DRM: Replace kmalloc/memset combos with kzalloc
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / igbvf / vf.c
bloba9a61efa964cf7b7cc32b439952ed2a444fa1ebe
1 /*******************************************************************************
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
29 #include "vf.h"
31 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
32 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
33 u16 *duplex);
34 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
35 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
37 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
38 u32, u32, u32);
39 static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
40 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
41 static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
43 /**
44 * e1000_init_mac_params_vf - Inits MAC params
45 * @hw: pointer to the HW structure
46 **/
47 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
49 struct e1000_mac_info *mac = &hw->mac;
51 /* VF's have no MTA Registers - PF feature only */
52 mac->mta_reg_count = 128;
53 /* VF's have no access to RAR entries */
54 mac->rar_entry_count = 1;
56 /* Function pointers */
57 /* reset */
58 mac->ops.reset_hw = e1000_reset_hw_vf;
59 /* hw initialization */
60 mac->ops.init_hw = e1000_init_hw_vf;
61 /* check for link */
62 mac->ops.check_for_link = e1000_check_for_link_vf;
63 /* link info */
64 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
65 /* multicast address update */
66 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
67 /* set mac address */
68 mac->ops.rar_set = e1000_rar_set_vf;
69 /* read mac address */
70 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
71 /* set vlan filter table array */
72 mac->ops.set_vfta = e1000_set_vfta_vf;
74 return E1000_SUCCESS;
77 /**
78 * e1000_init_function_pointers_vf - Inits function pointers
79 * @hw: pointer to the HW structure
80 **/
81 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
83 hw->mac.ops.init_params = e1000_init_mac_params_vf;
84 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
87 /**
88 * e1000_get_link_up_info_vf - Gets link info.
89 * @hw: pointer to the HW structure
90 * @speed: pointer to 16 bit value to store link speed.
91 * @duplex: pointer to 16 bit value to store duplex.
93 * Since we cannot read the PHY and get accurate link info, we must rely upon
94 * the status register's data which is often stale and inaccurate.
95 **/
96 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
97 u16 *duplex)
99 s32 status;
101 status = er32(STATUS);
102 if (status & E1000_STATUS_SPEED_1000)
103 *speed = SPEED_1000;
104 else if (status & E1000_STATUS_SPEED_100)
105 *speed = SPEED_100;
106 else
107 *speed = SPEED_10;
109 if (status & E1000_STATUS_FD)
110 *duplex = FULL_DUPLEX;
111 else
112 *duplex = HALF_DUPLEX;
114 return E1000_SUCCESS;
118 * e1000_reset_hw_vf - Resets the HW
119 * @hw: pointer to the HW structure
121 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
122 * This is all the reset we can perform on a VF.
124 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
126 struct e1000_mbx_info *mbx = &hw->mbx;
127 u32 timeout = E1000_VF_INIT_TIMEOUT;
128 u32 ret_val = -E1000_ERR_MAC_INIT;
129 u32 msgbuf[3];
130 u8 *addr = (u8 *)(&msgbuf[1]);
131 u32 ctrl;
133 /* assert vf queue/interrupt reset */
134 ctrl = er32(CTRL);
135 ew32(CTRL, ctrl | E1000_CTRL_RST);
137 /* we cannot initialize while the RSTI / RSTD bits are asserted */
138 while (!mbx->ops.check_for_rst(hw) && timeout) {
139 timeout--;
140 udelay(5);
143 if (timeout) {
144 /* mailbox timeout can now become active */
145 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
147 /* notify pf of vf reset completion */
148 msgbuf[0] = E1000_VF_RESET;
149 mbx->ops.write_posted(hw, msgbuf, 1);
151 msleep(10);
153 /* set our "perm_addr" based on info provided by PF */
154 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
155 if (!ret_val) {
156 if (msgbuf[0] == (E1000_VF_RESET | E1000_VT_MSGTYPE_ACK))
157 memcpy(hw->mac.perm_addr, addr, 6);
158 else
159 ret_val = -E1000_ERR_MAC_INIT;
163 return ret_val;
167 * e1000_init_hw_vf - Inits the HW
168 * @hw: pointer to the HW structure
170 * Not much to do here except clear the PF Reset indication if there is one.
172 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
174 /* attempt to set and restore our mac address */
175 e1000_rar_set_vf(hw, hw->mac.addr, 0);
177 return E1000_SUCCESS;
181 * e1000_hash_mc_addr_vf - Generate a multicast hash value
182 * @hw: pointer to the HW structure
183 * @mc_addr: pointer to a multicast address
185 * Generates a multicast address hash value which is used to determine
186 * the multicast filter table array address and new table value. See
187 * e1000_mta_set_generic()
189 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
191 u32 hash_value, hash_mask;
192 u8 bit_shift = 0;
194 /* Register count multiplied by bits per register */
195 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
198 * The bit_shift is the number of left-shifts
199 * where 0xFF would still fall within the hash mask.
201 while (hash_mask >> bit_shift != 0xFF)
202 bit_shift++;
204 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
205 (((u16) mc_addr[5]) << bit_shift)));
207 return hash_value;
211 * e1000_update_mc_addr_list_vf - Update Multicast addresses
212 * @hw: pointer to the HW structure
213 * @mc_addr_list: array of multicast addresses to program
214 * @mc_addr_count: number of multicast addresses to program
215 * @rar_used_count: the first RAR register free to program
216 * @rar_count: total number of supported Receive Address Registers
218 * Updates the Receive Address Registers and Multicast Table Array.
219 * The caller must have a packed mc_addr_list of multicast addresses.
220 * The parameter rar_count will usually be hw->mac.rar_entry_count
221 * unless there are workarounds that change this.
223 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
224 u8 *mc_addr_list, u32 mc_addr_count,
225 u32 rar_used_count, u32 rar_count)
227 struct e1000_mbx_info *mbx = &hw->mbx;
228 u32 msgbuf[E1000_VFMAILBOX_SIZE];
229 u16 *hash_list = (u16 *)&msgbuf[1];
230 u32 hash_value;
231 u32 cnt, i;
233 /* Each entry in the list uses 1 16 bit word. We have 30
234 * 16 bit words available in our HW msg buffer (minus 1 for the
235 * msg type). That's 30 hash values if we pack 'em right. If
236 * there are more than 30 MC addresses to add then punt the
237 * extras for now and then add code to handle more than 30 later.
238 * It would be unusual for a server to request that many multi-cast
239 * addresses except for in large enterprise network environments.
242 cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
243 msgbuf[0] = E1000_VF_SET_MULTICAST;
244 msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
246 for (i = 0; i < cnt; i++) {
247 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
248 hash_list[i] = hash_value & 0x0FFFF;
249 mc_addr_list += ETH_ADDR_LEN;
252 mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
256 * e1000_set_vfta_vf - Set/Unset vlan filter table address
257 * @hw: pointer to the HW structure
258 * @vid: determines the vfta register and bit to set/unset
259 * @set: if true then set bit, else clear bit
261 static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
263 struct e1000_mbx_info *mbx = &hw->mbx;
264 u32 msgbuf[2];
265 s32 err;
267 msgbuf[0] = E1000_VF_SET_VLAN;
268 msgbuf[1] = vid;
269 /* Setting the 8 bit field MSG INFO to true indicates "add" */
270 if (set)
271 msgbuf[0] |= 1 << E1000_VT_MSGINFO_SHIFT;
273 mbx->ops.write_posted(hw, msgbuf, 2);
275 err = mbx->ops.read_posted(hw, msgbuf, 2);
277 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
279 /* if nacked the vlan was rejected */
280 if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
281 err = -E1000_ERR_MAC_INIT;
283 return err;
286 /** e1000_rlpml_set_vf - Set the maximum receive packet length
287 * @hw: pointer to the HW structure
288 * @max_size: value to assign to max frame size
290 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
292 struct e1000_mbx_info *mbx = &hw->mbx;
293 u32 msgbuf[2];
295 msgbuf[0] = E1000_VF_SET_LPE;
296 msgbuf[1] = max_size;
298 mbx->ops.write_posted(hw, msgbuf, 2);
302 * e1000_rar_set_vf - set device MAC address
303 * @hw: pointer to the HW structure
304 * @addr: pointer to the receive address
305 * @index receive address array register
307 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index)
309 struct e1000_mbx_info *mbx = &hw->mbx;
310 u32 msgbuf[3];
311 u8 *msg_addr = (u8 *)(&msgbuf[1]);
312 s32 ret_val;
314 memset(msgbuf, 0, 12);
315 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
316 memcpy(msg_addr, addr, 6);
317 ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
319 if (!ret_val)
320 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
322 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
324 /* if nacked the address was rejected, use "perm_addr" */
325 if (!ret_val &&
326 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
327 e1000_read_mac_addr_vf(hw);
331 * e1000_read_mac_addr_vf - Read device MAC address
332 * @hw: pointer to the HW structure
334 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
336 int i;
338 for (i = 0; i < ETH_ADDR_LEN; i++)
339 hw->mac.addr[i] = hw->mac.perm_addr[i];
341 return E1000_SUCCESS;
345 * e1000_check_for_link_vf - Check for link for a virtual interface
346 * @hw: pointer to the HW structure
348 * Checks to see if the underlying PF is still talking to the VF and
349 * if it is then it reports the link state to the hardware, otherwise
350 * it reports link down and returns an error.
352 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
354 struct e1000_mbx_info *mbx = &hw->mbx;
355 struct e1000_mac_info *mac = &hw->mac;
356 s32 ret_val = E1000_SUCCESS;
357 u32 in_msg = 0;
360 * We only want to run this if there has been a rst asserted.
361 * in this case that could mean a link change, device reset,
362 * or a virtual function reset
365 /* If we were hit with a reset drop the link */
366 if (!mbx->ops.check_for_rst(hw))
367 mac->get_link_status = true;
369 if (!mac->get_link_status)
370 goto out;
372 /* if link status is down no point in checking to see if pf is up */
373 if (!(er32(STATUS) & E1000_STATUS_LU))
374 goto out;
376 /* if the read failed it could just be a mailbox collision, best wait
377 * until we are called again and don't report an error */
378 if (mbx->ops.read(hw, &in_msg, 1))
379 goto out;
381 /* if incoming message isn't clear to send we are waiting on response */
382 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
383 /* message is not CTS and is NACK we must have lost CTS status */
384 if (in_msg & E1000_VT_MSGTYPE_NACK)
385 ret_val = -E1000_ERR_MAC_INIT;
386 goto out;
389 /* the pf is talking, if we timed out in the past we reinit */
390 if (!mbx->timeout) {
391 ret_val = -E1000_ERR_MAC_INIT;
392 goto out;
395 /* if we passed all the tests above then the link is up and we no
396 * longer need to check for link */
397 mac->get_link_status = false;
399 out:
400 return ret_val;