access methods to the performant access methods */
3900 h
->access
= SA5_performant_access
;
3901 h
->transMethod
= CFGTBL_Trans_Performant
;
3905 kfree(h
->blockFetchTable
);
3907 pci_free_consistent(h
->pdev
,
3908 h
->max_commands
* sizeof(__u64
),
3910 h
->reply_pool_dhandle
);
3913 } /* cciss_put_controller_into_performant_mode */
3915 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3916 * controllers that are capable. If not, we use IO-APIC mode.
3919 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*h
)
3921 #ifdef CONFIG_PCI_MSI
3923 struct msix_entry cciss_msix_entries
[4] = { {0, 0}, {0, 1},
3927 /* Some boards advertise MSI but don't really support it */
3928 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
3929 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
3930 goto default_int_mode
;
3932 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
3933 err
= pci_enable_msix(h
->pdev
, cciss_msix_entries
, 4);
3935 h
->intr
[0] = cciss_msix_entries
[0].vector
;
3936 h
->intr
[1] = cciss_msix_entries
[1].vector
;
3937 h
->intr
[2] = cciss_msix_entries
[2].vector
;
3938 h
->intr
[3] = cciss_msix_entries
[3].vector
;
3943 dev_warn(&h
->pdev
->dev
,
3944 "only %d MSI-X vectors available\n", err
);
3945 goto default_int_mode
;
3947 dev_warn(&h
->pdev
->dev
,
3948 "MSI-X init failed %d\n", err
);
3949 goto default_int_mode
;
3952 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
3953 if (!pci_enable_msi(h
->pdev
))
3956 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
3959 #endif /* CONFIG_PCI_MSI */
3960 /* if we get here we're going to use the default interrupt mode */
3961 h
->intr
[PERF_MODE_INT
] = h
->pdev
->irq
;
3965 static int __devinit
cciss_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
3968 u32 subsystem_vendor_id
, subsystem_device_id
;
3970 subsystem_vendor_id
= pdev
->subsystem_vendor
;
3971 subsystem_device_id
= pdev
->subsystem_device
;
3972 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
3973 subsystem_vendor_id
;
3975 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
3976 if (*board_id
== products
[i
].board_id
)
3978 dev_warn(&pdev
->dev
, "unrecognized board ID: 0x%08x, ignoring.\n",
3983 static inline bool cciss_board_disabled(ctlr_info_t
*h
)
3987 (void) pci_read_config_word(h
->pdev
, PCI_COMMAND
, &command
);
3988 return ((command
& PCI_COMMAND_MEMORY
) == 0);
3991 static int __devinit
cciss_pci_find_memory_BAR(struct pci_dev
*pdev
,
3992 unsigned long *memory_bar
)
3996 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
3997 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
3998 /* addressing mode bits already removed */
3999 *memory_bar
= pci_resource_start(pdev
, i
);
4000 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
4004 dev_warn(&pdev
->dev
, "no memory BAR found\n");
4008 static int __devinit
cciss_wait_for_board_state(struct pci_dev
*pdev
,
4009 void __iomem
*vaddr
, int wait_for_ready
)
4010 #define BOARD_READY 1
4011 #define BOARD_NOT_READY 0
4017 iterations
= CCISS_BOARD_READY_ITERATIONS
;
4019 iterations
= CCISS_BOARD_NOT_READY_ITERATIONS
;
4021 for (i
= 0; i
< iterations
; i
++) {
4022 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
4023 if (wait_for_ready
) {
4024 if (scratchpad
== CCISS_FIRMWARE_READY
)
4027 if (scratchpad
!= CCISS_FIRMWARE_READY
)
4030 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS
);
4032 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
4036 static int __devinit
cciss_find_cfg_addrs(struct pci_dev
*pdev
,
4037 void __iomem
*vaddr
, u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
4040 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
4041 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
4042 *cfg_base_addr
&= (u32
) 0x0000ffff;
4043 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
4044 if (*cfg_base_addr_index
== -1) {
4045 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index, "
4046 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr
);
4052 static int __devinit
cciss_find_cfgtables(ctlr_info_t
*h
)
4056 u64 cfg_base_addr_index
;
4060 rc
= cciss_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
4061 &cfg_base_addr_index
, &cfg_offset
);
4064 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4065 cfg_base_addr_index
) + cfg_offset
, sizeof(h
->cfgtable
));
4068 /* Find performant mode table. */
4069 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
4070 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4071 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
4072 sizeof(*h
->transtable
));
4078 static void __devinit
cciss_get_max_perf_mode_cmds(struct ctlr_info
*h
)
4080 h
->max_commands
= readl(&(h
->cfgtable
->MaxPerformantModeCommands
));
4082 /* Limit commands in memory limited kdump scenario. */
4083 if (reset_devices
&& h
->max_commands
> 32)
4084 h
->max_commands
= 32;
4086 if (h
->max_commands
< 16) {
4087 dev_warn(&h
->pdev
->dev
, "Controller reports "
4088 "max supported commands of %d, an obvious lie. "
4089 "Using 16. Ensure that firmware is up to date.\n",
4091 h
->max_commands
= 16;
4095 /* Interrogate the hardware for some limits:
4096 * max commands, max SG elements without chaining, and with chaining,
4097 * SG chain block size, etc.
4099 static void __devinit
cciss_find_board_params(ctlr_info_t
*h
)
4101 cciss_get_max_perf_mode_cmds(h
);
4102 h
->nr_cmds
= h
->max_commands
- 4; /* Allow room for some ioctls */
4103 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxSGElements
));
4105 * Limit in-command s/g elements to 32 save dma'able memory.
4106 * Howvever spec says if 0, use 31
4108 h
->max_cmd_sgentries
= 31;
4109 if (h
->maxsgentries
> 512) {
4110 h
->max_cmd_sgentries
= 32;
4111 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sgentries
+ 1;
4112 h
->maxsgentries
--; /* save one for chain pointer */
4114 h
->maxsgentries
= 31; /* default to traditional values */
4119 static inline bool CISS_signature_present(ctlr_info_t
*h
)
4121 if ((readb(&h
->cfgtable
->Signature
[0]) != 'C') ||
4122 (readb(&h
->cfgtable
->Signature
[1]) != 'I') ||
4123 (readb(&h
->cfgtable
->Signature
[2]) != 'S') ||
4124 (readb(&h
->cfgtable
->Signature
[3]) != 'S')) {
4125 dev_warn(&h
->pdev
->dev
, "not a valid CISS config table\n");
4131 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4132 static inline void cciss_enable_scsi_prefetch(ctlr_info_t
*h
)
4137 prefetch
= readl(&(h
->cfgtable
->SCSI_Prefetch
));
4139 writel(prefetch
, &(h
->cfgtable
->SCSI_Prefetch
));
4143 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4144 * in a prefetch beyond physical memory.
4146 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t
*h
)
4151 if (h
->board_id
!= 0x3225103C)
4153 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
4154 dma_prefetch
|= 0x8000;
4155 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
4156 pci_read_config_dword(h
->pdev
, PCI_COMMAND_PARITY
, &dma_refetch
);
4158 pci_write_config_dword(h
->pdev
, PCI_COMMAND_PARITY
, dma_refetch
);
4161 static int __devinit
cciss_pci_init(ctlr_info_t
*h
)
4163 int prod_index
, err
;
4165 prod_index
= cciss_lookup_board_id(h
->pdev
, &h
->board_id
);
4168 h
->product_name
= products
[prod_index
].product_name
;
4169 h
->access
= *(products
[prod_index
].access
);
4171 if (cciss_board_disabled(h
)) {
4172 dev_warn(&h
->pdev
->dev
, "controller appears to be disabled\n");
4175 err
= pci_enable_device(h
->pdev
);
4177 dev_warn(&h
->pdev
->dev
, "Unable to Enable PCI device\n");
4181 err
= pci_request_regions(h
->pdev
, "cciss");
4183 dev_warn(&h
->pdev
->dev
,
4184 "Cannot obtain PCI resources, aborting\n");
4188 dev_dbg(&h
->pdev
->dev
, "irq = %x\n", h
->pdev
->irq
);
4189 dev_dbg(&h
->pdev
->dev
, "board_id = %x\n", h
->board_id
);
4191 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4192 * else we use the IO-APIC interrupt assigned to us by system ROM.
4194 cciss_interrupt_mode(h
);
4195 err
= cciss_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
4197 goto err_out_free_res
;
4198 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
4201 goto err_out_free_res
;
4203 err
= cciss_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
4205 goto err_out_free_res
;
4206 err
= cciss_find_cfgtables(h
);
4208 goto err_out_free_res
;
4210 cciss_find_board_params(h
);
4212 if (!CISS_signature_present(h
)) {
4214 goto err_out_free_res
;
4216 cciss_enable_scsi_prefetch(h
);
4217 cciss_p600_dma_prefetch_quirk(h
);
4218 cciss_put_controller_into_performant_mode(h
);
4223 * Deliberately omit pci_disable_device(): it does something nasty to
4224 * Smart Array controllers that pci_enable_device does not undo
4227 iounmap(h
->transtable
);
4229 iounmap(h
->cfgtable
);
4232 pci_release_regions(h
->pdev
);
4236 /* Function to find the first free pointer into our hba[] array
4237 * Returns -1 if no free entries are left.
4239 static int alloc_cciss_hba(struct pci_dev
*pdev
)
4243 for (i
= 0; i
< MAX_CTLR
; i
++) {
4247 h
= kzalloc(sizeof(ctlr_info_t
), GFP_KERNEL
);
4254 dev_warn(&pdev
->dev
, "This driver supports a maximum"
4255 " of %d controllers.\n", MAX_CTLR
);
4258 dev_warn(&pdev
->dev
, "out of memory.\n");
4262 static void free_hba(ctlr_info_t
*h
)
4266 hba
[h
->ctlr
] = NULL
;
4267 for (i
= 0; i
< h
->highest_lun
+ 1; i
++)
4268 if (h
->gendisk
[i
] != NULL
)
4269 put_disk(h
->gendisk
[i
]);
4273 /* Send a message CDB to the firmware. */
4274 static __devinit
int cciss_message(struct pci_dev
*pdev
, unsigned char opcode
, unsigned char type
)
4277 CommandListHeader_struct CommandHeader
;
4278 RequestBlock_struct Request
;
4279 ErrDescriptor_struct ErrorDescriptor
;
4281 static const size_t cmd_sz
= sizeof(Command
) + sizeof(ErrorInfo_struct
);
4284 uint32_t paddr32
, tag
;
4285 void __iomem
*vaddr
;
4288 vaddr
= ioremap_nocache(pci_resource_start(pdev
, 0), pci_resource_len(pdev
, 0));
4292 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4293 CCISS commands, so they must be allocated from the lower 4GiB of
4295 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4301 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
4307 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4308 although there's no guarantee, we assume that the address is at
4309 least 4-byte aligned (most likely, it's page-aligned). */
4312 cmd
->CommandHeader
.ReplyQueue
= 0;
4313 cmd
->CommandHeader
.SGList
= 0;
4314 cmd
->CommandHeader
.SGTotal
= 0;
4315 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
4316 cmd
->CommandHeader
.Tag
.upper
= 0;
4317 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
4319 cmd
->Request
.CDBLen
= 16;
4320 cmd
->Request
.Type
.Type
= TYPE_MSG
;
4321 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
4322 cmd
->Request
.Type
.Direction
= XFER_NONE
;
4323 cmd
->Request
.Timeout
= 0; /* Don't time out */
4324 cmd
->Request
.CDB
[0] = opcode
;
4325 cmd
->Request
.CDB
[1] = type
;
4326 memset(&cmd
->Request
.CDB
[2], 0, 14); /* the rest of the CDB is reserved */
4328 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(Command
);
4329 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
4330 cmd
->ErrorDescriptor
.Len
= sizeof(ErrorInfo_struct
);
4332 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
4334 for (i
= 0; i
< 10; i
++) {
4335 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
4336 if ((tag
& ~3) == paddr32
)
4338 schedule_timeout_uninterruptible(HZ
);
4343 /* we leak the DMA buffer here ... no choice since the controller could
4344 still complete the command. */
4347 "controller message %02x:%02x timed out\n",
4352 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
4355 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
4360 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
4365 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4366 #define cciss_noop(p) cciss_message(p, 3, 0)
4368 static int cciss_controller_hard_reset(struct pci_dev
*pdev
,
4369 void * __iomem vaddr
, bool use_doorbell
)
4375 /* For everything after the P600, the PCI power state method
4376 * of resetting the controller doesn't work, so we have this
4377 * other way using the doorbell register.
4379 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
4380 writel(DOORBELL_CTLR_RESET
, vaddr
+ SA5_DOORBELL
);
4382 } else { /* Try to do it the PCI power state way */
4384 /* Quoting from the Open CISS Specification: "The Power
4385 * Management Control/Status Register (CSR) controls the power
4386 * state of the device. The normal operating state is D0,
4387 * CSR=00h. The software off state is D3, CSR=03h. To reset
4388 * the controller, place the interface device in D3 then to D0,
4389 * this causes a secondary PCI reset which will reset the
4392 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
4395 "cciss_controller_hard_reset: "
4396 "PCI PM not supported\n");
4399 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
4400 /* enter the D3hot power management state */
4401 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
4402 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4404 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4408 /* enter the D0 power management state */
4409 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4411 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4418 /* This does a hard reset of the controller using PCI power management
4419 * states or using the doorbell register. */
4420 static __devinit
int cciss_kdump_hard_reset_controller(struct pci_dev
*pdev
)
4424 u64 cfg_base_addr_index
;
4425 void __iomem
*vaddr
;
4426 unsigned long paddr
;
4427 u32 misc_fw_support
, active_transport
;
4429 CfgTable_struct __iomem
*cfgtable
;
4432 u16 command_register
;
4434 /* For controllers as old a the p600, this is very nearly
4437 * pci_save_state(pci_dev);
4438 * pci_set_power_state(pci_dev, PCI_D3hot);
4439 * pci_set_power_state(pci_dev, PCI_D0);
4440 * pci_restore_state(pci_dev);
4442 * For controllers newer than the P600, the pci power state
4443 * method of resetting doesn't work so we have another way
4444 * using the doorbell register.
4447 /* Exclude 640x boards. These are two pci devices in one slot
4448 * which share a battery backed cache module. One controls the
4449 * cache, the other accesses the cache through the one that controls
4450 * it. If we reset the one controlling the cache, the other will
4451 * likely not be happy. Just forbid resetting this conjoined mess.
4453 cciss_lookup_board_id(pdev
, &board_id
);
4454 if (board_id
== 0x409C0E11 || board_id
== 0x409D0E11) {
4455 dev_warn(&pdev
->dev
, "Cannot reset Smart Array 640x "
4456 "due to shared cache module.");
4460 /* Save the PCI command register */
4461 pci_read_config_word(pdev
, 4, &command_register
);
4462 /* Turn the board off. This is so that later pci_restore_state()
4463 * won't turn the board on before the rest of config space is ready.
4465 pci_disable_device(pdev
);
4466 pci_save_state(pdev
);
4468 /* find the first memory BAR, so we can find the cfg table */
4469 rc
= cciss_pci_find_memory_BAR(pdev
, &paddr
);
4472 vaddr
= remap_pci_mem(paddr
, 0x250);
4476 /* find cfgtable in order to check if reset via doorbell is supported */
4477 rc
= cciss_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
4478 &cfg_base_addr_index
, &cfg_offset
);
4481 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
4482 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
4488 /* If reset via doorbell register is supported, use that. */
4489 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
4490 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
4492 /* The doorbell reset seems to cause lockups on some Smart
4493 * Arrays (e.g. P410, P410i, maybe others). Until this is
4494 * fixed or at least isolated, avoid the doorbell reset.
4498 rc
= cciss_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
4500 goto unmap_cfgtable
;
4501 pci_restore_state(pdev
);
4502 rc
= pci_enable_device(pdev
);
4504 dev_warn(&pdev
->dev
, "failed to enable device.\n");
4505 goto unmap_cfgtable
;
4507 pci_write_config_word(pdev
, 4, command_register
);
4509 /* Some devices (notably the HP Smart Array 5i Controller)
4510 need a little pause here */
4511 msleep(CCISS_POST_RESET_PAUSE_MSECS
);
4513 /* Wait for board to become not ready, then ready. */
4514 dev_info(&pdev
->dev
, "Waiting for board to become ready.\n");
4515 rc
= cciss_wait_for_board_state(pdev
, vaddr
, BOARD_NOT_READY
);
4516 if (rc
) /* Don't bail, might be E500, etc. which can't be reset */
4517 dev_warn(&pdev
->dev
,
4518 "failed waiting for board to become not ready\n");
4519 rc
= cciss_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
4521 dev_warn(&pdev
->dev
,
4522 "failed waiting for board to become ready\n");
4523 goto unmap_cfgtable
;
4525 dev_info(&pdev
->dev
, "board ready.\n");
4527 /* Controller should be in simple mode at this point. If it's not,
4528 * It means we're on one of those controllers which doesn't support
4529 * the doorbell reset method and on which the PCI power management reset
4530 * method doesn't work (P800, for example.)
4531 * In those cases, don't try to proceed, as it generally doesn't work.
4533 active_transport
= readl(&cfgtable
->TransportActive
);
4534 if (active_transport
& PERFORMANT_MODE
) {
4535 dev_warn(&pdev
->dev
, "Unable to successfully reset controller,"
4536 " Ignoring controller.\n");
4548 static __devinit
int cciss_init_reset_devices(struct pci_dev
*pdev
)
4555 /* Reset the controller with a PCI power-cycle or via doorbell */
4556 rc
= cciss_kdump_hard_reset_controller(pdev
);
4558 /* -ENOTSUPP here means we cannot reset the controller
4559 * but it's already (and still) up and running in
4560 * "performant mode". Or, it might be 640x, which can't reset
4561 * due to concerns about shared bbwc between 6402/6404 pair.
4563 if (rc
== -ENOTSUPP
)
4564 return 0; /* just try to do the kdump anyhow. */
4568 /* Now try to get the controller to respond to a no-op */
4569 for (i
= 0; i
< CCISS_POST_RESET_NOOP_RETRIES
; i
++) {
4570 if (cciss_noop(pdev
) == 0)
4573 dev_warn(&pdev
->dev
, "no-op failed%s\n",
4574 (i
< CCISS_POST_RESET_NOOP_RETRIES
- 1 ?
4575 "; re-trying" : ""));
4576 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS
);
4582 * This is it. Find all the controllers and register them. I really hate
4583 * stealing all these major device numbers.
4584 * returns the number of block devices registered.
4586 static int __devinit
cciss_init_one(struct pci_dev
*pdev
,
4587 const struct pci_device_id
*ent
)
4593 int dac
, return_code
;
4594 InquiryData_struct
*inq_buff
;
4597 rc
= cciss_init_reset_devices(pdev
);
4600 i
= alloc_cciss_hba(pdev
);
4606 h
->busy_initializing
= 1;
4607 INIT_LIST_HEAD(&h
->cmpQ
);
4608 INIT_LIST_HEAD(&h
->reqQ
);
4609 mutex_init(&h
->busy_shutting_down
);
4611 if (cciss_pci_init(h
) != 0)
4612 goto clean_no_release_regions
;
4614 sprintf(h
->devname
, "cciss%d", i
);
4617 init_completion(&h
->scan_wait
);
4619 if (cciss_create_hba_sysfs_entry(h
))
4622 /* configure PCI DMA stuff */
4623 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)))
4625 else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))
4628 dev_err(&h
->pdev
->dev
, "no suitable DMA available\n");
4633 * register with the major number, or get a dynamic major number
4634 * by passing 0 as argument. This is done for greater than
4635 * 8 controller support.
4637 if (i
< MAX_CTLR_ORIG
)
4638 h
->major
= COMPAQ_CISS_MAJOR
+ i
;
4639 rc
= register_blkdev(h
->major
, h
->devname
);
4640 if (rc
== -EBUSY
|| rc
== -EINVAL
) {
4641 dev_err(&h
->pdev
->dev
,
4642 "Unable to get major number %d for %s "
4643 "on hba %d\n", h
->major
, h
->devname
, i
);
4646 if (i
>= MAX_CTLR_ORIG
)
4650 /* make sure the board interrupts are off */
4651 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
4652 if (h
->msi_vector
|| h
->msix_vector
) {
4653 if (request_irq(h
->intr
[PERF_MODE_INT
],
4655 IRQF_DISABLED
, h
->devname
, h
)) {
4656 dev_err(&h
->pdev
->dev
, "Unable to get irq %d for %s\n",
4657 h
->intr
[PERF_MODE_INT
], h
->devname
);
4661 if (request_irq(h
->intr
[PERF_MODE_INT
], do_cciss_intx
,
4662 IRQF_DISABLED
, h
->devname
, h
)) {
4663 dev_err(&h
->pdev
->dev
, "Unable to get irq %d for %s\n",
4664 h
->intr
[PERF_MODE_INT
], h
->devname
);
4669 dev_info(&h
->pdev
->dev
, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4670 h
->devname
, pdev
->device
, pci_name(pdev
),
4671 h
->intr
[PERF_MODE_INT
], dac
? "" : " not");
4674 kmalloc(DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
)
4675 * sizeof(unsigned long), GFP_KERNEL
);
4676 h
->cmd_pool
= (CommandList_struct
*)
4677 pci_alloc_consistent(h
->pdev
,
4678 h
->nr_cmds
* sizeof(CommandList_struct
),
4679 &(h
->cmd_pool_dhandle
));
4680 h
->errinfo_pool
= (ErrorInfo_struct
*)
4681 pci_alloc_consistent(h
->pdev
,
4682 h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4683 &(h
->errinfo_pool_dhandle
));
4684 if ((h
->cmd_pool_bits
== NULL
)
4685 || (h
->cmd_pool
== NULL
)
4686 || (h
->errinfo_pool
== NULL
)) {
4687 dev_err(&h
->pdev
->dev
, "out of memory");
4691 /* Need space for temp scatter list */
4692 h
->scatter_list
= kmalloc(h
->max_commands
*
4693 sizeof(struct scatterlist
*),
4695 if (!h
->scatter_list
)
4698 for (k
= 0; k
< h
->nr_cmds
; k
++) {
4699 h
->scatter_list
[k
] = kmalloc(sizeof(struct scatterlist
) *
4702 if (h
->scatter_list
[k
] == NULL
) {
4703 dev_err(&h
->pdev
->dev
,
4704 "could not allocate s/g lists\n");
4708 h
->cmd_sg_list
= cciss_allocate_sg_chain_blocks(h
,
4709 h
->chainsize
, h
->nr_cmds
);
4710 if (!h
->cmd_sg_list
&& h
->chainsize
> 0)
4713 spin_lock_init(&h
->lock
);
4715 /* Initialize the pdev driver private data.
4716 have it point to h. */
4717 pci_set_drvdata(pdev
, h
);
4718 /* command and error info recs zeroed out before
4720 memset(h
->cmd_pool_bits
, 0,
4721 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
)
4722 * sizeof(unsigned long));
4725 h
->highest_lun
= -1;
4726 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4728 h
->gendisk
[j
] = NULL
;
4731 cciss_scsi_setup(h
);
4733 /* Turn the interrupts on so we can service requests */
4734 h
->access
.set_intr_mask(h
, CCISS_INTR_ON
);
4736 /* Get the firmware version */
4737 inq_buff
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
4738 if (inq_buff
== NULL
) {
4739 dev_err(&h
->pdev
->dev
, "out of memory\n");
4743 return_code
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buff
,
4744 sizeof(InquiryData_struct
), 0, CTLR_LUNID
, TYPE_CMD
);
4745 if (return_code
== IO_OK
) {
4746 h
->firm_ver
[0] = inq_buff
->data_byte
[32];
4747 h
->firm_ver
[1] = inq_buff
->data_byte
[33];
4748 h
->firm_ver
[2] = inq_buff
->data_byte
[34];
4749 h
->firm_ver
[3] = inq_buff
->data_byte
[35];
4750 } else { /* send command failed */
4751 dev_warn(&h
->pdev
->dev
, "unable to determine firmware"
4752 " version of controller\n");
4758 h
->cciss_max_sectors
= 8192;
4760 rebuild_lun_table(h
, 1, 0);
4761 h
->busy_initializing
= 0;
4765 kfree(h
->cmd_pool_bits
);
4766 /* Free up sg elements */
4767 for (k
-- ; k
>= 0; k
--)
4768 kfree(h
->scatter_list
[k
]);
4769 kfree(h
->scatter_list
);
4770 cciss_free_sg_chain_blocks(h
->cmd_sg_list
, h
->nr_cmds
);
4772 pci_free_consistent(h
->pdev
,
4773 h
->nr_cmds
* sizeof(CommandList_struct
),
4774 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4775 if (h
->errinfo_pool
)
4776 pci_free_consistent(h
->pdev
,
4777 h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4779 h
->errinfo_pool_dhandle
);
4780 free_irq(h
->intr
[PERF_MODE_INT
], h
);
4782 unregister_blkdev(h
->major
, h
->devname
);
4784 cciss_destroy_hba_sysfs_entry(h
);
4786 pci_release_regions(pdev
);
4787 clean_no_release_regions
:
4788 h
->busy_initializing
= 0;
4791 * Deliberately omit pci_disable_device(): it does something nasty to
4792 * Smart Array controllers that pci_enable_device does not undo
4794 pci_set_drvdata(pdev
, NULL
);
4799 static void cciss_shutdown(struct pci_dev
*pdev
)
4805 h
= pci_get_drvdata(pdev
);
4806 flush_buf
= kzalloc(4, GFP_KERNEL
);
4808 dev_warn(&h
->pdev
->dev
, "cache not flushed, out of memory.\n");
4811 /* write all data in the battery backed cache to disk */
4812 memset(flush_buf
, 0, 4);
4813 return_code
= sendcmd_withirq(h
, CCISS_CACHE_FLUSH
, flush_buf
,
4814 4, 0, CTLR_LUNID
, TYPE_CMD
);
4816 if (return_code
!= IO_OK
)
4817 dev_warn(&h
->pdev
->dev
, "Error flushing cache\n");
4818 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
4819 free_irq(h
->intr
[PERF_MODE_INT
], h
);
4822 static void __devexit
cciss_remove_one(struct pci_dev
*pdev
)
4827 if (pci_get_drvdata(pdev
) == NULL
) {
4828 dev_err(&pdev
->dev
, "Unable to remove device\n");
4832 h
= pci_get_drvdata(pdev
);
4834 if (hba
[i
] == NULL
) {
4835 dev_err(&pdev
->dev
, "device appears to already be removed\n");
4839 mutex_lock(&h
->busy_shutting_down
);
4841 remove_from_scan_list(h
);
4842 remove_proc_entry(h
->devname
, proc_cciss
);
4843 unregister_blkdev(h
->major
, h
->devname
);
4845 /* remove it from the disk list */
4846 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4847 struct gendisk
*disk
= h
->gendisk
[j
];
4849 struct request_queue
*q
= disk
->queue
;
4851 if (disk
->flags
& GENHD_FL_UP
) {
4852 cciss_destroy_ld_sysfs_entry(h
, j
, 1);
4856 blk_cleanup_queue(q
);
4860 #ifdef CONFIG_CISS_SCSI_TAPE
4861 cciss_unregister_scsi(h
); /* unhook from SCSI subsystem */
4864 cciss_shutdown(pdev
);
4866 #ifdef CONFIG_PCI_MSI
4868 pci_disable_msix(h
->pdev
);
4869 else if (h
->msi_vector
)
4870 pci_disable_msi(h
->pdev
);
4871 #endif /* CONFIG_PCI_MSI */
4873 iounmap(h
->transtable
);
4874 iounmap(h
->cfgtable
);
4877 pci_free_consistent(h
->pdev
, h
->nr_cmds
* sizeof(CommandList_struct
),
4878 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4879 pci_free_consistent(h
->pdev
, h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4880 h
->errinfo_pool
, h
->errinfo_pool_dhandle
);
4881 kfree(h
->cmd_pool_bits
);
4882 /* Free up sg elements */
4883 for (j
= 0; j
< h
->nr_cmds
; j
++)
4884 kfree(h
->scatter_list
[j
]);
4885 kfree(h
->scatter_list
);
4886 cciss_free_sg_chain_blocks(h
->cmd_sg_list
, h
->nr_cmds
);
4888 * Deliberately omit pci_disable_device(): it does something nasty to
4889 * Smart Array controllers that pci_enable_device does not undo
4891 pci_release_regions(pdev
);
4892 pci_set_drvdata(pdev
, NULL
);
4893 cciss_destroy_hba_sysfs_entry(h
);
4894 mutex_unlock(&h
->busy_shutting_down
);
4898 static struct pci_driver cciss_pci_driver
= {
4900 .probe
= cciss_init_one
,
4901 .remove
= __devexit_p(cciss_remove_one
),
4902 .id_table
= cciss_pci_device_id
, /* id_table */
4903 .shutdown
= cciss_shutdown
,
4907 * This is it. Register the PCI driver information for the cards we control
4908 * the OS will call our registered routines when it finds one of our cards.
4910 static int __init
cciss_init(void)
4915 * The hardware requires that commands are aligned on a 64-bit
4916 * boundary. Given that we use pci_alloc_consistent() to allocate an
4917 * array of them, the size must be a multiple of 8 bytes.
4919 BUILD_BUG_ON(sizeof(CommandList_struct
) % COMMANDLIST_ALIGNMENT
);
4920 printk(KERN_INFO DRIVER_NAME
"\n");
4922 err
= bus_register(&cciss_bus_type
);
4926 /* Start the scan thread */
4927 cciss_scan_thread
= kthread_run(scan_thread
, NULL
, "cciss_scan");
4928 if (IS_ERR(cciss_scan_thread
)) {
4929 err
= PTR_ERR(cciss_scan_thread
);
4930 goto err_bus_unregister
;
4933 /* Register for our PCI devices */
4934 err
= pci_register_driver(&cciss_pci_driver
);
4936 goto err_thread_stop
;
4941 kthread_stop(cciss_scan_thread
);
4943 bus_unregister(&cciss_bus_type
);
4948 static void __exit
cciss_cleanup(void)
4952 pci_unregister_driver(&cciss_pci_driver
);
4953 /* double check that all controller entrys have been removed */
4954 for (i
= 0; i
< MAX_CTLR
; i
++) {
4955 if (hba
[i
] != NULL
) {
4956 dev_warn(&hba
[i
]->pdev
->dev
,
4957 "had to remove controller\n");
4958 cciss_remove_one(hba
[i
]->pdev
);
4961 kthread_stop(cciss_scan_thread
);
4963 remove_proc_entry("driver/cciss", NULL
);
4964 bus_unregister(&cciss_bus_type
);
4967 module_init(cciss_init
);
4968 module_exit(cciss_cleanup
);