eCryptfs: move ecryptfs_find_auth_tok_for_sig() call before mutex_lock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / proc / task_mmu.c
blob7c708a418acc38412f4a4d77626be3dc4b39e03f
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
15 #include <asm/elf.h>
16 #include <asm/uaccess.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
20 void task_mem(struct seq_file *m, struct mm_struct *mm)
22 unsigned long data, text, lib, swap;
23 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
26 * Note: to minimize their overhead, mm maintains hiwater_vm and
27 * hiwater_rss only when about to *lower* total_vm or rss. Any
28 * collector of these hiwater stats must therefore get total_vm
29 * and rss too, which will usually be the higher. Barriers? not
30 * worth the effort, such snapshots can always be inconsistent.
32 hiwater_vm = total_vm = mm->total_vm;
33 if (hiwater_vm < mm->hiwater_vm)
34 hiwater_vm = mm->hiwater_vm;
35 hiwater_rss = total_rss = get_mm_rss(mm);
36 if (hiwater_rss < mm->hiwater_rss)
37 hiwater_rss = mm->hiwater_rss;
39 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
40 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
41 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
42 swap = get_mm_counter(mm, MM_SWAPENTS);
43 seq_printf(m,
44 "VmPeak:\t%8lu kB\n"
45 "VmSize:\t%8lu kB\n"
46 "VmLck:\t%8lu kB\n"
47 "VmHWM:\t%8lu kB\n"
48 "VmRSS:\t%8lu kB\n"
49 "VmData:\t%8lu kB\n"
50 "VmStk:\t%8lu kB\n"
51 "VmExe:\t%8lu kB\n"
52 "VmLib:\t%8lu kB\n"
53 "VmPTE:\t%8lu kB\n"
54 "VmSwap:\t%8lu kB\n",
55 hiwater_vm << (PAGE_SHIFT-10),
56 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
57 mm->locked_vm << (PAGE_SHIFT-10),
58 hiwater_rss << (PAGE_SHIFT-10),
59 total_rss << (PAGE_SHIFT-10),
60 data << (PAGE_SHIFT-10),
61 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
62 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
63 swap << (PAGE_SHIFT-10));
66 unsigned long task_vsize(struct mm_struct *mm)
68 return PAGE_SIZE * mm->total_vm;
71 unsigned long task_statm(struct mm_struct *mm,
72 unsigned long *shared, unsigned long *text,
73 unsigned long *data, unsigned long *resident)
75 *shared = get_mm_counter(mm, MM_FILEPAGES);
76 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
77 >> PAGE_SHIFT;
78 *data = mm->total_vm - mm->shared_vm;
79 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
80 return mm->total_vm;
83 static void pad_len_spaces(struct seq_file *m, int len)
85 len = 25 + sizeof(void*) * 6 - len;
86 if (len < 1)
87 len = 1;
88 seq_printf(m, "%*c", len, ' ');
91 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
93 if (vma && vma != priv->tail_vma) {
94 struct mm_struct *mm = vma->vm_mm;
95 up_read(&mm->mmap_sem);
96 mmput(mm);
100 static void *m_start(struct seq_file *m, loff_t *pos)
102 struct proc_maps_private *priv = m->private;
103 unsigned long last_addr = m->version;
104 struct mm_struct *mm;
105 struct vm_area_struct *vma, *tail_vma = NULL;
106 loff_t l = *pos;
108 /* Clear the per syscall fields in priv */
109 priv->task = NULL;
110 priv->tail_vma = NULL;
113 * We remember last_addr rather than next_addr to hit with
114 * mmap_cache most of the time. We have zero last_addr at
115 * the beginning and also after lseek. We will have -1 last_addr
116 * after the end of the vmas.
119 if (last_addr == -1UL)
120 return NULL;
122 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
123 if (!priv->task)
124 return ERR_PTR(-ESRCH);
126 mm = mm_for_maps(priv->task);
127 if (!mm || IS_ERR(mm))
128 return mm;
129 down_read(&mm->mmap_sem);
131 tail_vma = get_gate_vma(priv->task->mm);
132 priv->tail_vma = tail_vma;
134 /* Start with last addr hint */
135 vma = find_vma(mm, last_addr);
136 if (last_addr && vma) {
137 vma = vma->vm_next;
138 goto out;
142 * Check the vma index is within the range and do
143 * sequential scan until m_index.
145 vma = NULL;
146 if ((unsigned long)l < mm->map_count) {
147 vma = mm->mmap;
148 while (l-- && vma)
149 vma = vma->vm_next;
150 goto out;
153 if (l != mm->map_count)
154 tail_vma = NULL; /* After gate vma */
156 out:
157 if (vma)
158 return vma;
160 /* End of vmas has been reached */
161 m->version = (tail_vma != NULL)? 0: -1UL;
162 up_read(&mm->mmap_sem);
163 mmput(mm);
164 return tail_vma;
167 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
169 struct proc_maps_private *priv = m->private;
170 struct vm_area_struct *vma = v;
171 struct vm_area_struct *tail_vma = priv->tail_vma;
173 (*pos)++;
174 if (vma && (vma != tail_vma) && vma->vm_next)
175 return vma->vm_next;
176 vma_stop(priv, vma);
177 return (vma != tail_vma)? tail_vma: NULL;
180 static void m_stop(struct seq_file *m, void *v)
182 struct proc_maps_private *priv = m->private;
183 struct vm_area_struct *vma = v;
185 vma_stop(priv, vma);
186 if (priv->task)
187 put_task_struct(priv->task);
190 static int do_maps_open(struct inode *inode, struct file *file,
191 const struct seq_operations *ops)
193 struct proc_maps_private *priv;
194 int ret = -ENOMEM;
195 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
196 if (priv) {
197 priv->pid = proc_pid(inode);
198 ret = seq_open(file, ops);
199 if (!ret) {
200 struct seq_file *m = file->private_data;
201 m->private = priv;
202 } else {
203 kfree(priv);
206 return ret;
209 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
211 struct mm_struct *mm = vma->vm_mm;
212 struct file *file = vma->vm_file;
213 int flags = vma->vm_flags;
214 unsigned long ino = 0;
215 unsigned long long pgoff = 0;
216 unsigned long start;
217 dev_t dev = 0;
218 int len;
220 if (file) {
221 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
222 dev = inode->i_sb->s_dev;
223 ino = inode->i_ino;
224 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
227 /* We don't show the stack guard page in /proc/maps */
228 start = vma->vm_start;
229 if (vma->vm_flags & VM_GROWSDOWN)
230 if (!vma_stack_continue(vma->vm_prev, vma->vm_start))
231 start += PAGE_SIZE;
233 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
234 start,
235 vma->vm_end,
236 flags & VM_READ ? 'r' : '-',
237 flags & VM_WRITE ? 'w' : '-',
238 flags & VM_EXEC ? 'x' : '-',
239 flags & VM_MAYSHARE ? 's' : 'p',
240 pgoff,
241 MAJOR(dev), MINOR(dev), ino, &len);
244 * Print the dentry name for named mappings, and a
245 * special [heap] marker for the heap:
247 if (file) {
248 pad_len_spaces(m, len);
249 seq_path(m, &file->f_path, "\n");
250 } else {
251 const char *name = arch_vma_name(vma);
252 if (!name) {
253 if (mm) {
254 if (vma->vm_start <= mm->brk &&
255 vma->vm_end >= mm->start_brk) {
256 name = "[heap]";
257 } else if (vma->vm_start <= mm->start_stack &&
258 vma->vm_end >= mm->start_stack) {
259 name = "[stack]";
261 } else {
262 name = "[vdso]";
265 if (name) {
266 pad_len_spaces(m, len);
267 seq_puts(m, name);
270 seq_putc(m, '\n');
273 static int show_map(struct seq_file *m, void *v)
275 struct vm_area_struct *vma = v;
276 struct proc_maps_private *priv = m->private;
277 struct task_struct *task = priv->task;
279 show_map_vma(m, vma);
281 if (m->count < m->size) /* vma is copied successfully */
282 m->version = (vma != get_gate_vma(task->mm))
283 ? vma->vm_start : 0;
284 return 0;
287 static const struct seq_operations proc_pid_maps_op = {
288 .start = m_start,
289 .next = m_next,
290 .stop = m_stop,
291 .show = show_map
294 static int maps_open(struct inode *inode, struct file *file)
296 return do_maps_open(inode, file, &proc_pid_maps_op);
299 const struct file_operations proc_maps_operations = {
300 .open = maps_open,
301 .read = seq_read,
302 .llseek = seq_lseek,
303 .release = seq_release_private,
307 * Proportional Set Size(PSS): my share of RSS.
309 * PSS of a process is the count of pages it has in memory, where each
310 * page is divided by the number of processes sharing it. So if a
311 * process has 1000 pages all to itself, and 1000 shared with one other
312 * process, its PSS will be 1500.
314 * To keep (accumulated) division errors low, we adopt a 64bit
315 * fixed-point pss counter to minimize division errors. So (pss >>
316 * PSS_SHIFT) would be the real byte count.
318 * A shift of 12 before division means (assuming 4K page size):
319 * - 1M 3-user-pages add up to 8KB errors;
320 * - supports mapcount up to 2^24, or 16M;
321 * - supports PSS up to 2^52 bytes, or 4PB.
323 #define PSS_SHIFT 12
325 #ifdef CONFIG_PROC_PAGE_MONITOR
326 struct mem_size_stats {
327 struct vm_area_struct *vma;
328 unsigned long resident;
329 unsigned long shared_clean;
330 unsigned long shared_dirty;
331 unsigned long private_clean;
332 unsigned long private_dirty;
333 unsigned long referenced;
334 unsigned long anonymous;
335 unsigned long anonymous_thp;
336 unsigned long swap;
337 u64 pss;
341 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
342 unsigned long ptent_size, struct mm_walk *walk)
344 struct mem_size_stats *mss = walk->private;
345 struct vm_area_struct *vma = mss->vma;
346 struct page *page;
347 int mapcount;
349 if (is_swap_pte(ptent)) {
350 mss->swap += ptent_size;
351 return;
354 if (!pte_present(ptent))
355 return;
357 page = vm_normal_page(vma, addr, ptent);
358 if (!page)
359 return;
361 if (PageAnon(page))
362 mss->anonymous += ptent_size;
364 mss->resident += ptent_size;
365 /* Accumulate the size in pages that have been accessed. */
366 if (pte_young(ptent) || PageReferenced(page))
367 mss->referenced += ptent_size;
368 mapcount = page_mapcount(page);
369 if (mapcount >= 2) {
370 if (pte_dirty(ptent) || PageDirty(page))
371 mss->shared_dirty += ptent_size;
372 else
373 mss->shared_clean += ptent_size;
374 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
375 } else {
376 if (pte_dirty(ptent) || PageDirty(page))
377 mss->private_dirty += ptent_size;
378 else
379 mss->private_clean += ptent_size;
380 mss->pss += (ptent_size << PSS_SHIFT);
384 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
385 struct mm_walk *walk)
387 struct mem_size_stats *mss = walk->private;
388 struct vm_area_struct *vma = mss->vma;
389 pte_t *pte;
390 spinlock_t *ptl;
392 spin_lock(&walk->mm->page_table_lock);
393 if (pmd_trans_huge(*pmd)) {
394 if (pmd_trans_splitting(*pmd)) {
395 spin_unlock(&walk->mm->page_table_lock);
396 wait_split_huge_page(vma->anon_vma, pmd);
397 } else {
398 smaps_pte_entry(*(pte_t *)pmd, addr,
399 HPAGE_PMD_SIZE, walk);
400 spin_unlock(&walk->mm->page_table_lock);
401 mss->anonymous_thp += HPAGE_PMD_SIZE;
402 return 0;
404 } else {
405 spin_unlock(&walk->mm->page_table_lock);
408 * The mmap_sem held all the way back in m_start() is what
409 * keeps khugepaged out of here and from collapsing things
410 * in here.
412 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
413 for (; addr != end; pte++, addr += PAGE_SIZE)
414 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
415 pte_unmap_unlock(pte - 1, ptl);
416 cond_resched();
417 return 0;
420 static int show_smap(struct seq_file *m, void *v)
422 struct proc_maps_private *priv = m->private;
423 struct task_struct *task = priv->task;
424 struct vm_area_struct *vma = v;
425 struct mem_size_stats mss;
426 struct mm_walk smaps_walk = {
427 .pmd_entry = smaps_pte_range,
428 .mm = vma->vm_mm,
429 .private = &mss,
432 memset(&mss, 0, sizeof mss);
433 mss.vma = vma;
434 /* mmap_sem is held in m_start */
435 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
436 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
438 show_map_vma(m, vma);
440 seq_printf(m,
441 "Size: %8lu kB\n"
442 "Rss: %8lu kB\n"
443 "Pss: %8lu kB\n"
444 "Shared_Clean: %8lu kB\n"
445 "Shared_Dirty: %8lu kB\n"
446 "Private_Clean: %8lu kB\n"
447 "Private_Dirty: %8lu kB\n"
448 "Referenced: %8lu kB\n"
449 "Anonymous: %8lu kB\n"
450 "AnonHugePages: %8lu kB\n"
451 "Swap: %8lu kB\n"
452 "KernelPageSize: %8lu kB\n"
453 "MMUPageSize: %8lu kB\n"
454 "Locked: %8lu kB\n",
455 (vma->vm_end - vma->vm_start) >> 10,
456 mss.resident >> 10,
457 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
458 mss.shared_clean >> 10,
459 mss.shared_dirty >> 10,
460 mss.private_clean >> 10,
461 mss.private_dirty >> 10,
462 mss.referenced >> 10,
463 mss.anonymous >> 10,
464 mss.anonymous_thp >> 10,
465 mss.swap >> 10,
466 vma_kernel_pagesize(vma) >> 10,
467 vma_mmu_pagesize(vma) >> 10,
468 (vma->vm_flags & VM_LOCKED) ?
469 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
471 if (m->count < m->size) /* vma is copied successfully */
472 m->version = (vma != get_gate_vma(task->mm))
473 ? vma->vm_start : 0;
474 return 0;
477 static const struct seq_operations proc_pid_smaps_op = {
478 .start = m_start,
479 .next = m_next,
480 .stop = m_stop,
481 .show = show_smap
484 static int smaps_open(struct inode *inode, struct file *file)
486 return do_maps_open(inode, file, &proc_pid_smaps_op);
489 const struct file_operations proc_smaps_operations = {
490 .open = smaps_open,
491 .read = seq_read,
492 .llseek = seq_lseek,
493 .release = seq_release_private,
496 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
497 unsigned long end, struct mm_walk *walk)
499 struct vm_area_struct *vma = walk->private;
500 pte_t *pte, ptent;
501 spinlock_t *ptl;
502 struct page *page;
504 split_huge_page_pmd(walk->mm, pmd);
506 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
507 for (; addr != end; pte++, addr += PAGE_SIZE) {
508 ptent = *pte;
509 if (!pte_present(ptent))
510 continue;
512 page = vm_normal_page(vma, addr, ptent);
513 if (!page)
514 continue;
516 /* Clear accessed and referenced bits. */
517 ptep_test_and_clear_young(vma, addr, pte);
518 ClearPageReferenced(page);
520 pte_unmap_unlock(pte - 1, ptl);
521 cond_resched();
522 return 0;
525 #define CLEAR_REFS_ALL 1
526 #define CLEAR_REFS_ANON 2
527 #define CLEAR_REFS_MAPPED 3
529 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
530 size_t count, loff_t *ppos)
532 struct task_struct *task;
533 char buffer[PROC_NUMBUF];
534 struct mm_struct *mm;
535 struct vm_area_struct *vma;
536 long type;
538 memset(buffer, 0, sizeof(buffer));
539 if (count > sizeof(buffer) - 1)
540 count = sizeof(buffer) - 1;
541 if (copy_from_user(buffer, buf, count))
542 return -EFAULT;
543 if (strict_strtol(strstrip(buffer), 10, &type))
544 return -EINVAL;
545 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
546 return -EINVAL;
547 task = get_proc_task(file->f_path.dentry->d_inode);
548 if (!task)
549 return -ESRCH;
550 mm = get_task_mm(task);
551 if (mm) {
552 struct mm_walk clear_refs_walk = {
553 .pmd_entry = clear_refs_pte_range,
554 .mm = mm,
556 down_read(&mm->mmap_sem);
557 for (vma = mm->mmap; vma; vma = vma->vm_next) {
558 clear_refs_walk.private = vma;
559 if (is_vm_hugetlb_page(vma))
560 continue;
562 * Writing 1 to /proc/pid/clear_refs affects all pages.
564 * Writing 2 to /proc/pid/clear_refs only affects
565 * Anonymous pages.
567 * Writing 3 to /proc/pid/clear_refs only affects file
568 * mapped pages.
570 if (type == CLEAR_REFS_ANON && vma->vm_file)
571 continue;
572 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
573 continue;
574 walk_page_range(vma->vm_start, vma->vm_end,
575 &clear_refs_walk);
577 flush_tlb_mm(mm);
578 up_read(&mm->mmap_sem);
579 mmput(mm);
581 put_task_struct(task);
583 return count;
586 const struct file_operations proc_clear_refs_operations = {
587 .write = clear_refs_write,
588 .llseek = noop_llseek,
591 struct pagemapread {
592 int pos, len;
593 u64 *buffer;
596 #define PM_ENTRY_BYTES sizeof(u64)
597 #define PM_STATUS_BITS 3
598 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
599 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
600 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
601 #define PM_PSHIFT_BITS 6
602 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
603 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
604 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
605 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
606 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
608 #define PM_PRESENT PM_STATUS(4LL)
609 #define PM_SWAP PM_STATUS(2LL)
610 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
611 #define PM_END_OF_BUFFER 1
613 static int add_to_pagemap(unsigned long addr, u64 pfn,
614 struct pagemapread *pm)
616 pm->buffer[pm->pos++] = pfn;
617 if (pm->pos >= pm->len)
618 return PM_END_OF_BUFFER;
619 return 0;
622 static int pagemap_pte_hole(unsigned long start, unsigned long end,
623 struct mm_walk *walk)
625 struct pagemapread *pm = walk->private;
626 unsigned long addr;
627 int err = 0;
628 for (addr = start; addr < end; addr += PAGE_SIZE) {
629 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
630 if (err)
631 break;
633 return err;
636 static u64 swap_pte_to_pagemap_entry(pte_t pte)
638 swp_entry_t e = pte_to_swp_entry(pte);
639 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
642 static u64 pte_to_pagemap_entry(pte_t pte)
644 u64 pme = 0;
645 if (is_swap_pte(pte))
646 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
647 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
648 else if (pte_present(pte))
649 pme = PM_PFRAME(pte_pfn(pte))
650 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
651 return pme;
654 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
655 struct mm_walk *walk)
657 struct vm_area_struct *vma;
658 struct pagemapread *pm = walk->private;
659 pte_t *pte;
660 int err = 0;
662 split_huge_page_pmd(walk->mm, pmd);
664 /* find the first VMA at or above 'addr' */
665 vma = find_vma(walk->mm, addr);
666 for (; addr != end; addr += PAGE_SIZE) {
667 u64 pfn = PM_NOT_PRESENT;
669 /* check to see if we've left 'vma' behind
670 * and need a new, higher one */
671 if (vma && (addr >= vma->vm_end))
672 vma = find_vma(walk->mm, addr);
674 /* check that 'vma' actually covers this address,
675 * and that it isn't a huge page vma */
676 if (vma && (vma->vm_start <= addr) &&
677 !is_vm_hugetlb_page(vma)) {
678 pte = pte_offset_map(pmd, addr);
679 pfn = pte_to_pagemap_entry(*pte);
680 /* unmap before userspace copy */
681 pte_unmap(pte);
683 err = add_to_pagemap(addr, pfn, pm);
684 if (err)
685 return err;
688 cond_resched();
690 return err;
693 #ifdef CONFIG_HUGETLB_PAGE
694 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
696 u64 pme = 0;
697 if (pte_present(pte))
698 pme = PM_PFRAME(pte_pfn(pte) + offset)
699 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
700 return pme;
703 /* This function walks within one hugetlb entry in the single call */
704 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
705 unsigned long addr, unsigned long end,
706 struct mm_walk *walk)
708 struct pagemapread *pm = walk->private;
709 int err = 0;
710 u64 pfn;
712 for (; addr != end; addr += PAGE_SIZE) {
713 int offset = (addr & ~hmask) >> PAGE_SHIFT;
714 pfn = huge_pte_to_pagemap_entry(*pte, offset);
715 err = add_to_pagemap(addr, pfn, pm);
716 if (err)
717 return err;
720 cond_resched();
722 return err;
724 #endif /* HUGETLB_PAGE */
727 * /proc/pid/pagemap - an array mapping virtual pages to pfns
729 * For each page in the address space, this file contains one 64-bit entry
730 * consisting of the following:
732 * Bits 0-55 page frame number (PFN) if present
733 * Bits 0-4 swap type if swapped
734 * Bits 5-55 swap offset if swapped
735 * Bits 55-60 page shift (page size = 1<<page shift)
736 * Bit 61 reserved for future use
737 * Bit 62 page swapped
738 * Bit 63 page present
740 * If the page is not present but in swap, then the PFN contains an
741 * encoding of the swap file number and the page's offset into the
742 * swap. Unmapped pages return a null PFN. This allows determining
743 * precisely which pages are mapped (or in swap) and comparing mapped
744 * pages between processes.
746 * Efficient users of this interface will use /proc/pid/maps to
747 * determine which areas of memory are actually mapped and llseek to
748 * skip over unmapped regions.
750 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
751 #define PAGEMAP_WALK_MASK (PMD_MASK)
752 static ssize_t pagemap_read(struct file *file, char __user *buf,
753 size_t count, loff_t *ppos)
755 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
756 struct mm_struct *mm;
757 struct pagemapread pm;
758 int ret = -ESRCH;
759 struct mm_walk pagemap_walk = {};
760 unsigned long src;
761 unsigned long svpfn;
762 unsigned long start_vaddr;
763 unsigned long end_vaddr;
764 int copied = 0;
766 if (!task)
767 goto out;
769 mm = mm_for_maps(task);
770 ret = PTR_ERR(mm);
771 if (!mm || IS_ERR(mm))
772 goto out_task;
774 ret = -EINVAL;
775 /* file position must be aligned */
776 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
777 goto out_task;
779 ret = 0;
781 if (!count)
782 goto out_task;
784 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
785 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
786 ret = -ENOMEM;
787 if (!pm.buffer)
788 goto out_mm;
790 pagemap_walk.pmd_entry = pagemap_pte_range;
791 pagemap_walk.pte_hole = pagemap_pte_hole;
792 #ifdef CONFIG_HUGETLB_PAGE
793 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
794 #endif
795 pagemap_walk.mm = mm;
796 pagemap_walk.private = &pm;
798 src = *ppos;
799 svpfn = src / PM_ENTRY_BYTES;
800 start_vaddr = svpfn << PAGE_SHIFT;
801 end_vaddr = TASK_SIZE_OF(task);
803 /* watch out for wraparound */
804 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
805 start_vaddr = end_vaddr;
808 * The odds are that this will stop walking way
809 * before end_vaddr, because the length of the
810 * user buffer is tracked in "pm", and the walk
811 * will stop when we hit the end of the buffer.
813 ret = 0;
814 while (count && (start_vaddr < end_vaddr)) {
815 int len;
816 unsigned long end;
818 pm.pos = 0;
819 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
820 /* overflow ? */
821 if (end < start_vaddr || end > end_vaddr)
822 end = end_vaddr;
823 down_read(&mm->mmap_sem);
824 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
825 up_read(&mm->mmap_sem);
826 start_vaddr = end;
828 len = min(count, PM_ENTRY_BYTES * pm.pos);
829 if (copy_to_user(buf, pm.buffer, len)) {
830 ret = -EFAULT;
831 goto out_free;
833 copied += len;
834 buf += len;
835 count -= len;
837 *ppos += copied;
838 if (!ret || ret == PM_END_OF_BUFFER)
839 ret = copied;
841 out_free:
842 kfree(pm.buffer);
843 out_mm:
844 mmput(mm);
845 out_task:
846 put_task_struct(task);
847 out:
848 return ret;
851 const struct file_operations proc_pagemap_operations = {
852 .llseek = mem_lseek, /* borrow this */
853 .read = pagemap_read,
855 #endif /* CONFIG_PROC_PAGE_MONITOR */
857 #ifdef CONFIG_NUMA
858 extern int show_numa_map(struct seq_file *m, void *v);
860 static const struct seq_operations proc_pid_numa_maps_op = {
861 .start = m_start,
862 .next = m_next,
863 .stop = m_stop,
864 .show = show_numa_map,
867 static int numa_maps_open(struct inode *inode, struct file *file)
869 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
872 const struct file_operations proc_numa_maps_operations = {
873 .open = numa_maps_open,
874 .read = seq_read,
875 .llseek = seq_lseek,
876 .release = seq_release_private,
878 #endif