nilfs2: accept future revisions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / soc / soc-core.c
blob4057d35343bbbbd434e6a2f99bf0398aeac2a75e
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <linux/slab.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/core.h>
34 #include <sound/pcm.h>
35 #include <sound/pcm_params.h>
36 #include <sound/soc.h>
37 #include <sound/soc-dapm.h>
38 #include <sound/initval.h>
40 static DEFINE_MUTEX(pcm_mutex);
41 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
43 #ifdef CONFIG_DEBUG_FS
44 static struct dentry *debugfs_root;
45 #endif
47 static DEFINE_MUTEX(client_mutex);
48 static LIST_HEAD(card_list);
49 static LIST_HEAD(dai_list);
50 static LIST_HEAD(platform_list);
51 static LIST_HEAD(codec_list);
53 static int snd_soc_register_card(struct snd_soc_card *card);
54 static int snd_soc_unregister_card(struct snd_soc_card *card);
57 * This is a timeout to do a DAPM powerdown after a stream is closed().
58 * It can be used to eliminate pops between different playback streams, e.g.
59 * between two audio tracks.
61 static int pmdown_time = 5000;
62 module_param(pmdown_time, int, 0);
63 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
66 * This function forces any delayed work to be queued and run.
68 static int run_delayed_work(struct delayed_work *dwork)
70 int ret;
72 /* cancel any work waiting to be queued. */
73 ret = cancel_delayed_work(dwork);
75 /* if there was any work waiting then we run it now and
76 * wait for it's completion */
77 if (ret) {
78 schedule_delayed_work(dwork, 0);
79 flush_scheduled_work();
81 return ret;
84 /* codec register dump */
85 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
87 int ret, i, step = 1, count = 0;
89 if (!codec->reg_cache_size)
90 return 0;
92 if (codec->reg_cache_step)
93 step = codec->reg_cache_step;
95 count += sprintf(buf, "%s registers\n", codec->name);
96 for (i = 0; i < codec->reg_cache_size; i += step) {
97 if (codec->readable_register && !codec->readable_register(i))
98 continue;
100 count += sprintf(buf + count, "%2x: ", i);
101 if (count >= PAGE_SIZE - 1)
102 break;
104 if (codec->display_register) {
105 count += codec->display_register(codec, buf + count,
106 PAGE_SIZE - count, i);
107 } else {
108 /* If the read fails it's almost certainly due to
109 * the register being volatile and the device being
110 * powered off.
112 ret = codec->read(codec, i);
113 if (ret >= 0)
114 count += snprintf(buf + count,
115 PAGE_SIZE - count,
116 "%4x", ret);
117 else
118 count += snprintf(buf + count,
119 PAGE_SIZE - count,
120 "<no data: %d>", ret);
123 if (count >= PAGE_SIZE - 1)
124 break;
126 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
127 if (count >= PAGE_SIZE - 1)
128 break;
131 /* Truncate count; min() would cause a warning */
132 if (count >= PAGE_SIZE)
133 count = PAGE_SIZE - 1;
135 return count;
137 static ssize_t codec_reg_show(struct device *dev,
138 struct device_attribute *attr, char *buf)
140 struct snd_soc_device *devdata = dev_get_drvdata(dev);
141 return soc_codec_reg_show(devdata->card->codec, buf);
144 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
146 static ssize_t pmdown_time_show(struct device *dev,
147 struct device_attribute *attr, char *buf)
149 struct snd_soc_device *socdev = dev_get_drvdata(dev);
150 struct snd_soc_card *card = socdev->card;
152 return sprintf(buf, "%ld\n", card->pmdown_time);
155 static ssize_t pmdown_time_set(struct device *dev,
156 struct device_attribute *attr,
157 const char *buf, size_t count)
159 struct snd_soc_device *socdev = dev_get_drvdata(dev);
160 struct snd_soc_card *card = socdev->card;
162 strict_strtol(buf, 10, &card->pmdown_time);
164 return count;
167 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
169 #ifdef CONFIG_DEBUG_FS
170 static int codec_reg_open_file(struct inode *inode, struct file *file)
172 file->private_data = inode->i_private;
173 return 0;
176 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
177 size_t count, loff_t *ppos)
179 ssize_t ret;
180 struct snd_soc_codec *codec = file->private_data;
181 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
182 if (!buf)
183 return -ENOMEM;
184 ret = soc_codec_reg_show(codec, buf);
185 if (ret >= 0)
186 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
187 kfree(buf);
188 return ret;
191 static ssize_t codec_reg_write_file(struct file *file,
192 const char __user *user_buf, size_t count, loff_t *ppos)
194 char buf[32];
195 int buf_size;
196 char *start = buf;
197 unsigned long reg, value;
198 int step = 1;
199 struct snd_soc_codec *codec = file->private_data;
201 buf_size = min(count, (sizeof(buf)-1));
202 if (copy_from_user(buf, user_buf, buf_size))
203 return -EFAULT;
204 buf[buf_size] = 0;
206 if (codec->reg_cache_step)
207 step = codec->reg_cache_step;
209 while (*start == ' ')
210 start++;
211 reg = simple_strtoul(start, &start, 16);
212 if ((reg >= codec->reg_cache_size) || (reg % step))
213 return -EINVAL;
214 while (*start == ' ')
215 start++;
216 if (strict_strtoul(start, 16, &value))
217 return -EINVAL;
218 codec->write(codec, reg, value);
219 return buf_size;
222 static const struct file_operations codec_reg_fops = {
223 .open = codec_reg_open_file,
224 .read = codec_reg_read_file,
225 .write = codec_reg_write_file,
226 .llseek = default_llseek,
229 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
231 char codec_root[128];
233 if (codec->dev)
234 snprintf(codec_root, sizeof(codec_root),
235 "%s.%s", codec->name, dev_name(codec->dev));
236 else
237 snprintf(codec_root, sizeof(codec_root),
238 "%s", codec->name);
240 codec->debugfs_codec_root = debugfs_create_dir(codec_root,
241 debugfs_root);
242 if (!codec->debugfs_codec_root) {
243 printk(KERN_WARNING
244 "ASoC: Failed to create codec debugfs directory\n");
245 return;
248 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
249 codec->debugfs_codec_root,
250 codec, &codec_reg_fops);
251 if (!codec->debugfs_reg)
252 printk(KERN_WARNING
253 "ASoC: Failed to create codec register debugfs file\n");
255 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
256 codec->debugfs_codec_root,
257 &codec->pop_time);
258 if (!codec->debugfs_pop_time)
259 printk(KERN_WARNING
260 "Failed to create pop time debugfs file\n");
262 codec->debugfs_dapm = debugfs_create_dir("dapm",
263 codec->debugfs_codec_root);
264 if (!codec->debugfs_dapm)
265 printk(KERN_WARNING
266 "Failed to create DAPM debugfs directory\n");
268 snd_soc_dapm_debugfs_init(codec);
271 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
273 debugfs_remove_recursive(codec->debugfs_codec_root);
276 #else
278 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
282 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
285 #endif
287 #ifdef CONFIG_SND_SOC_AC97_BUS
288 /* unregister ac97 codec */
289 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
291 if (codec->ac97->dev.bus)
292 device_unregister(&codec->ac97->dev);
293 return 0;
296 /* stop no dev release warning */
297 static void soc_ac97_device_release(struct device *dev){}
299 /* register ac97 codec to bus */
300 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
302 int err;
304 codec->ac97->dev.bus = &ac97_bus_type;
305 codec->ac97->dev.parent = codec->card->dev;
306 codec->ac97->dev.release = soc_ac97_device_release;
308 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
309 codec->card->number, 0, codec->name);
310 err = device_register(&codec->ac97->dev);
311 if (err < 0) {
312 snd_printk(KERN_ERR "Can't register ac97 bus\n");
313 codec->ac97->dev.bus = NULL;
314 return err;
316 return 0;
318 #endif
320 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
322 struct snd_soc_pcm_runtime *rtd = substream->private_data;
323 struct snd_soc_device *socdev = rtd->socdev;
324 struct snd_soc_card *card = socdev->card;
325 struct snd_soc_dai_link *machine = rtd->dai;
326 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
327 struct snd_soc_dai *codec_dai = machine->codec_dai;
328 int ret;
330 if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
331 machine->symmetric_rates) {
332 dev_dbg(card->dev, "Symmetry forces %dHz rate\n",
333 machine->rate);
335 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
336 SNDRV_PCM_HW_PARAM_RATE,
337 machine->rate,
338 machine->rate);
339 if (ret < 0) {
340 dev_err(card->dev,
341 "Unable to apply rate symmetry constraint: %d\n", ret);
342 return ret;
346 return 0;
350 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
351 * then initialized and any private data can be allocated. This also calls
352 * startup for the cpu DAI, platform, machine and codec DAI.
354 static int soc_pcm_open(struct snd_pcm_substream *substream)
356 struct snd_soc_pcm_runtime *rtd = substream->private_data;
357 struct snd_soc_device *socdev = rtd->socdev;
358 struct snd_soc_card *card = socdev->card;
359 struct snd_pcm_runtime *runtime = substream->runtime;
360 struct snd_soc_dai_link *machine = rtd->dai;
361 struct snd_soc_platform *platform = card->platform;
362 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
363 struct snd_soc_dai *codec_dai = machine->codec_dai;
364 int ret = 0;
366 mutex_lock(&pcm_mutex);
368 /* startup the audio subsystem */
369 if (cpu_dai->ops->startup) {
370 ret = cpu_dai->ops->startup(substream, cpu_dai);
371 if (ret < 0) {
372 printk(KERN_ERR "asoc: can't open interface %s\n",
373 cpu_dai->name);
374 goto out;
378 if (platform->pcm_ops->open) {
379 ret = platform->pcm_ops->open(substream);
380 if (ret < 0) {
381 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
382 goto platform_err;
386 if (codec_dai->ops->startup) {
387 ret = codec_dai->ops->startup(substream, codec_dai);
388 if (ret < 0) {
389 printk(KERN_ERR "asoc: can't open codec %s\n",
390 codec_dai->name);
391 goto codec_dai_err;
395 if (machine->ops && machine->ops->startup) {
396 ret = machine->ops->startup(substream);
397 if (ret < 0) {
398 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
399 goto machine_err;
403 /* Check that the codec and cpu DAI's are compatible */
404 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
405 runtime->hw.rate_min =
406 max(codec_dai->playback.rate_min,
407 cpu_dai->playback.rate_min);
408 runtime->hw.rate_max =
409 min(codec_dai->playback.rate_max,
410 cpu_dai->playback.rate_max);
411 runtime->hw.channels_min =
412 max(codec_dai->playback.channels_min,
413 cpu_dai->playback.channels_min);
414 runtime->hw.channels_max =
415 min(codec_dai->playback.channels_max,
416 cpu_dai->playback.channels_max);
417 runtime->hw.formats =
418 codec_dai->playback.formats & cpu_dai->playback.formats;
419 runtime->hw.rates =
420 codec_dai->playback.rates & cpu_dai->playback.rates;
421 if (codec_dai->playback.rates
422 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
423 runtime->hw.rates |= cpu_dai->playback.rates;
424 if (cpu_dai->playback.rates
425 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
426 runtime->hw.rates |= codec_dai->playback.rates;
427 } else {
428 runtime->hw.rate_min =
429 max(codec_dai->capture.rate_min,
430 cpu_dai->capture.rate_min);
431 runtime->hw.rate_max =
432 min(codec_dai->capture.rate_max,
433 cpu_dai->capture.rate_max);
434 runtime->hw.channels_min =
435 max(codec_dai->capture.channels_min,
436 cpu_dai->capture.channels_min);
437 runtime->hw.channels_max =
438 min(codec_dai->capture.channels_max,
439 cpu_dai->capture.channels_max);
440 runtime->hw.formats =
441 codec_dai->capture.formats & cpu_dai->capture.formats;
442 runtime->hw.rates =
443 codec_dai->capture.rates & cpu_dai->capture.rates;
444 if (codec_dai->capture.rates
445 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
446 runtime->hw.rates |= cpu_dai->capture.rates;
447 if (cpu_dai->capture.rates
448 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
449 runtime->hw.rates |= codec_dai->capture.rates;
452 snd_pcm_limit_hw_rates(runtime);
453 if (!runtime->hw.rates) {
454 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
455 codec_dai->name, cpu_dai->name);
456 goto config_err;
458 if (!runtime->hw.formats) {
459 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
460 codec_dai->name, cpu_dai->name);
461 goto config_err;
463 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
464 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
465 codec_dai->name, cpu_dai->name);
466 goto config_err;
469 /* Symmetry only applies if we've already got an active stream. */
470 if (cpu_dai->active || codec_dai->active) {
471 ret = soc_pcm_apply_symmetry(substream);
472 if (ret != 0)
473 goto config_err;
476 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
477 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
478 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
479 runtime->hw.channels_max);
480 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
481 runtime->hw.rate_max);
483 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
484 cpu_dai->playback.active++;
485 codec_dai->playback.active++;
486 } else {
487 cpu_dai->capture.active++;
488 codec_dai->capture.active++;
490 cpu_dai->active++;
491 codec_dai->active++;
492 card->codec->active++;
493 mutex_unlock(&pcm_mutex);
494 return 0;
496 config_err:
497 if (machine->ops && machine->ops->shutdown)
498 machine->ops->shutdown(substream);
500 machine_err:
501 if (codec_dai->ops->shutdown)
502 codec_dai->ops->shutdown(substream, codec_dai);
504 codec_dai_err:
505 if (platform->pcm_ops->close)
506 platform->pcm_ops->close(substream);
508 platform_err:
509 if (cpu_dai->ops->shutdown)
510 cpu_dai->ops->shutdown(substream, cpu_dai);
511 out:
512 mutex_unlock(&pcm_mutex);
513 return ret;
517 * Power down the audio subsystem pmdown_time msecs after close is called.
518 * This is to ensure there are no pops or clicks in between any music tracks
519 * due to DAPM power cycling.
521 static void close_delayed_work(struct work_struct *work)
523 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
524 delayed_work.work);
525 struct snd_soc_codec *codec = card->codec;
526 struct snd_soc_dai *codec_dai;
527 int i;
529 mutex_lock(&pcm_mutex);
530 for (i = 0; i < codec->num_dai; i++) {
531 codec_dai = &codec->dai[i];
533 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
534 codec_dai->playback.stream_name,
535 codec_dai->playback.active ? "active" : "inactive",
536 codec_dai->pop_wait ? "yes" : "no");
538 /* are we waiting on this codec DAI stream */
539 if (codec_dai->pop_wait == 1) {
540 codec_dai->pop_wait = 0;
541 snd_soc_dapm_stream_event(codec,
542 codec_dai->playback.stream_name,
543 SND_SOC_DAPM_STREAM_STOP);
546 mutex_unlock(&pcm_mutex);
550 * Called by ALSA when a PCM substream is closed. Private data can be
551 * freed here. The cpu DAI, codec DAI, machine and platform are also
552 * shutdown.
554 static int soc_codec_close(struct snd_pcm_substream *substream)
556 struct snd_soc_pcm_runtime *rtd = substream->private_data;
557 struct snd_soc_device *socdev = rtd->socdev;
558 struct snd_soc_card *card = socdev->card;
559 struct snd_soc_dai_link *machine = rtd->dai;
560 struct snd_soc_platform *platform = card->platform;
561 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
562 struct snd_soc_dai *codec_dai = machine->codec_dai;
563 struct snd_soc_codec *codec = card->codec;
565 mutex_lock(&pcm_mutex);
567 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
568 cpu_dai->playback.active--;
569 codec_dai->playback.active--;
570 } else {
571 cpu_dai->capture.active--;
572 codec_dai->capture.active--;
575 cpu_dai->active--;
576 codec_dai->active--;
577 codec->active--;
579 /* Muting the DAC suppresses artifacts caused during digital
580 * shutdown, for example from stopping clocks.
582 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
583 snd_soc_dai_digital_mute(codec_dai, 1);
585 if (cpu_dai->ops->shutdown)
586 cpu_dai->ops->shutdown(substream, cpu_dai);
588 if (codec_dai->ops->shutdown)
589 codec_dai->ops->shutdown(substream, codec_dai);
591 if (machine->ops && machine->ops->shutdown)
592 machine->ops->shutdown(substream);
594 if (platform->pcm_ops->close)
595 platform->pcm_ops->close(substream);
597 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
598 /* start delayed pop wq here for playback streams */
599 codec_dai->pop_wait = 1;
600 schedule_delayed_work(&card->delayed_work,
601 msecs_to_jiffies(card->pmdown_time));
602 } else {
603 /* capture streams can be powered down now */
604 snd_soc_dapm_stream_event(codec,
605 codec_dai->capture.stream_name,
606 SND_SOC_DAPM_STREAM_STOP);
609 mutex_unlock(&pcm_mutex);
610 return 0;
614 * Called by ALSA when the PCM substream is prepared, can set format, sample
615 * rate, etc. This function is non atomic and can be called multiple times,
616 * it can refer to the runtime info.
618 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
620 struct snd_soc_pcm_runtime *rtd = substream->private_data;
621 struct snd_soc_device *socdev = rtd->socdev;
622 struct snd_soc_card *card = socdev->card;
623 struct snd_soc_dai_link *machine = rtd->dai;
624 struct snd_soc_platform *platform = card->platform;
625 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
626 struct snd_soc_dai *codec_dai = machine->codec_dai;
627 struct snd_soc_codec *codec = card->codec;
628 int ret = 0;
630 mutex_lock(&pcm_mutex);
632 if (machine->ops && machine->ops->prepare) {
633 ret = machine->ops->prepare(substream);
634 if (ret < 0) {
635 printk(KERN_ERR "asoc: machine prepare error\n");
636 goto out;
640 if (platform->pcm_ops->prepare) {
641 ret = platform->pcm_ops->prepare(substream);
642 if (ret < 0) {
643 printk(KERN_ERR "asoc: platform prepare error\n");
644 goto out;
648 if (codec_dai->ops->prepare) {
649 ret = codec_dai->ops->prepare(substream, codec_dai);
650 if (ret < 0) {
651 printk(KERN_ERR "asoc: codec DAI prepare error\n");
652 goto out;
656 if (cpu_dai->ops->prepare) {
657 ret = cpu_dai->ops->prepare(substream, cpu_dai);
658 if (ret < 0) {
659 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
660 goto out;
664 /* cancel any delayed stream shutdown that is pending */
665 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
666 codec_dai->pop_wait) {
667 codec_dai->pop_wait = 0;
668 cancel_delayed_work(&card->delayed_work);
671 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
672 snd_soc_dapm_stream_event(codec,
673 codec_dai->playback.stream_name,
674 SND_SOC_DAPM_STREAM_START);
675 else
676 snd_soc_dapm_stream_event(codec,
677 codec_dai->capture.stream_name,
678 SND_SOC_DAPM_STREAM_START);
680 snd_soc_dai_digital_mute(codec_dai, 0);
682 out:
683 mutex_unlock(&pcm_mutex);
684 return ret;
688 * Called by ALSA when the hardware params are set by application. This
689 * function can also be called multiple times and can allocate buffers
690 * (using snd_pcm_lib_* ). It's non-atomic.
692 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
693 struct snd_pcm_hw_params *params)
695 struct snd_soc_pcm_runtime *rtd = substream->private_data;
696 struct snd_soc_device *socdev = rtd->socdev;
697 struct snd_soc_dai_link *machine = rtd->dai;
698 struct snd_soc_card *card = socdev->card;
699 struct snd_soc_platform *platform = card->platform;
700 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
701 struct snd_soc_dai *codec_dai = machine->codec_dai;
702 int ret = 0;
704 mutex_lock(&pcm_mutex);
706 if (machine->ops && machine->ops->hw_params) {
707 ret = machine->ops->hw_params(substream, params);
708 if (ret < 0) {
709 printk(KERN_ERR "asoc: machine hw_params failed\n");
710 goto out;
714 if (codec_dai->ops->hw_params) {
715 ret = codec_dai->ops->hw_params(substream, params, codec_dai);
716 if (ret < 0) {
717 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
718 codec_dai->name);
719 goto codec_err;
723 if (cpu_dai->ops->hw_params) {
724 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
725 if (ret < 0) {
726 printk(KERN_ERR "asoc: interface %s hw params failed\n",
727 cpu_dai->name);
728 goto interface_err;
732 if (platform->pcm_ops->hw_params) {
733 ret = platform->pcm_ops->hw_params(substream, params);
734 if (ret < 0) {
735 printk(KERN_ERR "asoc: platform %s hw params failed\n",
736 platform->name);
737 goto platform_err;
741 machine->rate = params_rate(params);
743 out:
744 mutex_unlock(&pcm_mutex);
745 return ret;
747 platform_err:
748 if (cpu_dai->ops->hw_free)
749 cpu_dai->ops->hw_free(substream, cpu_dai);
751 interface_err:
752 if (codec_dai->ops->hw_free)
753 codec_dai->ops->hw_free(substream, codec_dai);
755 codec_err:
756 if (machine->ops && machine->ops->hw_free)
757 machine->ops->hw_free(substream);
759 mutex_unlock(&pcm_mutex);
760 return ret;
764 * Free's resources allocated by hw_params, can be called multiple times
766 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
768 struct snd_soc_pcm_runtime *rtd = substream->private_data;
769 struct snd_soc_device *socdev = rtd->socdev;
770 struct snd_soc_dai_link *machine = rtd->dai;
771 struct snd_soc_card *card = socdev->card;
772 struct snd_soc_platform *platform = card->platform;
773 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
774 struct snd_soc_dai *codec_dai = machine->codec_dai;
775 struct snd_soc_codec *codec = card->codec;
777 mutex_lock(&pcm_mutex);
779 /* apply codec digital mute */
780 if (!codec->active)
781 snd_soc_dai_digital_mute(codec_dai, 1);
783 /* free any machine hw params */
784 if (machine->ops && machine->ops->hw_free)
785 machine->ops->hw_free(substream);
787 /* free any DMA resources */
788 if (platform->pcm_ops->hw_free)
789 platform->pcm_ops->hw_free(substream);
791 /* now free hw params for the DAI's */
792 if (codec_dai->ops->hw_free)
793 codec_dai->ops->hw_free(substream, codec_dai);
795 if (cpu_dai->ops->hw_free)
796 cpu_dai->ops->hw_free(substream, cpu_dai);
798 mutex_unlock(&pcm_mutex);
799 return 0;
802 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
804 struct snd_soc_pcm_runtime *rtd = substream->private_data;
805 struct snd_soc_device *socdev = rtd->socdev;
806 struct snd_soc_card *card= socdev->card;
807 struct snd_soc_dai_link *machine = rtd->dai;
808 struct snd_soc_platform *platform = card->platform;
809 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
810 struct snd_soc_dai *codec_dai = machine->codec_dai;
811 int ret;
813 if (codec_dai->ops->trigger) {
814 ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
815 if (ret < 0)
816 return ret;
819 if (platform->pcm_ops->trigger) {
820 ret = platform->pcm_ops->trigger(substream, cmd);
821 if (ret < 0)
822 return ret;
825 if (cpu_dai->ops->trigger) {
826 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
827 if (ret < 0)
828 return ret;
830 return 0;
834 * soc level wrapper for pointer callback
835 * If cpu_dai, codec_dai, platform driver has the delay callback, than
836 * the runtime->delay will be updated accordingly.
838 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
840 struct snd_soc_pcm_runtime *rtd = substream->private_data;
841 struct snd_soc_device *socdev = rtd->socdev;
842 struct snd_soc_card *card = socdev->card;
843 struct snd_soc_platform *platform = card->platform;
844 struct snd_soc_dai_link *machine = rtd->dai;
845 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
846 struct snd_soc_dai *codec_dai = machine->codec_dai;
847 struct snd_pcm_runtime *runtime = substream->runtime;
848 snd_pcm_uframes_t offset = 0;
849 snd_pcm_sframes_t delay = 0;
851 if (platform->pcm_ops->pointer)
852 offset = platform->pcm_ops->pointer(substream);
854 if (cpu_dai->ops->delay)
855 delay += cpu_dai->ops->delay(substream, cpu_dai);
857 if (codec_dai->ops->delay)
858 delay += codec_dai->ops->delay(substream, codec_dai);
860 if (platform->delay)
861 delay += platform->delay(substream, codec_dai);
863 runtime->delay = delay;
865 return offset;
868 /* ASoC PCM operations */
869 static struct snd_pcm_ops soc_pcm_ops = {
870 .open = soc_pcm_open,
871 .close = soc_codec_close,
872 .hw_params = soc_pcm_hw_params,
873 .hw_free = soc_pcm_hw_free,
874 .prepare = soc_pcm_prepare,
875 .trigger = soc_pcm_trigger,
876 .pointer = soc_pcm_pointer,
879 #ifdef CONFIG_PM
880 /* powers down audio subsystem for suspend */
881 static int soc_suspend(struct device *dev)
883 struct platform_device *pdev = to_platform_device(dev);
884 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
885 struct snd_soc_card *card = socdev->card;
886 struct snd_soc_platform *platform = card->platform;
887 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
888 struct snd_soc_codec *codec = card->codec;
889 int i;
891 /* If the initialization of this soc device failed, there is no codec
892 * associated with it. Just bail out in this case.
894 if (!codec)
895 return 0;
897 /* Due to the resume being scheduled into a workqueue we could
898 * suspend before that's finished - wait for it to complete.
900 snd_power_lock(codec->card);
901 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
902 snd_power_unlock(codec->card);
904 /* we're going to block userspace touching us until resume completes */
905 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
907 /* mute any active DAC's */
908 for (i = 0; i < card->num_links; i++) {
909 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
911 if (card->dai_link[i].ignore_suspend)
912 continue;
914 if (dai->ops->digital_mute && dai->playback.active)
915 dai->ops->digital_mute(dai, 1);
918 /* suspend all pcms */
919 for (i = 0; i < card->num_links; i++) {
920 if (card->dai_link[i].ignore_suspend)
921 continue;
923 snd_pcm_suspend_all(card->dai_link[i].pcm);
926 if (card->suspend_pre)
927 card->suspend_pre(pdev, PMSG_SUSPEND);
929 for (i = 0; i < card->num_links; i++) {
930 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
932 if (card->dai_link[i].ignore_suspend)
933 continue;
935 if (cpu_dai->suspend && !cpu_dai->ac97_control)
936 cpu_dai->suspend(cpu_dai);
937 if (platform->suspend)
938 platform->suspend(&card->dai_link[i]);
941 /* close any waiting streams and save state */
942 run_delayed_work(&card->delayed_work);
943 codec->suspend_bias_level = codec->bias_level;
945 for (i = 0; i < codec->num_dai; i++) {
946 char *stream = codec->dai[i].playback.stream_name;
948 if (card->dai_link[i].ignore_suspend)
949 continue;
951 if (stream != NULL)
952 snd_soc_dapm_stream_event(codec, stream,
953 SND_SOC_DAPM_STREAM_SUSPEND);
954 stream = codec->dai[i].capture.stream_name;
955 if (stream != NULL)
956 snd_soc_dapm_stream_event(codec, stream,
957 SND_SOC_DAPM_STREAM_SUSPEND);
960 /* If there are paths active then the CODEC will be held with
961 * bias _ON and should not be suspended. */
962 if (codec_dev->suspend) {
963 switch (codec->bias_level) {
964 case SND_SOC_BIAS_STANDBY:
965 case SND_SOC_BIAS_OFF:
966 codec_dev->suspend(pdev, PMSG_SUSPEND);
967 break;
968 default:
969 dev_dbg(socdev->dev, "CODEC is on over suspend\n");
970 break;
974 for (i = 0; i < card->num_links; i++) {
975 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
977 if (card->dai_link[i].ignore_suspend)
978 continue;
980 if (cpu_dai->suspend && cpu_dai->ac97_control)
981 cpu_dai->suspend(cpu_dai);
984 if (card->suspend_post)
985 card->suspend_post(pdev, PMSG_SUSPEND);
987 return 0;
990 /* deferred resume work, so resume can complete before we finished
991 * setting our codec back up, which can be very slow on I2C
993 static void soc_resume_deferred(struct work_struct *work)
995 struct snd_soc_card *card = container_of(work,
996 struct snd_soc_card,
997 deferred_resume_work);
998 struct snd_soc_device *socdev = card->socdev;
999 struct snd_soc_platform *platform = card->platform;
1000 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1001 struct snd_soc_codec *codec = card->codec;
1002 struct platform_device *pdev = to_platform_device(socdev->dev);
1003 int i;
1005 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1006 * so userspace apps are blocked from touching us
1009 dev_dbg(socdev->dev, "starting resume work\n");
1011 /* Bring us up into D2 so that DAPM starts enabling things */
1012 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D2);
1014 if (card->resume_pre)
1015 card->resume_pre(pdev);
1017 for (i = 0; i < card->num_links; i++) {
1018 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1020 if (card->dai_link[i].ignore_suspend)
1021 continue;
1023 if (cpu_dai->resume && cpu_dai->ac97_control)
1024 cpu_dai->resume(cpu_dai);
1027 /* If the CODEC was idle over suspend then it will have been
1028 * left with bias OFF or STANDBY and suspended so we must now
1029 * resume. Otherwise the suspend was suppressed.
1031 if (codec_dev->resume) {
1032 switch (codec->bias_level) {
1033 case SND_SOC_BIAS_STANDBY:
1034 case SND_SOC_BIAS_OFF:
1035 codec_dev->resume(pdev);
1036 break;
1037 default:
1038 dev_dbg(socdev->dev, "CODEC was on over suspend\n");
1039 break;
1043 for (i = 0; i < codec->num_dai; i++) {
1044 char *stream = codec->dai[i].playback.stream_name;
1046 if (card->dai_link[i].ignore_suspend)
1047 continue;
1049 if (stream != NULL)
1050 snd_soc_dapm_stream_event(codec, stream,
1051 SND_SOC_DAPM_STREAM_RESUME);
1052 stream = codec->dai[i].capture.stream_name;
1053 if (stream != NULL)
1054 snd_soc_dapm_stream_event(codec, stream,
1055 SND_SOC_DAPM_STREAM_RESUME);
1058 /* unmute any active DACs */
1059 for (i = 0; i < card->num_links; i++) {
1060 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
1062 if (card->dai_link[i].ignore_suspend)
1063 continue;
1065 if (dai->ops->digital_mute && dai->playback.active)
1066 dai->ops->digital_mute(dai, 0);
1069 for (i = 0; i < card->num_links; i++) {
1070 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1072 if (card->dai_link[i].ignore_suspend)
1073 continue;
1075 if (cpu_dai->resume && !cpu_dai->ac97_control)
1076 cpu_dai->resume(cpu_dai);
1077 if (platform->resume)
1078 platform->resume(&card->dai_link[i]);
1081 if (card->resume_post)
1082 card->resume_post(pdev);
1084 dev_dbg(socdev->dev, "resume work completed\n");
1086 /* userspace can access us now we are back as we were before */
1087 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
1090 /* powers up audio subsystem after a suspend */
1091 static int soc_resume(struct device *dev)
1093 struct platform_device *pdev = to_platform_device(dev);
1094 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1095 struct snd_soc_card *card = socdev->card;
1096 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
1098 /* If the initialization of this soc device failed, there is no codec
1099 * associated with it. Just bail out in this case.
1101 if (!card->codec)
1102 return 0;
1104 /* AC97 devices might have other drivers hanging off them so
1105 * need to resume immediately. Other drivers don't have that
1106 * problem and may take a substantial amount of time to resume
1107 * due to I/O costs and anti-pop so handle them out of line.
1109 if (cpu_dai->ac97_control) {
1110 dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
1111 soc_resume_deferred(&card->deferred_resume_work);
1112 } else {
1113 dev_dbg(socdev->dev, "Scheduling resume work\n");
1114 if (!schedule_work(&card->deferred_resume_work))
1115 dev_err(socdev->dev, "resume work item may be lost\n");
1118 return 0;
1120 #else
1121 #define soc_suspend NULL
1122 #define soc_resume NULL
1123 #endif
1125 static struct snd_soc_dai_ops null_dai_ops = {
1128 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1130 struct platform_device *pdev = container_of(card->dev,
1131 struct platform_device,
1132 dev);
1133 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
1134 struct snd_soc_codec *codec;
1135 struct snd_soc_platform *platform;
1136 struct snd_soc_dai *dai;
1137 int i, found, ret, ac97;
1139 if (card->instantiated)
1140 return;
1142 found = 0;
1143 list_for_each_entry(platform, &platform_list, list)
1144 if (card->platform == platform) {
1145 found = 1;
1146 break;
1148 if (!found) {
1149 dev_dbg(card->dev, "Platform %s not registered\n",
1150 card->platform->name);
1151 return;
1154 ac97 = 0;
1155 for (i = 0; i < card->num_links; i++) {
1156 found = 0;
1157 list_for_each_entry(dai, &dai_list, list)
1158 if (card->dai_link[i].cpu_dai == dai) {
1159 found = 1;
1160 break;
1162 if (!found) {
1163 dev_dbg(card->dev, "DAI %s not registered\n",
1164 card->dai_link[i].cpu_dai->name);
1165 return;
1168 if (card->dai_link[i].cpu_dai->ac97_control)
1169 ac97 = 1;
1172 for (i = 0; i < card->num_links; i++) {
1173 if (!card->dai_link[i].codec_dai->ops)
1174 card->dai_link[i].codec_dai->ops = &null_dai_ops;
1177 /* If we have AC97 in the system then don't wait for the
1178 * codec. This will need revisiting if we have to handle
1179 * systems with mixed AC97 and non-AC97 parts. Only check for
1180 * DAIs currently; we can't do this per link since some AC97
1181 * codecs have non-AC97 DAIs.
1183 if (!ac97)
1184 for (i = 0; i < card->num_links; i++) {
1185 found = 0;
1186 list_for_each_entry(dai, &dai_list, list)
1187 if (card->dai_link[i].codec_dai == dai) {
1188 found = 1;
1189 break;
1191 if (!found) {
1192 dev_dbg(card->dev, "DAI %s not registered\n",
1193 card->dai_link[i].codec_dai->name);
1194 return;
1198 /* Note that we do not current check for codec components */
1200 dev_dbg(card->dev, "All components present, instantiating\n");
1202 /* Found everything, bring it up */
1203 card->pmdown_time = pmdown_time;
1205 if (card->probe) {
1206 ret = card->probe(pdev);
1207 if (ret < 0)
1208 return;
1211 for (i = 0; i < card->num_links; i++) {
1212 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1213 if (cpu_dai->probe) {
1214 ret = cpu_dai->probe(pdev, cpu_dai);
1215 if (ret < 0)
1216 goto cpu_dai_err;
1220 if (codec_dev->probe) {
1221 ret = codec_dev->probe(pdev);
1222 if (ret < 0)
1223 goto cpu_dai_err;
1225 codec = card->codec;
1227 if (platform->probe) {
1228 ret = platform->probe(pdev);
1229 if (ret < 0)
1230 goto platform_err;
1233 /* DAPM stream work */
1234 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
1235 #ifdef CONFIG_PM
1236 /* deferred resume work */
1237 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1238 #endif
1240 for (i = 0; i < card->num_links; i++) {
1241 if (card->dai_link[i].init) {
1242 ret = card->dai_link[i].init(codec);
1243 if (ret < 0) {
1244 printk(KERN_ERR "asoc: failed to init %s\n",
1245 card->dai_link[i].stream_name);
1246 continue;
1249 if (card->dai_link[i].codec_dai->ac97_control)
1250 ac97 = 1;
1253 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1254 "%s", card->name);
1255 snprintf(codec->card->longname, sizeof(codec->card->longname),
1256 "%s (%s)", card->name, codec->name);
1258 /* Make sure all DAPM widgets are instantiated */
1259 snd_soc_dapm_new_widgets(codec);
1261 ret = snd_card_register(codec->card);
1262 if (ret < 0) {
1263 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1264 codec->name);
1265 goto card_err;
1268 mutex_lock(&codec->mutex);
1269 #ifdef CONFIG_SND_SOC_AC97_BUS
1270 /* Only instantiate AC97 if not already done by the adaptor
1271 * for the generic AC97 subsystem.
1273 if (ac97 && strcmp(codec->name, "AC97") != 0) {
1274 ret = soc_ac97_dev_register(codec);
1275 if (ret < 0) {
1276 printk(KERN_ERR "asoc: AC97 device register failed\n");
1277 snd_card_free(codec->card);
1278 mutex_unlock(&codec->mutex);
1279 goto card_err;
1282 #endif
1284 ret = snd_soc_dapm_sys_add(card->socdev->dev);
1285 if (ret < 0)
1286 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1288 ret = device_create_file(card->socdev->dev, &dev_attr_pmdown_time);
1289 if (ret < 0)
1290 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1292 ret = device_create_file(card->socdev->dev, &dev_attr_codec_reg);
1293 if (ret < 0)
1294 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1296 soc_init_codec_debugfs(codec);
1297 mutex_unlock(&codec->mutex);
1299 card->instantiated = 1;
1301 return;
1303 card_err:
1304 if (platform->remove)
1305 platform->remove(pdev);
1307 platform_err:
1308 if (codec_dev->remove)
1309 codec_dev->remove(pdev);
1311 cpu_dai_err:
1312 for (i--; i >= 0; i--) {
1313 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1314 if (cpu_dai->remove)
1315 cpu_dai->remove(pdev, cpu_dai);
1318 if (card->remove)
1319 card->remove(pdev);
1323 * Attempt to initialise any uninitialised cards. Must be called with
1324 * client_mutex.
1326 static void snd_soc_instantiate_cards(void)
1328 struct snd_soc_card *card;
1329 list_for_each_entry(card, &card_list, list)
1330 snd_soc_instantiate_card(card);
1333 /* probes a new socdev */
1334 static int soc_probe(struct platform_device *pdev)
1336 int ret = 0;
1337 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1338 struct snd_soc_card *card = socdev->card;
1340 /* Bodge while we push things out of socdev */
1341 card->socdev = socdev;
1343 /* Bodge while we unpick instantiation */
1344 card->dev = &pdev->dev;
1345 ret = snd_soc_register_card(card);
1346 if (ret != 0) {
1347 dev_err(&pdev->dev, "Failed to register card\n");
1348 return ret;
1351 return 0;
1354 /* removes a socdev */
1355 static int soc_remove(struct platform_device *pdev)
1357 int i;
1358 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1359 struct snd_soc_card *card = socdev->card;
1360 struct snd_soc_platform *platform = card->platform;
1361 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1363 if (card->instantiated) {
1364 run_delayed_work(&card->delayed_work);
1366 if (platform->remove)
1367 platform->remove(pdev);
1369 if (codec_dev->remove)
1370 codec_dev->remove(pdev);
1372 for (i = 0; i < card->num_links; i++) {
1373 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1374 if (cpu_dai->remove)
1375 cpu_dai->remove(pdev, cpu_dai);
1378 if (card->remove)
1379 card->remove(pdev);
1382 snd_soc_unregister_card(card);
1384 return 0;
1387 static int soc_poweroff(struct device *dev)
1389 struct platform_device *pdev = to_platform_device(dev);
1390 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1391 struct snd_soc_card *card = socdev->card;
1393 if (!card->instantiated)
1394 return 0;
1396 /* Flush out pmdown_time work - we actually do want to run it
1397 * now, we're shutting down so no imminent restart. */
1398 run_delayed_work(&card->delayed_work);
1400 snd_soc_dapm_shutdown(socdev);
1402 return 0;
1405 static const struct dev_pm_ops soc_pm_ops = {
1406 .suspend = soc_suspend,
1407 .resume = soc_resume,
1408 .poweroff = soc_poweroff,
1411 /* ASoC platform driver */
1412 static struct platform_driver soc_driver = {
1413 .driver = {
1414 .name = "soc-audio",
1415 .owner = THIS_MODULE,
1416 .pm = &soc_pm_ops,
1418 .probe = soc_probe,
1419 .remove = soc_remove,
1422 /* create a new pcm */
1423 static int soc_new_pcm(struct snd_soc_device *socdev,
1424 struct snd_soc_dai_link *dai_link, int num)
1426 struct snd_soc_card *card = socdev->card;
1427 struct snd_soc_codec *codec = card->codec;
1428 struct snd_soc_platform *platform = card->platform;
1429 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1430 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1431 struct snd_soc_pcm_runtime *rtd;
1432 struct snd_pcm *pcm;
1433 char new_name[64];
1434 int ret = 0, playback = 0, capture = 0;
1436 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1437 if (rtd == NULL)
1438 return -ENOMEM;
1440 rtd->dai = dai_link;
1441 rtd->socdev = socdev;
1442 codec_dai->codec = card->codec;
1444 /* check client and interface hw capabilities */
1445 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1446 dai_link->stream_name, codec_dai->name, num);
1448 if (codec_dai->playback.channels_min)
1449 playback = 1;
1450 if (codec_dai->capture.channels_min)
1451 capture = 1;
1453 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1454 capture, &pcm);
1455 if (ret < 0) {
1456 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1457 codec->name);
1458 kfree(rtd);
1459 return ret;
1462 dai_link->pcm = pcm;
1463 pcm->private_data = rtd;
1464 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1465 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1466 soc_pcm_ops.copy = platform->pcm_ops->copy;
1467 soc_pcm_ops.silence = platform->pcm_ops->silence;
1468 soc_pcm_ops.ack = platform->pcm_ops->ack;
1469 soc_pcm_ops.page = platform->pcm_ops->page;
1471 if (playback)
1472 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1474 if (capture)
1475 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1477 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1478 if (ret < 0) {
1479 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1480 kfree(rtd);
1481 return ret;
1484 pcm->private_free = platform->pcm_free;
1485 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1486 cpu_dai->name);
1487 return ret;
1491 * snd_soc_codec_volatile_register: Report if a register is volatile.
1493 * @codec: CODEC to query.
1494 * @reg: Register to query.
1496 * Boolean function indiciating if a CODEC register is volatile.
1498 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1500 if (codec->volatile_register)
1501 return codec->volatile_register(reg);
1502 else
1503 return 0;
1505 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1508 * snd_soc_new_ac97_codec - initailise AC97 device
1509 * @codec: audio codec
1510 * @ops: AC97 bus operations
1511 * @num: AC97 codec number
1513 * Initialises AC97 codec resources for use by ad-hoc devices only.
1515 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1516 struct snd_ac97_bus_ops *ops, int num)
1518 mutex_lock(&codec->mutex);
1520 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1521 if (codec->ac97 == NULL) {
1522 mutex_unlock(&codec->mutex);
1523 return -ENOMEM;
1526 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1527 if (codec->ac97->bus == NULL) {
1528 kfree(codec->ac97);
1529 codec->ac97 = NULL;
1530 mutex_unlock(&codec->mutex);
1531 return -ENOMEM;
1534 codec->ac97->bus->ops = ops;
1535 codec->ac97->num = num;
1536 codec->dev = &codec->ac97->dev;
1537 mutex_unlock(&codec->mutex);
1538 return 0;
1540 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1543 * snd_soc_free_ac97_codec - free AC97 codec device
1544 * @codec: audio codec
1546 * Frees AC97 codec device resources.
1548 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1550 mutex_lock(&codec->mutex);
1551 kfree(codec->ac97->bus);
1552 kfree(codec->ac97);
1553 codec->ac97 = NULL;
1554 mutex_unlock(&codec->mutex);
1556 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1559 * snd_soc_update_bits - update codec register bits
1560 * @codec: audio codec
1561 * @reg: codec register
1562 * @mask: register mask
1563 * @value: new value
1565 * Writes new register value.
1567 * Returns 1 for change else 0.
1569 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1570 unsigned int mask, unsigned int value)
1572 int change;
1573 unsigned int old, new;
1575 old = snd_soc_read(codec, reg);
1576 new = (old & ~mask) | value;
1577 change = old != new;
1578 if (change)
1579 snd_soc_write(codec, reg, new);
1581 return change;
1583 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1586 * snd_soc_update_bits_locked - update codec register bits
1587 * @codec: audio codec
1588 * @reg: codec register
1589 * @mask: register mask
1590 * @value: new value
1592 * Writes new register value, and takes the codec mutex.
1594 * Returns 1 for change else 0.
1596 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1597 unsigned short reg, unsigned int mask,
1598 unsigned int value)
1600 int change;
1602 mutex_lock(&codec->mutex);
1603 change = snd_soc_update_bits(codec, reg, mask, value);
1604 mutex_unlock(&codec->mutex);
1606 return change;
1608 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1611 * snd_soc_test_bits - test register for change
1612 * @codec: audio codec
1613 * @reg: codec register
1614 * @mask: register mask
1615 * @value: new value
1617 * Tests a register with a new value and checks if the new value is
1618 * different from the old value.
1620 * Returns 1 for change else 0.
1622 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1623 unsigned int mask, unsigned int value)
1625 int change;
1626 unsigned int old, new;
1628 old = snd_soc_read(codec, reg);
1629 new = (old & ~mask) | value;
1630 change = old != new;
1632 return change;
1634 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1637 * snd_soc_new_pcms - create new sound card and pcms
1638 * @socdev: the SoC audio device
1639 * @idx: ALSA card index
1640 * @xid: card identification
1642 * Create a new sound card based upon the codec and interface pcms.
1644 * Returns 0 for success, else error.
1646 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1648 struct snd_soc_card *card = socdev->card;
1649 struct snd_soc_codec *codec = card->codec;
1650 int ret, i;
1652 mutex_lock(&codec->mutex);
1654 /* register a sound card */
1655 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1656 if (ret < 0) {
1657 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1658 codec->name);
1659 mutex_unlock(&codec->mutex);
1660 return ret;
1663 codec->socdev = socdev;
1664 codec->card->dev = socdev->dev;
1665 codec->card->private_data = codec;
1666 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1668 /* create the pcms */
1669 for (i = 0; i < card->num_links; i++) {
1670 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1671 if (ret < 0) {
1672 printk(KERN_ERR "asoc: can't create pcm %s\n",
1673 card->dai_link[i].stream_name);
1674 mutex_unlock(&codec->mutex);
1675 return ret;
1677 /* Check for codec->ac97 to handle the ac97.c fun */
1678 if (card->dai_link[i].codec_dai->ac97_control && codec->ac97) {
1679 snd_ac97_dev_add_pdata(codec->ac97,
1680 card->dai_link[i].cpu_dai->ac97_pdata);
1684 mutex_unlock(&codec->mutex);
1685 return ret;
1687 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1690 * snd_soc_free_pcms - free sound card and pcms
1691 * @socdev: the SoC audio device
1693 * Frees sound card and pcms associated with the socdev.
1694 * Also unregister the codec if it is an AC97 device.
1696 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1698 struct snd_soc_codec *codec = socdev->card->codec;
1699 #ifdef CONFIG_SND_SOC_AC97_BUS
1700 struct snd_soc_dai *codec_dai;
1701 int i;
1702 #endif
1704 mutex_lock(&codec->mutex);
1705 soc_cleanup_codec_debugfs(codec);
1706 #ifdef CONFIG_SND_SOC_AC97_BUS
1707 for (i = 0; i < codec->num_dai; i++) {
1708 codec_dai = &codec->dai[i];
1709 if (codec_dai->ac97_control && codec->ac97 &&
1710 strcmp(codec->name, "AC97") != 0) {
1711 soc_ac97_dev_unregister(codec);
1712 goto free_card;
1715 free_card:
1716 #endif
1718 if (codec->card)
1719 snd_card_free(codec->card);
1720 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1721 mutex_unlock(&codec->mutex);
1723 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1726 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1727 * @substream: the pcm substream
1728 * @hw: the hardware parameters
1730 * Sets the substream runtime hardware parameters.
1732 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1733 const struct snd_pcm_hardware *hw)
1735 struct snd_pcm_runtime *runtime = substream->runtime;
1736 runtime->hw.info = hw->info;
1737 runtime->hw.formats = hw->formats;
1738 runtime->hw.period_bytes_min = hw->period_bytes_min;
1739 runtime->hw.period_bytes_max = hw->period_bytes_max;
1740 runtime->hw.periods_min = hw->periods_min;
1741 runtime->hw.periods_max = hw->periods_max;
1742 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1743 runtime->hw.fifo_size = hw->fifo_size;
1744 return 0;
1746 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1749 * snd_soc_cnew - create new control
1750 * @_template: control template
1751 * @data: control private data
1752 * @long_name: control long name
1754 * Create a new mixer control from a template control.
1756 * Returns 0 for success, else error.
1758 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1759 void *data, char *long_name)
1761 struct snd_kcontrol_new template;
1763 memcpy(&template, _template, sizeof(template));
1764 if (long_name)
1765 template.name = long_name;
1766 template.index = 0;
1768 return snd_ctl_new1(&template, data);
1770 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1773 * snd_soc_add_controls - add an array of controls to a codec.
1774 * Convienience function to add a list of controls. Many codecs were
1775 * duplicating this code.
1777 * @codec: codec to add controls to
1778 * @controls: array of controls to add
1779 * @num_controls: number of elements in the array
1781 * Return 0 for success, else error.
1783 int snd_soc_add_controls(struct snd_soc_codec *codec,
1784 const struct snd_kcontrol_new *controls, int num_controls)
1786 struct snd_card *card = codec->card;
1787 int err, i;
1789 for (i = 0; i < num_controls; i++) {
1790 const struct snd_kcontrol_new *control = &controls[i];
1791 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1792 if (err < 0) {
1793 dev_err(codec->dev, "%s: Failed to add %s\n",
1794 codec->name, control->name);
1795 return err;
1799 return 0;
1801 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1804 * snd_soc_info_enum_double - enumerated double mixer info callback
1805 * @kcontrol: mixer control
1806 * @uinfo: control element information
1808 * Callback to provide information about a double enumerated
1809 * mixer control.
1811 * Returns 0 for success.
1813 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1814 struct snd_ctl_elem_info *uinfo)
1816 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1818 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1819 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1820 uinfo->value.enumerated.items = e->max;
1822 if (uinfo->value.enumerated.item > e->max - 1)
1823 uinfo->value.enumerated.item = e->max - 1;
1824 strcpy(uinfo->value.enumerated.name,
1825 e->texts[uinfo->value.enumerated.item]);
1826 return 0;
1828 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1831 * snd_soc_get_enum_double - enumerated double mixer get callback
1832 * @kcontrol: mixer control
1833 * @ucontrol: control element information
1835 * Callback to get the value of a double enumerated mixer.
1837 * Returns 0 for success.
1839 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1840 struct snd_ctl_elem_value *ucontrol)
1842 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1843 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1844 unsigned int val, bitmask;
1846 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1848 val = snd_soc_read(codec, e->reg);
1849 ucontrol->value.enumerated.item[0]
1850 = (val >> e->shift_l) & (bitmask - 1);
1851 if (e->shift_l != e->shift_r)
1852 ucontrol->value.enumerated.item[1] =
1853 (val >> e->shift_r) & (bitmask - 1);
1855 return 0;
1857 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1860 * snd_soc_put_enum_double - enumerated double mixer put callback
1861 * @kcontrol: mixer control
1862 * @ucontrol: control element information
1864 * Callback to set the value of a double enumerated mixer.
1866 * Returns 0 for success.
1868 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1869 struct snd_ctl_elem_value *ucontrol)
1871 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1872 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1873 unsigned int val;
1874 unsigned int mask, bitmask;
1876 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1878 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1879 return -EINVAL;
1880 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1881 mask = (bitmask - 1) << e->shift_l;
1882 if (e->shift_l != e->shift_r) {
1883 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1884 return -EINVAL;
1885 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1886 mask |= (bitmask - 1) << e->shift_r;
1889 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
1891 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1894 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1895 * @kcontrol: mixer control
1896 * @ucontrol: control element information
1898 * Callback to get the value of a double semi enumerated mixer.
1900 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1901 * used for handling bitfield coded enumeration for example.
1903 * Returns 0 for success.
1905 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1906 struct snd_ctl_elem_value *ucontrol)
1908 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1909 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1910 unsigned int reg_val, val, mux;
1912 reg_val = snd_soc_read(codec, e->reg);
1913 val = (reg_val >> e->shift_l) & e->mask;
1914 for (mux = 0; mux < e->max; mux++) {
1915 if (val == e->values[mux])
1916 break;
1918 ucontrol->value.enumerated.item[0] = mux;
1919 if (e->shift_l != e->shift_r) {
1920 val = (reg_val >> e->shift_r) & e->mask;
1921 for (mux = 0; mux < e->max; mux++) {
1922 if (val == e->values[mux])
1923 break;
1925 ucontrol->value.enumerated.item[1] = mux;
1928 return 0;
1930 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1933 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1934 * @kcontrol: mixer control
1935 * @ucontrol: control element information
1937 * Callback to set the value of a double semi enumerated mixer.
1939 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1940 * used for handling bitfield coded enumeration for example.
1942 * Returns 0 for success.
1944 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1945 struct snd_ctl_elem_value *ucontrol)
1947 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1948 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1949 unsigned int val;
1950 unsigned int mask;
1952 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1953 return -EINVAL;
1954 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1955 mask = e->mask << e->shift_l;
1956 if (e->shift_l != e->shift_r) {
1957 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1958 return -EINVAL;
1959 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1960 mask |= e->mask << e->shift_r;
1963 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
1965 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1968 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1969 * @kcontrol: mixer control
1970 * @uinfo: control element information
1972 * Callback to provide information about an external enumerated
1973 * single mixer.
1975 * Returns 0 for success.
1977 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1978 struct snd_ctl_elem_info *uinfo)
1980 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1982 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1983 uinfo->count = 1;
1984 uinfo->value.enumerated.items = e->max;
1986 if (uinfo->value.enumerated.item > e->max - 1)
1987 uinfo->value.enumerated.item = e->max - 1;
1988 strcpy(uinfo->value.enumerated.name,
1989 e->texts[uinfo->value.enumerated.item]);
1990 return 0;
1992 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1995 * snd_soc_info_volsw_ext - external single mixer info callback
1996 * @kcontrol: mixer control
1997 * @uinfo: control element information
1999 * Callback to provide information about a single external mixer control.
2001 * Returns 0 for success.
2003 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2004 struct snd_ctl_elem_info *uinfo)
2006 int max = kcontrol->private_value;
2008 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2009 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2010 else
2011 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2013 uinfo->count = 1;
2014 uinfo->value.integer.min = 0;
2015 uinfo->value.integer.max = max;
2016 return 0;
2018 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2021 * snd_soc_info_volsw - single mixer info callback
2022 * @kcontrol: mixer control
2023 * @uinfo: control element information
2025 * Callback to provide information about a single mixer control.
2027 * Returns 0 for success.
2029 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2030 struct snd_ctl_elem_info *uinfo)
2032 struct soc_mixer_control *mc =
2033 (struct soc_mixer_control *)kcontrol->private_value;
2034 int platform_max;
2035 unsigned int shift = mc->shift;
2036 unsigned int rshift = mc->rshift;
2038 if (!mc->platform_max)
2039 mc->platform_max = mc->max;
2040 platform_max = mc->platform_max;
2042 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2043 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2044 else
2045 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2047 uinfo->count = shift == rshift ? 1 : 2;
2048 uinfo->value.integer.min = 0;
2049 uinfo->value.integer.max = platform_max;
2050 return 0;
2052 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2055 * snd_soc_get_volsw - single mixer get callback
2056 * @kcontrol: mixer control
2057 * @ucontrol: control element information
2059 * Callback to get the value of a single mixer control.
2061 * Returns 0 for success.
2063 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2064 struct snd_ctl_elem_value *ucontrol)
2066 struct soc_mixer_control *mc =
2067 (struct soc_mixer_control *)kcontrol->private_value;
2068 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2069 unsigned int reg = mc->reg;
2070 unsigned int shift = mc->shift;
2071 unsigned int rshift = mc->rshift;
2072 int max = mc->max;
2073 unsigned int mask = (1 << fls(max)) - 1;
2074 unsigned int invert = mc->invert;
2076 ucontrol->value.integer.value[0] =
2077 (snd_soc_read(codec, reg) >> shift) & mask;
2078 if (shift != rshift)
2079 ucontrol->value.integer.value[1] =
2080 (snd_soc_read(codec, reg) >> rshift) & mask;
2081 if (invert) {
2082 ucontrol->value.integer.value[0] =
2083 max - ucontrol->value.integer.value[0];
2084 if (shift != rshift)
2085 ucontrol->value.integer.value[1] =
2086 max - ucontrol->value.integer.value[1];
2089 return 0;
2091 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2094 * snd_soc_put_volsw - single mixer put callback
2095 * @kcontrol: mixer control
2096 * @ucontrol: control element information
2098 * Callback to set the value of a single mixer control.
2100 * Returns 0 for success.
2102 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2103 struct snd_ctl_elem_value *ucontrol)
2105 struct soc_mixer_control *mc =
2106 (struct soc_mixer_control *)kcontrol->private_value;
2107 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2108 unsigned int reg = mc->reg;
2109 unsigned int shift = mc->shift;
2110 unsigned int rshift = mc->rshift;
2111 int max = mc->max;
2112 unsigned int mask = (1 << fls(max)) - 1;
2113 unsigned int invert = mc->invert;
2114 unsigned int val, val2, val_mask;
2116 val = (ucontrol->value.integer.value[0] & mask);
2117 if (invert)
2118 val = max - val;
2119 val_mask = mask << shift;
2120 val = val << shift;
2121 if (shift != rshift) {
2122 val2 = (ucontrol->value.integer.value[1] & mask);
2123 if (invert)
2124 val2 = max - val2;
2125 val_mask |= mask << rshift;
2126 val |= val2 << rshift;
2128 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2130 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2133 * snd_soc_info_volsw_2r - double mixer info callback
2134 * @kcontrol: mixer control
2135 * @uinfo: control element information
2137 * Callback to provide information about a double mixer control that
2138 * spans 2 codec registers.
2140 * Returns 0 for success.
2142 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2143 struct snd_ctl_elem_info *uinfo)
2145 struct soc_mixer_control *mc =
2146 (struct soc_mixer_control *)kcontrol->private_value;
2147 int platform_max;
2149 if (!mc->platform_max)
2150 mc->platform_max = mc->max;
2151 platform_max = mc->platform_max;
2153 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2154 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2155 else
2156 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2158 uinfo->count = 2;
2159 uinfo->value.integer.min = 0;
2160 uinfo->value.integer.max = platform_max;
2161 return 0;
2163 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2166 * snd_soc_get_volsw_2r - double mixer get callback
2167 * @kcontrol: mixer control
2168 * @ucontrol: control element information
2170 * Callback to get the value of a double mixer control that spans 2 registers.
2172 * Returns 0 for success.
2174 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2175 struct snd_ctl_elem_value *ucontrol)
2177 struct soc_mixer_control *mc =
2178 (struct soc_mixer_control *)kcontrol->private_value;
2179 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2180 unsigned int reg = mc->reg;
2181 unsigned int reg2 = mc->rreg;
2182 unsigned int shift = mc->shift;
2183 int max = mc->max;
2184 unsigned int mask = (1 << fls(max)) - 1;
2185 unsigned int invert = mc->invert;
2187 ucontrol->value.integer.value[0] =
2188 (snd_soc_read(codec, reg) >> shift) & mask;
2189 ucontrol->value.integer.value[1] =
2190 (snd_soc_read(codec, reg2) >> shift) & mask;
2191 if (invert) {
2192 ucontrol->value.integer.value[0] =
2193 max - ucontrol->value.integer.value[0];
2194 ucontrol->value.integer.value[1] =
2195 max - ucontrol->value.integer.value[1];
2198 return 0;
2200 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2203 * snd_soc_put_volsw_2r - double mixer set callback
2204 * @kcontrol: mixer control
2205 * @ucontrol: control element information
2207 * Callback to set the value of a double mixer control that spans 2 registers.
2209 * Returns 0 for success.
2211 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2212 struct snd_ctl_elem_value *ucontrol)
2214 struct soc_mixer_control *mc =
2215 (struct soc_mixer_control *)kcontrol->private_value;
2216 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2217 unsigned int reg = mc->reg;
2218 unsigned int reg2 = mc->rreg;
2219 unsigned int shift = mc->shift;
2220 int max = mc->max;
2221 unsigned int mask = (1 << fls(max)) - 1;
2222 unsigned int invert = mc->invert;
2223 int err;
2224 unsigned int val, val2, val_mask;
2226 val_mask = mask << shift;
2227 val = (ucontrol->value.integer.value[0] & mask);
2228 val2 = (ucontrol->value.integer.value[1] & mask);
2230 if (invert) {
2231 val = max - val;
2232 val2 = max - val2;
2235 val = val << shift;
2236 val2 = val2 << shift;
2238 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2239 if (err < 0)
2240 return err;
2242 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2243 return err;
2245 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2248 * snd_soc_info_volsw_s8 - signed mixer info callback
2249 * @kcontrol: mixer control
2250 * @uinfo: control element information
2252 * Callback to provide information about a signed mixer control.
2254 * Returns 0 for success.
2256 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2257 struct snd_ctl_elem_info *uinfo)
2259 struct soc_mixer_control *mc =
2260 (struct soc_mixer_control *)kcontrol->private_value;
2261 int platform_max;
2262 int min = mc->min;
2264 if (!mc->platform_max)
2265 mc->platform_max = mc->max;
2266 platform_max = mc->platform_max;
2268 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2269 uinfo->count = 2;
2270 uinfo->value.integer.min = 0;
2271 uinfo->value.integer.max = platform_max - min;
2272 return 0;
2274 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2277 * snd_soc_get_volsw_s8 - signed mixer get callback
2278 * @kcontrol: mixer control
2279 * @ucontrol: control element information
2281 * Callback to get the value of a signed mixer control.
2283 * Returns 0 for success.
2285 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2286 struct snd_ctl_elem_value *ucontrol)
2288 struct soc_mixer_control *mc =
2289 (struct soc_mixer_control *)kcontrol->private_value;
2290 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2291 unsigned int reg = mc->reg;
2292 int min = mc->min;
2293 int val = snd_soc_read(codec, reg);
2295 ucontrol->value.integer.value[0] =
2296 ((signed char)(val & 0xff))-min;
2297 ucontrol->value.integer.value[1] =
2298 ((signed char)((val >> 8) & 0xff))-min;
2299 return 0;
2301 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2304 * snd_soc_put_volsw_sgn - signed mixer put callback
2305 * @kcontrol: mixer control
2306 * @ucontrol: control element information
2308 * Callback to set the value of a signed mixer control.
2310 * Returns 0 for success.
2312 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2313 struct snd_ctl_elem_value *ucontrol)
2315 struct soc_mixer_control *mc =
2316 (struct soc_mixer_control *)kcontrol->private_value;
2317 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2318 unsigned int reg = mc->reg;
2319 int min = mc->min;
2320 unsigned int val;
2322 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2323 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2325 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2327 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2330 * snd_soc_limit_volume - Set new limit to an existing volume control.
2332 * @codec: where to look for the control
2333 * @name: Name of the control
2334 * @max: new maximum limit
2336 * Return 0 for success, else error.
2338 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2339 const char *name, int max)
2341 struct snd_card *card = codec->card;
2342 struct snd_kcontrol *kctl;
2343 struct soc_mixer_control *mc;
2344 int found = 0;
2345 int ret = -EINVAL;
2347 /* Sanity check for name and max */
2348 if (unlikely(!name || max <= 0))
2349 return -EINVAL;
2351 list_for_each_entry(kctl, &card->controls, list) {
2352 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2353 found = 1;
2354 break;
2357 if (found) {
2358 mc = (struct soc_mixer_control *)kctl->private_value;
2359 if (max <= mc->max) {
2360 mc->platform_max = max;
2361 ret = 0;
2364 return ret;
2366 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2369 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2370 * mixer info callback
2371 * @kcontrol: mixer control
2372 * @uinfo: control element information
2374 * Returns 0 for success.
2376 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2377 struct snd_ctl_elem_info *uinfo)
2379 struct soc_mixer_control *mc =
2380 (struct soc_mixer_control *)kcontrol->private_value;
2381 int max = mc->max;
2382 int min = mc->min;
2384 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2385 uinfo->count = 2;
2386 uinfo->value.integer.min = 0;
2387 uinfo->value.integer.max = max-min;
2389 return 0;
2391 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2394 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2395 * mixer get callback
2396 * @kcontrol: mixer control
2397 * @uinfo: control element information
2399 * Returns 0 for success.
2401 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2402 struct snd_ctl_elem_value *ucontrol)
2404 struct soc_mixer_control *mc =
2405 (struct soc_mixer_control *)kcontrol->private_value;
2406 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2407 unsigned int mask = (1<<mc->shift)-1;
2408 int min = mc->min;
2409 int val = snd_soc_read(codec, mc->reg) & mask;
2410 int valr = snd_soc_read(codec, mc->rreg) & mask;
2412 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2413 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2414 return 0;
2416 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2419 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2420 * mixer put callback
2421 * @kcontrol: mixer control
2422 * @uinfo: control element information
2424 * Returns 0 for success.
2426 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2427 struct snd_ctl_elem_value *ucontrol)
2429 struct soc_mixer_control *mc =
2430 (struct soc_mixer_control *)kcontrol->private_value;
2431 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2432 unsigned int mask = (1<<mc->shift)-1;
2433 int min = mc->min;
2434 int ret;
2435 unsigned int val, valr, oval, ovalr;
2437 val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2438 val &= mask;
2439 valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2440 valr &= mask;
2442 oval = snd_soc_read(codec, mc->reg) & mask;
2443 ovalr = snd_soc_read(codec, mc->rreg) & mask;
2445 ret = 0;
2446 if (oval != val) {
2447 ret = snd_soc_write(codec, mc->reg, val);
2448 if (ret < 0)
2449 return ret;
2451 if (ovalr != valr) {
2452 ret = snd_soc_write(codec, mc->rreg, valr);
2453 if (ret < 0)
2454 return ret;
2457 return 0;
2459 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2462 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2463 * @dai: DAI
2464 * @clk_id: DAI specific clock ID
2465 * @freq: new clock frequency in Hz
2466 * @dir: new clock direction - input/output.
2468 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2470 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2471 unsigned int freq, int dir)
2473 if (dai->ops && dai->ops->set_sysclk)
2474 return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2475 else
2476 return -EINVAL;
2478 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2481 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2482 * @dai: DAI
2483 * @div_id: DAI specific clock divider ID
2484 * @div: new clock divisor.
2486 * Configures the clock dividers. This is used to derive the best DAI bit and
2487 * frame clocks from the system or master clock. It's best to set the DAI bit
2488 * and frame clocks as low as possible to save system power.
2490 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2491 int div_id, int div)
2493 if (dai->ops && dai->ops->set_clkdiv)
2494 return dai->ops->set_clkdiv(dai, div_id, div);
2495 else
2496 return -EINVAL;
2498 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2501 * snd_soc_dai_set_pll - configure DAI PLL.
2502 * @dai: DAI
2503 * @pll_id: DAI specific PLL ID
2504 * @source: DAI specific source for the PLL
2505 * @freq_in: PLL input clock frequency in Hz
2506 * @freq_out: requested PLL output clock frequency in Hz
2508 * Configures and enables PLL to generate output clock based on input clock.
2510 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2511 unsigned int freq_in, unsigned int freq_out)
2513 if (dai->ops && dai->ops->set_pll)
2514 return dai->ops->set_pll(dai, pll_id, source,
2515 freq_in, freq_out);
2516 else
2517 return -EINVAL;
2519 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2522 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2523 * @dai: DAI
2524 * @fmt: SND_SOC_DAIFMT_ format value.
2526 * Configures the DAI hardware format and clocking.
2528 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2530 if (dai->ops && dai->ops->set_fmt)
2531 return dai->ops->set_fmt(dai, fmt);
2532 else
2533 return -EINVAL;
2535 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2538 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2539 * @dai: DAI
2540 * @tx_mask: bitmask representing active TX slots.
2541 * @rx_mask: bitmask representing active RX slots.
2542 * @slots: Number of slots in use.
2543 * @slot_width: Width in bits for each slot.
2545 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2546 * specific.
2548 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2549 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2551 if (dai->ops && dai->ops->set_tdm_slot)
2552 return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2553 slots, slot_width);
2554 else
2555 return -EINVAL;
2557 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2560 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2561 * @dai: DAI
2562 * @tx_num: how many TX channels
2563 * @tx_slot: pointer to an array which imply the TX slot number channel
2564 * 0~num-1 uses
2565 * @rx_num: how many RX channels
2566 * @rx_slot: pointer to an array which imply the RX slot number channel
2567 * 0~num-1 uses
2569 * configure the relationship between channel number and TDM slot number.
2571 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2572 unsigned int tx_num, unsigned int *tx_slot,
2573 unsigned int rx_num, unsigned int *rx_slot)
2575 if (dai->ops && dai->ops->set_channel_map)
2576 return dai->ops->set_channel_map(dai, tx_num, tx_slot,
2577 rx_num, rx_slot);
2578 else
2579 return -EINVAL;
2581 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2584 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2585 * @dai: DAI
2586 * @tristate: tristate enable
2588 * Tristates the DAI so that others can use it.
2590 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2592 if (dai->ops && dai->ops->set_tristate)
2593 return dai->ops->set_tristate(dai, tristate);
2594 else
2595 return -EINVAL;
2597 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2600 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2601 * @dai: DAI
2602 * @mute: mute enable
2604 * Mutes the DAI DAC.
2606 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2608 if (dai->ops && dai->ops->digital_mute)
2609 return dai->ops->digital_mute(dai, mute);
2610 else
2611 return -EINVAL;
2613 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2616 * snd_soc_register_card - Register a card with the ASoC core
2618 * @card: Card to register
2620 * Note that currently this is an internal only function: it will be
2621 * exposed to machine drivers after further backporting of ASoC v2
2622 * registration APIs.
2624 static int snd_soc_register_card(struct snd_soc_card *card)
2626 if (!card->name || !card->dev)
2627 return -EINVAL;
2629 INIT_LIST_HEAD(&card->list);
2630 card->instantiated = 0;
2632 mutex_lock(&client_mutex);
2633 list_add(&card->list, &card_list);
2634 snd_soc_instantiate_cards();
2635 mutex_unlock(&client_mutex);
2637 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2639 return 0;
2643 * snd_soc_unregister_card - Unregister a card with the ASoC core
2645 * @card: Card to unregister
2647 * Note that currently this is an internal only function: it will be
2648 * exposed to machine drivers after further backporting of ASoC v2
2649 * registration APIs.
2651 static int snd_soc_unregister_card(struct snd_soc_card *card)
2653 mutex_lock(&client_mutex);
2654 list_del(&card->list);
2655 mutex_unlock(&client_mutex);
2657 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2659 return 0;
2663 * snd_soc_register_dai - Register a DAI with the ASoC core
2665 * @dai: DAI to register
2667 int snd_soc_register_dai(struct snd_soc_dai *dai)
2669 if (!dai->name)
2670 return -EINVAL;
2672 /* The device should become mandatory over time */
2673 if (!dai->dev)
2674 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2676 if (!dai->ops)
2677 dai->ops = &null_dai_ops;
2679 INIT_LIST_HEAD(&dai->list);
2681 mutex_lock(&client_mutex);
2682 list_add(&dai->list, &dai_list);
2683 snd_soc_instantiate_cards();
2684 mutex_unlock(&client_mutex);
2686 pr_debug("Registered DAI '%s'\n", dai->name);
2688 return 0;
2690 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2693 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2695 * @dai: DAI to unregister
2697 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2699 mutex_lock(&client_mutex);
2700 list_del(&dai->list);
2701 mutex_unlock(&client_mutex);
2703 pr_debug("Unregistered DAI '%s'\n", dai->name);
2705 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2708 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2710 * @dai: Array of DAIs to register
2711 * @count: Number of DAIs
2713 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2715 int i, ret;
2717 for (i = 0; i < count; i++) {
2718 ret = snd_soc_register_dai(&dai[i]);
2719 if (ret != 0)
2720 goto err;
2723 return 0;
2725 err:
2726 for (i--; i >= 0; i--)
2727 snd_soc_unregister_dai(&dai[i]);
2729 return ret;
2731 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2734 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2736 * @dai: Array of DAIs to unregister
2737 * @count: Number of DAIs
2739 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2741 int i;
2743 for (i = 0; i < count; i++)
2744 snd_soc_unregister_dai(&dai[i]);
2746 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2749 * snd_soc_register_platform - Register a platform with the ASoC core
2751 * @platform: platform to register
2753 int snd_soc_register_platform(struct snd_soc_platform *platform)
2755 if (!platform->name)
2756 return -EINVAL;
2758 INIT_LIST_HEAD(&platform->list);
2760 mutex_lock(&client_mutex);
2761 list_add(&platform->list, &platform_list);
2762 snd_soc_instantiate_cards();
2763 mutex_unlock(&client_mutex);
2765 pr_debug("Registered platform '%s'\n", platform->name);
2767 return 0;
2769 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2772 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2774 * @platform: platform to unregister
2776 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2778 mutex_lock(&client_mutex);
2779 list_del(&platform->list);
2780 mutex_unlock(&client_mutex);
2782 pr_debug("Unregistered platform '%s'\n", platform->name);
2784 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2786 static u64 codec_format_map[] = {
2787 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
2788 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
2789 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
2790 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
2791 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
2792 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
2793 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2794 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2795 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
2796 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
2797 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
2798 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
2799 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
2800 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
2801 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
2802 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
2805 /* Fix up the DAI formats for endianness: codecs don't actually see
2806 * the endianness of the data but we're using the CPU format
2807 * definitions which do need to include endianness so we ensure that
2808 * codec DAIs always have both big and little endian variants set.
2810 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
2812 int i;
2814 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
2815 if (stream->formats & codec_format_map[i])
2816 stream->formats |= codec_format_map[i];
2820 * snd_soc_register_codec - Register a codec with the ASoC core
2822 * @codec: codec to register
2824 int snd_soc_register_codec(struct snd_soc_codec *codec)
2826 int i;
2828 if (!codec->name)
2829 return -EINVAL;
2831 /* The device should become mandatory over time */
2832 if (!codec->dev)
2833 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2835 INIT_LIST_HEAD(&codec->list);
2837 for (i = 0; i < codec->num_dai; i++) {
2838 fixup_codec_formats(&codec->dai[i].playback);
2839 fixup_codec_formats(&codec->dai[i].capture);
2842 mutex_lock(&client_mutex);
2843 list_add(&codec->list, &codec_list);
2844 snd_soc_instantiate_cards();
2845 mutex_unlock(&client_mutex);
2847 pr_debug("Registered codec '%s'\n", codec->name);
2849 return 0;
2851 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2854 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2856 * @codec: codec to unregister
2858 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2860 mutex_lock(&client_mutex);
2861 list_del(&codec->list);
2862 mutex_unlock(&client_mutex);
2864 pr_debug("Unregistered codec '%s'\n", codec->name);
2866 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2868 static int __init snd_soc_init(void)
2870 #ifdef CONFIG_DEBUG_FS
2871 debugfs_root = debugfs_create_dir("asoc", NULL);
2872 if (IS_ERR(debugfs_root) || !debugfs_root) {
2873 printk(KERN_WARNING
2874 "ASoC: Failed to create debugfs directory\n");
2875 debugfs_root = NULL;
2877 #endif
2879 return platform_driver_register(&soc_driver);
2882 static void __exit snd_soc_exit(void)
2884 #ifdef CONFIG_DEBUG_FS
2885 debugfs_remove_recursive(debugfs_root);
2886 #endif
2887 platform_driver_unregister(&soc_driver);
2890 module_init(snd_soc_init);
2891 module_exit(snd_soc_exit);
2893 /* Module information */
2894 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2895 MODULE_DESCRIPTION("ALSA SoC Core");
2896 MODULE_LICENSE("GPL");
2897 MODULE_ALIAS("platform:soc-audio");