2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
43 * For the allocated request tables
45 static struct kmem_cache
*request_cachep
;
48 * For queue allocation
50 struct kmem_cache
*blk_requestq_cachep
;
53 * Controlling structure to kblockd
55 static struct workqueue_struct
*kblockd_workqueue
;
57 static void drive_stat_acct(struct request
*rq
, int new_io
)
59 struct hd_struct
*part
;
60 int rw
= rq_data_dir(rq
);
63 if (!blk_do_io_stat(rq
))
66 cpu
= part_stat_lock();
70 part_stat_inc(cpu
, part
, merges
[rw
]);
72 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
73 if (!hd_struct_try_get(part
)) {
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
82 part
= &rq
->rq_disk
->part0
;
85 part_round_stats(cpu
, part
);
86 part_inc_in_flight(part
, rw
);
93 void blk_queue_congestion_threshold(struct request_queue
*q
)
97 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
98 if (nr
> q
->nr_requests
)
100 q
->nr_congestion_on
= nr
;
102 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
105 q
->nr_congestion_off
= nr
;
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
112 * Locates the passed device's request queue and returns the address of its
115 * Will return NULL if the request queue cannot be located.
117 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
119 struct backing_dev_info
*ret
= NULL
;
120 struct request_queue
*q
= bdev_get_queue(bdev
);
123 ret
= &q
->backing_dev_info
;
126 EXPORT_SYMBOL(blk_get_backing_dev_info
);
128 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
130 memset(rq
, 0, sizeof(*rq
));
132 INIT_LIST_HEAD(&rq
->queuelist
);
133 INIT_LIST_HEAD(&rq
->timeout_list
);
136 rq
->__sector
= (sector_t
) -1;
137 INIT_HLIST_NODE(&rq
->hash
);
138 RB_CLEAR_NODE(&rq
->rb_node
);
140 rq
->cmd_len
= BLK_MAX_CDB
;
143 rq
->start_time
= jiffies
;
144 set_start_time_ns(rq
);
147 EXPORT_SYMBOL(blk_rq_init
);
149 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
150 unsigned int nbytes
, int error
)
153 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
154 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
157 if (unlikely(nbytes
> bio
->bi_size
)) {
158 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
159 __func__
, nbytes
, bio
->bi_size
);
160 nbytes
= bio
->bi_size
;
163 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
164 set_bit(BIO_QUIET
, &bio
->bi_flags
);
166 bio
->bi_size
-= nbytes
;
167 bio
->bi_sector
+= (nbytes
>> 9);
169 if (bio_integrity(bio
))
170 bio_integrity_advance(bio
, nbytes
);
172 /* don't actually finish bio if it's part of flush sequence */
173 if (bio
->bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
174 bio_endio(bio
, error
);
177 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
181 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
182 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
185 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
186 (unsigned long long)blk_rq_pos(rq
),
187 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
188 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
189 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
191 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
192 printk(KERN_INFO
" cdb: ");
193 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
194 printk("%02x ", rq
->cmd
[bit
]);
198 EXPORT_SYMBOL(blk_dump_rq_flags
);
200 static void blk_delay_work(struct work_struct
*work
)
202 struct request_queue
*q
;
204 q
= container_of(work
, struct request_queue
, delay_work
.work
);
205 spin_lock_irq(q
->queue_lock
);
207 spin_unlock_irq(q
->queue_lock
);
211 * blk_delay_queue - restart queueing after defined interval
212 * @q: The &struct request_queue in question
213 * @msecs: Delay in msecs
216 * Sometimes queueing needs to be postponed for a little while, to allow
217 * resources to come back. This function will make sure that queueing is
218 * restarted around the specified time.
220 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
222 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
223 msecs_to_jiffies(msecs
));
225 EXPORT_SYMBOL(blk_delay_queue
);
228 * blk_start_queue - restart a previously stopped queue
229 * @q: The &struct request_queue in question
232 * blk_start_queue() will clear the stop flag on the queue, and call
233 * the request_fn for the queue if it was in a stopped state when
234 * entered. Also see blk_stop_queue(). Queue lock must be held.
236 void blk_start_queue(struct request_queue
*q
)
238 WARN_ON(!irqs_disabled());
240 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
243 EXPORT_SYMBOL(blk_start_queue
);
246 * blk_stop_queue - stop a queue
247 * @q: The &struct request_queue in question
250 * The Linux block layer assumes that a block driver will consume all
251 * entries on the request queue when the request_fn strategy is called.
252 * Often this will not happen, because of hardware limitations (queue
253 * depth settings). If a device driver gets a 'queue full' response,
254 * or if it simply chooses not to queue more I/O at one point, it can
255 * call this function to prevent the request_fn from being called until
256 * the driver has signalled it's ready to go again. This happens by calling
257 * blk_start_queue() to restart queue operations. Queue lock must be held.
259 void blk_stop_queue(struct request_queue
*q
)
261 __cancel_delayed_work(&q
->delay_work
);
262 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
264 EXPORT_SYMBOL(blk_stop_queue
);
267 * blk_sync_queue - cancel any pending callbacks on a queue
271 * The block layer may perform asynchronous callback activity
272 * on a queue, such as calling the unplug function after a timeout.
273 * A block device may call blk_sync_queue to ensure that any
274 * such activity is cancelled, thus allowing it to release resources
275 * that the callbacks might use. The caller must already have made sure
276 * that its ->make_request_fn will not re-add plugging prior to calling
279 * This function does not cancel any asynchronous activity arising
280 * out of elevator or throttling code. That would require elevaotor_exit()
281 * and blk_throtl_exit() to be called with queue lock initialized.
284 void blk_sync_queue(struct request_queue
*q
)
286 del_timer_sync(&q
->timeout
);
287 cancel_delayed_work_sync(&q
->delay_work
);
289 EXPORT_SYMBOL(blk_sync_queue
);
292 * __blk_run_queue - run a single device queue
293 * @q: The queue to run
296 * See @blk_run_queue. This variant must be called with the queue lock
297 * held and interrupts disabled.
299 void __blk_run_queue(struct request_queue
*q
)
301 if (unlikely(blk_queue_stopped(q
)))
306 EXPORT_SYMBOL(__blk_run_queue
);
309 * blk_run_queue_async - run a single device queue in workqueue context
310 * @q: The queue to run
313 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316 void blk_run_queue_async(struct request_queue
*q
)
318 if (likely(!blk_queue_stopped(q
))) {
319 __cancel_delayed_work(&q
->delay_work
);
320 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
323 EXPORT_SYMBOL(blk_run_queue_async
);
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
330 * Invoke request handling on this queue, if it has pending work to do.
331 * May be used to restart queueing when a request has completed.
333 void blk_run_queue(struct request_queue
*q
)
337 spin_lock_irqsave(q
->queue_lock
, flags
);
339 spin_unlock_irqrestore(q
->queue_lock
, flags
);
341 EXPORT_SYMBOL(blk_run_queue
);
343 void blk_put_queue(struct request_queue
*q
)
345 kobject_put(&q
->kobj
);
347 EXPORT_SYMBOL(blk_put_queue
);
350 * blk_drain_queue - drain requests from request_queue
352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
358 void blk_drain_queue(struct request_queue
*q
, bool drain_all
)
363 spin_lock_irq(q
->queue_lock
);
365 elv_drain_elevator(q
);
370 * This function might be called on a queue which failed
371 * driver init after queue creation. Some drivers
372 * (e.g. fd) get unhappy in such cases. Kick queue iff
373 * dispatch queue has something on it.
375 if (!list_empty(&q
->queue_head
))
379 nr_rqs
= q
->rq
.count
[0] + q
->rq
.count
[1];
381 nr_rqs
= q
->rq
.elvpriv
;
383 spin_unlock_irq(q
->queue_lock
);
392 * blk_cleanup_queue - shutdown a request queue
393 * @q: request queue to shutdown
395 * Mark @q DEAD, drain all pending requests, destroy and put it. All
396 * future requests will be failed immediately with -ENODEV.
398 void blk_cleanup_queue(struct request_queue
*q
)
400 spinlock_t
*lock
= q
->queue_lock
;
402 /* mark @q DEAD, no new request or merges will be allowed afterwards */
403 mutex_lock(&q
->sysfs_lock
);
404 queue_flag_set_unlocked(QUEUE_FLAG_DEAD
, q
);
407 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
408 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
409 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
411 if (q
->queue_lock
!= &q
->__queue_lock
)
412 q
->queue_lock
= &q
->__queue_lock
;
414 spin_unlock_irq(lock
);
415 mutex_unlock(&q
->sysfs_lock
);
418 * Drain all requests queued before DEAD marking. The caller might
419 * be trying to tear down @q before its elevator is initialized, in
420 * which case we don't want to call into draining.
423 blk_drain_queue(q
, true);
425 /* @q won't process any more request, flush async actions */
426 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
429 /* @q is and will stay empty, shutdown and put */
432 EXPORT_SYMBOL(blk_cleanup_queue
);
434 static int blk_init_free_list(struct request_queue
*q
)
436 struct request_list
*rl
= &q
->rq
;
438 if (unlikely(rl
->rq_pool
))
441 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
442 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
444 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
445 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
447 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
448 mempool_free_slab
, request_cachep
, q
->node
);
456 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
458 return blk_alloc_queue_node(gfp_mask
, -1);
460 EXPORT_SYMBOL(blk_alloc_queue
);
462 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
464 struct request_queue
*q
;
467 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
468 gfp_mask
| __GFP_ZERO
, node_id
);
472 q
->backing_dev_info
.ra_pages
=
473 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
474 q
->backing_dev_info
.state
= 0;
475 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
476 q
->backing_dev_info
.name
= "block";
479 err
= bdi_init(&q
->backing_dev_info
);
481 kmem_cache_free(blk_requestq_cachep
, q
);
485 if (blk_throtl_init(q
)) {
486 kmem_cache_free(blk_requestq_cachep
, q
);
490 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
491 laptop_mode_timer_fn
, (unsigned long) q
);
492 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
493 INIT_LIST_HEAD(&q
->timeout_list
);
494 INIT_LIST_HEAD(&q
->flush_queue
[0]);
495 INIT_LIST_HEAD(&q
->flush_queue
[1]);
496 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
497 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
499 kobject_init(&q
->kobj
, &blk_queue_ktype
);
501 mutex_init(&q
->sysfs_lock
);
502 spin_lock_init(&q
->__queue_lock
);
505 * By default initialize queue_lock to internal lock and driver can
506 * override it later if need be.
508 q
->queue_lock
= &q
->__queue_lock
;
512 EXPORT_SYMBOL(blk_alloc_queue_node
);
515 * blk_init_queue - prepare a request queue for use with a block device
516 * @rfn: The function to be called to process requests that have been
517 * placed on the queue.
518 * @lock: Request queue spin lock
521 * If a block device wishes to use the standard request handling procedures,
522 * which sorts requests and coalesces adjacent requests, then it must
523 * call blk_init_queue(). The function @rfn will be called when there
524 * are requests on the queue that need to be processed. If the device
525 * supports plugging, then @rfn may not be called immediately when requests
526 * are available on the queue, but may be called at some time later instead.
527 * Plugged queues are generally unplugged when a buffer belonging to one
528 * of the requests on the queue is needed, or due to memory pressure.
530 * @rfn is not required, or even expected, to remove all requests off the
531 * queue, but only as many as it can handle at a time. If it does leave
532 * requests on the queue, it is responsible for arranging that the requests
533 * get dealt with eventually.
535 * The queue spin lock must be held while manipulating the requests on the
536 * request queue; this lock will be taken also from interrupt context, so irq
537 * disabling is needed for it.
539 * Function returns a pointer to the initialized request queue, or %NULL if
543 * blk_init_queue() must be paired with a blk_cleanup_queue() call
544 * when the block device is deactivated (such as at module unload).
547 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
549 return blk_init_queue_node(rfn
, lock
, -1);
551 EXPORT_SYMBOL(blk_init_queue
);
553 struct request_queue
*
554 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
556 struct request_queue
*uninit_q
, *q
;
558 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
562 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
564 blk_cleanup_queue(uninit_q
);
568 EXPORT_SYMBOL(blk_init_queue_node
);
570 struct request_queue
*
571 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
577 if (blk_init_free_list(q
))
581 q
->prep_rq_fn
= NULL
;
582 q
->unprep_rq_fn
= NULL
;
583 q
->queue_flags
= QUEUE_FLAG_DEFAULT
;
585 /* Override internal queue lock with supplied lock pointer */
587 q
->queue_lock
= lock
;
590 * This also sets hw/phys segments, boundary and size
592 blk_queue_make_request(q
, blk_queue_bio
);
594 q
->sg_reserved_size
= INT_MAX
;
599 if (!elevator_init(q
, NULL
)) {
600 blk_queue_congestion_threshold(q
);
606 EXPORT_SYMBOL(blk_init_allocated_queue
);
608 int blk_get_queue(struct request_queue
*q
)
610 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
611 kobject_get(&q
->kobj
);
617 EXPORT_SYMBOL(blk_get_queue
);
619 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
621 if (rq
->cmd_flags
& REQ_ELVPRIV
)
622 elv_put_request(q
, rq
);
623 mempool_free(rq
, q
->rq
.rq_pool
);
626 static struct request
*
627 blk_alloc_request(struct request_queue
*q
, unsigned int flags
, gfp_t gfp_mask
)
629 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
636 rq
->cmd_flags
= flags
| REQ_ALLOCED
;
638 if ((flags
& REQ_ELVPRIV
) &&
639 unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
640 mempool_free(rq
, q
->rq
.rq_pool
);
648 * ioc_batching returns true if the ioc is a valid batching request and
649 * should be given priority access to a request.
651 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
657 * Make sure the process is able to allocate at least 1 request
658 * even if the batch times out, otherwise we could theoretically
661 return ioc
->nr_batch_requests
== q
->nr_batching
||
662 (ioc
->nr_batch_requests
> 0
663 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
667 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
668 * will cause the process to be a "batcher" on all queues in the system. This
669 * is the behaviour we want though - once it gets a wakeup it should be given
672 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
674 if (!ioc
|| ioc_batching(q
, ioc
))
677 ioc
->nr_batch_requests
= q
->nr_batching
;
678 ioc
->last_waited
= jiffies
;
681 static void __freed_request(struct request_queue
*q
, int sync
)
683 struct request_list
*rl
= &q
->rq
;
685 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
686 blk_clear_queue_congested(q
, sync
);
688 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
689 if (waitqueue_active(&rl
->wait
[sync
]))
690 wake_up(&rl
->wait
[sync
]);
692 blk_clear_queue_full(q
, sync
);
697 * A request has just been released. Account for it, update the full and
698 * congestion status, wake up any waiters. Called under q->queue_lock.
700 static void freed_request(struct request_queue
*q
, unsigned int flags
)
702 struct request_list
*rl
= &q
->rq
;
703 int sync
= rw_is_sync(flags
);
706 if (flags
& REQ_ELVPRIV
)
709 __freed_request(q
, sync
);
711 if (unlikely(rl
->starved
[sync
^ 1]))
712 __freed_request(q
, sync
^ 1);
716 * Determine if elevator data should be initialized when allocating the
717 * request associated with @bio.
719 static bool blk_rq_should_init_elevator(struct bio
*bio
)
725 * Flush requests do not use the elevator so skip initialization.
726 * This allows a request to share the flush and elevator data.
728 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
735 * get_request - get a free request
736 * @q: request_queue to allocate request from
737 * @rw_flags: RW and SYNC flags
738 * @bio: bio to allocate request for (can be %NULL)
739 * @gfp_mask: allocation mask
741 * Get a free request from @q. This function may fail under memory
742 * pressure or if @q is dead.
744 * Must be callled with @q->queue_lock held and,
745 * Returns %NULL on failure, with @q->queue_lock held.
746 * Returns !%NULL on success, with @q->queue_lock *not held*.
748 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
749 struct bio
*bio
, gfp_t gfp_mask
)
751 struct request
*rq
= NULL
;
752 struct request_list
*rl
= &q
->rq
;
753 struct io_context
*ioc
= NULL
;
754 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
757 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
760 may_queue
= elv_may_queue(q
, rw_flags
);
761 if (may_queue
== ELV_MQUEUE_NO
)
764 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
765 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
766 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
768 * The queue will fill after this allocation, so set
769 * it as full, and mark this process as "batching".
770 * This process will be allowed to complete a batch of
771 * requests, others will be blocked.
773 if (!blk_queue_full(q
, is_sync
)) {
774 ioc_set_batching(q
, ioc
);
775 blk_set_queue_full(q
, is_sync
);
777 if (may_queue
!= ELV_MQUEUE_MUST
778 && !ioc_batching(q
, ioc
)) {
780 * The queue is full and the allocating
781 * process is not a "batcher", and not
782 * exempted by the IO scheduler
788 blk_set_queue_congested(q
, is_sync
);
792 * Only allow batching queuers to allocate up to 50% over the defined
793 * limit of requests, otherwise we could have thousands of requests
794 * allocated with any setting of ->nr_requests
796 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
799 rl
->count
[is_sync
]++;
800 rl
->starved
[is_sync
] = 0;
802 if (blk_rq_should_init_elevator(bio
) &&
803 !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
)) {
804 rw_flags
|= REQ_ELVPRIV
;
808 if (blk_queue_io_stat(q
))
809 rw_flags
|= REQ_IO_STAT
;
810 spin_unlock_irq(q
->queue_lock
);
812 rq
= blk_alloc_request(q
, rw_flags
, gfp_mask
);
815 * Allocation failed presumably due to memory. Undo anything
816 * we might have messed up.
818 * Allocating task should really be put onto the front of the
819 * wait queue, but this is pretty rare.
821 spin_lock_irq(q
->queue_lock
);
822 freed_request(q
, rw_flags
);
825 * in the very unlikely event that allocation failed and no
826 * requests for this direction was pending, mark us starved
827 * so that freeing of a request in the other direction will
828 * notice us. another possible fix would be to split the
829 * rq mempool into READ and WRITE
832 if (unlikely(rl
->count
[is_sync
] == 0))
833 rl
->starved
[is_sync
] = 1;
839 * ioc may be NULL here, and ioc_batching will be false. That's
840 * OK, if the queue is under the request limit then requests need
841 * not count toward the nr_batch_requests limit. There will always
842 * be some limit enforced by BLK_BATCH_TIME.
844 if (ioc_batching(q
, ioc
))
845 ioc
->nr_batch_requests
--;
847 trace_block_getrq(q
, bio
, rw_flags
& 1);
853 * get_request_wait - get a free request with retry
854 * @q: request_queue to allocate request from
855 * @rw_flags: RW and SYNC flags
856 * @bio: bio to allocate request for (can be %NULL)
858 * Get a free request from @q. This function keeps retrying under memory
859 * pressure and fails iff @q is dead.
861 * Must be callled with @q->queue_lock held and,
862 * Returns %NULL on failure, with @q->queue_lock held.
863 * Returns !%NULL on success, with @q->queue_lock *not held*.
865 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
868 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
871 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
874 struct io_context
*ioc
;
875 struct request_list
*rl
= &q
->rq
;
877 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
880 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
881 TASK_UNINTERRUPTIBLE
);
883 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
885 spin_unlock_irq(q
->queue_lock
);
889 * After sleeping, we become a "batching" process and
890 * will be able to allocate at least one request, and
891 * up to a big batch of them for a small period time.
892 * See ioc_batching, ioc_set_batching
894 ioc
= current_io_context(GFP_NOIO
, q
->node
);
895 ioc_set_batching(q
, ioc
);
897 spin_lock_irq(q
->queue_lock
);
898 finish_wait(&rl
->wait
[is_sync
], &wait
);
900 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
906 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
910 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
912 spin_lock_irq(q
->queue_lock
);
913 if (gfp_mask
& __GFP_WAIT
)
914 rq
= get_request_wait(q
, rw
, NULL
);
916 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
918 spin_unlock_irq(q
->queue_lock
);
919 /* q->queue_lock is unlocked at this point */
923 EXPORT_SYMBOL(blk_get_request
);
926 * blk_make_request - given a bio, allocate a corresponding struct request.
927 * @q: target request queue
928 * @bio: The bio describing the memory mappings that will be submitted for IO.
929 * It may be a chained-bio properly constructed by block/bio layer.
930 * @gfp_mask: gfp flags to be used for memory allocation
932 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
933 * type commands. Where the struct request needs to be farther initialized by
934 * the caller. It is passed a &struct bio, which describes the memory info of
937 * The caller of blk_make_request must make sure that bi_io_vec
938 * are set to describe the memory buffers. That bio_data_dir() will return
939 * the needed direction of the request. (And all bio's in the passed bio-chain
940 * are properly set accordingly)
942 * If called under none-sleepable conditions, mapped bio buffers must not
943 * need bouncing, by calling the appropriate masked or flagged allocator,
944 * suitable for the target device. Otherwise the call to blk_queue_bounce will
947 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
948 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
949 * anything but the first bio in the chain. Otherwise you risk waiting for IO
950 * completion of a bio that hasn't been submitted yet, thus resulting in a
951 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
952 * of bio_alloc(), as that avoids the mempool deadlock.
953 * If possible a big IO should be split into smaller parts when allocation
954 * fails. Partial allocation should not be an error, or you risk a live-lock.
956 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
959 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
962 return ERR_PTR(-ENOMEM
);
965 struct bio
*bounce_bio
= bio
;
968 blk_queue_bounce(q
, &bounce_bio
);
969 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
978 EXPORT_SYMBOL(blk_make_request
);
981 * blk_requeue_request - put a request back on queue
982 * @q: request queue where request should be inserted
983 * @rq: request to be inserted
986 * Drivers often keep queueing requests until the hardware cannot accept
987 * more, when that condition happens we need to put the request back
988 * on the queue. Must be called with queue lock held.
990 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
992 blk_delete_timer(rq
);
993 blk_clear_rq_complete(rq
);
994 trace_block_rq_requeue(q
, rq
);
996 if (blk_rq_tagged(rq
))
997 blk_queue_end_tag(q
, rq
);
999 BUG_ON(blk_queued_rq(rq
));
1001 elv_requeue_request(q
, rq
);
1003 EXPORT_SYMBOL(blk_requeue_request
);
1005 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1008 drive_stat_acct(rq
, 1);
1009 __elv_add_request(q
, rq
, where
);
1013 * blk_insert_request - insert a special request into a request queue
1014 * @q: request queue where request should be inserted
1015 * @rq: request to be inserted
1016 * @at_head: insert request at head or tail of queue
1017 * @data: private data
1020 * Many block devices need to execute commands asynchronously, so they don't
1021 * block the whole kernel from preemption during request execution. This is
1022 * accomplished normally by inserting aritficial requests tagged as
1023 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1024 * be scheduled for actual execution by the request queue.
1026 * We have the option of inserting the head or the tail of the queue.
1027 * Typically we use the tail for new ioctls and so forth. We use the head
1028 * of the queue for things like a QUEUE_FULL message from a device, or a
1029 * host that is unable to accept a particular command.
1031 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
1032 int at_head
, void *data
)
1034 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
1035 unsigned long flags
;
1038 * tell I/O scheduler that this isn't a regular read/write (ie it
1039 * must not attempt merges on this) and that it acts as a soft
1042 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
1046 spin_lock_irqsave(q
->queue_lock
, flags
);
1049 * If command is tagged, release the tag
1051 if (blk_rq_tagged(rq
))
1052 blk_queue_end_tag(q
, rq
);
1054 add_acct_request(q
, rq
, where
);
1056 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1058 EXPORT_SYMBOL(blk_insert_request
);
1060 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1063 if (now
== part
->stamp
)
1066 if (part_in_flight(part
)) {
1067 __part_stat_add(cpu
, part
, time_in_queue
,
1068 part_in_flight(part
) * (now
- part
->stamp
));
1069 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1075 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1076 * @cpu: cpu number for stats access
1077 * @part: target partition
1079 * The average IO queue length and utilisation statistics are maintained
1080 * by observing the current state of the queue length and the amount of
1081 * time it has been in this state for.
1083 * Normally, that accounting is done on IO completion, but that can result
1084 * in more than a second's worth of IO being accounted for within any one
1085 * second, leading to >100% utilisation. To deal with that, we call this
1086 * function to do a round-off before returning the results when reading
1087 * /proc/diskstats. This accounts immediately for all queue usage up to
1088 * the current jiffies and restarts the counters again.
1090 void part_round_stats(int cpu
, struct hd_struct
*part
)
1092 unsigned long now
= jiffies
;
1095 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1096 part_round_stats_single(cpu
, part
, now
);
1098 EXPORT_SYMBOL_GPL(part_round_stats
);
1101 * queue lock must be held
1103 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1107 if (unlikely(--req
->ref_count
))
1110 elv_completed_request(q
, req
);
1112 /* this is a bio leak */
1113 WARN_ON(req
->bio
!= NULL
);
1116 * Request may not have originated from ll_rw_blk. if not,
1117 * it didn't come out of our reserved rq pools
1119 if (req
->cmd_flags
& REQ_ALLOCED
) {
1120 unsigned int flags
= req
->cmd_flags
;
1122 BUG_ON(!list_empty(&req
->queuelist
));
1123 BUG_ON(!hlist_unhashed(&req
->hash
));
1125 blk_free_request(q
, req
);
1126 freed_request(q
, flags
);
1129 EXPORT_SYMBOL_GPL(__blk_put_request
);
1131 void blk_put_request(struct request
*req
)
1133 unsigned long flags
;
1134 struct request_queue
*q
= req
->q
;
1136 spin_lock_irqsave(q
->queue_lock
, flags
);
1137 __blk_put_request(q
, req
);
1138 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1140 EXPORT_SYMBOL(blk_put_request
);
1143 * blk_add_request_payload - add a payload to a request
1144 * @rq: request to update
1145 * @page: page backing the payload
1146 * @len: length of the payload.
1148 * This allows to later add a payload to an already submitted request by
1149 * a block driver. The driver needs to take care of freeing the payload
1152 * Note that this is a quite horrible hack and nothing but handling of
1153 * discard requests should ever use it.
1155 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1158 struct bio
*bio
= rq
->bio
;
1160 bio
->bi_io_vec
->bv_page
= page
;
1161 bio
->bi_io_vec
->bv_offset
= 0;
1162 bio
->bi_io_vec
->bv_len
= len
;
1166 bio
->bi_phys_segments
= 1;
1168 rq
->__data_len
= rq
->resid_len
= len
;
1169 rq
->nr_phys_segments
= 1;
1170 rq
->buffer
= bio_data(bio
);
1172 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1174 static bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1177 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1179 if (!ll_back_merge_fn(q
, req
, bio
))
1182 trace_block_bio_backmerge(q
, bio
);
1184 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1185 blk_rq_set_mixed_merge(req
);
1187 req
->biotail
->bi_next
= bio
;
1189 req
->__data_len
+= bio
->bi_size
;
1190 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1192 drive_stat_acct(req
, 0);
1193 elv_bio_merged(q
, req
, bio
);
1197 static bool bio_attempt_front_merge(struct request_queue
*q
,
1198 struct request
*req
, struct bio
*bio
)
1200 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1202 if (!ll_front_merge_fn(q
, req
, bio
))
1205 trace_block_bio_frontmerge(q
, bio
);
1207 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1208 blk_rq_set_mixed_merge(req
);
1210 bio
->bi_next
= req
->bio
;
1214 * may not be valid. if the low level driver said
1215 * it didn't need a bounce buffer then it better
1216 * not touch req->buffer either...
1218 req
->buffer
= bio_data(bio
);
1219 req
->__sector
= bio
->bi_sector
;
1220 req
->__data_len
+= bio
->bi_size
;
1221 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1223 drive_stat_acct(req
, 0);
1224 elv_bio_merged(q
, req
, bio
);
1229 * attempt_plug_merge - try to merge with %current's plugged list
1230 * @q: request_queue new bio is being queued at
1231 * @bio: new bio being queued
1232 * @request_count: out parameter for number of traversed plugged requests
1234 * Determine whether @bio being queued on @q can be merged with a request
1235 * on %current's plugged list. Returns %true if merge was successful,
1238 * This function is called without @q->queue_lock; however, elevator is
1239 * accessed iff there already are requests on the plugged list which in
1240 * turn guarantees validity of the elevator.
1242 * Note that, on successful merge, elevator operation
1243 * elevator_bio_merged_fn() will be called without queue lock. Elevator
1244 * must be ready for this.
1246 static bool attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1247 unsigned int *request_count
)
1249 struct blk_plug
*plug
;
1253 plug
= current
->plug
;
1258 list_for_each_entry_reverse(rq
, &plug
->list
, queuelist
) {
1266 el_ret
= elv_try_merge(rq
, bio
);
1267 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1268 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1271 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1272 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1281 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1283 req
->cmd_type
= REQ_TYPE_FS
;
1285 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1286 if (bio
->bi_rw
& REQ_RAHEAD
)
1287 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1290 req
->__sector
= bio
->bi_sector
;
1291 req
->ioprio
= bio_prio(bio
);
1292 blk_rq_bio_prep(req
->q
, req
, bio
);
1295 void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1297 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1298 struct blk_plug
*plug
;
1299 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1300 struct request
*req
;
1301 unsigned int request_count
= 0;
1304 * low level driver can indicate that it wants pages above a
1305 * certain limit bounced to low memory (ie for highmem, or even
1306 * ISA dma in theory)
1308 blk_queue_bounce(q
, &bio
);
1310 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1311 spin_lock_irq(q
->queue_lock
);
1312 where
= ELEVATOR_INSERT_FLUSH
;
1317 * Check if we can merge with the plugged list before grabbing
1320 if (attempt_plug_merge(q
, bio
, &request_count
))
1323 spin_lock_irq(q
->queue_lock
);
1325 el_ret
= elv_merge(q
, &req
, bio
);
1326 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1327 if (bio_attempt_back_merge(q
, req
, bio
)) {
1328 if (!attempt_back_merge(q
, req
))
1329 elv_merged_request(q
, req
, el_ret
);
1332 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1333 if (bio_attempt_front_merge(q
, req
, bio
)) {
1334 if (!attempt_front_merge(q
, req
))
1335 elv_merged_request(q
, req
, el_ret
);
1342 * This sync check and mask will be re-done in init_request_from_bio(),
1343 * but we need to set it earlier to expose the sync flag to the
1344 * rq allocator and io schedulers.
1346 rw_flags
= bio_data_dir(bio
);
1348 rw_flags
|= REQ_SYNC
;
1351 * Grab a free request. This is might sleep but can not fail.
1352 * Returns with the queue unlocked.
1354 req
= get_request_wait(q
, rw_flags
, bio
);
1355 if (unlikely(!req
)) {
1356 bio_endio(bio
, -ENODEV
); /* @q is dead */
1361 * After dropping the lock and possibly sleeping here, our request
1362 * may now be mergeable after it had proven unmergeable (above).
1363 * We don't worry about that case for efficiency. It won't happen
1364 * often, and the elevators are able to handle it.
1366 init_request_from_bio(req
, bio
);
1368 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1369 req
->cpu
= raw_smp_processor_id();
1371 plug
= current
->plug
;
1374 * If this is the first request added after a plug, fire
1375 * of a plug trace. If others have been added before, check
1376 * if we have multiple devices in this plug. If so, make a
1377 * note to sort the list before dispatch.
1379 if (list_empty(&plug
->list
))
1380 trace_block_plug(q
);
1382 if (!plug
->should_sort
) {
1383 struct request
*__rq
;
1385 __rq
= list_entry_rq(plug
->list
.prev
);
1387 plug
->should_sort
= 1;
1389 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1390 blk_flush_plug_list(plug
, false);
1391 trace_block_plug(q
);
1394 list_add_tail(&req
->queuelist
, &plug
->list
);
1395 drive_stat_acct(req
, 1);
1397 spin_lock_irq(q
->queue_lock
);
1398 add_acct_request(q
, req
, where
);
1401 spin_unlock_irq(q
->queue_lock
);
1404 EXPORT_SYMBOL_GPL(blk_queue_bio
); /* for device mapper only */
1407 * If bio->bi_dev is a partition, remap the location
1409 static inline void blk_partition_remap(struct bio
*bio
)
1411 struct block_device
*bdev
= bio
->bi_bdev
;
1413 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1414 struct hd_struct
*p
= bdev
->bd_part
;
1416 bio
->bi_sector
+= p
->start_sect
;
1417 bio
->bi_bdev
= bdev
->bd_contains
;
1419 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1421 bio
->bi_sector
- p
->start_sect
);
1425 static void handle_bad_sector(struct bio
*bio
)
1427 char b
[BDEVNAME_SIZE
];
1429 printk(KERN_INFO
"attempt to access beyond end of device\n");
1430 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1431 bdevname(bio
->bi_bdev
, b
),
1433 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1434 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1436 set_bit(BIO_EOF
, &bio
->bi_flags
);
1439 #ifdef CONFIG_FAIL_MAKE_REQUEST
1441 static DECLARE_FAULT_ATTR(fail_make_request
);
1443 static int __init
setup_fail_make_request(char *str
)
1445 return setup_fault_attr(&fail_make_request
, str
);
1447 __setup("fail_make_request=", setup_fail_make_request
);
1449 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1451 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1454 static int __init
fail_make_request_debugfs(void)
1456 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1457 NULL
, &fail_make_request
);
1459 return IS_ERR(dir
) ? PTR_ERR(dir
) : 0;
1462 late_initcall(fail_make_request_debugfs
);
1464 #else /* CONFIG_FAIL_MAKE_REQUEST */
1466 static inline bool should_fail_request(struct hd_struct
*part
,
1472 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1475 * Check whether this bio extends beyond the end of the device.
1477 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1484 /* Test device or partition size, when known. */
1485 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1487 sector_t sector
= bio
->bi_sector
;
1489 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1491 * This may well happen - the kernel calls bread()
1492 * without checking the size of the device, e.g., when
1493 * mounting a device.
1495 handle_bad_sector(bio
);
1503 static noinline_for_stack
bool
1504 generic_make_request_checks(struct bio
*bio
)
1506 struct request_queue
*q
;
1507 int nr_sectors
= bio_sectors(bio
);
1509 char b
[BDEVNAME_SIZE
];
1510 struct hd_struct
*part
;
1514 if (bio_check_eod(bio
, nr_sectors
))
1517 q
= bdev_get_queue(bio
->bi_bdev
);
1520 "generic_make_request: Trying to access "
1521 "nonexistent block-device %s (%Lu)\n",
1522 bdevname(bio
->bi_bdev
, b
),
1523 (long long) bio
->bi_sector
);
1527 if (unlikely(!(bio
->bi_rw
& REQ_DISCARD
) &&
1528 nr_sectors
> queue_max_hw_sectors(q
))) {
1529 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1530 bdevname(bio
->bi_bdev
, b
),
1532 queue_max_hw_sectors(q
));
1536 part
= bio
->bi_bdev
->bd_part
;
1537 if (should_fail_request(part
, bio
->bi_size
) ||
1538 should_fail_request(&part_to_disk(part
)->part0
,
1543 * If this device has partitions, remap block n
1544 * of partition p to block n+start(p) of the disk.
1546 blk_partition_remap(bio
);
1548 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
))
1551 if (bio_check_eod(bio
, nr_sectors
))
1555 * Filter flush bio's early so that make_request based
1556 * drivers without flush support don't have to worry
1559 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1560 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1567 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1568 (!blk_queue_discard(q
) ||
1569 ((bio
->bi_rw
& REQ_SECURE
) &&
1570 !blk_queue_secdiscard(q
)))) {
1575 if (blk_throtl_bio(q
, bio
))
1576 return false; /* throttled, will be resubmitted later */
1578 trace_block_bio_queue(q
, bio
);
1582 bio_endio(bio
, err
);
1587 * generic_make_request - hand a buffer to its device driver for I/O
1588 * @bio: The bio describing the location in memory and on the device.
1590 * generic_make_request() is used to make I/O requests of block
1591 * devices. It is passed a &struct bio, which describes the I/O that needs
1594 * generic_make_request() does not return any status. The
1595 * success/failure status of the request, along with notification of
1596 * completion, is delivered asynchronously through the bio->bi_end_io
1597 * function described (one day) else where.
1599 * The caller of generic_make_request must make sure that bi_io_vec
1600 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1601 * set to describe the device address, and the
1602 * bi_end_io and optionally bi_private are set to describe how
1603 * completion notification should be signaled.
1605 * generic_make_request and the drivers it calls may use bi_next if this
1606 * bio happens to be merged with someone else, and may resubmit the bio to
1607 * a lower device by calling into generic_make_request recursively, which
1608 * means the bio should NOT be touched after the call to ->make_request_fn.
1610 void generic_make_request(struct bio
*bio
)
1612 struct bio_list bio_list_on_stack
;
1614 if (!generic_make_request_checks(bio
))
1618 * We only want one ->make_request_fn to be active at a time, else
1619 * stack usage with stacked devices could be a problem. So use
1620 * current->bio_list to keep a list of requests submited by a
1621 * make_request_fn function. current->bio_list is also used as a
1622 * flag to say if generic_make_request is currently active in this
1623 * task or not. If it is NULL, then no make_request is active. If
1624 * it is non-NULL, then a make_request is active, and new requests
1625 * should be added at the tail
1627 if (current
->bio_list
) {
1628 bio_list_add(current
->bio_list
, bio
);
1632 /* following loop may be a bit non-obvious, and so deserves some
1634 * Before entering the loop, bio->bi_next is NULL (as all callers
1635 * ensure that) so we have a list with a single bio.
1636 * We pretend that we have just taken it off a longer list, so
1637 * we assign bio_list to a pointer to the bio_list_on_stack,
1638 * thus initialising the bio_list of new bios to be
1639 * added. ->make_request() may indeed add some more bios
1640 * through a recursive call to generic_make_request. If it
1641 * did, we find a non-NULL value in bio_list and re-enter the loop
1642 * from the top. In this case we really did just take the bio
1643 * of the top of the list (no pretending) and so remove it from
1644 * bio_list, and call into ->make_request() again.
1646 BUG_ON(bio
->bi_next
);
1647 bio_list_init(&bio_list_on_stack
);
1648 current
->bio_list
= &bio_list_on_stack
;
1650 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1652 q
->make_request_fn(q
, bio
);
1654 bio
= bio_list_pop(current
->bio_list
);
1656 current
->bio_list
= NULL
; /* deactivate */
1658 EXPORT_SYMBOL(generic_make_request
);
1661 * submit_bio - submit a bio to the block device layer for I/O
1662 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1663 * @bio: The &struct bio which describes the I/O
1665 * submit_bio() is very similar in purpose to generic_make_request(), and
1666 * uses that function to do most of the work. Both are fairly rough
1667 * interfaces; @bio must be presetup and ready for I/O.
1670 void submit_bio(int rw
, struct bio
*bio
)
1672 int count
= bio_sectors(bio
);
1677 * If it's a regular read/write or a barrier with data attached,
1678 * go through the normal accounting stuff before submission.
1680 if (bio_has_data(bio
) && !(rw
& REQ_DISCARD
)) {
1682 count_vm_events(PGPGOUT
, count
);
1684 task_io_account_read(bio
->bi_size
);
1685 count_vm_events(PGPGIN
, count
);
1688 if (unlikely(block_dump
)) {
1689 char b
[BDEVNAME_SIZE
];
1690 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1691 current
->comm
, task_pid_nr(current
),
1692 (rw
& WRITE
) ? "WRITE" : "READ",
1693 (unsigned long long)bio
->bi_sector
,
1694 bdevname(bio
->bi_bdev
, b
),
1699 generic_make_request(bio
);
1701 EXPORT_SYMBOL(submit_bio
);
1704 * blk_rq_check_limits - Helper function to check a request for the queue limit
1706 * @rq: the request being checked
1709 * @rq may have been made based on weaker limitations of upper-level queues
1710 * in request stacking drivers, and it may violate the limitation of @q.
1711 * Since the block layer and the underlying device driver trust @rq
1712 * after it is inserted to @q, it should be checked against @q before
1713 * the insertion using this generic function.
1715 * This function should also be useful for request stacking drivers
1716 * in some cases below, so export this function.
1717 * Request stacking drivers like request-based dm may change the queue
1718 * limits while requests are in the queue (e.g. dm's table swapping).
1719 * Such request stacking drivers should check those requests agaist
1720 * the new queue limits again when they dispatch those requests,
1721 * although such checkings are also done against the old queue limits
1722 * when submitting requests.
1724 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1726 if (rq
->cmd_flags
& REQ_DISCARD
)
1729 if (blk_rq_sectors(rq
) > queue_max_sectors(q
) ||
1730 blk_rq_bytes(rq
) > queue_max_hw_sectors(q
) << 9) {
1731 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1736 * queue's settings related to segment counting like q->bounce_pfn
1737 * may differ from that of other stacking queues.
1738 * Recalculate it to check the request correctly on this queue's
1741 blk_recalc_rq_segments(rq
);
1742 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1743 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1749 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1752 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1753 * @q: the queue to submit the request
1754 * @rq: the request being queued
1756 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1758 unsigned long flags
;
1759 int where
= ELEVATOR_INSERT_BACK
;
1761 if (blk_rq_check_limits(q
, rq
))
1765 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1768 spin_lock_irqsave(q
->queue_lock
, flags
);
1771 * Submitting request must be dequeued before calling this function
1772 * because it will be linked to another request_queue
1774 BUG_ON(blk_queued_rq(rq
));
1776 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
1777 where
= ELEVATOR_INSERT_FLUSH
;
1779 add_acct_request(q
, rq
, where
);
1780 if (where
== ELEVATOR_INSERT_FLUSH
)
1782 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1786 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1789 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1790 * @rq: request to examine
1793 * A request could be merge of IOs which require different failure
1794 * handling. This function determines the number of bytes which
1795 * can be failed from the beginning of the request without
1796 * crossing into area which need to be retried further.
1799 * The number of bytes to fail.
1802 * queue_lock must be held.
1804 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1806 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1807 unsigned int bytes
= 0;
1810 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
1811 return blk_rq_bytes(rq
);
1814 * Currently the only 'mixing' which can happen is between
1815 * different fastfail types. We can safely fail portions
1816 * which have all the failfast bits that the first one has -
1817 * the ones which are at least as eager to fail as the first
1820 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
1821 if ((bio
->bi_rw
& ff
) != ff
)
1823 bytes
+= bio
->bi_size
;
1826 /* this could lead to infinite loop */
1827 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
1830 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
1832 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
1834 if (blk_do_io_stat(req
)) {
1835 const int rw
= rq_data_dir(req
);
1836 struct hd_struct
*part
;
1839 cpu
= part_stat_lock();
1841 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
1846 static void blk_account_io_done(struct request
*req
)
1849 * Account IO completion. flush_rq isn't accounted as a
1850 * normal IO on queueing nor completion. Accounting the
1851 * containing request is enough.
1853 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
1854 unsigned long duration
= jiffies
- req
->start_time
;
1855 const int rw
= rq_data_dir(req
);
1856 struct hd_struct
*part
;
1859 cpu
= part_stat_lock();
1862 part_stat_inc(cpu
, part
, ios
[rw
]);
1863 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
1864 part_round_stats(cpu
, part
);
1865 part_dec_in_flight(part
, rw
);
1867 hd_struct_put(part
);
1873 * blk_peek_request - peek at the top of a request queue
1874 * @q: request queue to peek at
1877 * Return the request at the top of @q. The returned request
1878 * should be started using blk_start_request() before LLD starts
1882 * Pointer to the request at the top of @q if available. Null
1886 * queue_lock must be held.
1888 struct request
*blk_peek_request(struct request_queue
*q
)
1893 while ((rq
= __elv_next_request(q
)) != NULL
) {
1894 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
1896 * This is the first time the device driver
1897 * sees this request (possibly after
1898 * requeueing). Notify IO scheduler.
1900 if (rq
->cmd_flags
& REQ_SORTED
)
1901 elv_activate_rq(q
, rq
);
1904 * just mark as started even if we don't start
1905 * it, a request that has been delayed should
1906 * not be passed by new incoming requests
1908 rq
->cmd_flags
|= REQ_STARTED
;
1909 trace_block_rq_issue(q
, rq
);
1912 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
1913 q
->end_sector
= rq_end_sector(rq
);
1914 q
->boundary_rq
= NULL
;
1917 if (rq
->cmd_flags
& REQ_DONTPREP
)
1920 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
1922 * make sure space for the drain appears we
1923 * know we can do this because max_hw_segments
1924 * has been adjusted to be one fewer than the
1927 rq
->nr_phys_segments
++;
1933 ret
= q
->prep_rq_fn(q
, rq
);
1934 if (ret
== BLKPREP_OK
) {
1936 } else if (ret
== BLKPREP_DEFER
) {
1938 * the request may have been (partially) prepped.
1939 * we need to keep this request in the front to
1940 * avoid resource deadlock. REQ_STARTED will
1941 * prevent other fs requests from passing this one.
1943 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
1944 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
1946 * remove the space for the drain we added
1947 * so that we don't add it again
1949 --rq
->nr_phys_segments
;
1954 } else if (ret
== BLKPREP_KILL
) {
1955 rq
->cmd_flags
|= REQ_QUIET
;
1957 * Mark this request as started so we don't trigger
1958 * any debug logic in the end I/O path.
1960 blk_start_request(rq
);
1961 __blk_end_request_all(rq
, -EIO
);
1963 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
1970 EXPORT_SYMBOL(blk_peek_request
);
1972 void blk_dequeue_request(struct request
*rq
)
1974 struct request_queue
*q
= rq
->q
;
1976 BUG_ON(list_empty(&rq
->queuelist
));
1977 BUG_ON(ELV_ON_HASH(rq
));
1979 list_del_init(&rq
->queuelist
);
1982 * the time frame between a request being removed from the lists
1983 * and to it is freed is accounted as io that is in progress at
1986 if (blk_account_rq(rq
)) {
1987 q
->in_flight
[rq_is_sync(rq
)]++;
1988 set_io_start_time_ns(rq
);
1993 * blk_start_request - start request processing on the driver
1994 * @req: request to dequeue
1997 * Dequeue @req and start timeout timer on it. This hands off the
1998 * request to the driver.
2000 * Block internal functions which don't want to start timer should
2001 * call blk_dequeue_request().
2004 * queue_lock must be held.
2006 void blk_start_request(struct request
*req
)
2008 blk_dequeue_request(req
);
2011 * We are now handing the request to the hardware, initialize
2012 * resid_len to full count and add the timeout handler.
2014 req
->resid_len
= blk_rq_bytes(req
);
2015 if (unlikely(blk_bidi_rq(req
)))
2016 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2020 EXPORT_SYMBOL(blk_start_request
);
2023 * blk_fetch_request - fetch a request from a request queue
2024 * @q: request queue to fetch a request from
2027 * Return the request at the top of @q. The request is started on
2028 * return and LLD can start processing it immediately.
2031 * Pointer to the request at the top of @q if available. Null
2035 * queue_lock must be held.
2037 struct request
*blk_fetch_request(struct request_queue
*q
)
2041 rq
= blk_peek_request(q
);
2043 blk_start_request(rq
);
2046 EXPORT_SYMBOL(blk_fetch_request
);
2049 * blk_update_request - Special helper function for request stacking drivers
2050 * @req: the request being processed
2051 * @error: %0 for success, < %0 for error
2052 * @nr_bytes: number of bytes to complete @req
2055 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2056 * the request structure even if @req doesn't have leftover.
2057 * If @req has leftover, sets it up for the next range of segments.
2059 * This special helper function is only for request stacking drivers
2060 * (e.g. request-based dm) so that they can handle partial completion.
2061 * Actual device drivers should use blk_end_request instead.
2063 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2064 * %false return from this function.
2067 * %false - this request doesn't have any more data
2068 * %true - this request has more data
2070 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2072 int total_bytes
, bio_nbytes
, next_idx
= 0;
2078 trace_block_rq_complete(req
->q
, req
);
2081 * For fs requests, rq is just carrier of independent bio's
2082 * and each partial completion should be handled separately.
2083 * Reset per-request error on each partial completion.
2085 * TODO: tj: This is too subtle. It would be better to let
2086 * low level drivers do what they see fit.
2088 if (req
->cmd_type
== REQ_TYPE_FS
)
2091 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2092 !(req
->cmd_flags
& REQ_QUIET
)) {
2097 error_type
= "recoverable transport";
2100 error_type
= "critical target";
2103 error_type
= "critical nexus";
2110 printk(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2111 error_type
, req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
2112 (unsigned long long)blk_rq_pos(req
));
2115 blk_account_io_completion(req
, nr_bytes
);
2117 total_bytes
= bio_nbytes
= 0;
2118 while ((bio
= req
->bio
) != NULL
) {
2121 if (nr_bytes
>= bio
->bi_size
) {
2122 req
->bio
= bio
->bi_next
;
2123 nbytes
= bio
->bi_size
;
2124 req_bio_endio(req
, bio
, nbytes
, error
);
2128 int idx
= bio
->bi_idx
+ next_idx
;
2130 if (unlikely(idx
>= bio
->bi_vcnt
)) {
2131 blk_dump_rq_flags(req
, "__end_that");
2132 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
2133 __func__
, idx
, bio
->bi_vcnt
);
2137 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
2138 BIO_BUG_ON(nbytes
> bio
->bi_size
);
2141 * not a complete bvec done
2143 if (unlikely(nbytes
> nr_bytes
)) {
2144 bio_nbytes
+= nr_bytes
;
2145 total_bytes
+= nr_bytes
;
2150 * advance to the next vector
2153 bio_nbytes
+= nbytes
;
2156 total_bytes
+= nbytes
;
2162 * end more in this run, or just return 'not-done'
2164 if (unlikely(nr_bytes
<= 0))
2174 * Reset counters so that the request stacking driver
2175 * can find how many bytes remain in the request
2178 req
->__data_len
= 0;
2183 * if the request wasn't completed, update state
2186 req_bio_endio(req
, bio
, bio_nbytes
, error
);
2187 bio
->bi_idx
+= next_idx
;
2188 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
2189 bio_iovec(bio
)->bv_len
-= nr_bytes
;
2192 req
->__data_len
-= total_bytes
;
2193 req
->buffer
= bio_data(req
->bio
);
2195 /* update sector only for requests with clear definition of sector */
2196 if (req
->cmd_type
== REQ_TYPE_FS
|| (req
->cmd_flags
& REQ_DISCARD
))
2197 req
->__sector
+= total_bytes
>> 9;
2199 /* mixed attributes always follow the first bio */
2200 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2201 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2202 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2206 * If total number of sectors is less than the first segment
2207 * size, something has gone terribly wrong.
2209 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2210 blk_dump_rq_flags(req
, "request botched");
2211 req
->__data_len
= blk_rq_cur_bytes(req
);
2214 /* recalculate the number of segments */
2215 blk_recalc_rq_segments(req
);
2219 EXPORT_SYMBOL_GPL(blk_update_request
);
2221 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2222 unsigned int nr_bytes
,
2223 unsigned int bidi_bytes
)
2225 if (blk_update_request(rq
, error
, nr_bytes
))
2228 /* Bidi request must be completed as a whole */
2229 if (unlikely(blk_bidi_rq(rq
)) &&
2230 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2233 if (blk_queue_add_random(rq
->q
))
2234 add_disk_randomness(rq
->rq_disk
);
2240 * blk_unprep_request - unprepare a request
2243 * This function makes a request ready for complete resubmission (or
2244 * completion). It happens only after all error handling is complete,
2245 * so represents the appropriate moment to deallocate any resources
2246 * that were allocated to the request in the prep_rq_fn. The queue
2247 * lock is held when calling this.
2249 void blk_unprep_request(struct request
*req
)
2251 struct request_queue
*q
= req
->q
;
2253 req
->cmd_flags
&= ~REQ_DONTPREP
;
2254 if (q
->unprep_rq_fn
)
2255 q
->unprep_rq_fn(q
, req
);
2257 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2260 * queue lock must be held
2262 static void blk_finish_request(struct request
*req
, int error
)
2264 if (blk_rq_tagged(req
))
2265 blk_queue_end_tag(req
->q
, req
);
2267 BUG_ON(blk_queued_rq(req
));
2269 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2270 laptop_io_completion(&req
->q
->backing_dev_info
);
2272 blk_delete_timer(req
);
2274 if (req
->cmd_flags
& REQ_DONTPREP
)
2275 blk_unprep_request(req
);
2278 blk_account_io_done(req
);
2281 req
->end_io(req
, error
);
2283 if (blk_bidi_rq(req
))
2284 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2286 __blk_put_request(req
->q
, req
);
2291 * blk_end_bidi_request - Complete a bidi request
2292 * @rq: the request to complete
2293 * @error: %0 for success, < %0 for error
2294 * @nr_bytes: number of bytes to complete @rq
2295 * @bidi_bytes: number of bytes to complete @rq->next_rq
2298 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2299 * Drivers that supports bidi can safely call this member for any
2300 * type of request, bidi or uni. In the later case @bidi_bytes is
2304 * %false - we are done with this request
2305 * %true - still buffers pending for this request
2307 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2308 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2310 struct request_queue
*q
= rq
->q
;
2311 unsigned long flags
;
2313 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2316 spin_lock_irqsave(q
->queue_lock
, flags
);
2317 blk_finish_request(rq
, error
);
2318 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2324 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2325 * @rq: the request to complete
2326 * @error: %0 for success, < %0 for error
2327 * @nr_bytes: number of bytes to complete @rq
2328 * @bidi_bytes: number of bytes to complete @rq->next_rq
2331 * Identical to blk_end_bidi_request() except that queue lock is
2332 * assumed to be locked on entry and remains so on return.
2335 * %false - we are done with this request
2336 * %true - still buffers pending for this request
2338 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2339 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2341 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2344 blk_finish_request(rq
, error
);
2350 * blk_end_request - Helper function for drivers to complete the request.
2351 * @rq: the request being processed
2352 * @error: %0 for success, < %0 for error
2353 * @nr_bytes: number of bytes to complete
2356 * Ends I/O on a number of bytes attached to @rq.
2357 * If @rq has leftover, sets it up for the next range of segments.
2360 * %false - we are done with this request
2361 * %true - still buffers pending for this request
2363 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2365 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2367 EXPORT_SYMBOL(blk_end_request
);
2370 * blk_end_request_all - Helper function for drives to finish the request.
2371 * @rq: the request to finish
2372 * @error: %0 for success, < %0 for error
2375 * Completely finish @rq.
2377 void blk_end_request_all(struct request
*rq
, int error
)
2380 unsigned int bidi_bytes
= 0;
2382 if (unlikely(blk_bidi_rq(rq
)))
2383 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2385 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2388 EXPORT_SYMBOL(blk_end_request_all
);
2391 * blk_end_request_cur - Helper function to finish the current request chunk.
2392 * @rq: the request to finish the current chunk for
2393 * @error: %0 for success, < %0 for error
2396 * Complete the current consecutively mapped chunk from @rq.
2399 * %false - we are done with this request
2400 * %true - still buffers pending for this request
2402 bool blk_end_request_cur(struct request
*rq
, int error
)
2404 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2406 EXPORT_SYMBOL(blk_end_request_cur
);
2409 * blk_end_request_err - Finish a request till the next failure boundary.
2410 * @rq: the request to finish till the next failure boundary for
2411 * @error: must be negative errno
2414 * Complete @rq till the next failure boundary.
2417 * %false - we are done with this request
2418 * %true - still buffers pending for this request
2420 bool blk_end_request_err(struct request
*rq
, int error
)
2422 WARN_ON(error
>= 0);
2423 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2425 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2428 * __blk_end_request - Helper function for drivers to complete the request.
2429 * @rq: the request being processed
2430 * @error: %0 for success, < %0 for error
2431 * @nr_bytes: number of bytes to complete
2434 * Must be called with queue lock held unlike blk_end_request().
2437 * %false - we are done with this request
2438 * %true - still buffers pending for this request
2440 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2442 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2444 EXPORT_SYMBOL(__blk_end_request
);
2447 * __blk_end_request_all - Helper function for drives to finish the request.
2448 * @rq: the request to finish
2449 * @error: %0 for success, < %0 for error
2452 * Completely finish @rq. Must be called with queue lock held.
2454 void __blk_end_request_all(struct request
*rq
, int error
)
2457 unsigned int bidi_bytes
= 0;
2459 if (unlikely(blk_bidi_rq(rq
)))
2460 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2462 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2465 EXPORT_SYMBOL(__blk_end_request_all
);
2468 * __blk_end_request_cur - Helper function to finish the current request chunk.
2469 * @rq: the request to finish the current chunk for
2470 * @error: %0 for success, < %0 for error
2473 * Complete the current consecutively mapped chunk from @rq. Must
2474 * be called with queue lock held.
2477 * %false - we are done with this request
2478 * %true - still buffers pending for this request
2480 bool __blk_end_request_cur(struct request
*rq
, int error
)
2482 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2484 EXPORT_SYMBOL(__blk_end_request_cur
);
2487 * __blk_end_request_err - Finish a request till the next failure boundary.
2488 * @rq: the request to finish till the next failure boundary for
2489 * @error: must be negative errno
2492 * Complete @rq till the next failure boundary. Must be called
2493 * with queue lock held.
2496 * %false - we are done with this request
2497 * %true - still buffers pending for this request
2499 bool __blk_end_request_err(struct request
*rq
, int error
)
2501 WARN_ON(error
>= 0);
2502 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2504 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2506 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2509 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2510 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2512 if (bio_has_data(bio
)) {
2513 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2514 rq
->buffer
= bio_data(bio
);
2516 rq
->__data_len
= bio
->bi_size
;
2517 rq
->bio
= rq
->biotail
= bio
;
2520 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2523 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2525 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2526 * @rq: the request to be flushed
2529 * Flush all pages in @rq.
2531 void rq_flush_dcache_pages(struct request
*rq
)
2533 struct req_iterator iter
;
2534 struct bio_vec
*bvec
;
2536 rq_for_each_segment(bvec
, rq
, iter
)
2537 flush_dcache_page(bvec
->bv_page
);
2539 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2543 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2544 * @q : the queue of the device being checked
2547 * Check if underlying low-level drivers of a device are busy.
2548 * If the drivers want to export their busy state, they must set own
2549 * exporting function using blk_queue_lld_busy() first.
2551 * Basically, this function is used only by request stacking drivers
2552 * to stop dispatching requests to underlying devices when underlying
2553 * devices are busy. This behavior helps more I/O merging on the queue
2554 * of the request stacking driver and prevents I/O throughput regression
2555 * on burst I/O load.
2558 * 0 - Not busy (The request stacking driver should dispatch request)
2559 * 1 - Busy (The request stacking driver should stop dispatching request)
2561 int blk_lld_busy(struct request_queue
*q
)
2564 return q
->lld_busy_fn(q
);
2568 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2571 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2572 * @rq: the clone request to be cleaned up
2575 * Free all bios in @rq for a cloned request.
2577 void blk_rq_unprep_clone(struct request
*rq
)
2581 while ((bio
= rq
->bio
) != NULL
) {
2582 rq
->bio
= bio
->bi_next
;
2587 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2590 * Copy attributes of the original request to the clone request.
2591 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2593 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2595 dst
->cpu
= src
->cpu
;
2596 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2597 dst
->cmd_type
= src
->cmd_type
;
2598 dst
->__sector
= blk_rq_pos(src
);
2599 dst
->__data_len
= blk_rq_bytes(src
);
2600 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2601 dst
->ioprio
= src
->ioprio
;
2602 dst
->extra_len
= src
->extra_len
;
2606 * blk_rq_prep_clone - Helper function to setup clone request
2607 * @rq: the request to be setup
2608 * @rq_src: original request to be cloned
2609 * @bs: bio_set that bios for clone are allocated from
2610 * @gfp_mask: memory allocation mask for bio
2611 * @bio_ctr: setup function to be called for each clone bio.
2612 * Returns %0 for success, non %0 for failure.
2613 * @data: private data to be passed to @bio_ctr
2616 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2617 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2618 * are not copied, and copying such parts is the caller's responsibility.
2619 * Also, pages which the original bios are pointing to are not copied
2620 * and the cloned bios just point same pages.
2621 * So cloned bios must be completed before original bios, which means
2622 * the caller must complete @rq before @rq_src.
2624 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2625 struct bio_set
*bs
, gfp_t gfp_mask
,
2626 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2629 struct bio
*bio
, *bio_src
;
2634 blk_rq_init(NULL
, rq
);
2636 __rq_for_each_bio(bio_src
, rq_src
) {
2637 bio
= bio_alloc_bioset(gfp_mask
, bio_src
->bi_max_vecs
, bs
);
2641 __bio_clone(bio
, bio_src
);
2643 if (bio_integrity(bio_src
) &&
2644 bio_integrity_clone(bio
, bio_src
, gfp_mask
, bs
))
2647 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2651 rq
->biotail
->bi_next
= bio
;
2654 rq
->bio
= rq
->biotail
= bio
;
2657 __blk_rq_prep_clone(rq
, rq_src
);
2664 blk_rq_unprep_clone(rq
);
2668 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2670 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2672 return queue_work(kblockd_workqueue
, work
);
2674 EXPORT_SYMBOL(kblockd_schedule_work
);
2676 int kblockd_schedule_delayed_work(struct request_queue
*q
,
2677 struct delayed_work
*dwork
, unsigned long delay
)
2679 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2681 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2683 #define PLUG_MAGIC 0x91827364
2686 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2687 * @plug: The &struct blk_plug that needs to be initialized
2690 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2691 * pending I/O should the task end up blocking between blk_start_plug() and
2692 * blk_finish_plug(). This is important from a performance perspective, but
2693 * also ensures that we don't deadlock. For instance, if the task is blocking
2694 * for a memory allocation, memory reclaim could end up wanting to free a
2695 * page belonging to that request that is currently residing in our private
2696 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2697 * this kind of deadlock.
2699 void blk_start_plug(struct blk_plug
*plug
)
2701 struct task_struct
*tsk
= current
;
2703 plug
->magic
= PLUG_MAGIC
;
2704 INIT_LIST_HEAD(&plug
->list
);
2705 INIT_LIST_HEAD(&plug
->cb_list
);
2706 plug
->should_sort
= 0;
2709 * If this is a nested plug, don't actually assign it. It will be
2710 * flushed on its own.
2714 * Store ordering should not be needed here, since a potential
2715 * preempt will imply a full memory barrier
2720 EXPORT_SYMBOL(blk_start_plug
);
2722 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2724 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
2725 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
2727 return !(rqa
->q
<= rqb
->q
);
2731 * If 'from_schedule' is true, then postpone the dispatch of requests
2732 * until a safe kblockd context. We due this to avoid accidental big
2733 * additional stack usage in driver dispatch, in places where the originally
2734 * plugger did not intend it.
2736 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
2738 __releases(q
->queue_lock
)
2740 trace_block_unplug(q
, depth
, !from_schedule
);
2743 * If we are punting this to kblockd, then we can safely drop
2744 * the queue_lock before waking kblockd (which needs to take
2747 if (from_schedule
) {
2748 spin_unlock(q
->queue_lock
);
2749 blk_run_queue_async(q
);
2752 spin_unlock(q
->queue_lock
);
2757 static void flush_plug_callbacks(struct blk_plug
*plug
)
2759 LIST_HEAD(callbacks
);
2761 if (list_empty(&plug
->cb_list
))
2764 list_splice_init(&plug
->cb_list
, &callbacks
);
2766 while (!list_empty(&callbacks
)) {
2767 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
2770 list_del(&cb
->list
);
2775 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2777 struct request_queue
*q
;
2778 unsigned long flags
;
2783 BUG_ON(plug
->magic
!= PLUG_MAGIC
);
2785 flush_plug_callbacks(plug
);
2786 if (list_empty(&plug
->list
))
2789 list_splice_init(&plug
->list
, &list
);
2791 if (plug
->should_sort
) {
2792 list_sort(NULL
, &list
, plug_rq_cmp
);
2793 plug
->should_sort
= 0;
2800 * Save and disable interrupts here, to avoid doing it for every
2801 * queue lock we have to take.
2803 local_irq_save(flags
);
2804 while (!list_empty(&list
)) {
2805 rq
= list_entry_rq(list
.next
);
2806 list_del_init(&rq
->queuelist
);
2810 * This drops the queue lock
2813 queue_unplugged(q
, depth
, from_schedule
);
2816 spin_lock(q
->queue_lock
);
2819 * rq is already accounted, so use raw insert
2821 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
2822 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
2824 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
2830 * This drops the queue lock
2833 queue_unplugged(q
, depth
, from_schedule
);
2835 local_irq_restore(flags
);
2838 void blk_finish_plug(struct blk_plug
*plug
)
2840 blk_flush_plug_list(plug
, false);
2842 if (plug
== current
->plug
)
2843 current
->plug
= NULL
;
2845 EXPORT_SYMBOL(blk_finish_plug
);
2847 int __init
blk_dev_init(void)
2849 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
2850 sizeof(((struct request
*)0)->cmd_flags
));
2852 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2853 kblockd_workqueue
= alloc_workqueue("kblockd",
2854 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
2855 if (!kblockd_workqueue
)
2856 panic("Failed to create kblockd\n");
2858 request_cachep
= kmem_cache_create("blkdev_requests",
2859 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
2861 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
2862 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);